"test/vscode:/vscode.git/clone" did not exist on "4bf6c6e4b4cf2dea9c7f9952aa30d5820ab8ae33"
Commit 4939ee59 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents 457308e3 87f2bbcf
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp" #include "common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp" #include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
using InDataType = int8_t; using InDataType = int8_t;
using WeiDataType = int8_t; using WeiDataType = int8_t;
......
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp" #include "common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp" #include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
using InDataType = int8_t; using InDataType = int8_t;
using WeiDataType = int8_t; using WeiDataType = int8_t;
......
...@@ -13,10 +13,6 @@ foreach(gpu IN LISTS GPU_TARGETS) ...@@ -13,10 +13,6 @@ foreach(gpu IN LISTS GPU_TARGETS)
endif() endif()
endforeach() endforeach()
set(target 0) if(NOT GPU_TARGETS MATCHES "gfx94" AND NOT GPU_TARGETS MATCHES "gfx1")
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list2 AND target EQUAL 0)
add_example_executable(example_grouped_conv_conv_fwd_xdl_int8 grouped_conv_conv_fwd_xdl_int8.cpp) add_example_executable(example_grouped_conv_conv_fwd_xdl_int8 grouped_conv_conv_fwd_xdl_int8.cpp)
set(target 1) endif()
endif()
endforeach()
...@@ -8,7 +8,7 @@ ...@@ -8,7 +8,7 @@
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp" #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp" #include "ck/tensor_operation/gpu/device/impl/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
......
...@@ -8,7 +8,7 @@ ...@@ -8,7 +8,7 @@
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp" #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp" #include "ck/tensor_operation/gpu/device/impl/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
......
...@@ -27,6 +27,21 @@ ...@@ -27,6 +27,21 @@
#define CK_WAVELET_MIN_BLOCK_PER_CU 2 #define CK_WAVELET_MIN_BLOCK_PER_CU 2
#endif #endif
// kernel attribute: amdgpu_waves_per_eu()
#ifdef CK_USE_WAVES_PER_EU
// for 1-wave kernels, control arguments of amdgpu_waves_per_eu() attribute
#ifndef CK_MIN_WAVES_PER_EU
#define CK_MIN_WAVES_PER_EU 0
#endif
#ifndef CK_MAX_WAVES_PER_EU
#define CK_MAX_WAVES_PER_EU 0
#endif
#else
#define CK_USE_WAVES_PER_EU 0
#endif
// buffer resource // buffer resource
#ifndef __HIP_DEVICE_COMPILE__ // for host code #ifndef __HIP_DEVICE_COMPILE__ // for host code
#define CK_BUFFER_RESOURCE_3RD_DWORD -1 #define CK_BUFFER_RESOURCE_3RD_DWORD -1
...@@ -148,6 +163,10 @@ ...@@ -148,6 +163,10 @@
#define CK_EXPERIMENTAL_INTER_WAVE_INSTANCES 1 #define CK_EXPERIMENTAL_INTER_WAVE_INSTANCES 1
// experimental feature: add instances using pipeline v2 // experimental feature: add instances using pipeline v2
#define CK_EXPERIMENTAL_PIPELINE_V2_INSTANCES 1 #define CK_EXPERIMENTAL_PIPELINE_V2_INSTANCES 1
// experimental feature: optimize pipeline v2 by IGLP strategy (value=ID of strategy)
#ifndef CK_EXPERIMENTAL_PIPELINE_V2_IGLP_OPT
#define CK_EXPERIMENTAL_PIPELINE_V2_IGLP_OPT 0
#endif
// hack: have underlying assumption that need to be satsified, otherwise it's a bug // hack: have underlying assumption that need to be satsified, otherwise it's a bug
// hack for forcing register to keep idx_diff_low_const in SGPR. idx_diff_low_const must be // hack for forcing register to keep idx_diff_low_const in SGPR. idx_diff_low_const must be
...@@ -173,6 +192,10 @@ ...@@ -173,6 +192,10 @@
// workaround: compiler issue on gfx908 // workaround: compiler issue on gfx908
#define CK_WORKAROUND_SWDEV_388832 1 #define CK_WORKAROUND_SWDEV_388832 1
// workaround: Grouped Conv2d_bwd_data fails for already implemented instance
#define CK_WORKAROUND_SWDEV_3318619 0
// flag to enable (1) or disable (0) the debugging output in some kernels // flag to enable (1) or disable (0) the debugging output in some kernels
#define DEBUG_LOG 0 #define DEBUG_LOG 0
......
...@@ -4,7 +4,7 @@ ...@@ -4,7 +4,7 @@
#pragma once #pragma once
#include "ck/tensor_description/cluster_descriptor.hpp" #include "ck/tensor_description/cluster_descriptor.hpp"
#include "ck/utility/reduction_common.hpp" #include "ck/utility/get_shift.hpp"
namespace ck { namespace ck {
...@@ -35,10 +35,11 @@ struct BlockwiseWelford ...@@ -35,10 +35,11 @@ struct BlockwiseWelford
static constexpr auto thread_cluster_desc = static constexpr auto thread_cluster_desc =
make_cluster_descriptor(ThreadClusterLengths_M_K{}, ThreadClusterArrangeOrder{}); make_cluster_descriptor(ThreadClusterLengths_M_K{}, ThreadClusterArrangeOrder{});
template <typename CountDataType>
__device__ static inline void __device__ static inline void
Merge(T& mean_a, T& var_a, int& count_a, T mean_b, T var_b, int count_b) Merge(T& mean_a, T& var_a, CountDataType& count_a, T mean_b, T var_b, CountDataType count_b)
{ {
int count = count_a + count_b; CountDataType count = count_a + count_b;
T count_b_over_count = count == 0 ? type_convert<T>(0) : type_convert<T>(count_b) / count; T count_b_over_count = count == 0 ? type_convert<T>(0) : type_convert<T>(count_b) / count;
T delta = mean_b - mean_a; T delta = mean_b - mean_a;
mean_a += delta * count_b_over_count; mean_a += delta * count_b_over_count;
...@@ -46,11 +47,12 @@ struct BlockwiseWelford ...@@ -46,11 +47,12 @@ struct BlockwiseWelford
count_a = count; count_a = count;
} }
__device__ static void Run(T& mean_value, T& var_value, int& count) template <typename CountDataType>
__device__ static void Run(T& mean_value, T& var_value, CountDataType& count)
{ {
__shared__ T mean_block_buf[BlockSize]; __shared__ T mean_block_buf[BlockSize];
__shared__ T var_block_buf[BlockSize]; __shared__ T var_block_buf[BlockSize];
__shared__ int count_block_buf[BlockSize]; __shared__ CountDataType count_block_buf[BlockSize];
constexpr auto cluster_len_shift = get_shift<BufferLength_K>(); constexpr auto cluster_len_shift = get_shift<BufferLength_K>();
...@@ -76,13 +78,13 @@ struct BlockwiseWelford ...@@ -76,13 +78,13 @@ struct BlockwiseWelford
index_t offset2 = block_buf_desc_m_k.CalculateOffset(thread_cluster_idx + index_t offset2 = block_buf_desc_m_k.CalculateOffset(thread_cluster_idx +
make_tuple(0, indOffset)); make_tuple(0, indOffset));
T mean1 = mean_block_buf[offset1]; T mean1 = mean_block_buf[offset1];
T var1 = var_block_buf[offset1]; T var1 = var_block_buf[offset1];
int count1 = count_block_buf[offset1]; CountDataType count1 = count_block_buf[offset1];
T mean2 = mean_block_buf[offset2]; T mean2 = mean_block_buf[offset2];
T var2 = var_block_buf[offset2]; T var2 = var_block_buf[offset2];
int count2 = count_block_buf[offset2]; CountDataType count2 = count_block_buf[offset2];
Merge(mean1, var1, count1, mean2, var2, count2); Merge(mean1, var1, count1, mean2, var2, count2);
......
...@@ -4,7 +4,7 @@ ...@@ -4,7 +4,7 @@
#pragma once #pragma once
#include "ck/tensor_description/cluster_descriptor.hpp" #include "ck/tensor_description/cluster_descriptor.hpp"
#include "ck/utility/reduction_common.hpp" #include "ck/utility/get_shift.hpp"
#include "ck/utility/reduction_functions_accumulate.hpp" #include "ck/utility/reduction_functions_accumulate.hpp"
namespace ck { namespace ck {
......
...@@ -786,12 +786,10 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -786,12 +786,10 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
if(arg.d0s_nl_ns_lengths_strides_[i][1] == 1 && if(arg.d0s_nl_ns_lengths_strides_[i][1] == 1 &&
arg.d0s_nl_ns_lengths_strides_[i][0] % D0sTransferSrcScalarPerVector != 0) arg.d0s_nl_ns_lengths_strides_[i][0] % D0sTransferSrcScalarPerVector != 0)
{ {
std::cout << "first" << std::endl;
return false; return false;
} }
if(arg.d0s_nl_ns_lengths_strides_[i][1] != 1 && D0sTransferSrcScalarPerVector != 1) if(arg.d0s_nl_ns_lengths_strides_[i][1] != 1 && D0sTransferSrcScalarPerVector != 1)
{ {
std::cout << "second" << std::endl;
return false; return false;
} }
} }
......
...@@ -10,12 +10,14 @@ ...@@ -10,12 +10,14 @@
#include "ck/tensor_operation/gpu/device/device_batchnorm_forward.hpp" #include "ck/tensor_operation/gpu/device/device_batchnorm_forward.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_common.hpp" #include "ck/tensor_operation/gpu/device/impl/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/device/welford_helper.hpp" #include "ck/tensor_operation/gpu/device/welford_helper.hpp"
#include "ck/tensor_operation/gpu/grid/batchnorm_multiblock/gridwise_multiblock_batchnorm_forward.hpp"
#include "ck/tensor_operation/gpu/grid/batchnorm_multiblock/gridwise_multiblock_welford_first_half.hpp" #include "ck/tensor_operation/gpu/grid/batchnorm_multiblock/gridwise_multiblock_welford_first_half.hpp"
#include "ck/tensor_operation/gpu/grid/batchnorm_multiblock/gridwise_multiblock_welford_second_half_batchnorm_forward_final.hpp" #include "ck/tensor_operation/gpu/grid/batchnorm_multiblock/gridwise_multiblock_welford_second_half_batchnorm_forward_final_obsolete.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batchnorm_forward_blockwise_welford.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_batchnorm_forward_blockwise_welford.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/host_utility/device_prop.hpp" #include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp" #include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/hip_check_error.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -114,8 +116,8 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType, ...@@ -114,8 +116,8 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType,
static auto MakeMeanVarCountOutputMG2dDescriptor(int invariantLength, int blkGroupSize) static auto MakeMeanVarCountOutputMG2dDescriptor(int invariantLength, int blkGroupSize)
{ {
const auto grid_desc_m_g = const auto grid_desc_m_g = make_naive_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(invariantLength, blkGroupSize)); make_tuple(invariantLength, blkGroupSize), make_tuple(1, invariantLength));
const auto mPad = const auto mPad =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength; math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
...@@ -132,9 +134,9 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType, ...@@ -132,9 +134,9 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType,
static auto MakeMeanVarCountInputMK2dDescriptor(int invariantLength, int blkGroupSize) static auto MakeMeanVarCountInputMK2dDescriptor(int invariantLength, int blkGroupSize)
{ {
const auto reduceLength = blkGroupSize; const auto reduceLength = blkGroupSize;
const auto grid_desc_m_k = const auto grid_desc_m_k = make_naive_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(invariantLength, reduceLength)); make_tuple(invariantLength, reduceLength), make_tuple(1, invariantLength));
const auto mPad = const auto mPad =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength; math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
...@@ -244,8 +246,8 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType, ...@@ -244,8 +246,8 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType,
int testBlkGroupSize = (reduce_length_ + (K_BlockTileSize * iterations) - 1) / int testBlkGroupSize = (reduce_length_ + (K_BlockTileSize * iterations) - 1) /
(K_BlockTileSize * iterations); (K_BlockTileSize * iterations);
// we want the blkGroupSize be not more than 128 // we want the blkGroupSize be not more than 16
if(testBlkGroupSize <= 128) if(testBlkGroupSize <= 16)
break; break;
iterations++; iterations++;
...@@ -319,6 +321,8 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType, ...@@ -319,6 +321,8 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType,
void* workspace_mean_; void* workspace_mean_;
void* workspace_variance_; void* workspace_variance_;
void* workspace_count_; void* workspace_count_;
void* control_;
}; };
size_t GetWorkSpaceSize(const BaseArgument* pArg) const override size_t GetWorkSpaceSize(const BaseArgument* pArg) const override
...@@ -340,6 +344,11 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType, ...@@ -340,6 +344,11 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType,
// workspace for welford intermediate count // workspace for welford intermediate count
workspace_size += workspace_size +=
pArg_->invariant_length_ * pArg_->blkGroupSize_ * sizeof(int32_t) + 64; pArg_->invariant_length_ * pArg_->blkGroupSize_ * sizeof(int32_t) + 64;
// workspace for barrier objects, each barrier object consists of two integers
// TODO: allocate barrier object memory globally to reuse it by other operators
workspace_size += (pArg_->invariant_length_ + M_BlockTileSize - 1) / M_BlockTileSize *
sizeof(int) * 2;
} }
return (workspace_size); return (workspace_size);
...@@ -353,7 +362,6 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType, ...@@ -353,7 +362,6 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType,
if(UseMultiblockInK && pArg_->blkGroupSize_ > 1) if(UseMultiblockInK && pArg_->blkGroupSize_ > 1)
{ {
// setup buffer used for intermediate welford mean // setup buffer used for intermediate welford mean
pArg_->workspace_mean_ = static_cast<char*>(pArg_->p_workspace_); pArg_->workspace_mean_ = static_cast<char*>(pArg_->p_workspace_);
...@@ -374,6 +382,18 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType, ...@@ -374,6 +382,18 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType,
// setup buffer used for intermediate welfor count // setup buffer used for intermediate welfor count
pArg_->workspace_count_ = pArg_->workspace_count_ =
reinterpret_cast<char*>(pArg_->workspace_variance_) + variance_space_sz; reinterpret_cast<char*>(pArg_->workspace_variance_) + variance_space_sz;
index_t count_space_sz =
pArg_->invariant_length_ * pArg_->blkGroupSize_ * sizeof(int32_t);
count_space_sz = math::integer_least_multiple(count_space_sz, 64);
pArg_->control_ = reinterpret_cast<char*>(pArg_->workspace_count_) + count_space_sz;
index_t control_space_sz = (pArg_->invariant_length_ + M_BlockTileSize - 1) /
M_BlockTileSize * sizeof(int) * 2;
hip_check_error(hipMemset(pArg_->control_, 0, control_space_sz));
}; };
}; };
...@@ -402,6 +422,32 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType, ...@@ -402,6 +422,32 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType,
using MeanVarCountGridDesc_M_G = decltype(mean_var_count_grid_desc_m_g); using MeanVarCountGridDesc_M_G = decltype(mean_var_count_grid_desc_m_g);
using MeanVarCountGridDesc_M_K = decltype(mean_var_count_grid_desc_m_k); using MeanVarCountGridDesc_M_K = decltype(mean_var_count_grid_desc_m_k);
using GridwiseMultiblockBatchNormForward_ =
GridwiseMultiblockBatchNormForward<XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
YElementwiseOp,
XYGridDesc_M_K,
MeanVarCountGridDesc_M_G,
MeanVarCountGridDesc_M_K,
ScaleBiasMeanVarGridDesc_M,
ScaleBiasMeanVarGridDesc_M,
GetReduceCountPerThreadFunctor,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XSrcYDstVectorDim,
XSrcVectorSize,
YDstVectorSize,
ScaleSrcVectorSize,
BiasSrcVectorSize,
MeanVarSrcDstVectorSize>;
using GridwiseMultiblockWelfordFirstHalf_ = using GridwiseMultiblockWelfordFirstHalf_ =
GridwiseMultiblockWelfordFirstHalf<XDataType, GridwiseMultiblockWelfordFirstHalf<XDataType,
AccDataType, AccDataType,
...@@ -441,78 +487,136 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType, ...@@ -441,78 +487,136 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType,
BiasSrcVectorSize, BiasSrcVectorSize,
MeanVarSrcDstVectorSize>; MeanVarSrcDstVectorSize>;
index_t numMeanVarCountBlockTileIteration = // It is found that:
(arg.blkGroupSize_ + KThreadClusterSize - 1) / KThreadClusterSize; // 1) gfx1030 does not support the GLC enabled vector load/store, so using the
// two-kernel method for gfx1030
const auto kern_multiblock_welford_first_half = // 2) Profiler on gfx908 could hang even though it works when running examples
kernel_multiblock_welford_first_half<GridwiseMultiblockWelfordFirstHalf_, // 3) Single-kernel method works on gfx1100, but the performance it not better
XDataType, // than two-kernel method (due to more warps participating the barrier)
MeanVarDataType, if(ck::get_device_name() == "gfx90a")
XYGridDesc_M_K, {
MeanVarCountGridDesc_M_G, const auto kern_multiblock_batchnorm_fwd_ =
GetReduceCountPerThreadFunctor>; kernel_multiblock_batchnorm_forward<GridwiseMultiblockBatchNormForward_,
XDataType,
const auto kern_welford_second_half_batchnorm_forward_final = YDataType,
kernel_welford_second_half_batchnorm_forward_final< AccDataType,
GridwiseWelfordSecondHalfBatchNormForwardFinal_, ScaleDataType,
XDataType, BiasDataType,
YDataType, MeanVarDataType,
AccDataType, YElementwiseOp,
ScaleDataType, XYGridDesc_M_K,
BiasDataType, MeanVarCountGridDesc_M_G,
MeanVarDataType, MeanVarCountGridDesc_M_K,
YElementwiseOp, ScaleBiasMeanVarGridDesc_M,
XYGridDesc_M_K, ScaleBiasMeanVarGridDesc_M,
MeanVarCountGridDesc_M_K, GetReduceCountPerThreadFunctor>;
ScaleBiasMeanVarGridDesc_M,
ScaleBiasMeanVarGridDesc_M>; avg_time += launch_and_time_kernel(
stream_config,
avg_time += kern_multiblock_batchnorm_fwd_,
launch_and_time_kernel(stream_config, dim3(arg.gridSize_),
kern_multiblock_welford_first_half, dim3(BlockSize),
dim3(arg.gridSize_), 0,
dim3(BlockSize), arg.x_grid_desc_m_k_,
0, arg.y_grid_desc_m_k_,
arg.x_grid_desc_m_k_, mean_var_count_grid_desc_m_g, // for writing to mean/variance/count
mean_var_count_grid_desc_m_g, // workspace by multiple workgroups
get_reduce_count_per_thread, mean_var_count_grid_desc_m_k, // for reading from mean/variance/count
arg.numBlockTileIteration_, // workspace by each workgroup
arg.p_x_, arg.scale_grid_desc_m_,
static_cast<MeanVarDataType*>(arg.workspace_mean_), arg.bias_grid_desc_m_,
static_cast<MeanVarDataType*>(arg.workspace_variance_), arg.mean_var_grid_desc_m_,
static_cast<int32_t*>(arg.workspace_count_)); get_reduce_count_per_thread,
arg.numBlockTileIteration_,
avg_time += arg.epsilon_,
launch_and_time_kernel(stream_config, arg.p_x_,
kern_welford_second_half_batchnorm_forward_final, static_cast<MeanVarDataType*>(arg.workspace_mean_),
dim3(arg.gridSize_), static_cast<MeanVarDataType*>(arg.workspace_variance_),
dim3(BlockSize), static_cast<int32_t*>(arg.workspace_count_),
0, static_cast<int*>(arg.control_),
arg.x_grid_desc_m_k_, arg.p_scale_,
arg.y_grid_desc_m_k_, arg.p_bias_,
mean_var_count_grid_desc_m_k, arg.y_elementwise_op_,
arg.scale_grid_desc_m_, arg.p_y_,
arg.bias_grid_desc_m_, arg.updateMovingAverage_, // true or false
arg.mean_var_grid_desc_m_, arg.averageFactor_,
arg.blkGroupSize_, arg.resultRunningMean_,
arg.numBlockTileIteration_, arg.resultRunningVariance_,
numMeanVarCountBlockTileIteration, arg.saveMeanInvVariance_, // true or false
arg.epsilon_, arg.resultSaveMean_,
static_cast<MeanVarDataType*>(arg.workspace_mean_), arg.resultSaveInvVariance_);
static_cast<MeanVarDataType*>(arg.workspace_variance_), }
static_cast<int32_t*>(arg.workspace_count_), else
arg.p_x_, {
arg.p_scale_, const auto kern_multiblock_welford_first_half =
arg.p_bias_, kernel_multiblock_welford_first_half<GridwiseMultiblockWelfordFirstHalf_,
arg.y_elementwise_op_, XDataType,
arg.p_y_, MeanVarDataType,
arg.updateMovingAverage_, XYGridDesc_M_K,
arg.averageFactor_, MeanVarCountGridDesc_M_G,
arg.resultRunningMean_, GetReduceCountPerThreadFunctor>;
arg.resultRunningVariance_,
arg.saveMeanInvVariance_, const auto kern_welford_second_half_batchnorm_forward_final =
arg.resultSaveMean_, kernel_welford_second_half_batchnorm_forward_final<
arg.resultSaveInvVariance_); GridwiseWelfordSecondHalfBatchNormForwardFinal_,
XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
YElementwiseOp,
XYGridDesc_M_K,
MeanVarCountGridDesc_M_K,
ScaleBiasMeanVarGridDesc_M,
ScaleBiasMeanVarGridDesc_M>;
avg_time += launch_and_time_kernel(
stream_config,
kern_multiblock_welford_first_half,
dim3(arg.gridSize_),
dim3(BlockSize),
0,
arg.x_grid_desc_m_k_,
mean_var_count_grid_desc_m_g,
get_reduce_count_per_thread,
arg.numBlockTileIteration_,
arg.p_x_,
static_cast<MeanVarDataType*>(arg.workspace_mean_),
static_cast<MeanVarDataType*>(arg.workspace_variance_),
static_cast<int32_t*>(arg.workspace_count_));
avg_time += launch_and_time_kernel(
stream_config,
kern_welford_second_half_batchnorm_forward_final,
dim3(arg.gridSize_),
dim3(BlockSize),
0,
arg.x_grid_desc_m_k_,
arg.y_grid_desc_m_k_,
mean_var_count_grid_desc_m_k,
arg.scale_grid_desc_m_,
arg.bias_grid_desc_m_,
arg.mean_var_grid_desc_m_,
arg.blkGroupSize_,
arg.numBlockTileIteration_,
arg.epsilon_,
static_cast<MeanVarDataType*>(arg.workspace_mean_),
static_cast<MeanVarDataType*>(arg.workspace_variance_),
static_cast<int32_t*>(arg.workspace_count_),
arg.p_x_,
arg.p_scale_,
arg.p_bias_,
arg.y_elementwise_op_,
arg.p_y_,
arg.updateMovingAverage_,
arg.averageFactor_,
arg.resultRunningMean_,
arg.resultRunningVariance_,
arg.saveMeanInvVariance_,
arg.resultSaveMean_,
arg.resultSaveInvVariance_);
};
} }
else else
{ {
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/device_batchnorm_forward.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/device/welford_helper.hpp"
#include "ck/tensor_operation/gpu/grid/batchnorm_multiblock/gridwise_multiblock_welford_first_half.hpp"
#include "ck/tensor_operation/gpu/grid/batchnorm_multiblock/gridwise_multiblock_welford_second_half_batchnorm_forward_final_obsolete.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batchnorm_forward_blockwise_welford.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename XDataType,
typename YDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename MeanVarDataType,
typename YElementwiseOp,
index_t Rank,
index_t NumBatchNormReduceDim,
bool UseMultiblockInK,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
index_t MThreadSliceSize,
index_t KThreadSliceSize,
index_t XSrcYDstVectorDim,
index_t XSrcVectorSize,
index_t YDstVectorSize,
index_t ScaleSrcVectorSize,
index_t BiasSrcVectorSize,
index_t MeanVarSrcDstVectorSize>
struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
YElementwiseOp,
Rank,
NumBatchNormReduceDim>
{
static_assert(Rank <= 6, "Bigger Rank size is not supported!");
static_assert(BlockSize == MThreadClusterSize * KThreadClusterSize,
"Invalid thread cluster size assignments!");
static_assert((XSrcYDstVectorDim == 0 && MThreadSliceSize % XSrcVectorSize == 0) ||
(XSrcYDstVectorDim == 1 && KThreadSliceSize % XSrcVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static constexpr index_t NumInvariantDim = Rank - NumBatchNormReduceDim;
static constexpr index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
static auto MakeXY2dDescriptor(const std::array<index_t, Rank>& xyLengths,
const std::array<index_t, Rank>& xyStrides,
int blkGroupSize,
int numBlockTileIteration)
{
const auto tupleXYLengths =
generate_tuple([&](auto I) { return xyLengths[I]; }, Number<Rank>{});
const auto tupleXYStrides =
generate_tuple([&](auto I) { return xyStrides[I]; }, Number<Rank>{});
const auto raw_grid_desc = make_naive_tensor_descriptor(tupleXYLengths, tupleXYStrides);
const auto grid_desc_m_k = [&]() {
using InvariantDims = typename arithmetic_sequence_gen<0, NumInvariantDim, 1>::type;
using ReduceDims = typename arithmetic_sequence_gen<NumInvariantDim, Rank, 1>::type;
const auto reduceDimLengths =
generate_tuple([&](auto I) { return xyLengths[NumInvariantDim + I]; },
Number<NumBatchNormReduceDim>{});
const auto invariantDimLengths =
generate_tuple([&](auto I) { return xyLengths[I]; }, Number<NumInvariantDim>{});
return transform_tensor_descriptor(raw_grid_desc,
make_tuple(make_merge_transform(invariantDimLengths),
make_merge_transform(reduceDimLengths)),
make_tuple(InvariantDims{}, ReduceDims{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}();
const auto invariantLength = grid_desc_m_k.GetLength(Number<0>{});
const auto reduceLength = grid_desc_m_k.GetLength(Number<1>{});
const int workSizePerBlock = K_BlockTileSize * numBlockTileIteration;
const auto mPad =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
const auto kPad = workSizePerBlock * blkGroupSize - reduceLength;
auto grid_desc_m_k_padded =
transform_tensor_descriptor(grid_desc_m_k,
make_tuple(make_right_pad_transform(invariantLength, mPad),
make_right_pad_transform(reduceLength, kPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return (grid_desc_m_k_padded);
};
static auto MakeMeanVarCountOutputMG2dDescriptor(int invariantLength, int blkGroupSize)
{
const auto grid_desc_m_g = make_naive_tensor_descriptor(
make_tuple(invariantLength, blkGroupSize), make_tuple(1, invariantLength));
const auto mPad =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
auto grid_desc_m_g_padded =
transform_tensor_descriptor(grid_desc_m_g,
make_tuple(make_right_pad_transform(invariantLength, mPad),
make_pass_through_transform(blkGroupSize)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return (grid_desc_m_g_padded);
};
static auto MakeMeanVarCountInputMK2dDescriptor(int invariantLength, int blkGroupSize)
{
const auto reduceLength = blkGroupSize;
const auto grid_desc_m_k = make_naive_tensor_descriptor(
make_tuple(invariantLength, reduceLength), make_tuple(1, invariantLength));
const auto mPad =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
const auto kPad =
math::integer_least_multiple(reduceLength, KThreadClusterSize) - reduceLength;
auto grid_desc_m_k_padded =
transform_tensor_descriptor(grid_desc_m_k,
make_tuple(make_right_pad_transform(invariantLength, mPad),
make_right_pad_transform(reduceLength, kPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return (grid_desc_m_k_padded);
};
static auto
MakeScaleBiasMeanVar1dDescriptor(const std::array<index_t, NumInvariantDim>& lengths,
const std::array<index_t, NumInvariantDim>& strides)
{
const auto tupleLengths =
generate_tuple([&](auto I) { return lengths[I]; }, Number<NumInvariantDim>{});
const auto tupleStrides =
generate_tuple([&](auto I) { return strides[I]; }, Number<NumInvariantDim>{});
auto raw_grid_desc = make_naive_tensor_descriptor(tupleLengths, tupleStrides);
auto grid_desc_m = transform_tensor_descriptor(
raw_grid_desc,
make_tuple(make_merge_transform(tupleLengths)),
make_tuple(typename arithmetic_sequence_gen<0, NumInvariantDim, 1>::type{}),
make_tuple(Sequence<0>{}));
const auto invariantLength = grid_desc_m.GetLength(Number<0>{});
const auto mPad =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
auto grid_desc_m_padded =
transform_tensor_descriptor(grid_desc_m,
make_tuple(make_right_pad_transform(invariantLength, mPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return (grid_desc_m_padded);
};
using XYGridDesc_M_K = decltype(MakeXY2dDescriptor({1}, {1}, 1, 1));
using ScaleBiasMeanVarGridDesc_M = decltype(MakeScaleBiasMeanVar1dDescriptor({1}, {1}));
struct Argument : public BaseArgument
{
Argument(const std::array<index_t, Rank> xyLengths,
const std::array<index_t, Rank> xStrides,
const std::array<index_t, Rank> yStrides,
const std::array<int, NumBatchNormReduceDim> reduceDims,
const std::array<index_t, Rank - NumBatchNormReduceDim> bnScaleBiasMeanVarLengths,
const std::array<index_t, Rank - NumBatchNormReduceDim> bnScaleStrides,
const std::array<index_t, Rank - NumBatchNormReduceDim> bnBiasStrides,
const std::array<index_t, Rank - NumBatchNormReduceDim> bnMeanVarStrides,
const XDataType* p_x,
const ScaleDataType* p_scale,
const BiasDataType* p_bias,
const YElementwiseOp y_elementwise_op,
double epsilon,
YDataType* p_y,
MeanVarDataType* resultSaveMean,
MeanVarDataType* resultSaveInvVariance,
double averageFactor,
MeanVarDataType* resultRunningMean,
MeanVarDataType* resultRunningVariance)
: bnScaleBiasMeanVarLengths_(bnScaleBiasMeanVarLengths),
bnScaleStrides_(bnScaleStrides),
bnBiasStrides_(bnBiasStrides),
bnMeanVarStrides_(bnMeanVarStrides),
p_x_(p_x),
p_scale_(p_scale),
p_bias_(p_bias),
y_elementwise_op_(y_elementwise_op),
p_y_(p_y),
resultSaveMean_(resultSaveMean),
resultSaveInvVariance_(resultSaveInvVariance),
resultRunningMean_(resultRunningMean),
resultRunningVariance_(resultRunningVariance)
{
xyLengths_ =
shuffle_tensor_dimensions<Rank, NumBatchNormReduceDim>(xyLengths, reduceDims);
xStrides_ =
shuffle_tensor_dimensions<Rank, NumBatchNormReduceDim>(xStrides, reduceDims);
yStrides_ =
shuffle_tensor_dimensions<Rank, NumBatchNormReduceDim>(yStrides, reduceDims);
std::tie(invariant_length_, reduce_length_) =
get_2d_lengths<Rank, NumBatchNormReduceDim>(xyLengths_);
epsilon_ = type_convert<AccDataType>(epsilon);
averageFactor_ = type_convert<AccDataType>(averageFactor);
updateMovingAverage_ =
(resultRunningMean != nullptr && resultRunningVariance != nullptr);
saveMeanInvVariance_ = (resultSaveMean != nullptr && resultSaveInvVariance_ != nullptr);
if(UseMultiblockInK)
{
int iterations = 1;
while(true)
{
int testBlkGroupSize = (reduce_length_ + (K_BlockTileSize * iterations) - 1) /
(K_BlockTileSize * iterations);
// we want the blkGroupSize be not more than 16
if(testBlkGroupSize <= 16)
break;
iterations++;
};
blkGroupSize_ = (reduce_length_ + (K_BlockTileSize * iterations) - 1) /
(K_BlockTileSize * iterations);
numBlockTileIteration_ = iterations;
}
else
{
blkGroupSize_ = 1;
numBlockTileIteration_ = (reduce_length_ + K_BlockTileSize - 1) / K_BlockTileSize;
};
gridSize_ = (invariant_length_ + M_BlockTileSize - 1) / M_BlockTileSize * blkGroupSize_;
x_grid_desc_m_k_ =
MakeXY2dDescriptor(xyLengths_, xStrides_, blkGroupSize_, numBlockTileIteration_);
y_grid_desc_m_k_ =
MakeXY2dDescriptor(xyLengths_, yStrides_, blkGroupSize_, numBlockTileIteration_);
scale_grid_desc_m_ =
MakeScaleBiasMeanVar1dDescriptor(bnScaleBiasMeanVarLengths, bnScaleStrides_);
bias_grid_desc_m_ =
MakeScaleBiasMeanVar1dDescriptor(bnScaleBiasMeanVarLengths, bnBiasStrides_);
mean_var_grid_desc_m_ =
MakeScaleBiasMeanVar1dDescriptor(bnScaleBiasMeanVarLengths, bnMeanVarStrides_);
}
AccDataType epsilon_;
AccDataType averageFactor_;
bool updateMovingAverage_;
bool saveMeanInvVariance_;
std::array<index_t, Rank> xyLengths_;
std::array<index_t, Rank> xStrides_;
std::array<index_t, Rank> yStrides_;
std::array<index_t, Rank - NumBatchNormReduceDim> bnScaleBiasMeanVarLengths_;
std::array<index_t, Rank - NumBatchNormReduceDim> bnScaleStrides_;
std::array<index_t, Rank - NumBatchNormReduceDim> bnBiasStrides_;
std::array<index_t, Rank - NumBatchNormReduceDim> bnMeanVarStrides_;
const XDataType* p_x_;
const ScaleDataType* p_scale_;
const BiasDataType* p_bias_;
const YElementwiseOp y_elementwise_op_;
YDataType* p_y_;
MeanVarDataType* resultSaveMean_;
MeanVarDataType* resultSaveInvVariance_;
MeanVarDataType* resultRunningMean_;
MeanVarDataType* resultRunningVariance_;
long_index_t invariant_length_;
long_index_t reduce_length_;
int blkGroupSize_;
int numBlockTileIteration_;
size_t gridSize_;
XYGridDesc_M_K x_grid_desc_m_k_;
XYGridDesc_M_K y_grid_desc_m_k_;
ScaleBiasMeanVarGridDesc_M scale_grid_desc_m_;
ScaleBiasMeanVarGridDesc_M bias_grid_desc_m_;
ScaleBiasMeanVarGridDesc_M mean_var_grid_desc_m_;
void* workspace_mean_;
void* workspace_variance_;
void* workspace_count_;
};
size_t GetWorkSpaceSize(const BaseArgument* pArg) const override
{
const Argument* pArg_ = dynamic_cast<const Argument*>(pArg);
size_t workspace_size = 0;
if(UseMultiblockInK && pArg_->blkGroupSize_ > 1)
{
// workspace for welford intermediate mean
workspace_size +=
pArg_->invariant_length_ * pArg_->blkGroupSize_ * sizeof(MeanVarDataType) + 64;
// workspace for welford intermediate variance
workspace_size +=
pArg_->invariant_length_ * pArg_->blkGroupSize_ * sizeof(MeanVarDataType) + 64;
// workspace for welford intermediate count
workspace_size +=
pArg_->invariant_length_ * pArg_->blkGroupSize_ * sizeof(int32_t) + 64;
}
return (workspace_size);
};
void SetWorkSpacePointer(BaseArgument* pArg, void* p_workspace) const override
{
Argument* pArg_ = dynamic_cast<Argument*>(pArg);
pArg_->p_workspace_ = p_workspace;
if(UseMultiblockInK && pArg_->blkGroupSize_ > 1)
{
// setup buffer used for intermediate welford mean
pArg_->workspace_mean_ = static_cast<char*>(pArg_->p_workspace_);
index_t mean_space_sz =
pArg_->invariant_length_ * pArg_->blkGroupSize_ * sizeof(MeanVarDataType);
mean_space_sz = math::integer_least_multiple(mean_space_sz, 64);
// setup buffer used for intermediate welford varirance
pArg_->workspace_variance_ =
reinterpret_cast<char*>(pArg_->workspace_mean_) + mean_space_sz;
index_t variance_space_sz =
pArg_->invariant_length_ * pArg_->blkGroupSize_ * sizeof(MeanVarDataType);
variance_space_sz = math::integer_least_multiple(variance_space_sz, 64);
// setup buffer used for intermediate welfor count
pArg_->workspace_count_ =
reinterpret_cast<char*>(pArg_->workspace_variance_) + variance_space_sz;
};
};
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
float avg_time = 0;
if(UseMultiblockInK && arg.blkGroupSize_ > 1)
{
using GetReduceCountPerThreadFunctor =
GetReduceCountPerThreadForMultiblockWelford<K_BlockTileSize, KThreadSliceSize>;
GetReduceCountPerThreadFunctor get_reduce_count_per_thread(
arg.blkGroupSize_, arg.numBlockTileIteration_, arg.reduce_length_);
const auto mean_var_count_grid_desc_m_g =
DeviceBatchNormFwdImpl::MakeMeanVarCountOutputMG2dDescriptor(
arg.invariant_length_, arg.blkGroupSize_);
const auto mean_var_count_grid_desc_m_k =
DeviceBatchNormFwdImpl::MakeMeanVarCountInputMK2dDescriptor(
arg.invariant_length_, arg.blkGroupSize_);
using MeanVarCountGridDesc_M_G = decltype(mean_var_count_grid_desc_m_g);
using MeanVarCountGridDesc_M_K = decltype(mean_var_count_grid_desc_m_k);
using GridwiseMultiblockWelfordFirstHalf_ =
GridwiseMultiblockWelfordFirstHalf<XDataType,
AccDataType,
MeanVarDataType,
XYGridDesc_M_K,
MeanVarCountGridDesc_M_G,
GetReduceCountPerThreadFunctor,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XSrcYDstVectorDim,
XSrcVectorSize>;
using GridwiseWelfordSecondHalfBatchNormForwardFinal_ =
GridwiseWelfordSecondHalfBatchNormForwardFinal<XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
YElementwiseOp,
XYGridDesc_M_K,
MeanVarCountGridDesc_M_K,
ScaleBiasMeanVarGridDesc_M,
ScaleBiasMeanVarGridDesc_M,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XSrcYDstVectorDim,
XSrcVectorSize,
YDstVectorSize,
ScaleSrcVectorSize,
BiasSrcVectorSize,
MeanVarSrcDstVectorSize>;
const auto kern_multiblock_welford_first_half =
kernel_multiblock_welford_first_half<GridwiseMultiblockWelfordFirstHalf_,
XDataType,
MeanVarDataType,
XYGridDesc_M_K,
MeanVarCountGridDesc_M_G,
GetReduceCountPerThreadFunctor>;
const auto kern_welford_second_half_batchnorm_forward_final =
kernel_welford_second_half_batchnorm_forward_final<
GridwiseWelfordSecondHalfBatchNormForwardFinal_,
XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
YElementwiseOp,
XYGridDesc_M_K,
MeanVarCountGridDesc_M_K,
ScaleBiasMeanVarGridDesc_M,
ScaleBiasMeanVarGridDesc_M>;
avg_time +=
launch_and_time_kernel(stream_config,
kern_multiblock_welford_first_half,
dim3(arg.gridSize_),
dim3(BlockSize),
0,
arg.x_grid_desc_m_k_,
mean_var_count_grid_desc_m_g,
get_reduce_count_per_thread,
arg.numBlockTileIteration_,
arg.p_x_,
static_cast<MeanVarDataType*>(arg.workspace_mean_),
static_cast<MeanVarDataType*>(arg.workspace_variance_),
static_cast<int32_t*>(arg.workspace_count_));
avg_time +=
launch_and_time_kernel(stream_config,
kern_welford_second_half_batchnorm_forward_final,
dim3(arg.gridSize_),
dim3(BlockSize),
0,
arg.x_grid_desc_m_k_,
arg.y_grid_desc_m_k_,
mean_var_count_grid_desc_m_k,
arg.scale_grid_desc_m_,
arg.bias_grid_desc_m_,
arg.mean_var_grid_desc_m_,
arg.blkGroupSize_,
arg.numBlockTileIteration_,
arg.epsilon_,
static_cast<MeanVarDataType*>(arg.workspace_mean_),
static_cast<MeanVarDataType*>(arg.workspace_variance_),
static_cast<int32_t*>(arg.workspace_count_),
arg.p_x_,
arg.p_scale_,
arg.p_bias_,
arg.y_elementwise_op_,
arg.p_y_,
arg.updateMovingAverage_,
arg.averageFactor_,
arg.resultRunningMean_,
arg.resultRunningVariance_,
arg.saveMeanInvVariance_,
arg.resultSaveMean_,
arg.resultSaveInvVariance_);
}
else
{
using GetReduceCountPerThreadFunctor =
GetReduceCountPerThreadForBlockwiseWelford<K_BlockTileSize, KThreadSliceSize>;
GetReduceCountPerThreadFunctor get_reduce_count_per_thread(
arg.numBlockTileIteration_, arg.reduce_length_);
using GridwiseBatchNormForwardWithBlockwiseWelford_ =
GridwiseBatchNormForwardWithBlockwiseWelford<XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
YElementwiseOp,
XYGridDesc_M_K,
ScaleBiasMeanVarGridDesc_M,
ScaleBiasMeanVarGridDesc_M,
GetReduceCountPerThreadFunctor,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XSrcYDstVectorDim,
XSrcVectorSize,
YDstVectorSize,
ScaleSrcVectorSize,
BiasSrcVectorSize,
MeanVarSrcDstVectorSize>;
const auto kern_batchnorm_fwd = kernel_batchnorm_forward_with_blockwise_welford<
GridwiseBatchNormForwardWithBlockwiseWelford_,
XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
YElementwiseOp,
XYGridDesc_M_K,
ScaleBiasMeanVarGridDesc_M,
ScaleBiasMeanVarGridDesc_M,
GetReduceCountPerThreadFunctor>;
avg_time += launch_and_time_kernel(stream_config,
kern_batchnorm_fwd,
dim3(arg.gridSize_),
dim3(BlockSize),
0,
arg.x_grid_desc_m_k_,
arg.y_grid_desc_m_k_,
arg.scale_grid_desc_m_,
arg.bias_grid_desc_m_,
arg.mean_var_grid_desc_m_,
get_reduce_count_per_thread,
arg.numBlockTileIteration_,
arg.epsilon_,
arg.p_x_,
arg.p_scale_,
arg.p_bias_,
arg.y_elementwise_op_,
arg.p_y_,
arg.updateMovingAverage_, // true or false
arg.averageFactor_,
arg.resultRunningMean_,
arg.resultRunningVariance_,
arg.saveMeanInvVariance_, // true or false
arg.resultSaveMean_,
arg.resultSaveInvVariance_);
};
return (avg_time);
};
float Run(const BaseArgument* pArg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(pArg), stream_config);
};
};
bool IsSupportedArgument(const BaseArgument* pArg) override
{
const Argument* pArg_ = dynamic_cast<const Argument*>(pArg);
if constexpr(XSrcYDstVectorDim == 0)
{
if(pArg_->xStrides_[NumInvariantDim - 1] != 1 ||
pArg_->yStrides_[NumInvariantDim - 1] != 1)
return false;
if(pArg_->xyLengths_[NumInvariantDim - 1] % XSrcVectorSize != 0 ||
pArg_->xyLengths_[NumInvariantDim - 1] % YDstVectorSize != 0)
return false;
}
else
{
if(pArg_->xStrides_[Rank - 1] != 1 || pArg_->yStrides_[Rank - 1] != 1)
return false;
if(pArg_->xyLengths_[Rank - 1] % XSrcVectorSize != 0 ||
pArg_->xyLengths_[Rank - 1] % YDstVectorSize != 0)
return false;
};
if(pArg_->bnScaleStrides_[NumInvariantDim - 1] != 1 && ScaleSrcVectorSize != 1)
return false;
if(pArg_->bnBiasStrides_[NumInvariantDim - 1] != 1 && BiasSrcVectorSize != 1)
return false;
if(pArg_->bnScaleBiasMeanVarLengths_[NumInvariantDim - 1] % ScaleSrcVectorSize != 0)
return false;
if(pArg_->bnScaleBiasMeanVarLengths_[NumInvariantDim - 1] % BiasSrcVectorSize != 0)
return false;
if(pArg_->bnMeanVarStrides_[NumInvariantDim - 1] != 1 && MeanVarSrcDstVectorSize != 1)
return false;
if(pArg_->bnScaleBiasMeanVarLengths_[NumInvariantDim - 1] % MeanVarSrcDstVectorSize != 0)
return false;
bool is_valid = true;
static_for<0, NumInvariantDim, 1>{}([&](auto I) {
if(pArg_->xyLengths_[I] != pArg_->bnScaleBiasMeanVarLengths_[I])
is_valid = false;
});
if(!is_valid)
return false;
return true;
};
std::unique_ptr<BaseArgument> MakeArgumentPointer(
const std::array<index_t, Rank> xyLengths,
const std::array<index_t, Rank> xStrides,
const std::array<index_t, Rank> yStrides,
const std::array<int, NumBatchNormReduceDim> reduceDims,
const std::array<index_t, Rank - NumBatchNormReduceDim> bnScaleBiasMeanVarLengths,
const std::array<index_t, Rank - NumBatchNormReduceDim> bnScaleStrides,
const std::array<index_t, Rank - NumBatchNormReduceDim> bnBiasStrides,
const std::array<index_t, Rank - NumBatchNormReduceDim> bnMeanVarStrides,
const void* p_x,
const void* p_scale,
const void* p_bias,
double epsilon,
const YElementwiseOp y_elementwise_op,
void* p_y,
void* resultSaveMean,
void* resultSaveInvVariance,
double averageFactor,
void* resultRunningMean,
void* resultRunningVariance) override
{
return std::make_unique<Argument>(xyLengths,
xStrides,
yStrides,
reduceDims,
bnScaleBiasMeanVarLengths,
bnScaleStrides,
bnBiasStrides,
bnMeanVarStrides,
static_cast<const XDataType*>(p_x),
static_cast<const ScaleDataType*>(p_scale),
static_cast<const BiasDataType*>(p_bias),
y_elementwise_op,
epsilon,
static_cast<YDataType*>(p_y),
static_cast<MeanVarDataType*>(resultSaveMean),
static_cast<MeanVarDataType*>(resultSaveInvVariance),
averageFactor,
static_cast<MeanVarDataType*>(resultRunningMean),
static_cast<MeanVarDataType*>(resultRunningVariance));
};
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>();
};
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceBatchNormFwdImpl<" << BlockSize << ",";
str << "M_C" << MThreadClusterSize << "_S" << MThreadSliceSize << ",";
str << "K_C" << KThreadClusterSize << "_S" << KThreadSliceSize << ",";
str << "XSrcYDstVectorDim_" << XSrcYDstVectorDim << ",";
str << "VectorSize_X" << XSrcVectorSize << "_scale_" << ScaleSrcVectorSize << "_bias_" << BiasSrcVectorSize << "_mean_var_" << MeanVarSrcDstVectorSize << "_Y" << YDstVectorSize << ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -76,7 +76,7 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout, ...@@ -76,7 +76,7 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
// TODO: should be exposed as Tparams. // TODO: should be exposed as Tparams.
static constexpr index_t NumGemmKPrefetchStage = 1; static constexpr index_t NumGemmKPrefetchStage = 1;
static constexpr LoopScheduler LoopSched = make_default_loop_scheduler(); static constexpr LoopScheduler LoopSched = make_default_loop_scheduler();
static constexpr PipelineVersion PipelineVer = PipelineVersion::v2; static constexpr PipelineVersion PipelineVer = PipelineVersion::v1;
using GridwiseGemm = GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2< using GridwiseGemm = GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2<
BlockSize, BlockSize,
......
...@@ -459,7 +459,6 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1 ...@@ -459,7 +459,6 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
p_ds_grid_{}, p_ds_grid_{},
p_e_grid_{static_cast<EDataType*>(p_e)}, p_e_grid_{static_cast<EDataType*>(p_e)},
num_group_{a_g_n_k_wos_lengths[0]}, num_group_{a_g_n_k_wos_lengths[0]},
num_gemm_{},
a_element_op_{a_element_op}, a_element_op_{a_element_op},
b_element_op_{b_element_op}, b_element_op_{b_element_op},
cde_element_op_{cde_element_op}, cde_element_op_{cde_element_op},
...@@ -508,9 +507,6 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1 ...@@ -508,9 +507,6 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
const auto YTilde = ConvStrideH / GcdStrideDilationH; const auto YTilde = ConvStrideH / GcdStrideDilationH;
const auto XTilde = ConvStrideW / GcdStrideDilationW; const auto XTilde = ConvStrideW / GcdStrideDilationW;
// number of GEMM
num_gemm_ = YTilde * XTilde;
for(index_t i_ytilde = 0; i_ytilde < YTilde; ++i_ytilde) for(index_t i_ytilde = 0; i_ytilde < YTilde; ++i_ytilde)
{ {
for(index_t i_xtilde = 0; i_xtilde < XTilde; ++i_xtilde) for(index_t i_xtilde = 0; i_xtilde < XTilde; ++i_xtilde)
...@@ -626,7 +622,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1 ...@@ -626,7 +622,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
void Print() const void Print() const
{ {
for(index_t i = 0; i < num_gemm_; i++) for(std::size_t i = 0; i < a_grid_desc_ak0_m_ak1_container_.size(); i++)
{ {
std::cout << "a_grid_desc_ak0_m_ak1_container_" std::cout << "a_grid_desc_ak0_m_ak1_container_"
<< a_grid_desc_ak0_m_ak1_container_[i] << std::endl; << a_grid_desc_ak0_m_ak1_container_[i] << std::endl;
...@@ -654,7 +650,6 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1 ...@@ -654,7 +650,6 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
// tensor descriptor for problem definition // tensor descriptor for problem definition
index_t num_group_; index_t num_group_;
index_t num_gemm_;
std::vector<AGridDesc_M_K> a_grid_desc_m_k_container_; std::vector<AGridDesc_M_K> a_grid_desc_m_k_container_;
std::vector<BGridDesc_N_K> b_grid_desc_n_k_container_; std::vector<BGridDesc_N_K> b_grid_desc_n_k_container_;
std::vector<DsGridDesc_M_N> ds_grid_desc_m_n_container_; std::vector<DsGridDesc_M_N> ds_grid_desc_m_n_container_;
...@@ -708,7 +703,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1 ...@@ -708,7 +703,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
float ave_time = 0; float ave_time = 0;
for(index_t i = 0; i < arg.num_gemm_; i++) for(std::size_t i = 0; i < arg.a_grid_desc_ak0_m_ak1_container_.size(); i++)
{ {
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_m_k_container_[i], if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_m_k_container_[i],
arg.b_grid_desc_n_k_container_[i], arg.b_grid_desc_n_k_container_[i],
...@@ -807,7 +802,8 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1 ...@@ -807,7 +802,8 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
} }
// vector load for A matrix from global memory to LDS // vector load for A matrix from global memory to LDS
if constexpr(is_same_v<ALayout, tensor_layout::convolution::GNHWK>) if constexpr(is_same_v<ALayout, tensor_layout::convolution::GNHWK> ||
is_same_v<ALayout, tensor_layout::convolution::NHWGK>)
{ {
if(!(ABlockTransferSrcVectorDim == 2 && ConvK % ABlockTransferSrcScalarPerVector == 0)) if(!(ABlockTransferSrcVectorDim == 2 && ConvK % ABlockTransferSrcScalarPerVector == 0))
{ {
...@@ -862,7 +858,8 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1 ...@@ -862,7 +858,8 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
} }
// vector store for E // vector store for E
if constexpr(is_same_v<ELayout, tensor_layout::convolution::GNHWC>) if constexpr(is_same_v<ELayout, tensor_layout::convolution::GNHWC> ||
is_same_v<ELayout, tensor_layout::convolution::NHWGC>)
{ {
// vector store C matrix into global memory // vector store C matrix into global memory
if(!(ConvC % CDEBlockTransferScalarPerVector_NPerBlock == 0)) if(!(ConvC % CDEBlockTransferScalarPerVector_NPerBlock == 0))
......
...@@ -6,6 +6,7 @@ ...@@ -6,6 +6,7 @@
#include "ck/utility/data_type.hpp" #include "ck/utility/data_type.hpp"
#include "ck/utility/math.hpp" #include "ck/utility/math.hpp"
#include "ck/utility/math_v2.hpp" #include "ck/utility/math_v2.hpp"
#include "ck/utility/type_convert.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -81,6 +82,36 @@ struct PassThrough ...@@ -81,6 +82,36 @@ struct PassThrough
y = x; y = x;
} }
#endif #endif
template <>
__host__ __device__ void operator()<f8_t, f8_t>(f8_t& y, const f8_t& x) const
{
y = x;
}
template <>
__host__ __device__ void operator()<float, f8_t>(float& y, const f8_t& x) const
{
y = type_convert<float>(x);
}
template <>
__host__ __device__ void operator()<f8_t, float>(f8_t& y, const float& x) const
{
y = type_convert<f8_t>(x);
}
template <>
__host__ __device__ void operator()<half_t, f8_t>(half_t& y, const f8_t& x) const
{
y = type_convert<half_t>(x);
}
template <>
__host__ __device__ void operator()<f8_t, half_t>(f8_t& y, const half_t& x) const
{
y = type_convert<f8_t>(x);
}
}; };
struct UnaryConvert struct UnaryConvert
...@@ -109,6 +140,23 @@ struct ConvertBF16RTN ...@@ -109,6 +140,23 @@ struct ConvertBF16RTN
} }
}; };
struct ConvertF8SR
{
// convert to fp8 using stochastic rounding (SR)
template <typename Y, typename X>
__host__ __device__ void operator()(Y& y, const X& x) const
{
// check Y datatype
static_assert(is_same<Y, f8_t>::value, "Data type is not supported by this operation!");
// check X datatype
static_assert(is_same<X, float>::value || is_same<X, half_t>::value,
"Data type is not supported by this operation!");
y = f8_convert_sr<Y>(x);
}
};
struct Scale struct Scale
{ {
__host__ __device__ Scale(float scale) : scale_(scale) {} __host__ __device__ Scale(float scale) : scale_(scale) {}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/utility/math_v2.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_welford.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_welford.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/workgroup_synchronization.hpp"
namespace ck {
template <typename GridwiseMultiblockBatchNormForward_,
typename XDataType,
typename YDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename MeanVarDataType,
typename YElementwiseOp,
typename XYGridDesc_M_K,
typename MeanVarCountGridDesc_M_G,
typename MeanVarCountGridDesc_M_K,
typename ScaleBiasGridDesc_M,
typename MeanVarGridDesc_M,
typename GetReduceCountPerThreadFunctor>
__global__ void kernel_multiblock_batchnorm_forward(
const XYGridDesc_M_K x_grid_desc_m_k,
const XYGridDesc_M_K y_grid_desc_m_k,
const MeanVarCountGridDesc_M_G mean_var_count_grid_desc_m_g,
const MeanVarCountGridDesc_M_K mean_var_count_grid_desc_m_k,
const ScaleBiasGridDesc_M scale_grid_desc_m,
const ScaleBiasGridDesc_M bias_grid_desc_m,
const MeanVarGridDesc_M mean_var_grid_desc_m,
const GetReduceCountPerThreadFunctor get_reduce_count_per_thread,
index_t num_k_block_tile_iteration,
AccDataType epsilon,
const XDataType* const __restrict__ p_x,
MeanVarDataType* const __restrict__ p_welford_mean,
MeanVarDataType* const __restrict__ p_welford_variance,
int32_t* const __restrict__ p_welford_count,
int32_t* const __restrict__ p_control,
const ScaleDataType* const __restrict__ p_scale,
const BiasDataType* const __restrict__ p_bias,
const YElementwiseOp y_elementwise_op,
YDataType* const __restrict__ p_y,
bool updateMovingAverage,
AccDataType averageFactor,
MeanVarDataType* const __restrict__ resultRunningMean,
MeanVarDataType* const __restrict__ resultRunningVariance,
bool saveMeanInvVariance,
MeanVarDataType* const __restrict__ resultSaveMean,
MeanVarDataType* const __restrict__ resultSaveInvVariance)
{
GridwiseMultiblockBatchNormForward_::Run(x_grid_desc_m_k,
y_grid_desc_m_k,
mean_var_count_grid_desc_m_g,
mean_var_count_grid_desc_m_k,
scale_grid_desc_m,
bias_grid_desc_m,
mean_var_grid_desc_m,
get_reduce_count_per_thread,
num_k_block_tile_iteration,
epsilon,
p_x,
p_welford_mean,
p_welford_variance,
p_welford_count,
p_control,
p_scale,
p_bias,
y_elementwise_op,
p_y,
updateMovingAverage,
averageFactor,
resultRunningMean,
resultRunningVariance,
saveMeanInvVariance,
resultSaveMean,
resultSaveInvVariance);
};
template <typename XDataType,
typename YDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename MeanVarDataType,
typename YElementwiseOp,
typename XYGridDesc_M_K,
typename MeanVarCountGridDesc_M_G,
typename MeanVarCountGridDesc_M_K,
typename ScaleBiasGridDesc_M,
typename MeanVarGridDesc_M,
typename GetReduceCountPerThreadFunctor,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
index_t MThreadSliceSize,
index_t KThreadSliceSize,
index_t XSrcYDstVectorDim,
index_t XSrcVectorSize,
index_t YDstVectorSize,
index_t ScaleSrcVectorSize,
index_t BiasSrcVectorSize,
index_t MeanVarSrcDstVectorSize>
struct GridwiseMultiblockBatchNormForward
{
static_assert((XSrcYDstVectorDim == 0 && MThreadSliceSize % XSrcVectorSize == 0) ||
(XSrcYDstVectorDim == 1 && KThreadSliceSize % XSrcVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static_assert((XSrcYDstVectorDim == 0 && MThreadSliceSize % YDstVectorSize == 0) ||
(XSrcYDstVectorDim == 1 && KThreadSliceSize % YDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static constexpr bool reorder_thread_cluster = (XSrcYDstVectorDim == 0);
using ThreadClusterLengths_M_K = Sequence<MThreadClusterSize, KThreadClusterSize>;
using ThreadBufferDimAccessOrder =
typename conditional<reorder_thread_cluster, Sequence<1, 0>, Sequence<0, 1>>::type;
using ThreadClusterArrangeOrder =
typename conditional<reorder_thread_cluster, Sequence<1, 0>, Sequence<0, 1>>::type;
static constexpr auto thread_cluster_desc =
make_cluster_descriptor(ThreadClusterLengths_M_K{}, ThreadClusterArrangeOrder{});
using ThreadReduceSrcDesc_M_K = decltype(make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<KThreadSliceSize>{})));
using ThreadReduceDstDesc_M =
decltype(make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{})));
using ThreadReduceSrcDesc_M_1 = decltype(
make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{}, Number<1>{})));
using ThreadwiseWelford1 =
ThreadwiseWelford<AccDataType, ThreadReduceSrcDesc_M_K, ThreadReduceDstDesc_M>;
using ThreadwiseWelford2 =
ThreadwiseWelfordMerge<AccDataType, ThreadReduceSrcDesc_M_1, ThreadReduceDstDesc_M>;
using BlockwiseWelford1 = BlockwiseWelford<AccDataType,
BlockSize,
ThreadClusterLengths_M_K,
ThreadClusterArrangeOrder,
false>;
using BlockwiseWelford2 = BlockwiseWelford<AccDataType,
BlockSize,
ThreadClusterLengths_M_K,
ThreadClusterArrangeOrder,
true>;
using PassThroughOp = tensor_operation::element_wise::PassThrough;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
__device__ static void Run(const XYGridDesc_M_K& x_grid_desc_m_k,
const XYGridDesc_M_K& y_grid_desc_m_k,
const MeanVarCountGridDesc_M_G& mean_var_count_grid_desc_m_g,
const MeanVarCountGridDesc_M_K& mean_var_count_grid_desc_m_k,
const ScaleBiasGridDesc_M& scale_grid_desc_m,
const ScaleBiasGridDesc_M& bias_grid_desc_m,
const MeanVarGridDesc_M& mean_var_grid_desc_m,
const GetReduceCountPerThreadFunctor& get_reduce_count_per_thread,
index_t num_k_block_tile_iteration,
AccDataType epsilon,
const XDataType* const __restrict__ p_x,
MeanVarDataType* const __restrict__ p_welford_mean,
MeanVarDataType* const __restrict__ p_welford_variance,
int32_t* const __restrict__ p_welford_count,
int32_t* const __restrict__ p_control,
const ScaleDataType* const __restrict__ p_scale,
const BiasDataType* const __restrict__ p_bias,
const YElementwiseOp y_elementwise_op,
YDataType* const __restrict__ p_y,
bool updateMovingAverage,
AccDataType averageFactor,
MeanVarDataType* const __restrict__ resultRunningMean,
MeanVarDataType* const __restrict__ resultRunningVariance,
bool saveMeanInvVariance,
MeanVarDataType* const __restrict__ resultSaveMean,
MeanVarDataType* const __restrict__ resultSaveInvVariance)
{
using ck::math::sqrt;
const index_t blkgroup_size = mean_var_count_grid_desc_m_g.GetLength(I1);
const index_t thread_local_id = get_thread_local_1d_id();
const index_t block_global_id = get_block_1d_id();
const index_t blkgroup_id = block_global_id / blkgroup_size;
const index_t block_local_id = block_global_id % blkgroup_size;
if(block_local_id == 0)
gms_init(BlockSize / warpSize * blkgroup_size, &p_control[blkgroup_id * 2]);
const auto thread_cluster_idx =
thread_cluster_desc.CalculateBottomIndex(make_multi_index(thread_local_id));
const auto thread_m_cluster_id = thread_cluster_idx[I0];
const auto thread_k_cluster_id = thread_cluster_idx[I1];
using ThreadBufferLengths_M_K = Sequence<MThreadSliceSize, KThreadSliceSize>;
using ThreadBufferLengths_M = Sequence<MThreadSliceSize>;
using ThreadBufferLengths_M_1 = Sequence<MThreadSliceSize, 1>;
constexpr auto thread_buffer_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<KThreadSliceSize>{}));
constexpr auto thread_buffer_desc_m =
make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{}));
constexpr auto thread_buffer_desc_m_1 = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<1>{}));
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
x_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true> mean_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true> var_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, int32_t, MThreadSliceSize, true> count_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true>
tmp_mean_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true>
tmp_var_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, int32_t, MThreadSliceSize, true> tmp_count_thread_buf;
const index_t reduceSizePerBlock = K_BlockTileSize * num_k_block_tile_iteration;
auto threadwise_x_load = ThreadwiseTensorSliceTransfer_v2<XDataType,
AccDataType,
XYGridDesc_M_K,
decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K,
ThreadBufferDimAccessOrder,
XSrcYDstVectorDim,
XSrcVectorSize,
1,
true>(
x_grid_desc_m_k,
make_multi_index(blkgroup_id * M_BlockTileSize + thread_m_cluster_id * MThreadSliceSize,
block_local_id * reduceSizePerBlock +
thread_k_cluster_id * KThreadSliceSize));
constexpr auto xy_copy_fwd_step_m_k = make_multi_index(0, K_BlockTileSize);
const auto x_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_x, x_grid_desc_m_k.GetElementSpaceSize());
// Step 1: each workgroup does local welford reduction
auto threadwise_welford_1 = ThreadwiseWelford1();
threadwise_welford_1.max_count_ =
get_reduce_count_per_thread(block_local_id, thread_k_cluster_id);
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
mean_thread_buf(I) = type_convert<AccDataType>(0.0f);
var_thread_buf(I) = type_convert<AccDataType>(0.0f);
});
for(index_t reducedTiles = 0; reducedTiles < num_k_block_tile_iteration; ++reducedTiles)
{
threadwise_x_load.Run(x_grid_desc_m_k,
x_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
x_thread_buf);
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, xy_copy_fwd_step_m_k);
threadwise_welford_1.Run(x_thread_buf, mean_thread_buf, var_thread_buf);
}
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
if constexpr(I > 0)
block_sync_lds();
count_thread_buf(I) = threadwise_welford_1.cur_count_;
BlockwiseWelford1::Run(mean_thread_buf(I), var_thread_buf(I), count_thread_buf(I));
});
// Step 2: each workgroup writes its local welford result to workspace memory
auto mean_global_val_buf =
make_dynamic_buffer<AddressSpaceEnum::Global, AmdBufferCoherenceEnum::GLC>(
p_welford_mean, mean_var_count_grid_desc_m_g.GetElementSpaceSize());
auto var_global_val_buf =
make_dynamic_buffer<AddressSpaceEnum::Global, AmdBufferCoherenceEnum::GLC>(
p_welford_variance, mean_var_count_grid_desc_m_g.GetElementSpaceSize());
auto count_global_val_buf =
make_dynamic_buffer<AddressSpaceEnum::Global, AmdBufferCoherenceEnum::GLC>(
p_welford_count, mean_var_count_grid_desc_m_g.GetElementSpaceSize());
auto threadwise_mean_var_store_m_g =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
MeanVarDataType,
decltype(thread_buffer_desc_m_1),
MeanVarCountGridDesc_M_G,
PassThroughOp,
ThreadBufferLengths_M_1,
Sequence<0, 1>,
0,
1,
InMemoryDataOperationEnum::Set,
1,
true>(
mean_var_count_grid_desc_m_g,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
block_local_id),
PassThroughOp{});
auto threadwise_count_store_m_g =
ThreadwiseTensorSliceTransfer_v1r3<int32_t,
int32_t,
decltype(thread_buffer_desc_m_1),
MeanVarCountGridDesc_M_G,
PassThroughOp,
ThreadBufferLengths_M_1,
Sequence<0, 1>,
0,
1,
InMemoryDataOperationEnum::Set,
1,
true>(
mean_var_count_grid_desc_m_g,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
block_local_id),
PassThroughOp{});
if(thread_k_cluster_id == 0)
{
threadwise_mean_var_store_m_g.Run(thread_buffer_desc_m_1,
make_tuple(I0, I0),
mean_thread_buf,
mean_var_count_grid_desc_m_g,
mean_global_val_buf);
threadwise_mean_var_store_m_g.Run(thread_buffer_desc_m_1,
make_tuple(I0, I0),
var_thread_buf,
mean_var_count_grid_desc_m_g,
var_global_val_buf);
threadwise_count_store_m_g.Run(thread_buffer_desc_m_1,
make_tuple(I0, I0),
count_thread_buf,
mean_var_count_grid_desc_m_g,
count_global_val_buf);
};
gms_barrier(&p_control[blkgroup_id * 2]);
if(block_local_id == 0)
gms_reset(&p_control[blkgroup_id * 2]);
// Step 3: each workgroup reads welford results from workspace memory and does final welford
// reduction
auto threadwise_mean_var_load_m_k =
ThreadwiseTensorSliceTransfer_v2<MeanVarDataType,
AccDataType,
MeanVarCountGridDesc_M_K,
decltype(thread_buffer_desc_m_1),
ThreadBufferLengths_M_1,
Sequence<0, 1>,
0,
1,
1,
true>(
mean_var_count_grid_desc_m_k,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * 1));
auto threadwise_count_load_m_k =
ThreadwiseTensorSliceTransfer_v2<int32_t,
int32_t,
MeanVarCountGridDesc_M_K,
decltype(thread_buffer_desc_m_1),
ThreadBufferLengths_M_1,
Sequence<0, 1>,
0,
1,
1,
true>(
mean_var_count_grid_desc_m_k,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * 1));
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
mean_thread_buf(I) = type_convert<AccDataType>(0.0f);
var_thread_buf(I) = type_convert<AccDataType>(0.0f);
count_thread_buf(I) = 0;
});
constexpr auto mean_var_count_read_fwd_step_m_k = make_multi_index(0, KThreadClusterSize);
int32_t reducedSize = 0;
while(reducedSize < blkgroup_size)
{
threadwise_mean_var_load_m_k.Run(mean_var_count_grid_desc_m_k,
mean_global_val_buf,
thread_buffer_desc_m_1,
make_tuple(I0, I0),
tmp_mean_thread_buf);
threadwise_mean_var_load_m_k.Run(mean_var_count_grid_desc_m_k,
var_global_val_buf,
thread_buffer_desc_m_1,
make_tuple(I0, I0),
tmp_var_thread_buf);
threadwise_count_load_m_k.Run(mean_var_count_grid_desc_m_k,
count_global_val_buf,
thread_buffer_desc_m_1,
make_tuple(I0, I0),
tmp_count_thread_buf);
ThreadwiseWelford2::Run(tmp_mean_thread_buf,
tmp_var_thread_buf,
tmp_count_thread_buf,
mean_thread_buf,
var_thread_buf,
count_thread_buf);
reducedSize += KThreadClusterSize;
threadwise_mean_var_load_m_k.MoveSrcSliceWindow(mean_var_count_grid_desc_m_k,
mean_var_count_read_fwd_step_m_k);
threadwise_count_load_m_k.MoveSrcSliceWindow(mean_var_count_grid_desc_m_k,
mean_var_count_read_fwd_step_m_k);
};
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
if constexpr(I > 0)
block_sync_lds();
BlockwiseWelford2::Run(mean_thread_buf(I), var_thread_buf(I), count_thread_buf(I));
});
// Step 4: do normalization using the mean/variance
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true> scale_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true> bias_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
y_thread_buf;
auto threadwise_y_store =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
YDataType,
decltype(thread_buffer_desc_m_k),
XYGridDesc_M_K,
YElementwiseOp,
ThreadBufferLengths_M_K,
ThreadBufferDimAccessOrder,
XSrcYDstVectorDim,
YDstVectorSize,
InMemoryDataOperationEnum::Set,
1,
true>(
y_grid_desc_m_k,
make_multi_index(
blkgroup_id * M_BlockTileSize + thread_m_cluster_id * MThreadSliceSize,
block_local_id * reduceSizePerBlock + thread_k_cluster_id * KThreadSliceSize),
y_elementwise_op);
auto threadwise_scale_load =
ThreadwiseTensorSliceTransfer_v2<ScaleDataType,
AccDataType,
ScaleBiasGridDesc_M,
decltype(thread_buffer_desc_m),
ThreadBufferLengths_M,
Sequence<0>,
0,
ScaleSrcVectorSize,
1,
true>(
scale_grid_desc_m,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize));
auto threadwise_bias_load = ThreadwiseTensorSliceTransfer_v2<BiasDataType,
AccDataType,
ScaleBiasGridDesc_M,
decltype(thread_buffer_desc_m),
ThreadBufferLengths_M,
Sequence<0>,
0,
BiasSrcVectorSize,
1,
true>(
bias_grid_desc_m,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize));
const auto scale_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_scale, scale_grid_desc_m.GetElementSpaceSize());
const auto bias_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_bias, bias_grid_desc_m.GetElementSpaceSize());
auto y_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_y, y_grid_desc_m_k.GetElementSpaceSize());
threadwise_scale_load.Run(scale_grid_desc_m,
scale_global_val_buf,
thread_buffer_desc_m,
make_tuple(I0),
scale_thread_buf);
threadwise_bias_load.Run(bias_grid_desc_m,
bias_global_val_buf,
thread_buffer_desc_m,
make_tuple(I0),
bias_thread_buf);
threadwise_x_load.SetSrcSliceOrigin(
x_grid_desc_m_k,
make_multi_index(blkgroup_id * M_BlockTileSize + thread_m_cluster_id * MThreadSliceSize,
block_local_id * reduceSizePerBlock +
thread_k_cluster_id * KThreadSliceSize));
for(index_t reducedTiles = 0; reducedTiles < num_k_block_tile_iteration; ++reducedTiles)
{
threadwise_x_load.Run(x_grid_desc_m_k,
x_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
x_thread_buf);
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
AccDataType multiplier =
scale_thread_buf[Number<iM>{}] / sqrt(var_thread_buf[iM] + epsilon);
AccDataType fused_mean_bias =
bias_thread_buf[Number<iM>{}] - mean_thread_buf[iM] * multiplier;
static_for<0, KThreadSliceSize, 1>{}([&](auto iK) {
constexpr auto offset =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK));
// normalize
y_thread_buf(Number<offset>{}) =
x_thread_buf[Number<offset>{}] * multiplier + fused_mean_bias;
});
});
threadwise_y_store.Run(thread_buffer_desc_m_k,
make_tuple(I0, I0),
y_thread_buf,
y_grid_desc_m_k,
y_global_val_buf);
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, xy_copy_fwd_step_m_k);
threadwise_y_store.MoveDstSliceWindow(y_grid_desc_m_k, xy_copy_fwd_step_m_k);
}
// Step 5: update the moving average of mean and variance (optional)
if(updateMovingAverage && block_local_id == 0 && thread_k_cluster_id == 0)
{
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true>
running_mean_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true>
running_var_thread_buf;
auto running_mean_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
resultRunningMean, mean_var_grid_desc_m.GetElementSpaceSize());
auto running_var_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
resultRunningVariance, mean_var_grid_desc_m.GetElementSpaceSize());
auto threadwise_mean_var_load =
ThreadwiseTensorSliceTransfer_v2<MeanVarDataType,
AccDataType,
MeanVarGridDesc_M,
decltype(thread_buffer_desc_m),
ThreadBufferLengths_M,
Sequence<0>,
0,
MeanVarSrcDstVectorSize,
1,
true>(
mean_var_grid_desc_m,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize));
threadwise_mean_var_load.Run(mean_var_grid_desc_m,
running_mean_global_buf,
thread_buffer_desc_m,
make_tuple(I0),
running_mean_thread_buf);
threadwise_mean_var_load.Run(mean_var_grid_desc_m,
running_var_global_buf,
thread_buffer_desc_m,
make_tuple(I0),
running_var_thread_buf);
AccDataType oneMinusAverageFactor = type_convert<AccDataType>(1.0) - averageFactor;
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
running_mean_thread_buf(I) = running_mean_thread_buf[I] * oneMinusAverageFactor +
mean_thread_buf[I] * averageFactor;
running_var_thread_buf(I) = running_var_thread_buf[I] * oneMinusAverageFactor +
var_thread_buf[I] * averageFactor;
});
auto threadwise_mean_var_store =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
MeanVarDataType,
decltype(thread_buffer_desc_m),
MeanVarGridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>,
0,
MeanVarSrcDstVectorSize,
InMemoryDataOperationEnum::Set,
1,
true>(
mean_var_grid_desc_m,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
threadwise_mean_var_store.Run(thread_buffer_desc_m,
make_tuple(I0),
running_mean_thread_buf,
mean_var_grid_desc_m,
running_mean_global_buf);
threadwise_mean_var_store.Run(thread_buffer_desc_m,
make_tuple(I0),
running_var_thread_buf,
mean_var_grid_desc_m,
running_var_global_buf);
};
// Step 6: save mean and inv-variance (optional)
if(saveMeanInvVariance && block_local_id == 0 && thread_k_cluster_id == 0)
{
auto result_mean_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
resultSaveMean, mean_var_grid_desc_m.GetElementSpaceSize());
auto result_inv_var_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
resultSaveInvVariance, mean_var_grid_desc_m.GetElementSpaceSize());
// calculate inv-variance as 1/sqrt(epsilon+variance), stored in place of variance
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
var_thread_buf(I) =
type_convert<AccDataType>(1.0f) / sqrt(epsilon + var_thread_buf[I]);
});
auto threadwise_mean_inv_var_store =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
MeanVarDataType,
decltype(thread_buffer_desc_m),
MeanVarGridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>,
0,
MeanVarSrcDstVectorSize,
InMemoryDataOperationEnum::Set,
1,
true>(
mean_var_grid_desc_m,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
threadwise_mean_inv_var_store.Run(thread_buffer_desc_m,
make_tuple(I0),
mean_thread_buf,
mean_var_grid_desc_m,
result_mean_global_buf);
threadwise_mean_inv_var_store.Run(thread_buffer_desc_m,
make_tuple(I0),
var_thread_buf,
mean_var_grid_desc_m,
result_inv_var_global_buf);
};
}
}; // namespace ck
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment