Unverified Commit 440e28b0 authored by carlushuang's avatar carlushuang Committed by GitHub
Browse files

[CK_TILE] fused-moe first version (#1634)



* moe pipeline

* update code

* compile OK

* update

* update cpu reference

* update pipeline_gemm0

* compiler ok

* update pipeline

* rename to ex pipeline

* block-asm

* update

* update

* update first gemm ok

* compute correct

* update file structure

* update README

* update

* update

* update code

* update API

* return unsupport case

* add comment

* update readme

* update

* uncomment

* update

* fix build err

---------
Co-authored-by: default avatarvalarLip <340077269@qq.com>
parent 645fe812
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host/host_tensor.hpp"
namespace ck_tile {
// [indexing implementation-1]
// using M_a as constexpr block_size to partition all tokens into different slices
// each slice map to one expert, and one expert can have multiple slices
// e.g. num_experts = 6, topk=3, M_a = 4, input_tokens = 5
// before sort, topk_ids is : [[0, 3, 5], [2, 3, 5], [1, 3, 5], [1, 2, 3], [1, 3, 5]]
// tok-0 tok-1 tok-2 tok-3 tok-4
// topk_weight is : [[a, b, c], [d, e, f], [g, h, i], [j, k, l], [m, n, o]] (some float
// number)
//
// token_id_per_expert is : [[0], [2, 3, 4], [1, 3], [0, 1, 2, 3, 4], [], [0, 1, 2, 5]]
// (only for reference) exp-0 exp-1 exp-2 exp-3 exp-4 exp-5
// weight_id_per_expert is: [[a], [g, j, m], [d, k], [b, e, h, l, n], [], [c, f, i, o]]
//
// max_num_tokens_padded : topk * input_tokens + num_experts * (M_a - 1)
// max_num_tokens_padded : topk * input_tokens + num_experts * M_a - topk (updated)
// * this could be larger than actual, since actual tokens are on GPU
//
// sorted_token_ids_ptr : [0, 6, 6, 6, 2, 3, 4, 6, 1, 3, 6, 6, 0, 1, 2, 3, 4, 6, 6, 6, 6, 6, 6, 6,
// 0, 1, 2, 5]
// |- exp-0 -|- exp-1 -|- exp-2 -|- exp-3 -|- exp-4
// -|- exp-5 -|
// sorted_weight_ptr : [a, *, *, *, g, j, m, *, d, k, *, *, b, e, h, l, n, *, *, *, *, *, *, *,
// c, f, i, o]
//
// * length is max_num_tokens_padded, actual size is num_tokens_post_padded_ptr
//
// sorted_expert_ids_ptr : [0, 1, 2, 3, 3, 4, 5]
// * length is (max_num_tokens_padded + block_size - 1) / block_size
///
// num_tokens_post_padded_ptr : [28]
// num_sorted_tiles_ptr : [7]
template <typename AccDataType, // you only need to explcitly set this one
typename Activation, // ck_tile::element_wise::Gelu
typename ADataType,
typename GDataType,
typename DDataType,
typename ODataType,
typename AScaleDataType,
typename GScaleDataType,
typename DScaleDataType,
typename YSmoothScaleDataType,
typename TopkWeightDataType,
typename IndexDataType>
void reference_fused_moe(
const ck_tile::HostTensor<ADataType>& a_host, // [tokens, hidden_size]
const ck_tile::HostTensor<GDataType>& g_host, // [experts, interme_size_0, hidden_size]
const ck_tile::HostTensor<DDataType>& d_host, // [experts, hidden_size, interme_size_1]
const ck_tile::HostTensor<AScaleDataType>& sa_host, // [tokens, 1],
const ck_tile::HostTensor<GScaleDataType>& sg_host, // [experts, 1, interme_size_0]
const ck_tile::HostTensor<DScaleDataType>& sd_host, // [experts, 1, hidden_size],
const ck_tile::HostTensor<YSmoothScaleDataType>& sy_host, // [experts, 1, interme_size_0]
ck_tile::HostTensor<ODataType>& o_host, // [tokens, hidden_size]
const ck_tile::HostTensor<IndexDataType>& sorted_token_ids_host, // [max_num_tokens_padded]
const ck_tile::HostTensor<TopkWeightDataType>& sorted_weight_host, // [max_num_tokens_padded]
const ck_tile::HostTensor<IndexDataType>&
sorted_expert_ids_host, // [(max_num_tokens_padded + block_size - 1) / block_size]
const ck_tile::HostTensor<IndexDataType>& num_sorted_tiles_host, // [1]
const ck_tile::HostTensor<IndexDataType>&
token_ids_host, // [tokens, topk] --> ugly!!! remove in the future
ck_tile::index_t block_m,
ck_tile::index_t tokens,
ck_tile::index_t experts,
ck_tile::index_t hidden_size,
ck_tile::index_t intermediate_size, // this size is for gate/up
ck_tile::index_t topk,
ck_tile::index_t gate_only)
{
assert(sorted_token_ids_host.get_num_of_dimension() == 1);
assert(sorted_weight_host.get_num_of_dimension() == 1);
assert(sorted_expert_ids_host.get_num_of_dimension() == 1);
assert(num_sorted_tiles_host.get_element_size() == 1);
ck_tile::index_t num_sorted_tiles = num_sorted_tiles_host.mData[0] / block_m;
ck_tile::index_t intermediate_size_0 = intermediate_size;
ck_tile::index_t intermediate_size_1 = intermediate_size / (gate_only ? 1 : 2);
// TODO: better remove this in the future, or modify the token_id value
auto get_topk_id = [&](ck_tile::index_t token_id_, ck_tile::index_t expert_id_) {
for(ck_tile::index_t i_ = 0; i_ < topk; i_++)
{
if(token_ids_host(token_id_, i_) == expert_id_)
return i_;
}
throw std::runtime_error("not correct token/expert pair\n");
return -1; // TODO: not correct!!
};
ck_tile::HostTensor<AccDataType> out_topk_tokens({tokens, topk, hidden_size});
int max_num_tokens_padded = topk * tokens + experts * block_m - topk;
// assert();
auto f = [&](auto i_flatten) {
ck_tile::index_t i_tile = i_flatten / block_m;
if(i_tile >= num_sorted_tiles)
return;
ck_tile::index_t i_expert = sorted_expert_ids_host.mData[i_tile];
ck_tile::index_t i_token = sorted_token_ids_host.mData[i_flatten];
if(i_token >= tokens)
return;
ck_tile::index_t i_topk = get_topk_id(i_token, i_expert); // TODO: ugly
auto weight = sorted_weight_host.mData[i_flatten];
ck_tile::HostTensor<AccDataType> acc_0({1, intermediate_size_0});
// first gemm
for(ck_tile::index_t i_n = 0; i_n < intermediate_size_0; i_n++)
{
AccDataType acc = static_cast<AccDataType>(0);
for(ck_tile::index_t i_k = 0; i_k < hidden_size; i_k++)
{
acc += type_convert<AccDataType>(a_host(i_token, i_k)) *
type_convert<AccDataType>(g_host(i_expert, i_n, i_k));
}
acc_0(0, i_n) = acc;
// printf("ie:%2d, it:%3d, in:%d, %f\n", i_expert, i_token, i_n, acc);
}
ck_tile::HostTensor<AccDataType> y({1, intermediate_size_1});
if(gate_only)
{
if(intermediate_size_1 != intermediate_size_0)
throw std::runtime_error(
"intermediate_size not correct, 0:" + std::to_string(intermediate_size_0) +
", 1:" + std::to_string(intermediate_size_1));
for(ck_tile::index_t i_n = 0; i_n < intermediate_size_1; i_n++)
{
Activation{}(y(0, i_n), acc_0(0, i_n));
// printf("ie:%2d, it:%3d, in:%d, %f\n", i_expert, i_token, i_n, y(0, i_n));
}
}
else
{
if(intermediate_size_1 * 2 != intermediate_size_0)
throw std::runtime_error(
"intermediate_size not correct, 0:" + std::to_string(intermediate_size_0) +
", 1:" + std::to_string(intermediate_size_1));
for(ck_tile::index_t i_n = 0; i_n < intermediate_size_1; i_n++)
{
AccDataType tmp;
Activation{}(tmp, acc_0(0, i_n));
y(0, i_n) = tmp * acc_0(0, i_n + intermediate_size_1); // TODO: elementwise mul
}
}
// second gemm, loop along gemm-n
ck_tile::HostTensor<AccDataType> acc_1({1, hidden_size});
for(ck_tile::index_t i_n = 0; i_n < hidden_size; i_n++)
{
AccDataType acc = static_cast<AccDataType>(0);
for(ck_tile::index_t i_k = 0; i_k < intermediate_size_1; i_k++)
{
acc += y(0, i_k) * type_convert<AccDataType>(d_host(i_expert, i_n, i_k));
}
acc_1(0, i_n) = acc * weight; // multiple weight here
}
for(ck_tile::index_t i_n = 0; i_n < hidden_size; i_n++)
{
out_topk_tokens(i_token, i_topk, i_n) = acc_1(0, i_n);
}
};
// make_ParallelTensorFunctor(f, max_num_tokens_padded)(std::thread::hardware_concurrency());
make_ParallelTensorFunctor(f, max_num_tokens_padded)(1);
// reduce
auto r = [&](auto i_token) {
for(ck_tile::index_t i_n = 0; i_n < hidden_size; i_n++)
{
AccDataType acc = type_convert<AccDataType>(0);
for(ck_tile::index_t i_topk = 0; i_topk < topk; i_topk++)
{
acc += out_topk_tokens(i_token, i_topk, i_n);
}
o_host(i_token, i_n) = type_convert<ODataType>(acc);
}
};
make_ParallelTensorFunctor(r, tokens)(std::thread::hardware_concurrency());
(void)num_sorted_tiles_host;
(void)sa_host;
(void)sg_host;
(void)sd_host;
(void)sy_host;
}
} // namespace ck_tile
......@@ -16,7 +16,7 @@ namespace ck_tile {
*/
template <typename DataType>
CK_TILE_HOST void
reference_permute(const HostTensor<DataType>& x, HostTensor<DataType>& y, std::vector<index_t> dims)
reference_permute(const HostTensor<DataType>& x, HostTensor<DataType>& y, std::vector<index_t> perm)
{
const auto x_len = x.mDesc.get_lengths();
const auto y_len = y.mDesc.get_lengths();
......@@ -43,7 +43,7 @@ reference_permute(const HostTensor<DataType>& x, HostTensor<DataType>& y, std::v
std::vector<size_t> tmp(rank, 0);
for(index_t i = 0; i < rank; i++)
{
tmp[dims[i]] = y_coord[i];
tmp[perm[i]] = y_coord[i];
}
return tmp;
}();
......@@ -54,4 +54,23 @@ reference_permute(const HostTensor<DataType>& x, HostTensor<DataType>& y, std::v
make_ParallelTensorFunctor(f, x_elm)(std::thread::hardware_concurrency());
}
template <typename DataType>
CK_TILE_HOST auto reference_permute(const HostTensor<DataType>& x, std::vector<index_t> perm)
{
auto x_shape = x.get_lengths();
ck_tile::index_t rank = perm.size();
std::vector<ck_tile::index_t> y_shape = [&]() {
std::vector<ck_tile::index_t> tmp(rank, 0);
for(int i = 0; i < static_cast<int>(rank); i++)
{
tmp[i] = x_shape[perm[i]];
}
return tmp;
}();
HostTensor<DataType> y(y_shape);
reference_permute(x, y, perm);
return y;
}
} // namespace ck_tile
......@@ -572,6 +572,105 @@ struct FastGelu
}
};
struct FastGeluAsm
{
template <typename Y, typename X>
CK_TILE_HOST void operator()(Y& y, const X& x) const;
template <typename Y, typename X>
CK_TILE_DEVICE void operator()(Y& y, const X& x) const;
template <>
CK_TILE_HOST void operator()<float, float>(float& y, const float& x) const
{
// const float u = -2.f * x * (0.035677f * x * x + 0.797885f);
const float c1 = -2.0 * 0.035677f;
const float c2 = -2.0 * 0.797885f;
const float u = x * (c1 * x * x + c2);
const float emu = exp(u);
y = x / (1.f + emu);
}
// device code, use lower precision "__ocml_exp_f32" and "rcp"
template <>
CK_TILE_DEVICE void operator()<float, float>(float& y, const float& x) const
{
const uint32_t c1 = 0xbd92220c; // -2.0 * 0.035677f;
const float c2 = -2.0 * 0.797885f;
const uint32_t log2e_ = 0x3fb8aa3b; // log2e_v<float>;
float tmp;
asm volatile("v_mul_f32 %[v_tmp], %[v_x], %[v_x] ; x*x\n"
"v_fma_f32 %[v_tmp], %[v_tmp], %[s_c1], %[v_c2] ; c1*x*x+c2\n"
"v_mul_f32 %[v_tmp], %[v_tmp], %[v_x] ; x*(c1*x*x+c2)\n"
"v_mul_f32 %[v_tmp], %[v_tmp], %[s_log2e] ; log2e*x*(c1*x*x+c2)\n"
"v_exp_f32 %[v_tmp], %[v_tmp] ; emu = exp2(log2e*x*(c1*x*x+c2))\n"
"s_nop 0 ; hazard for exp\n"
"v_add_f32 %[v_tmp], %[v_tmp], 1.0 ; emu+1.0f\n"
"v_rcp_f32 %[v_tmp], %[v_tmp] ; 1/(emu+1.0f)\n"
"s_nop 0 ; hazard for rcp \n"
"v_mul_f32 %[v_y], %[v_tmp], %[v_x] ; x * 1/(emu+1f)\n"
: [v_y] "=v"(y), [v_tmp] "+v"(tmp)
: [v_x] "v"(x), [s_c1] "s"(c1), [v_c2] "v"(c2), [s_log2e] "s"(log2e_)
:);
}
template <>
CK_TILE_HOST void operator()<fp32x2_t, fp32x2_t>(fp32x2_t& y, const fp32x2_t& x) const
{
const float c1 = -2.0 * 0.035677f;
const float c2 = -2.0 * 0.797885f;
const float u0 = x.x * (c1 * x.x * x.x + c2);
const float emu0 = exp(u0);
y.x = x.x / (1.f + emu0);
const float u1 = x.y * (c1 * x.y * x.y + c2);
const float emu1 = exp(u1);
y.y = x.y / (1.f + emu1);
}
// this is packed verion to remove data hazard for trans
template <>
CK_TILE_DEVICE void operator()<fp32x2_t, fp32x2_t>(fp32x2_t& y, const fp32x2_t& x) const
{
const uint32_t c1 = 0xbd92220c; // -2.0 * 0.035677f;
float c2 = -2.0 * 0.797885f;
const uint32_t log2e_ = 0x3fb8aa3b; // log2e_v<float>;
float tmp0, tmp1;
float y0 = x.x, y1 = x.y;
asm volatile(
"v_mul_f32 %[v_tmp0], %[v_y0], %[v_y0] ; x*x\n"
"v_mul_f32 %[v_tmp1], %[v_y1], %[v_y1] ; x*x\n"
"v_fma_f32 %[v_tmp0], %[v_tmp0], %[s_c1], %[v_c2] ; c1*x*x+c2\n"
"v_fma_f32 %[v_tmp1], %[v_tmp1], %[s_c1], %[v_c2] ; c1*x*x+c2\n"
"v_mul_f32 %[v_tmp0], %[v_tmp0], %[v_y0] ; x*(c1*x*x+c2)\n"
"v_mul_f32 %[v_tmp1], %[v_tmp1], %[v_y1] ; x*(c1*x*x+c2)\n"
"v_mul_f32 %[v_tmp0], %[v_tmp0], %[s_log2e] ; log2e*x*(c1*x*x+c2)\n"
"v_mul_f32 %[v_tmp1], %[v_tmp1], %[s_log2e] ; log2e*x*(c1*x*x+c2)\n"
"v_exp_f32 %[v_tmp0], %[v_tmp0] ; emu = exp2(log2e*x*(c1*x*x+c2))\n"
"v_exp_f32 %[v_tmp1], %[v_tmp1] ; emu = exp2(log2e*x*(c1*x*x+c2))\n"
"v_add_f32 %[v_tmp0], %[v_tmp0], 1.0 ; emu+1.0f\n"
"v_add_f32 %[v_tmp1], %[v_tmp1], 1.0 ; emu+1.0f\n"
"v_rcp_f32 %[v_tmp0], %[v_tmp0] ; 1/(emu+1.0f)\n"
"v_rcp_f32 %[v_tmp1], %[v_tmp1] ; 1/(emu+1.0f)\n"
"v_mul_f32 %[v_y0], %[v_tmp0], %[v_y0] ; x * 1/(emu+1f)\n"
"v_mul_f32 %[v_y1], %[v_tmp1], %[v_y1] ; x * 1/(emu+1f)\n"
: [v_y0] "+v"(y0),
[v_y1] "+v"(y1),
[v_c2] "+v"(c2),
// NOTE! it is totally possible that c2/y0/y1 share same register, they are all local
// tmp variables we need to expicitly hint compiler they may read+write, to allow
// allocate different register , the side effect is c2=** may issue for every such
// inline asm block
[v_tmp0] "+v"(tmp0),
[v_tmp1] "+v"(tmp1)
: [s_c1] "s"(c1), [s_log2e] "s"(log2e_)
:);
y.x = y0;
y.y = y1;
}
};
// https://paperswithcode.com/method/gelu
// y = 0.5*x*(1+erf(x/sqrt(2)))
struct Gelu
......
......@@ -3,9 +3,8 @@
#pragma once
#include "ck_tile/ops/fused_moe/kernel/moe_sorting_kernel.hpp"
#include "ck_tile/ops/fused_moe/pipeline/moe_sorting_pipeline.hpp"
#include "ck_tile/ops/fused_moe/pipeline/moe_sorting_policy.hpp"
#include "ck_tile/ops/fused_moe/pipeline/moe_sorting_problem.hpp"
#include "ck_tile/ops/flatmm/block/flatmm_32x512x128_1x4x1_16x16x32.hpp"
#include "ck_tile/ops/flatmm/block/flatmm_sn_32x128x512_1x4x1_16x16x32.hpp"
#include "ck_tile/ops/flatmm/block/flatmm_uk_config.hpp"
#include "ck_tile/ops/common/generic_2d_block_shape.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/gemm/warp/warp_gemm.hpp"
#include "ck_tile/ops/flatmm/block/flatmm_uk_config.hpp"
namespace ck_tile {
// A async load to LDS, B direct to AGPR
// B matrix preshuffled in br*kr*w
// require 4 wave, occupancy=1c
// agpr useage:256
// vgpr usage:64(A local) + 64(acc) + 8(os_a) + 8(os_b) = 144 (rem:112)
//
// for this gemm, 4 16x16x16 transposed layout
// input A vpgpr layout
// v0-v15: [ 0:15](gemm_m)x128(gemm_k)
// v16-v31: [16:31](gemm_m)x128(gemm_k)
// input B vpgpr layout
// v0-v15: [ 0: 15](gemm_n)x128(gemm_k)
// v16-v31: [ 64: 79](gemm_n)x128(gemm_k)
// ......................
// v111-v127: [448:463](gemm_n)x128(gemm_k)
// output C vpgpr layout
// v0-v3 : [ 0:15](gemm_m)x[ 0: 15](gemm_n)
// v4-v7 : [16:31](gemm_m)x[ 0: 15](gemm_n)
// v8-v11: [ 0:15](gemm_m)x[64: 79](gemm_n)
// v12-v15: [16:31](gemm_m)x[64: 79](gemm_n)
// ......................
// v56-v59: [ 0:15](gemm_m)x[448:463](gemm_n)
// v60-v63: [16:31](gemm_m)x[448:463](gemm_n)
struct Flatmm_32x512x128_1x4x1_16x16x32_Base // for f16/bf16
{
static constexpr index_t Block_M = 32;
static constexpr index_t Block_N = 512;
static constexpr index_t Block_K = 128;
static constexpr index_t WarpPerBlock_M = 1;
static constexpr index_t WarpPerBlock_N = 4;
static constexpr index_t WarpPerBlock_K = 1;
static constexpr index_t NumWarps = 4;
static constexpr index_t Warp_M = 16;
static constexpr index_t Warp_N = 16;
static constexpr index_t Warp_K = 32; // 16 * SubKPacks
static constexpr index_t BlockSize = 256;
static constexpr index_t SubKPacks = 2; // this is used to gurantee every threads can do dwordx4
// TODO: note Nr/Kr/W need consider SubKPacks
static constexpr index_t Block_W = Warp_N * Warp_K; // 512 element
static constexpr index_t Block_Nr = Block_N / Warp_N; // 32 element, 4 per wave
static constexpr index_t Block_Kr = Block_K / Warp_K; // 4
static constexpr index_t Repeat_M = Block_M / (Warp_M * WarpPerBlock_M); // 2
static constexpr index_t Repeat_N = Block_N / (Warp_N * WarpPerBlock_N); // 8
static constexpr index_t Repeat_K = Block_K / (Warp_K * WarpPerBlock_K); // 8/2=4
static CK_TILE_DEVICE constexpr auto MakeCBlockDist()
{
constexpr auto c_block_outer_dstr_encoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Repeat_M, WarpPerBlock_M>, sequence<Repeat_N, WarpPerBlock_N>>,
tuple<sequence<1, 2>>,
tuple<sequence<1, 1>>,
sequence<2, 1>, // !! note here is different
sequence<0, 0>>{};
using WG = WarpGemmMfmaF16F16F32M16N16K32TransposedCDistribution;
constexpr auto c_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
c_block_outer_dstr_encoding, typename WG::CWarpDstrEncoding{});
constexpr auto c_block_dstr = make_static_tile_distribution(c_block_dstr_encode);
return c_block_dstr;
}
static CK_TILE_DEVICE constexpr auto MakeCBlockTile()
{
using CDataType = float;
constexpr auto c_block_dstr = MakeCBlockDist();
auto c_block_tensor = make_static_distributed_tensor<CDataType>(c_block_dstr);
return c_block_tensor;
}
CK_TILE_HOST_DEVICE static constexpr auto MakeLdsStoreDesc_A()
{
// A async->LDS
// constexpr index_t Block_M = Problem::BlockShape::Block_M0;
// constexpr index_t Block_K = Problem::BlockShape::Block_K0;
// constexpr index_t BlockSize = Problem::BlockShape::BlockSize;
constexpr index_t warpSize = ck_tile::get_warp_size();
// constexpr index_t NumWarps = Problem::BlockShape::NumWarps;
constexpr index_t KPack_ = 8; // GetSmemKPack_A<Problem>(); // LDS
constexpr index_t KVector = 2; // GetAlignment_A<Problem>(); // async copy 1 dword
constexpr index_t KPad = KPack_; // pad between warps
static_assert(Block_K % KVector == 0);
constexpr index_t LanesPerK = Block_K / KVector; // how many thread loading K
if constexpr(LanesPerK >= warpSize)
{
// need multiple waves to load K
static_assert(LanesPerK % warpSize == 0);
constexpr index_t wavesPerK = LanesPerK / warpSize;
if constexpr(wavesPerK > NumWarps)
{
// TODO: need multiple issues along K to load all data
}
else
{
constexpr index_t wavesPerM = NumWarps / wavesPerK;
constexpr index_t NumIssues = Block_M / wavesPerM;
constexpr auto lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<NumIssues>{}, // m0
number<wavesPerM>{}, // m1
number<wavesPerK>{}, // k0
number<warpSize>{}, // k1
number<KVector>{}), // k2
make_tuple(number<NumWarps*(warpSize * KVector + KPad)>{}, // m0
number<wavesPerK*(warpSize * KVector + KPad)>{}, // m1
number<warpSize * KVector + KPad>{}, // k0
number<KVector>{}, // k1
number<1>{}), // k2
number<KVector>{}, // lds store vector(actually no explicit store)
number<1>{});
constexpr auto lds_block_desc_issues_warps_lanes = transform_tensor_descriptor(
lds_block_desc_0,
make_tuple(
make_pass_through_transform(number<NumIssues>{}),
make_merge_transform(make_tuple(number<wavesPerM>{}, number<wavesPerK>{})),
make_merge_transform(make_tuple(number<warpSize>{}, number<KVector>{}))),
make_tuple(sequence<0>{}, sequence<1, 2>{}, sequence<3, 4>{}),
make_tuple(sequence<0>{}, sequence<1>{}, sequence<2>{}));
return lds_block_desc_issues_warps_lanes;
}
}
else
{
// lanes within a wave load different M but same K
static_assert(warpSize % LanesPerK == 0);
constexpr index_t LaneGroups = warpSize / LanesPerK; // along m
constexpr index_t NumIssues = Block_M / (LaneGroups * NumWarps);
constexpr auto lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<NumIssues>{}, // m0
number<LaneGroups>{}, // m1
number<NumWarps>{}, // m2
number<LanesPerK>{}, // k0
number<KVector>{}), // k1
make_tuple(number<NumWarps*(warpSize * KVector + KPad)>{}, // m0
number<Block_K>{}, // m1
number<warpSize * KVector + KPad>{}, // m2
number<KVector>{}, // k0
number<1>{}), // k1
number<KVector>{}, // lds store vector(actually no explicit store)
number<1>{});
constexpr auto lds_block_desc_issues_warps_lanes = transform_tensor_descriptor(
lds_block_desc_0,
make_tuple(make_pass_through_transform(number<NumIssues>{}),
make_pass_through_transform(number<NumWarps>{}),
make_merge_transform(make_tuple(
number<LaneGroups>{}, number<LanesPerK>{}, number<KVector>{}))),
make_tuple(sequence<0>{}, sequence<2>{}, sequence<1, 3, 4>{}),
make_tuple(sequence<0>{}, sequence<1>{}, sequence<2>{}));
return lds_block_desc_issues_warps_lanes;
}
}
// template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeLdsLoadDesc_A()
{
// load from LDS to register, every wave has same layout
constexpr index_t KPack_ = 8; // GetSmemKPack_A<Problem>(); // LDS
constexpr index_t KPad = KPack_; // pad between warps
constexpr index_t kAMLane = 16;
constexpr index_t kABKLane = 4;
constexpr index_t kABKPerLane = 4;
constexpr index_t kKIter = 2;
static_assert(KPack_ == (kABKPerLane * kKIter));
constexpr auto lds_block_desc_0 =
make_naive_tensor_descriptor(make_tuple(number<Repeat_M>{}, // m0 y
number<kAMLane>{}, // m1 p
number<Repeat_K>{}, // k0 y
number<kABKLane>{}, // k1 p
number<KPack_>{}), // k2 y-vector
make_tuple(number<kAMLane*(Block_K + KPad)>{}, // m0
number<Block_K + KPad>{}, // m1
number<kABKLane * KPack_>{}, // k0
number<KPack_>{}, // k1
number<1>{}), // k2
number<KPack_>{}, // lds load vector
number<1>{});
constexpr auto lds_desc_m_k = transform_tensor_descriptor(
lds_block_desc_0,
make_tuple(make_merge_transform(make_tuple(number<Repeat_M>{}, number<kAMLane>{})),
make_merge_transform(
make_tuple(number<Repeat_K>{}, number<kABKLane>{}, number<KPack_>{}))),
make_tuple(sequence<0, 1>{}, sequence<2, 3, 4>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return lds_desc_m_k;
}
static constexpr auto GetGemm_AWarpEnc()
{
constexpr index_t kAMLane = 16;
constexpr index_t kABKLane = 4;
constexpr index_t kABKPerLane = 4;
constexpr index_t kKIter = 2;
using enc_ = tile_distribution_encoding<
sequence<>,
tuple<sequence<kAMLane>, sequence<kABKLane, kABKPerLane * kKIter>>,
tuple<sequence<2, 1>>,
tuple<sequence<0, 0>>,
sequence<2>,
sequence<1>>;
return enc_{};
}
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
return 32 * (128 + 8) * sizeof(bf16_t);
}
};
struct Flatmm_32x512x128_1x4x1_16x16x32_BF16 : public Flatmm_32x512x128_1x4x1_16x16x32_Base
{
using ADataType = bf16_t;
using BDataType = bf16_t;
// TODO: need paired with tile_window_linear!
// TODO: need call init_raw() before call this function!
template <typename ARes, typename ACoords, typename BRes, typename BCoords>
CK_TILE_DEVICE auto
operator()(const ARes& res_a,
const ACoords& cached_coords_a,
const BRes& res_b,
const BCoords& cached_coords_b,
CK_TILE_LDS_ADDR void* smem,
index_t k,
index_t tile_offset_a, // for each tile, the offset to move for each unroll
index_t tile_offset_b) // for each tile, the offset to move for each unroll
{
static_assert(ACoords::size() == Block_M * Block_K / BlockSize / 2 /*2x per dword*/); // 8
static_assert(BCoords::size() == Repeat_N);
auto a_sst = make_tile_window(
make_tensor_view<address_space_enum::lds>(
reinterpret_cast<CK_TILE_LDS_ADDR ADataType*>(smem), MakeLdsStoreDesc_A()),
MakeLdsStoreDesc_A().get_lengths(),
{0, 0, 0});
auto a_sld = [&]() {
constexpr auto a_warp_enc_ = GetGemm_AWarpEnc();
constexpr auto a_outer_dstr_enc = tile_distribution_encoding<
sequence<WarpPerBlock_N>,
tuple<sequence<Repeat_M, WarpPerBlock_M>, sequence<Repeat_K>>,
tuple<sequence<1, 0>>,
tuple<sequence<1, 0>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto a_block_dstr_encode =
detail::make_embed_tile_distribution_encoding(a_outer_dstr_enc, a_warp_enc_);
return make_tile_window_linear(
make_tensor_view<address_space_enum::lds>(
reinterpret_cast<CK_TILE_LDS_ADDR ADataType*>(smem), MakeLdsLoadDesc_A()),
MakeLdsLoadDesc_A().get_lengths(),
{0, 0},
make_static_tile_distribution(a_block_dstr_encode));
}();
const index_t tile_offset_a_bytes = tile_offset_a * sizeof(ADataType);
const index_t tile_offset_b_bytes = tile_offset_b * sizeof(BDataType);
const auto [m0_init_value, size_per_issue] = get_async_store_smem_info(a_sst);
constexpr auto smem_buf_size =
MakeLdsLoadDesc_A().get_element_space_size() * sizeof(ADataType);
static_assert(a_sld.get_num_of_access() == 8);
constexpr auto sld_os = generate_tuple(
[&](auto i_access) {
return number<a_sld.get_bottom_linear_offset(i_access) * sizeof(ADataType)>{};
},
number<a_sld.get_num_of_access()>{});
index_t loop_cnt = k / Block_K;
// this is the acc thread buffer
fp32x4_t v_acc[16]{.0f};
// B nr->kr
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Winline-asm"
// clang-format off
asm volatile(
#define CK_TILE_FLATMM_UK_MFMA CK_TILE_FLATMM_UK_MFMA_BF16
#include "uk/flatmm_uk_gfx9_32x512x128_1x1x1_16x16x16.inc"
#undef CK_TILE_FLATMM_UK_MFMA
: [s_loop_cnt]"+s"(loop_cnt),
[v_acc_0]"+v"(v_acc[0]),
[v_acc_1]"+v"(v_acc[1]),
[v_acc_2]"+v"(v_acc[2]),
[v_acc_3]"+v"(v_acc[3]),
[v_acc_4]"+v"(v_acc[4]),
[v_acc_5]"+v"(v_acc[5]),
[v_acc_6]"+v"(v_acc[6]),
[v_acc_7]"+v"(v_acc[7]),
[v_acc_8]"+v"(v_acc[8]),
[v_acc_9]"+v"(v_acc[9]),
[v_acc_10]"+v"(v_acc[10]),
[v_acc_11]"+v"(v_acc[11]),
[v_acc_12]"+v"(v_acc[12]),
[v_acc_13]"+v"(v_acc[13]),
[v_acc_14]"+v"(v_acc[14]),
[v_acc_15]"+v"(v_acc[15]),
[s_mem_]"+r"(smem)
: [s_res_a0]"s"(res_a[0]),
[s_res_a1]"s"(res_a[1]),
[s_res_a2]"s"(res_a[2]),
[s_res_a3]"s"(res_a[3]),
[s_res_b0]"s"(res_b[0]),
[s_res_b1]"s"(res_b[1]),
[s_res_b2]"s"(res_b[2]),
[s_res_b3]"s"(res_b[3]),
[v_os_a0]"v"(static_cast<index_t>(cached_coords_a[number<0>{}] * sizeof(ADataType))),
[v_os_a1]"v"(static_cast<index_t>(cached_coords_a[number<1>{}] * sizeof(ADataType))),
[v_os_a2]"v"(static_cast<index_t>(cached_coords_a[number<2>{}] * sizeof(ADataType))),
[v_os_a3]"v"(static_cast<index_t>(cached_coords_a[number<3>{}] * sizeof(ADataType))),
[v_os_a4]"v"(static_cast<index_t>(cached_coords_a[number<4>{}] * sizeof(ADataType))),
[v_os_a5]"v"(static_cast<index_t>(cached_coords_a[number<5>{}] * sizeof(ADataType))),
[v_os_a6]"v"(static_cast<index_t>(cached_coords_a[number<6>{}] * sizeof(ADataType))),
[v_os_a7]"v"(static_cast<index_t>(cached_coords_a[number<7>{}] * sizeof(ADataType))),
[v_os_b0]"v"(static_cast<index_t>(cached_coords_b[number<0>{}] * sizeof(BDataType))),
[v_os_b1]"v"(static_cast<index_t>(cached_coords_b[number<1>{}] * sizeof(BDataType))),
[v_os_b2]"v"(static_cast<index_t>(cached_coords_b[number<2>{}] * sizeof(BDataType))),
[v_os_b3]"v"(static_cast<index_t>(cached_coords_b[number<3>{}] * sizeof(BDataType))),
[v_os_b4]"v"(static_cast<index_t>(cached_coords_b[number<4>{}] * sizeof(BDataType))),
[v_os_b5]"v"(static_cast<index_t>(cached_coords_b[number<5>{}] * sizeof(BDataType))),
[v_os_b6]"v"(static_cast<index_t>(cached_coords_b[number<6>{}] * sizeof(BDataType))),
[v_os_b7]"v"(static_cast<index_t>(cached_coords_b[number<7>{}] * sizeof(BDataType))),
[v_os_slda]"v"(static_cast<index_t>(a_sld.cached_coords_[number<0>{}].get_offset() * sizeof(ADataType))),
[s_m0_init]"s"(m0_init_value),
[s_size_per_issue]"s"(size_per_issue),
[smem_sz]"n"(smem_buf_size), //(smem_buf_size),
[sld_os_0]"n"(sld_os[number<0>{}].value),
[sld_os_1]"n"(sld_os[number<1>{}].value),
[sld_os_2]"n"(sld_os[number<2>{}].value),
[sld_os_3]"n"(sld_os[number<3>{}].value),
[sld_os_4]"n"(sld_os[number<4>{}].value),
[sld_os_5]"n"(sld_os[number<5>{}].value),
[sld_os_6]"n"(sld_os[number<6>{}].value),
[sld_os_7]"n"(sld_os[number<7>{}].value),
[s_tile_os_a]"s"(tile_offset_a_bytes),
[s_tile_os_b]"s"(tile_offset_b_bytes)
: "memory", "a0", "a1", "a2", "a3", "a4", "a5", "a6", "a7", "a8", "a9",
"a10", "a11", "a12", "a13", "a14", "a15", "a16", "a17", "a18", "a19",
"a20", "a21", "a22", "a23", "a24", "a25", "a26", "a27", "a28", "a29",
"a30", "a31", "a32", "a33", "a34", "a35", "a36", "a37", "a38", "a39",
"a40", "a41", "a42", "a43", "a44", "a45", "a46", "a47", "a48", "a49",
"a50", "a51", "a52", "a53", "a54", "a55", "a56", "a57", "a58", "a59",
"a60", "a61", "a62", "a63", "a64", "a65", "a66", "a67", "a68", "a69",
"a70", "a71", "a72", "a73", "a74", "a75", "a76", "a77", "a78", "a79",
"a80", "a81", "a82", "a83", "a84", "a85", "a86", "a87", "a88", "a89",
"a90", "a91", "a92", "a93", "a94", "a95", "a96", "a97", "a98", "a99",
"a100", "a101", "a102", "a103", "a104", "a105", "a106", "a107",
"a108", "a109", "a110", "a111", "a112", "a113", "a114", "a115",
"a116", "a117", "a118", "a119", "a120", "a121", "a122", "a123",
"a124", "a125", "a126", "a127", "a128", "a129", "a130", "a131",
"a132", "a133", "a134", "a135", "a136", "a137", "a138", "a139",
"a140", "a141", "a142", "a143", "a144", "a145", "a146", "a147",
"a148", "a149", "a150", "a151", "a152", "a153", "a154", "a155",
"a156", "a157", "a158", "a159", "a160", "a161", "a162", "a163",
"a164", "a165", "a166", "a167", "a168", "a169", "a170", "a171",
"a172", "a173", "a174", "a175", "a176", "a177", "a178", "a179",
"a180", "a181", "a182", "a183", "a184", "a185", "a186", "a187",
"a188", "a189", "a190", "a191", "a192", "a193", "a194", "a195",
"a196", "a197", "a198", "a199", "a200", "a201", "a202", "a203",
"a204", "a205", "a206", "a207", "a208", "a209", "a210", "a211",
"a212", "a213", "a214", "a215", "a216", "a217", "a218", "a219",
"a220", "a221", "a222", "a223", "a224", "a225", "a226", "a227",
"a228", "a229", "a230", "a231", "a232", "a233", "a234", "a235",
"a236", "a237", "a238", "a239", "a240", "a241", "a242", "a243",
"a244", "a245", "a246", "a247", "a248", "a249", "a250", "a251",
"a252", "a253", "a254", "a255",
"s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
"s86", // s86 as tmp
"v64", "v65", "v66", "v67", "v68", "v69",
"v70", "v71", "v72", "v73", "v74", "v75", "v76", "v77", "v78", "v79",
"v80", "v81", "v82", "v83", "v84", "v85", "v86", "v87", "v88", "v89",
"v90", "v91", "v92", "v93", "v94", "v95", "v96", "v97", "v98", "v99",
"v100", "v101", "v102", "v103", "v104", "v105", "v106", "v107",
"v108", "v109", "v110", "v111", "v112", "v113", "v114", "v115",
"v116", "v117", "v118", "v119", "v120", "v121", "v122", "v123",
"v124", "v125", "v126", "v127"
);
// clang-format on
#pragma clang diagnostic pop
// return local scratch
auto c = MakeCBlockTile();
for(auto i = 0; i < 16; i++)
{
c.get_thread_buffer()[4 * i + 0] = v_acc[i].x;
c.get_thread_buffer()[4 * i + 1] = v_acc[i].y;
c.get_thread_buffer()[4 * i + 2] = v_acc[i].z;
c.get_thread_buffer()[4 * i + 3] = v_acc[i].w;
}
return c;
}
};
struct Flatmm_32x512x128_1x4x1_16x16x32_FP16 : public Flatmm_32x512x128_1x4x1_16x16x32_Base
{
using ADataType = fp16_t;
using BDataType = fp16_t;
// TODO: need paired with tile_window_linear!
// TODO: need call init_raw() before call this function!
template <typename ARes, typename ACoords, typename BRes, typename BCoords>
CK_TILE_DEVICE auto
operator()(const ARes& res_a,
const ACoords& cached_coords_a,
const BRes& res_b,
const BCoords& cached_coords_b,
CK_TILE_LDS_ADDR void* smem,
index_t k,
index_t tile_offset_a, // for each tile, the offset to move for each unroll
index_t tile_offset_b) // for each tile, the offset to move for each unroll
{
static_assert(ACoords::size() == Block_M * Block_K / BlockSize / 2 /*2x per dword*/); // 8
static_assert(BCoords::size() == Repeat_N);
auto a_sst = make_tile_window(
make_tensor_view<address_space_enum::lds>(
reinterpret_cast<CK_TILE_LDS_ADDR ADataType*>(smem), MakeLdsStoreDesc_A()),
MakeLdsStoreDesc_A().get_lengths(),
{0, 0, 0});
auto a_sld = [&]() {
constexpr auto a_warp_enc_ = GetGemm_AWarpEnc();
constexpr auto a_outer_dstr_enc = tile_distribution_encoding<
sequence<WarpPerBlock_N>,
tuple<sequence<Repeat_M, WarpPerBlock_M>, sequence<Repeat_K>>,
tuple<sequence<1, 0>>,
tuple<sequence<1, 0>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto a_block_dstr_encode =
detail::make_embed_tile_distribution_encoding(a_outer_dstr_enc, a_warp_enc_);
return make_tile_window_linear(
make_tensor_view<address_space_enum::lds>(
reinterpret_cast<CK_TILE_LDS_ADDR ADataType*>(smem), MakeLdsLoadDesc_A()),
MakeLdsLoadDesc_A().get_lengths(),
{0, 0},
make_static_tile_distribution(a_block_dstr_encode));
}();
const index_t tile_offset_a_bytes = tile_offset_a * sizeof(ADataType);
const index_t tile_offset_b_bytes = tile_offset_b * sizeof(BDataType);
const auto [m0_init_value, size_per_issue] = get_async_store_smem_info(a_sst);
constexpr auto smem_buf_size =
MakeLdsLoadDesc_A().get_element_space_size() * sizeof(ADataType);
static_assert(a_sld.get_num_of_access() == 8);
constexpr auto sld_os = generate_tuple(
[&](auto i_access) {
return number<a_sld.get_bottom_linear_offset(i_access) * sizeof(ADataType)>{};
},
number<a_sld.get_num_of_access()>{});
index_t loop_cnt = k / Block_K;
// this is the acc thread buffer
fp32x4_t v_acc[16]{.0f};
// B nr->kr
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Winline-asm"
// clang-format off
asm volatile(
#define CK_TILE_FLATMM_UK_MFMA CK_TILE_FLATMM_UK_MFMA_FP16
#include "uk/flatmm_uk_gfx9_32x512x128_1x1x1_16x16x16.inc"
#undef CK_TILE_FLATMM_UK_MFMA
: [s_loop_cnt]"+s"(loop_cnt),
[v_acc_0]"+v"(v_acc[0]),
[v_acc_1]"+v"(v_acc[1]),
[v_acc_2]"+v"(v_acc[2]),
[v_acc_3]"+v"(v_acc[3]),
[v_acc_4]"+v"(v_acc[4]),
[v_acc_5]"+v"(v_acc[5]),
[v_acc_6]"+v"(v_acc[6]),
[v_acc_7]"+v"(v_acc[7]),
[v_acc_8]"+v"(v_acc[8]),
[v_acc_9]"+v"(v_acc[9]),
[v_acc_10]"+v"(v_acc[10]),
[v_acc_11]"+v"(v_acc[11]),
[v_acc_12]"+v"(v_acc[12]),
[v_acc_13]"+v"(v_acc[13]),
[v_acc_14]"+v"(v_acc[14]),
[v_acc_15]"+v"(v_acc[15]),
[s_mem_]"+r"(smem)
: [s_res_a0]"s"(res_a[0]),
[s_res_a1]"s"(res_a[1]),
[s_res_a2]"s"(res_a[2]),
[s_res_a3]"s"(res_a[3]),
[s_res_b0]"s"(res_b[0]),
[s_res_b1]"s"(res_b[1]),
[s_res_b2]"s"(res_b[2]),
[s_res_b3]"s"(res_b[3]),
[v_os_a0]"v"(static_cast<index_t>(cached_coords_a[number<0>{}] * sizeof(ADataType))),
[v_os_a1]"v"(static_cast<index_t>(cached_coords_a[number<1>{}] * sizeof(ADataType))),
[v_os_a2]"v"(static_cast<index_t>(cached_coords_a[number<2>{}] * sizeof(ADataType))),
[v_os_a3]"v"(static_cast<index_t>(cached_coords_a[number<3>{}] * sizeof(ADataType))),
[v_os_a4]"v"(static_cast<index_t>(cached_coords_a[number<4>{}] * sizeof(ADataType))),
[v_os_a5]"v"(static_cast<index_t>(cached_coords_a[number<5>{}] * sizeof(ADataType))),
[v_os_a6]"v"(static_cast<index_t>(cached_coords_a[number<6>{}] * sizeof(ADataType))),
[v_os_a7]"v"(static_cast<index_t>(cached_coords_a[number<7>{}] * sizeof(ADataType))),
[v_os_b0]"v"(static_cast<index_t>(cached_coords_b[number<0>{}] * sizeof(BDataType))),
[v_os_b1]"v"(static_cast<index_t>(cached_coords_b[number<1>{}] * sizeof(BDataType))),
[v_os_b2]"v"(static_cast<index_t>(cached_coords_b[number<2>{}] * sizeof(BDataType))),
[v_os_b3]"v"(static_cast<index_t>(cached_coords_b[number<3>{}] * sizeof(BDataType))),
[v_os_b4]"v"(static_cast<index_t>(cached_coords_b[number<4>{}] * sizeof(BDataType))),
[v_os_b5]"v"(static_cast<index_t>(cached_coords_b[number<5>{}] * sizeof(BDataType))),
[v_os_b6]"v"(static_cast<index_t>(cached_coords_b[number<6>{}] * sizeof(BDataType))),
[v_os_b7]"v"(static_cast<index_t>(cached_coords_b[number<7>{}] * sizeof(BDataType))),
[v_os_slda]"v"(static_cast<index_t>(a_sld.cached_coords_[number<0>{}].get_offset() * sizeof(ADataType))),
[s_m0_init]"s"(m0_init_value),
[s_size_per_issue]"s"(size_per_issue),
[smem_sz]"n"(smem_buf_size), //(smem_buf_size),
[sld_os_0]"n"(sld_os[number<0>{}].value),
[sld_os_1]"n"(sld_os[number<1>{}].value),
[sld_os_2]"n"(sld_os[number<2>{}].value),
[sld_os_3]"n"(sld_os[number<3>{}].value),
[sld_os_4]"n"(sld_os[number<4>{}].value),
[sld_os_5]"n"(sld_os[number<5>{}].value),
[sld_os_6]"n"(sld_os[number<6>{}].value),
[sld_os_7]"n"(sld_os[number<7>{}].value),
[s_tile_os_a]"s"(tile_offset_a_bytes),
[s_tile_os_b]"s"(tile_offset_b_bytes)
: "memory", "a0", "a1", "a2", "a3", "a4", "a5", "a6", "a7", "a8", "a9",
"a10", "a11", "a12", "a13", "a14", "a15", "a16", "a17", "a18", "a19",
"a20", "a21", "a22", "a23", "a24", "a25", "a26", "a27", "a28", "a29",
"a30", "a31", "a32", "a33", "a34", "a35", "a36", "a37", "a38", "a39",
"a40", "a41", "a42", "a43", "a44", "a45", "a46", "a47", "a48", "a49",
"a50", "a51", "a52", "a53", "a54", "a55", "a56", "a57", "a58", "a59",
"a60", "a61", "a62", "a63", "a64", "a65", "a66", "a67", "a68", "a69",
"a70", "a71", "a72", "a73", "a74", "a75", "a76", "a77", "a78", "a79",
"a80", "a81", "a82", "a83", "a84", "a85", "a86", "a87", "a88", "a89",
"a90", "a91", "a92", "a93", "a94", "a95", "a96", "a97", "a98", "a99",
"a100", "a101", "a102", "a103", "a104", "a105", "a106", "a107",
"a108", "a109", "a110", "a111", "a112", "a113", "a114", "a115",
"a116", "a117", "a118", "a119", "a120", "a121", "a122", "a123",
"a124", "a125", "a126", "a127", "a128", "a129", "a130", "a131",
"a132", "a133", "a134", "a135", "a136", "a137", "a138", "a139",
"a140", "a141", "a142", "a143", "a144", "a145", "a146", "a147",
"a148", "a149", "a150", "a151", "a152", "a153", "a154", "a155",
"a156", "a157", "a158", "a159", "a160", "a161", "a162", "a163",
"a164", "a165", "a166", "a167", "a168", "a169", "a170", "a171",
"a172", "a173", "a174", "a175", "a176", "a177", "a178", "a179",
"a180", "a181", "a182", "a183", "a184", "a185", "a186", "a187",
"a188", "a189", "a190", "a191", "a192", "a193", "a194", "a195",
"a196", "a197", "a198", "a199", "a200", "a201", "a202", "a203",
"a204", "a205", "a206", "a207", "a208", "a209", "a210", "a211",
"a212", "a213", "a214", "a215", "a216", "a217", "a218", "a219",
"a220", "a221", "a222", "a223", "a224", "a225", "a226", "a227",
"a228", "a229", "a230", "a231", "a232", "a233", "a234", "a235",
"a236", "a237", "a238", "a239", "a240", "a241", "a242", "a243",
"a244", "a245", "a246", "a247", "a248", "a249", "a250", "a251",
"a252", "a253", "a254", "a255",
"s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
"s86", // s86 as tmp
"v64", "v65", "v66", "v67", "v68", "v69",
"v70", "v71", "v72", "v73", "v74", "v75", "v76", "v77", "v78", "v79",
"v80", "v81", "v82", "v83", "v84", "v85", "v86", "v87", "v88", "v89",
"v90", "v91", "v92", "v93", "v94", "v95", "v96", "v97", "v98", "v99",
"v100", "v101", "v102", "v103", "v104", "v105", "v106", "v107",
"v108", "v109", "v110", "v111", "v112", "v113", "v114", "v115",
"v116", "v117", "v118", "v119", "v120", "v121", "v122", "v123",
"v124", "v125", "v126", "v127"
);
// clang-format on
#pragma clang diagnostic pop
// return local scratch
auto c = MakeCBlockTile();
for(auto i = 0; i < 16; i++)
{
c.get_thread_buffer()[4 * i + 0] = v_acc[i].x;
c.get_thread_buffer()[4 * i + 1] = v_acc[i].y;
c.get_thread_buffer()[4 * i + 2] = v_acc[i].z;
c.get_thread_buffer()[4 * i + 3] = v_acc[i].w;
}
return c;
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/gemm/warp/warp_gemm.hpp"
#include "ck_tile/ops/flatmm/block/flatmm_uk_config.hpp"
namespace ck_tile {
// "S"tream update output along "N"
// A in smem, B load from global
// require 4 wave, occupancy=1c
struct FlatmmSn_32x128x512_1x4x1_16x16x32_Base
{
static constexpr index_t Block_M = 32;
static constexpr index_t Block_N = 128;
static constexpr index_t Block_K = 512;
static constexpr index_t WarpPerBlock_M = 1;
static constexpr index_t WarpPerBlock_N = 4;
static constexpr index_t WarpPerBlock_K = 1;
static constexpr index_t Warp_M = 16;
static constexpr index_t Warp_N = 16;
static constexpr index_t Warp_K = 32;
static constexpr index_t BlockSize = 256;
// static constexpr index_t KPack = 2; // this is used to gurantee every threads can do dwordx4
// TODO: note Nr/Kr/W need consider KPack
static constexpr index_t Block_W = Warp_N * Warp_K; // 512 element
static constexpr index_t Block_Nr = Block_N / Warp_N; // 32 element, 4 per wave
static constexpr index_t Block_Kr = Block_K / Warp_K; // 4
static constexpr index_t Repeat_M = Block_M / (Warp_M * WarpPerBlock_M); // 2
static constexpr index_t Repeat_N = Block_N / (Warp_N * WarpPerBlock_N); // 2
static constexpr index_t Repeat_K = Block_K / (Warp_K * WarpPerBlock_K); // 16
static CK_TILE_DEVICE constexpr auto MakeCBlockDist()
{
constexpr auto c_block_outer_dstr_encoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Repeat_M, WarpPerBlock_M>, sequence<Repeat_N, WarpPerBlock_N>>,
tuple<sequence<1, 2>>,
tuple<sequence<1, 1>>,
sequence<2, 1>, // !! note here is different
sequence<0, 0>>{};
using WG = WarpGemmMfmaF16F16F32M16N16K32TransposedCDistribution;
constexpr auto c_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
c_block_outer_dstr_encoding, typename WG::CWarpDstrEncoding{});
constexpr auto c_block_dstr = make_static_tile_distribution(c_block_dstr_encode);
return c_block_dstr;
}
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
// y y p p p y
// reg before shfl M0(2)*N0(2)*Nl(4)*Nw(4)*Mw(16)*Nv(4)
// but order is N0*M0*Nv
// in LDS we need store as
// M0(2)* N0(2) * Nl(4) * Nw(4) * (Mw(16)*Nv(4) + 4)
// y y wave-id lid/16 lid%16 v
return 2 * 2 * 4 * 4 * (16 * 4 + 4) * sizeof(bf16_t);
}
};
struct FlatmmSn_32x128x512_1x4x1_16x16x32_BF16 : public FlatmmSn_32x128x512_1x4x1_16x16x32_Base
{
using BDataType = bf16_t;
using ODataType = bf16_t;
// TODO: need paired with tile_window_linear!
// TODO: need call init_raw() before call this function!
// template <typename AWindow, typename BWindow, typename OWindow, typename ScaleTensor>
template <typename BRes,
typename BCoords,
typename ORes,
typename OCoords,
typename OFlags,
typename ScaleTensor>
CK_TILE_DEVICE auto
operator()(const BRes& res_b,
const BCoords& cached_coords_b,
const ORes& res_o,
const OCoords& cached_coords_o,
const OFlags& o_flags, // this should be in sgpr
CK_TILE_LDS_ADDR void* smem,
index_t n, // loop along n dim
const ScaleTensor& scale_,
index_t tile_offset_b, // stride b is fixed to blockKr * blockW, but still can adjust
index_t tile_offset_o)
{
static_assert(BCoords::size() == 8); // 8
static_assert(OCoords::size() == 8);
const index_t tile_stride_b_bytes = tile_offset_b * sizeof(BDataType);
const index_t tile_stride_o_bytes = tile_offset_o * sizeof(ODataType);
static_assert(ScaleTensor::size() == 2);
float s0 = scale_[number<0>{}];
float s1 = scale_[number<1>{}];
index_t loop_cnt = n / Block_N;
register float v_c0 asm("v64");
register float v_c1 asm("v65");
register float v_c2 asm("v66");
register float v_c3 asm("v67");
register float v_c4 asm("v68");
register float v_c5 asm("v69");
register float v_c6 asm("v70");
register float v_c7 asm("v71");
register float v_c8 asm("v72");
register float v_c9 asm("v73");
register float v_c10 asm("v74");
register float v_c11 asm("v75");
register float v_c12 asm("v76");
register float v_c13 asm("v77");
register float v_c14 asm("v78");
register float v_c15 asm("v79");
register float v_c16 asm("v80");
register float v_c17 asm("v81");
register float v_c18 asm("v82");
register float v_c19 asm("v83");
register float v_c20 asm("v84");
register float v_c21 asm("v85");
register float v_c22 asm("v86");
register float v_c23 asm("v87");
register float v_c24 asm("v88");
register float v_c25 asm("v89");
register float v_c26 asm("v90");
register float v_c27 asm("v91");
register float v_c28 asm("v92");
register float v_c29 asm("v93");
register float v_c30 asm("v94");
register float v_c31 asm("v95");
int32_t nan_hi = 0x7fff0000;
int32_t nan_lo = 0x00007fff;
// in smem, the layout is M0(2)*K0(128)*M1(16)*K1(4)
// every threads need 8xK in contiguous register
// ... and every wave need the same data
int lane_id = threadIdx.x % 64;
int sld_y_os = (lane_id % 16) * 4 + (lane_id / 16) * 128;
sld_y_os *= 2;
// y y p p p y
// reg before shfl M0(2)*N0(2)*Nl(4)*Nw(4)*Mw(16)*Nv(4)
// but order is N0*M0*Nv
// in LDS we need store as
// M0(2)* N0(2) * Nl(4) * Nw(4) * (Mw(16)*Nv(4) + 4)
// y y wave-id lid/16 lid%16 v
// sst(v3) = (v0/16*34 + v0%16 * 2 + wid*136) * 4
int sfl_sst = (threadIdx.x % 16 * 4) + (threadIdx.x / 16) * (64 + 4);
sfl_sst *= 2;
// from LDS we need load as
// M0(2)* N0(2) * Nl(4) * Nw(4) * (Mw(16) * Nv(4) + 4)
// ( 2 issue) (rem 32-lane) (4 wave*4issue) 2lane*1ussue(pk2)
// sld(v4) = v0/2 *34*4 + v0 % 2 *4 + wid*2 *4
int sfl_sld = (lane_id % 2) * 2 + (lane_id / 2) * (64 + 4) + (threadIdx.x / 64) * 4;
sfl_sld *= 2;
// B nr->kr
// clang-format off
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Winline-asm"
asm volatile(
#define CK_TILE_FLATMM_UK_MFMA CK_TILE_FLATMM_UK_MFMA_BF16
#include "uk/flatmm_sn_uk_gfx9_32x128x512_1x4x1_16x16x16.inc"
#undef CK_TILE_FLATMM_UK_MFMA
:[smem_]"+r"(smem),
[s_loop_cnt]"+s"(loop_cnt),
[c0]"+v" (v_c0),
[c1]"+v" (v_c1),
[c2]"+v" (v_c2),
[c3]"+v" (v_c3),
[c4]"+v" (v_c4),
[c5]"+v" (v_c5),
[c6]"+v" (v_c6),
[c7]"+v" (v_c7),
[c8]"+v" (v_c8),
[c9]"+v" (v_c9),
[c10]"+v"(v_c10),
[c11]"+v"(v_c11),
[c12]"+v"(v_c12),
[c13]"+v"(v_c13),
[c14]"+v"(v_c14),
[c15]"+v"(v_c15),
[c16]"+v"(v_c16),
[c17]"+v"(v_c17),
[c18]"+v"(v_c18),
[c19]"+v"(v_c19),
[c20]"+v"(v_c20),
[c21]"+v"(v_c21),
[c22]"+v"(v_c22),
[c23]"+v"(v_c23),
[c24]"+v"(v_c24),
[c25]"+v"(v_c25),
[c26]"+v"(v_c26),
[c27]"+v"(v_c27),
[c28]"+v"(v_c28),
[c29]"+v"(v_c29),
[c30]"+v"(v_c30),
[c31]"+v"(v_c31)
:
[sld_a_base]"n"(0),
[shfl_base]"n"(0),
[v_sld_y_os]"v"(sld_y_os),
[v_sfl_sld]"v"(sfl_sld),
[v_sfl_sst]"v"(sfl_sst),
[s_res_o0]"s"(res_o[0]),
[s_res_o1]"s"(res_o[1]),
//[s_res_o2]"s"(res_o[2]),
//[s_res_o3]"s"(res_o[3]),
[s_res_b0]"s"(res_b[0]),
[s_res_b1]"s"(res_b[1]),
[s_res_b2]"s"(res_b[2]),
[s_res_b3]"s"(res_b[3]),
[v_os_o0]"v"(static_cast<index_t>(cached_coords_o[number<0>{}] * sizeof(ODataType))),
[v_os_o1]"v"(static_cast<index_t>(cached_coords_o[number<1>{}] * sizeof(ODataType))),
[v_os_o2]"v"(static_cast<index_t>(cached_coords_o[number<2>{}] * sizeof(ODataType))),
[v_os_o3]"v"(static_cast<index_t>(cached_coords_o[number<3>{}] * sizeof(ODataType))),
[v_os_o4]"v"(static_cast<index_t>(cached_coords_o[number<4>{}] * sizeof(ODataType))),
[v_os_o5]"v"(static_cast<index_t>(cached_coords_o[number<5>{}] * sizeof(ODataType))),
[v_os_o6]"v"(static_cast<index_t>(cached_coords_o[number<6>{}] * sizeof(ODataType))),
[v_os_o7]"v"(static_cast<index_t>(cached_coords_o[number<7>{}] * sizeof(ODataType))),
[v_os_b0]"v"(static_cast<index_t>(cached_coords_b[number<0>{}] * sizeof(BDataType))),
[v_os_b1]"v"(static_cast<index_t>(cached_coords_b[number<1>{}] * sizeof(BDataType))),
[v_os_b2]"v"(static_cast<index_t>(cached_coords_b[number<2>{}] * sizeof(BDataType))),
[v_os_b3]"v"(static_cast<index_t>(cached_coords_b[number<3>{}] * sizeof(BDataType))),
[v_os_b4]"v"(static_cast<index_t>(cached_coords_b[number<4>{}] * sizeof(BDataType))),
[v_os_b5]"v"(static_cast<index_t>(cached_coords_b[number<5>{}] * sizeof(BDataType))),
[v_os_b6]"v"(static_cast<index_t>(cached_coords_b[number<6>{}] * sizeof(BDataType))),
[v_os_b7]"v"(static_cast<index_t>(cached_coords_b[number<7>{}] * sizeof(BDataType))),
[s_tile_os_o]"s"(tile_stride_o_bytes),
[s_tile_os_b]"s"(tile_stride_b_bytes),
[scale_0]"v"(s0),
[scale_1]"v"(s1),
[v_nan_lo]"v"(nan_lo),
[v_nan_hi]"v"(nan_hi),
[s_execflag_0]"s"(o_flags[number<0>{}]),
[s_execflag_1]"s"(o_flags[number<1>{}]),
[s_execflag_2]"s"(o_flags[number<2>{}]),
[s_execflag_3]"s"(o_flags[number<3>{}]),
[s_execflag_4]"s"(o_flags[number<4>{}]),
[s_execflag_5]"s"(o_flags[number<5>{}]),
[s_execflag_6]"s"(o_flags[number<6>{}]),
[s_execflag_7]"s"(o_flags[number<7>{}])
:
"memory", "a0", "a1", "a2", "a3", "a4", "a5", "a6", "a7", "a8", "a9",
"a10", "a11", "a12", "a13", "a14", "a15", "a16", "a17", "a18", "a19",
"a20", "a21", "a22", "a23", "a24", "a25", "a26", "a27", "a28", "a29",
"a30", "a31", "a32", "a33", "a34", "a35", "a36", "a37", "a38", "a39",
"a40", "a41", "a42", "a43", "a44", "a45", "a46", "a47", "a48", "a49",
"a50", "a51", "a52", "a53", "a54", "a55", "a56", "a57", "a58", "a59",
"a60", "a61", "a62", "a63", "a64", "a65", "a66", "a67", "a68", "a69",
"a70", "a71", "a72", "a73", "a74", "a75", "a76", "a77", "a78", "a79",
"a80", "a81", "a82", "a83", "a84", "a85", "a86", "a87", "a88", "a89",
"a90", "a91", "a92", "a93", "a94", "a95", "a96", "a97", "a98", "a99",
"a100", "a101", "a102", "a103", "a104", "a105", "a106", "a107",
"a108", "a109", "a110", "a111", "a112", "a113", "a114", "a115",
"a116", "a117", "a118", "a119", "a120", "a121", "a122", "a123",
"a124", "a125", "a126", "a127", "a128", "a129", "a130", "a131",
"a132", "a133", "a134", "a135", "a136", "a137", "a138", "a139",
"a140", "a141", "a142", "a143", "a144", "a145", "a146", "a147",
"a148", "a149", "a150", "a151", "a152", "a153", "a154", "a155",
"a156", "a157", "a158", "a159", "a160", "a161", "a162", "a163",
"a164", "a165", "a166", "a167", "a168", "a169", "a170", "a171",
"a172", "a173", "a174", "a175", "a176", "a177", "a178", "a179",
"a180", "a181", "a182", "a183", "a184", "a185", "a186", "a187",
"a188", "a189", "a190", "a191", "a192", "a193", "a194", "a195",
"a196", "a197", "a198", "a199", "a200", "a201", "a202", "a203",
"a204", "a205", "a206", "a207", "a208", "a209", "a210", "a211",
"a212", "a213", "a214", "a215", "a216", "a217", "a218", "a219",
"a220", "a221", "a222", "a223", "a224", "a225", "a226", "a227",
"a228", "a229", "a230", "a231", "a232", "a233", "a234", "a235",
"a236", "a237", "a238", "a239", "a240", "a241", "a242", "a243",
"a244", "a245", "a246", "a247", "a248", "a249", "a250", "a251",
"a252", "a253", "a254", "a255",
"s8", "s9", "s12", "s13", "s14", "s15", "s38", "s39", "s52", "s86",
"s36", "s37",
"v50", "v54", "v55",
"v64","v65","v66","v67","v68","v69","v70","v71",
"v72","v73","v74","v75","v76","v77","v78","v79",
"v80","v81","v82","v83","v84","v85","v86","v87",
"v88","v89","v90","v91","v92","v93","v94","v95",
"v128", "v129", "v130", "v131",
"v132", "v133", "v134", "v135", "v136", "v137", "v138", "v139",
"v140", "v141", "v142", "v143", "v144", "v145", "v146", "v147",
"v148", "v149", "v150", "v151", "v152", "v153", "v154", "v155",
"v156", "v157", "v158", "v159", "v160", "v161", "v162", "v163",
"v164", "v165", "v166", "v167", "v168", "v169", "v170", "v171",
"v172", "v173", "v174", "v175", "v176", "v177", "v178", "v179",
"v180", "v181", "v182", "v183", "v184", "v185", "v186", "v187",
"v188", "v189", "v190", "v191", "v192", "v193", "v194", "v195",
"v196", "v197", "v198", "v199", "v200", "v201", "v202", "v203",
"v204", "v205", "v206", "v207", "v208", "v209", "v210", "v211",
"v212", "v213", "v214", "v215", "v216", "v217", "v218", "v219",
"v220", "v221", "v222", "v223", "v224", "v225", "v226", "v227",
"v228", "v229", "v230", "v231", "v232", "v233", "v234", "v235",
"v236", "v237", "v238", "v239", "v240", "v241", "v242", "v243",
"v244", "v245", "v246", "v247", "v248", "v249", "v250", "v251",
"v252", "v253", "v254", "v255"
);
#pragma clang diagnostic pop
// clang-format on
}
};
struct FlatmmSn_32x128x512_1x4x1_16x16x32_FP16 : public FlatmmSn_32x128x512_1x4x1_16x16x32_Base
{
using BDataType = bf16_t;
using ODataType = bf16_t;
// TODO: need paired with tile_window_linear!
// TODO: need call init_raw() before call this function!
// template <typename AWindow, typename BWindow, typename OWindow, typename ScaleTensor>
template <typename BRes,
typename BCoords,
typename ORes,
typename OCoords,
typename OFlags,
typename ScaleTensor>
CK_TILE_DEVICE auto
operator()(const BRes& res_b,
const BCoords& cached_coords_b,
const ORes& res_o,
const OCoords& cached_coords_o,
const OFlags& o_flags, // this should be in sgpr
CK_TILE_LDS_ADDR void* smem,
index_t n, // loop along n dim
const ScaleTensor& scale_,
index_t tile_offset_b, // stride b is fixed to blockKr * blockW, but still can adjust
index_t tile_offset_o)
{
static_assert(BCoords::size() == 8); // 8
static_assert(OCoords::size() == 8);
const index_t tile_stride_b_bytes = tile_offset_b * sizeof(BDataType);
const index_t tile_stride_o_bytes = tile_offset_o * sizeof(ODataType);
static_assert(ScaleTensor::size() == 2);
float s0 = scale_[number<0>{}];
float s1 = scale_[number<1>{}];
index_t loop_cnt = n / Block_N;
register float v_c0 asm("v64");
register float v_c1 asm("v65");
register float v_c2 asm("v66");
register float v_c3 asm("v67");
register float v_c4 asm("v68");
register float v_c5 asm("v69");
register float v_c6 asm("v70");
register float v_c7 asm("v71");
register float v_c8 asm("v72");
register float v_c9 asm("v73");
register float v_c10 asm("v74");
register float v_c11 asm("v75");
register float v_c12 asm("v76");
register float v_c13 asm("v77");
register float v_c14 asm("v78");
register float v_c15 asm("v79");
register float v_c16 asm("v80");
register float v_c17 asm("v81");
register float v_c18 asm("v82");
register float v_c19 asm("v83");
register float v_c20 asm("v84");
register float v_c21 asm("v85");
register float v_c22 asm("v86");
register float v_c23 asm("v87");
register float v_c24 asm("v88");
register float v_c25 asm("v89");
register float v_c26 asm("v90");
register float v_c27 asm("v91");
register float v_c28 asm("v92");
register float v_c29 asm("v93");
register float v_c30 asm("v94");
register float v_c31 asm("v95");
int32_t nan_hi = 0x7fff0000;
int32_t nan_lo = 0x00007fff;
// in smem, the layout is M0(2)*K0(128)*M1(16)*K1(4)
// every threads need 8xK in contiguous register
// ... and every wave need the same data
int lane_id = threadIdx.x % 64;
int sld_y_os = (lane_id % 16) * 4 + (lane_id / 16) * 128;
sld_y_os *= 2;
// y y p p p y
// reg before shfl M0(2)*N0(2)*Nl(4)*Nw(4)*Mw(16)*Nv(4)
// but order is N0*M0*Nv
// in LDS we need store as
// M0(2)* N0(2) * Nl(4) * Nw(4) * (Mw(16)*Nv(4) + 4)
// y y wave-id lid/16 lid%16 v
// sst(v3) = (v0/16*34 + v0%16 * 2 + wid*136) * 4
int sfl_sst = (threadIdx.x % 16 * 4) + (threadIdx.x / 16) * (64 + 4);
sfl_sst *= 2;
// from LDS we need load as
// M0(2)* N0(2) * Nl(4) * Nw(4) * (Mw(16) * Nv(4) + 4)
// ( 2 issue) (rem 32-lane) (4 wave*4issue) 2lane*1ussue(pk2)
// sld(v4) = v0/2 *34*4 + v0 % 2 *4 + wid*2 *4
int sfl_sld = (lane_id % 2) * 2 + (lane_id / 2) * (64 + 4) + (threadIdx.x / 64) * 4;
sfl_sld *= 2;
// B nr->kr
// clang-format off
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Winline-asm"
asm volatile(
#define CK_TILE_FLATMM_UK_MFMA CK_TILE_FLATMM_UK_MFMA_FP16
#include "uk/flatmm_sn_uk_gfx9_32x128x512_1x4x1_16x16x16.inc"
#undef CK_TILE_FLATMM_UK_MFMA
:[smem_]"+r"(smem),
[s_loop_cnt]"+s"(loop_cnt),
[c0]"+v" (v_c0),
[c1]"+v" (v_c1),
[c2]"+v" (v_c2),
[c3]"+v" (v_c3),
[c4]"+v" (v_c4),
[c5]"+v" (v_c5),
[c6]"+v" (v_c6),
[c7]"+v" (v_c7),
[c8]"+v" (v_c8),
[c9]"+v" (v_c9),
[c10]"+v"(v_c10),
[c11]"+v"(v_c11),
[c12]"+v"(v_c12),
[c13]"+v"(v_c13),
[c14]"+v"(v_c14),
[c15]"+v"(v_c15),
[c16]"+v"(v_c16),
[c17]"+v"(v_c17),
[c18]"+v"(v_c18),
[c19]"+v"(v_c19),
[c20]"+v"(v_c20),
[c21]"+v"(v_c21),
[c22]"+v"(v_c22),
[c23]"+v"(v_c23),
[c24]"+v"(v_c24),
[c25]"+v"(v_c25),
[c26]"+v"(v_c26),
[c27]"+v"(v_c27),
[c28]"+v"(v_c28),
[c29]"+v"(v_c29),
[c30]"+v"(v_c30),
[c31]"+v"(v_c31)
:
[sld_a_base]"n"(0),
[shfl_base]"n"(0),
[v_sld_y_os]"v"(sld_y_os),
[v_sfl_sld]"v"(sfl_sld),
[v_sfl_sst]"v"(sfl_sst),
[s_res_o0]"s"(res_o[0]),
[s_res_o1]"s"(res_o[1]),
//[s_res_o2]"s"(res_o[2]),
//[s_res_o3]"s"(res_o[3]),
[s_res_b0]"s"(res_b[0]),
[s_res_b1]"s"(res_b[1]),
[s_res_b2]"s"(res_b[2]),
[s_res_b3]"s"(res_b[3]),
[v_os_o0]"v"(static_cast<index_t>(cached_coords_o[number<0>{}] * sizeof(ODataType))),
[v_os_o1]"v"(static_cast<index_t>(cached_coords_o[number<1>{}] * sizeof(ODataType))),
[v_os_o2]"v"(static_cast<index_t>(cached_coords_o[number<2>{}] * sizeof(ODataType))),
[v_os_o3]"v"(static_cast<index_t>(cached_coords_o[number<3>{}] * sizeof(ODataType))),
[v_os_o4]"v"(static_cast<index_t>(cached_coords_o[number<4>{}] * sizeof(ODataType))),
[v_os_o5]"v"(static_cast<index_t>(cached_coords_o[number<5>{}] * sizeof(ODataType))),
[v_os_o6]"v"(static_cast<index_t>(cached_coords_o[number<6>{}] * sizeof(ODataType))),
[v_os_o7]"v"(static_cast<index_t>(cached_coords_o[number<7>{}] * sizeof(ODataType))),
[v_os_b0]"v"(static_cast<index_t>(cached_coords_b[number<0>{}] * sizeof(BDataType))),
[v_os_b1]"v"(static_cast<index_t>(cached_coords_b[number<1>{}] * sizeof(BDataType))),
[v_os_b2]"v"(static_cast<index_t>(cached_coords_b[number<2>{}] * sizeof(BDataType))),
[v_os_b3]"v"(static_cast<index_t>(cached_coords_b[number<3>{}] * sizeof(BDataType))),
[v_os_b4]"v"(static_cast<index_t>(cached_coords_b[number<4>{}] * sizeof(BDataType))),
[v_os_b5]"v"(static_cast<index_t>(cached_coords_b[number<5>{}] * sizeof(BDataType))),
[v_os_b6]"v"(static_cast<index_t>(cached_coords_b[number<6>{}] * sizeof(BDataType))),
[v_os_b7]"v"(static_cast<index_t>(cached_coords_b[number<7>{}] * sizeof(BDataType))),
[s_tile_os_o]"s"(tile_stride_o_bytes),
[s_tile_os_b]"s"(tile_stride_b_bytes),
[scale_0]"v"(s0),
[scale_1]"v"(s1),
[v_nan_lo]"v"(nan_lo),
[v_nan_hi]"v"(nan_hi),
[s_execflag_0]"s"(o_flags[number<0>{}]),
[s_execflag_1]"s"(o_flags[number<1>{}]),
[s_execflag_2]"s"(o_flags[number<2>{}]),
[s_execflag_3]"s"(o_flags[number<3>{}]),
[s_execflag_4]"s"(o_flags[number<4>{}]),
[s_execflag_5]"s"(o_flags[number<5>{}]),
[s_execflag_6]"s"(o_flags[number<6>{}]),
[s_execflag_7]"s"(o_flags[number<7>{}])
:
"memory", "a0", "a1", "a2", "a3", "a4", "a5", "a6", "a7", "a8", "a9",
"a10", "a11", "a12", "a13", "a14", "a15", "a16", "a17", "a18", "a19",
"a20", "a21", "a22", "a23", "a24", "a25", "a26", "a27", "a28", "a29",
"a30", "a31", "a32", "a33", "a34", "a35", "a36", "a37", "a38", "a39",
"a40", "a41", "a42", "a43", "a44", "a45", "a46", "a47", "a48", "a49",
"a50", "a51", "a52", "a53", "a54", "a55", "a56", "a57", "a58", "a59",
"a60", "a61", "a62", "a63", "a64", "a65", "a66", "a67", "a68", "a69",
"a70", "a71", "a72", "a73", "a74", "a75", "a76", "a77", "a78", "a79",
"a80", "a81", "a82", "a83", "a84", "a85", "a86", "a87", "a88", "a89",
"a90", "a91", "a92", "a93", "a94", "a95", "a96", "a97", "a98", "a99",
"a100", "a101", "a102", "a103", "a104", "a105", "a106", "a107",
"a108", "a109", "a110", "a111", "a112", "a113", "a114", "a115",
"a116", "a117", "a118", "a119", "a120", "a121", "a122", "a123",
"a124", "a125", "a126", "a127", "a128", "a129", "a130", "a131",
"a132", "a133", "a134", "a135", "a136", "a137", "a138", "a139",
"a140", "a141", "a142", "a143", "a144", "a145", "a146", "a147",
"a148", "a149", "a150", "a151", "a152", "a153", "a154", "a155",
"a156", "a157", "a158", "a159", "a160", "a161", "a162", "a163",
"a164", "a165", "a166", "a167", "a168", "a169", "a170", "a171",
"a172", "a173", "a174", "a175", "a176", "a177", "a178", "a179",
"a180", "a181", "a182", "a183", "a184", "a185", "a186", "a187",
"a188", "a189", "a190", "a191", "a192", "a193", "a194", "a195",
"a196", "a197", "a198", "a199", "a200", "a201", "a202", "a203",
"a204", "a205", "a206", "a207", "a208", "a209", "a210", "a211",
"a212", "a213", "a214", "a215", "a216", "a217", "a218", "a219",
"a220", "a221", "a222", "a223", "a224", "a225", "a226", "a227",
"a228", "a229", "a230", "a231", "a232", "a233", "a234", "a235",
"a236", "a237", "a238", "a239", "a240", "a241", "a242", "a243",
"a244", "a245", "a246", "a247", "a248", "a249", "a250", "a251",
"a252", "a253", "a254", "a255",
"s8", "s9", "s12", "s13", "s14", "s15", "s38", "s39", "s52", "s86",
"s36", "s37",
"v50", "v54", "v55",
"v64","v65","v66","v67","v68","v69","v70","v71",
"v72","v73","v74","v75","v76","v77","v78","v79",
"v80","v81","v82","v83","v84","v85","v86","v87",
"v88","v89","v90","v91","v92","v93","v94","v95",
"v128", "v129", "v130", "v131",
"v132", "v133", "v134", "v135", "v136", "v137", "v138", "v139",
"v140", "v141", "v142", "v143", "v144", "v145", "v146", "v147",
"v148", "v149", "v150", "v151", "v152", "v153", "v154", "v155",
"v156", "v157", "v158", "v159", "v160", "v161", "v162", "v163",
"v164", "v165", "v166", "v167", "v168", "v169", "v170", "v171",
"v172", "v173", "v174", "v175", "v176", "v177", "v178", "v179",
"v180", "v181", "v182", "v183", "v184", "v185", "v186", "v187",
"v188", "v189", "v190", "v191", "v192", "v193", "v194", "v195",
"v196", "v197", "v198", "v199", "v200", "v201", "v202", "v203",
"v204", "v205", "v206", "v207", "v208", "v209", "v210", "v211",
"v212", "v213", "v214", "v215", "v216", "v217", "v218", "v219",
"v220", "v221", "v222", "v223", "v224", "v225", "v226", "v227",
"v228", "v229", "v230", "v231", "v232", "v233", "v234", "v235",
"v236", "v237", "v238", "v239", "v240", "v241", "v242", "v243",
"v244", "v245", "v246", "v247", "v248", "v249", "v250", "v251",
"v252", "v253", "v254", "v255"
);
#pragma clang diagnostic pop
// clang-format on
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#define CK_TILE_FLATMM_UK_MFMA_FP16 0
#define CK_TILE_FLATMM_UK_MFMA_BF16 1
#define CK_TILE_FLATMM_UK_MFMA_INT8 2
#define CK_TILE_FLATMM_UK_MFMA_FP8 3
#define CK_TILE_FLATMM_UK_MFMA_BF8 4
the files under this folder should not be included directly!
\ No newline at end of file
#ifndef CK_TILE_FLATMM_UK_MFMA
#define CK_TILE_FLATMM_UK_MFMA CK_TILE_FLATMM_UK_MFMA_BF16
#endif
#if CK_TILE_FLATMM_UK_MFMA == CK_TILE_FLATMM_UK_MFMA_BF16
# define _UK_MFMA_ "v_mfma_f32_16x16x16_bf16"
# define _UK_PK_CVT_(x0_, x1_, y_) \
" v_cmp_u_f32 s[36:37], " x0_ ", " x0_ " \n" \
" v_add3_u32 v50, " x0_ ", %[v_nan_lo], 1 \n" \
" v_cndmask_b32 v54, v50, %[v_nan_hi], s[36:37] \n" \
" v_cmp_u_f32 s[36:37], " x1_ ", " x1_ " \n" \
" v_add3_u32 v50, " x1_ ", %[v_nan_lo], 1 \n" \
" v_cndmask_b32 v55, v50, %[v_nan_hi], s[36:37] \n" \
" v_perm_b32 " y_ ", v55, v54, s52 \n"
# define _UK_ATOMIC_ADD_ "global_atomic_pk_add_bf16"
#elif CK_TILE_FLATMM_UK_MFMA == CK_TILE_FLATMM_UK_MFMA_FP16
#define _UK_MFMA_ "v_mfma_f32_16x16x16_f16"
# define _UK_PK_CVT_(x0_, x1_, y_) \
" v_cvt_f16_f32 v54, " x0_ " \n" \
" v_cvt_f16_f32 v55, " x1_ " \n" \
" v_pack_b32_f16 " y_ ", v54, v55 \n"
# define _UK_ATOMIC_ADD_ "global_atomic_pk_add_f16"
#endif
";-------------------------------------------------------------\n"
" s_mov_b32 s52, 0x07060302 ; v_perm\n"
" s_mov_b64 s[38:39], exec ; save current exec\n"
" s_mov_b32 s8, %[s_res_o0] \n"
" s_mov_b32 s9, %[s_res_o1] \n"
" s_mov_b32 s12, %[s_res_b0] \n"
" s_mov_b32 s13, %[s_res_b1] \n"
" s_mov_b32 s14, %[s_res_b2] \n"
" s_mov_b32 s15, %[s_res_b3] \n"
" ds_read_b64 v[128:129], %[v_sld_y_os] offset:0 + %[sld_a_base] \n"
" ds_read_b64 v[130:131], %[v_sld_y_os] offset:128 + %[sld_a_base] \n"
" ds_read_b64 v[132:133], %[v_sld_y_os] offset:1024 + %[sld_a_base] \n"
" ds_read_b64 v[134:135], %[v_sld_y_os] offset:1152 + %[sld_a_base] \n"
" ds_read_b64 v[136:137], %[v_sld_y_os] offset:2048 + %[sld_a_base] \n"
" ds_read_b64 v[138:139], %[v_sld_y_os] offset:2176 + %[sld_a_base] \n"
" ds_read_b64 v[140:141], %[v_sld_y_os] offset:3072 + %[sld_a_base] \n"
" ds_read_b64 v[142:143], %[v_sld_y_os] offset:3200 + %[sld_a_base] \n"
" ds_read_b64 v[144:145], %[v_sld_y_os] offset:4096 + %[sld_a_base] \n"
" ds_read_b64 v[146:147], %[v_sld_y_os] offset:4224 + %[sld_a_base] \n"
" ds_read_b64 v[148:149], %[v_sld_y_os] offset:5120 + %[sld_a_base] \n"
" ds_read_b64 v[150:151], %[v_sld_y_os] offset:5248 + %[sld_a_base] \n"
" ds_read_b64 v[152:153], %[v_sld_y_os] offset:6144 + %[sld_a_base] \n"
" ds_read_b64 v[154:155], %[v_sld_y_os] offset:6272 + %[sld_a_base] \n"
" ds_read_b64 v[156:157], %[v_sld_y_os] offset:7168 + %[sld_a_base] \n"
" ds_read_b64 v[158:159], %[v_sld_y_os] offset:7296 + %[sld_a_base] \n"
" ds_read_b64 v[160:161], %[v_sld_y_os] offset:8192 + %[sld_a_base] \n"
" ds_read_b64 v[162:163], %[v_sld_y_os] offset:8320 + %[sld_a_base] \n"
" ds_read_b64 v[164:165], %[v_sld_y_os] offset:9216 + %[sld_a_base] \n"
" ds_read_b64 v[166:167], %[v_sld_y_os] offset:9344 + %[sld_a_base] \n"
" ds_read_b64 v[168:169], %[v_sld_y_os] offset:10240 + %[sld_a_base] \n"
" ds_read_b64 v[170:171], %[v_sld_y_os] offset:10368 + %[sld_a_base] \n"
" ds_read_b64 v[172:173], %[v_sld_y_os] offset:11264 + %[sld_a_base] \n"
" ds_read_b64 v[174:175], %[v_sld_y_os] offset:11392 + %[sld_a_base] \n"
" ds_read_b64 v[176:177], %[v_sld_y_os] offset:12288 + %[sld_a_base] \n"
" ds_read_b64 v[178:179], %[v_sld_y_os] offset:12416 + %[sld_a_base] \n"
" ds_read_b64 v[180:181], %[v_sld_y_os] offset:13312 + %[sld_a_base] \n"
" ds_read_b64 v[182:183], %[v_sld_y_os] offset:13440 + %[sld_a_base] \n"
" ds_read_b64 v[184:185], %[v_sld_y_os] offset:14336 + %[sld_a_base] \n"
" ds_read_b64 v[186:187], %[v_sld_y_os] offset:14464 + %[sld_a_base] \n"
" ds_read_b64 v[188:189], %[v_sld_y_os] offset:15360 + %[sld_a_base] \n"
" ds_read_b64 v[190:191], %[v_sld_y_os] offset:15488 + %[sld_a_base] \n"
" ds_read_b64 v[192:193], %[v_sld_y_os] offset:16384 + %[sld_a_base] \n"
" ds_read_b64 v[194:195], %[v_sld_y_os] offset:16512 + %[sld_a_base] \n"
" ds_read_b64 v[196:197], %[v_sld_y_os] offset:17408 + %[sld_a_base] \n"
" ds_read_b64 v[198:199], %[v_sld_y_os] offset:17536 + %[sld_a_base] \n"
" ds_read_b64 v[200:201], %[v_sld_y_os] offset:18432 + %[sld_a_base] \n"
" ds_read_b64 v[202:203], %[v_sld_y_os] offset:18560 + %[sld_a_base] \n"
" ds_read_b64 v[204:205], %[v_sld_y_os] offset:19456 + %[sld_a_base] \n"
" ds_read_b64 v[206:207], %[v_sld_y_os] offset:19584 + %[sld_a_base] \n"
" ds_read_b64 v[208:209], %[v_sld_y_os] offset:20480 + %[sld_a_base] \n"
" ds_read_b64 v[210:211], %[v_sld_y_os] offset:20608 + %[sld_a_base] \n"
" ds_read_b64 v[212:213], %[v_sld_y_os] offset:21504 + %[sld_a_base] \n"
" ds_read_b64 v[214:215], %[v_sld_y_os] offset:21632 + %[sld_a_base] \n"
" ds_read_b64 v[216:217], %[v_sld_y_os] offset:22528 + %[sld_a_base] \n"
" ds_read_b64 v[218:219], %[v_sld_y_os] offset:22656 + %[sld_a_base] \n"
" ds_read_b64 v[220:221], %[v_sld_y_os] offset:23552 + %[sld_a_base] \n"
" ds_read_b64 v[222:223], %[v_sld_y_os] offset:23680 + %[sld_a_base] \n"
" ds_read_b64 v[224:225], %[v_sld_y_os] offset:24576 + %[sld_a_base] \n"
" ds_read_b64 v[226:227], %[v_sld_y_os] offset:24704 + %[sld_a_base] \n"
" ds_read_b64 v[228:229], %[v_sld_y_os] offset:25600 + %[sld_a_base] \n"
" ds_read_b64 v[230:231], %[v_sld_y_os] offset:25728 + %[sld_a_base] \n"
" ds_read_b64 v[232:233], %[v_sld_y_os] offset:26624 + %[sld_a_base] \n"
" ds_read_b64 v[234:235], %[v_sld_y_os] offset:26752 + %[sld_a_base] \n"
" ds_read_b64 v[236:237], %[v_sld_y_os] offset:27648 + %[sld_a_base] \n"
" ds_read_b64 v[238:239], %[v_sld_y_os] offset:27776 + %[sld_a_base] \n"
" ds_read_b64 v[240:241], %[v_sld_y_os] offset:28672 + %[sld_a_base] \n"
" ds_read_b64 v[242:243], %[v_sld_y_os] offset:28800 + %[sld_a_base] \n"
" ds_read_b64 v[244:245], %[v_sld_y_os] offset:29696 + %[sld_a_base] \n"
" ds_read_b64 v[246:247], %[v_sld_y_os] offset:29824 + %[sld_a_base] \n"
" ds_read_b64 v[248:249], %[v_sld_y_os] offset:30720 + %[sld_a_base] \n"
" ds_read_b64 v[250:251], %[v_sld_y_os] offset:30848 + %[sld_a_base] \n"
" ds_read_b64 v[252:253], %[v_sld_y_os] offset:31744 + %[sld_a_base] \n"
" ds_read_b64 v[254:255], %[v_sld_y_os] offset:31872 + %[sld_a_base] \n"
" s_waitcnt 0 \n"
" buffer_load_dwordx4 acc[0:3], %[v_os_b0], s[12:15], 0 offen \n"
" buffer_load_dwordx4 acc[4:7], %[v_os_b0], s[12:15], 0 offen offset:1024 \n"
" buffer_load_dwordx4 acc[8:11], %[v_os_b0], s[12:15], 0 offen offset:2048 \n"
" buffer_load_dwordx4 acc[12:15], %[v_os_b0], s[12:15], 0 offen offset:3072 \n"
" buffer_load_dwordx4 acc[16:19], %[v_os_b1], s[12:15], 0 offen \n"
" buffer_load_dwordx4 acc[20:23], %[v_os_b1], s[12:15], 0 offen offset:1024 \n"
" buffer_load_dwordx4 acc[24:27], %[v_os_b1], s[12:15], 0 offen offset:2048 \n"
" buffer_load_dwordx4 acc[28:31], %[v_os_b1], s[12:15], 0 offen offset:3072 \n"
" buffer_load_dwordx4 acc[32:35], %[v_os_b2], s[12:15], 0 offen \n"
" buffer_load_dwordx4 acc[36:39], %[v_os_b2], s[12:15], 0 offen offset:1024 \n"
" buffer_load_dwordx4 acc[40:43], %[v_os_b2], s[12:15], 0 offen offset:2048 \n"
" buffer_load_dwordx4 acc[44:47], %[v_os_b2], s[12:15], 0 offen offset:3072 \n"
" buffer_load_dwordx4 acc[48:51], %[v_os_b3], s[12:15], 0 offen \n"
" buffer_load_dwordx4 acc[52:55], %[v_os_b3], s[12:15], 0 offen offset:1024 \n"
" buffer_load_dwordx4 acc[56:59], %[v_os_b3], s[12:15], 0 offen offset:2048 \n"
" buffer_load_dwordx4 acc[60:63], %[v_os_b3], s[12:15], 0 offen offset:3072 \n"
" buffer_load_dwordx4 acc[64:67], %[v_os_b4], s[12:15], 0 offen \n"
" buffer_load_dwordx4 acc[68:71], %[v_os_b4], s[12:15], 0 offen offset:1024 \n"
" buffer_load_dwordx4 acc[72:75], %[v_os_b4], s[12:15], 0 offen offset:2048 \n"
" buffer_load_dwordx4 acc[76:79], %[v_os_b4], s[12:15], 0 offen offset:3072 \n"
" buffer_load_dwordx4 acc[80:83], %[v_os_b5], s[12:15], 0 offen \n"
" buffer_load_dwordx4 acc[84:87], %[v_os_b5], s[12:15], 0 offen offset:1024 \n"
" buffer_load_dwordx4 acc[88:91], %[v_os_b5], s[12:15], 0 offen offset:2048 \n"
" buffer_load_dwordx4 acc[92:95], %[v_os_b5], s[12:15], 0 offen offset:3072 \n"
" buffer_load_dwordx4 acc[96:99], %[v_os_b6], s[12:15], 0 offen \n"
" buffer_load_dwordx4 acc[100:103], %[v_os_b6], s[12:15], 0 offen offset:1024 \n"
" buffer_load_dwordx4 acc[104:107], %[v_os_b6], s[12:15], 0 offen offset:2048 \n"
" buffer_load_dwordx4 acc[108:111], %[v_os_b6], s[12:15], 0 offen offset:3072 \n"
" buffer_load_dwordx4 acc[112:115], %[v_os_b7], s[12:15], 0 offen \n"
" buffer_load_dwordx4 acc[116:119], %[v_os_b7], s[12:15], 0 offen offset:1024 \n"
" buffer_load_dwordx4 acc[120:123], %[v_os_b7], s[12:15], 0 offen offset:2048 \n"
" buffer_load_dwordx4 acc[124:127], %[v_os_b7], s[12:15], 0 offen offset:3072 \n"
" s_cmp_gt_i32 %[s_loop_cnt] 1 ; move b with cond \n"
" s_cselect_b32 s86, %[s_tile_os_b], 0 \n"
" s_add_u32 s12, s86, s12 \n"
" s_addc_u32 s13, 0, s13 \n"
" s_waitcnt 0 \n"
"L_start%=: \n"
" s_waitcnt vmcnt(32) \n"
" s_barrier \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[0:1], v[128:129], 0 \n"
" buffer_load_dwordx4 acc[128:131], %[v_os_b0], s[12:15], 0 offen \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[2:3], v[130:131], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[4:5], v[132:133], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[6:7], v[134:135], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[8:9], v[136:137], [%[c0], %[c1], %[c2], %[c3]] \n"
" buffer_load_dwordx4 acc[132:135], %[v_os_b0], s[12:15], 0 offen offset:1024 \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[10:11], v[138:139], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[12:13], v[140:141], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[14:15], v[142:143], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[0:1], v[192:193], 0 \n"
" buffer_load_dwordx4 acc[136:139], %[v_os_b0], s[12:15], 0 offen offset:2048 \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[2:3], v[194:195], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[4:5], v[196:197], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[6:7], v[198:199], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[8:9], v[200:201], [%[c4], %[c5], %[c6], %[c7]] \n"
" buffer_load_dwordx4 acc[140:143], %[v_os_b0], s[12:15], 0 offen offset:3072 \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[10:11], v[202:203], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[12:13], v[204:205], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[14:15], v[206:207], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[16:17], v[128:129], 0 \n"
" buffer_load_dwordx4 acc[144:147], %[v_os_b1], s[12:15], 0 offen \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[18:19], v[130:131], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[20:21], v[132:133], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[22:23], v[134:135], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[24:25], v[136:137], [%[c8], %[c9], %[c10], %[c11]] \n"
" buffer_load_dwordx4 acc[148:151], %[v_os_b1], s[12:15], 0 offen offset:1024 \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[26:27], v[138:139], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[28:29], v[140:141], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[30:31], v[142:143], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[16:17], v[192:193], 0 \n"
" buffer_load_dwordx4 acc[152:155], %[v_os_b1], s[12:15], 0 offen offset:2048 \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[18:19], v[194:195], [%[c12], %[c13], %[c14], %[c15]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[20:21], v[196:197], [%[c12], %[c13], %[c14], %[c15]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[22:23], v[198:199], [%[c12], %[c13], %[c14], %[c15]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[24:25], v[200:201], [%[c12], %[c13], %[c14], %[c15]] \n"
" buffer_load_dwordx4 acc[156:159], %[v_os_b1], s[12:15], 0 offen offset:3072 \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[26:27], v[202:203], [%[c12], %[c13], %[c14], %[c15]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[28:29], v[204:205], [%[c12], %[c13], %[c14], %[c15]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[30:31], v[206:207], [%[c12], %[c13], %[c14], %[c15]] \n"
" s_waitcnt vmcnt(32) \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[32:33], v[144:145], [%[c0], %[c1], %[c2], %[c3]] \n"
" buffer_load_dwordx4 acc[160:163], %[v_os_b2], s[12:15], 0 offen \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[34:35], v[146:147], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[36:37], v[148:149], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[38:39], v[150:151], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[40:41], v[152:153], [%[c0], %[c1], %[c2], %[c3]] \n"
" buffer_load_dwordx4 acc[164:167], %[v_os_b2], s[12:15], 0 offen offset:1024 \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[42:43], v[154:155], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[44:45], v[156:157], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[46:47], v[158:159], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[32:33], v[208:209], [%[c4], %[c5], %[c6], %[c7]] \n"
" buffer_load_dwordx4 acc[168:171], %[v_os_b2], s[12:15], 0 offen offset:2048 \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[34:35], v[210:211], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[36:37], v[212:213], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[38:39], v[214:215], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[40:41], v[216:217], [%[c4], %[c5], %[c6], %[c7]] \n"
" buffer_load_dwordx4 acc[172:175], %[v_os_b2], s[12:15], 0 offen offset:3072 \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[42:43], v[218:219], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[44:45], v[220:221], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[46:47], v[222:223], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[48:49], v[144:145], [%[c8], %[c9], %[c10], %[c11]] \n"
" buffer_load_dwordx4 acc[176:179], %[v_os_b3], s[12:15], 0 offen \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[50:51], v[146:147], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[52:53], v[148:149], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[54:55], v[150:151], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[56:57], v[152:153], [%[c8], %[c9], %[c10], %[c11]] \n"
" buffer_load_dwordx4 acc[180:183], %[v_os_b3], s[12:15], 0 offen offset:1024 \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[58:59], v[154:155], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[60:61], v[156:157], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[62:63], v[158:159], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[48:49], v[208:209], [%[c12], %[c13], %[c14], %[c15]] \n"
" buffer_load_dwordx4 acc[184:187], %[v_os_b3], s[12:15], 0 offen offset:2048 \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[50:51], v[210:211], [%[c12], %[c13], %[c14], %[c15]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[52:53], v[212:213], [%[c12], %[c13], %[c14], %[c15]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[54:55], v[214:215], [%[c12], %[c13], %[c14], %[c15]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[56:57], v[216:217], [%[c12], %[c13], %[c14], %[c15]] \n"
" buffer_load_dwordx4 acc[188:191], %[v_os_b3], s[12:15], 0 offen offset:3072 \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[58:59], v[218:219], [%[c12], %[c13], %[c14], %[c15]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[60:61], v[220:221], [%[c12], %[c13], %[c14], %[c15]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[62:63], v[222:223], [%[c12], %[c13], %[c14], %[c15]] \n"
" s_waitcnt vmcnt(32) \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[64:65], v[160:161], [%[c0], %[c1], %[c2], %[c3]] \n"
" buffer_load_dwordx4 acc[192:195], %[v_os_b4], s[12:15], 0 offen \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[66:67], v[162:163], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[68:69], v[164:165], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[70:71], v[166:167], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[72:73], v[168:169], [%[c0], %[c1], %[c2], %[c3]] \n"
" buffer_load_dwordx4 acc[196:199], %[v_os_b4], s[12:15], 0 offen offset:1024 \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[74:75], v[170:171], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[76:77], v[172:173], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[78:79], v[174:175], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[64:65], v[224:225], [%[c4], %[c5], %[c6], %[c7]] \n"
" buffer_load_dwordx4 acc[200:203], %[v_os_b4], s[12:15], 0 offen offset:2048 \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[66:67], v[226:227], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[68:69], v[228:229], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[70:71], v[230:231], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[72:73], v[232:233], [%[c4], %[c5], %[c6], %[c7]] \n"
" buffer_load_dwordx4 acc[204:207], %[v_os_b4], s[12:15], 0 offen offset:3072 \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[74:75], v[234:235], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[76:77], v[236:237], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[78:79], v[238:239], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[80:81], v[160:161], [%[c8], %[c9], %[c10], %[c11]] \n"
" buffer_load_dwordx4 acc[208:211], %[v_os_b5], s[12:15], 0 offen \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[82:83], v[162:163], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[84:85], v[164:165], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[86:87], v[166:167], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[88:89], v[168:169], [%[c8], %[c9], %[c10], %[c11]] \n"
" buffer_load_dwordx4 acc[212:215], %[v_os_b5], s[12:15], 0 offen offset:1024 \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[90:91], v[170:171], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[92:93], v[172:173], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[94:95], v[174:175], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[80:81], v[224:225], [%[c12], %[c13], %[c14], %[c15]] \n"
" buffer_load_dwordx4 acc[216:219], %[v_os_b5], s[12:15], 0 offen offset:2048 \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[82:83], v[226:227], [%[c12], %[c13], %[c14], %[c15]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[84:85], v[228:229], [%[c12], %[c13], %[c14], %[c15]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[86:87], v[230:231], [%[c12], %[c13], %[c14], %[c15]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[88:89], v[232:233], [%[c12], %[c13], %[c14], %[c15]] \n"
" buffer_load_dwordx4 acc[220:223], %[v_os_b5], s[12:15], 0 offen offset:3072 \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[90:91], v[234:235], [%[c12], %[c13], %[c14], %[c15]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[92:93], v[236:237], [%[c12], %[c13], %[c14], %[c15]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[94:95], v[238:239], [%[c12], %[c13], %[c14], %[c15]] \n"
" s_waitcnt vmcnt(32) \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[96:97], v[176:177], [%[c0], %[c1], %[c2], %[c3]] \n"
" buffer_load_dwordx4 acc[224:227], %[v_os_b6], s[12:15], 0 offen \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[98:99], v[178:179], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[100:101], v[180:181], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[102:103], v[182:183], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[104:105], v[184:185], [%[c0], %[c1], %[c2], %[c3]] \n"
" buffer_load_dwordx4 acc[228:231], %[v_os_b6], s[12:15], 0 offen offset:1024 \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[106:107], v[186:187], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[108:109], v[188:189], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c0], %[c1], %[c2], %[c3]], acc[110:111], v[190:191], [%[c0], %[c1], %[c2], %[c3]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[96:97], v[240:241], [%[c4], %[c5], %[c6], %[c7]] \n"
" buffer_load_dwordx4 acc[232:235], %[v_os_b6], s[12:15], 0 offen offset:2048 \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[98:99], v[242:243], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[100:101], v[244:245], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[102:103], v[246:247], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[104:105], v[248:249], [%[c4], %[c5], %[c6], %[c7]] \n"
" buffer_load_dwordx4 acc[236:239], %[v_os_b6], s[12:15], 0 offen offset:3072 \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[106:107], v[250:251], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[108:109], v[252:253], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c4], %[c5], %[c6], %[c7]], acc[110:111], v[254:255], [%[c4], %[c5], %[c6], %[c7]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[112:113], v[176:177], [%[c8], %[c9], %[c10], %[c11]] \n"
" buffer_load_dwordx4 acc[240:243], %[v_os_b7], s[12:15], 0 offen \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[114:115], v[178:179], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[116:117], v[180:181], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[118:119], v[182:183], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[120:121], v[184:185], [%[c8], %[c9], %[c10], %[c11]] \n"
" buffer_load_dwordx4 acc[244:247], %[v_os_b7], s[12:15], 0 offen offset:1024 \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[122:123], v[186:187], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[124:125], v[188:189], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c8], %[c9], %[c10], %[c11]], acc[126:127], v[190:191], [%[c8], %[c9], %[c10], %[c11]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[112:113], v[240:241], [%[c12], %[c13], %[c14], %[c15]] \n"
" buffer_load_dwordx4 acc[248:251], %[v_os_b7], s[12:15], 0 offen offset:2048 \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[114:115], v[242:243], [%[c12], %[c13], %[c14], %[c15]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[116:117], v[244:245], [%[c12], %[c13], %[c14], %[c15]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[118:119], v[246:247], [%[c12], %[c13], %[c14], %[c15]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[120:121], v[248:249], [%[c12], %[c13], %[c14], %[c15]] \n"
" buffer_load_dwordx4 acc[252:255], %[v_os_b7], s[12:15], 0 offen offset:3072 \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[122:123], v[250:251], [%[c12], %[c13], %[c14], %[c15]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[124:125], v[252:253], [%[c12], %[c13], %[c14], %[c15]] \n"
_UK_MFMA_ " [%[c12], %[c13], %[c14], %[c15]], acc[126:127], v[254:255], [%[c12], %[c13], %[c14], %[c15]]\n"
" v_mul_f32 %[c0], %[scale_0], %[c0] \n"
" v_mul_f32 %[c1], %[scale_0], %[c1] \n"
" v_mul_f32 %[c2], %[scale_0], %[c2] \n"
" v_mul_f32 %[c3], %[scale_0], %[c3] \n"
" v_mul_f32 %[c4], %[scale_1], %[c4] \n"
" v_mul_f32 %[c5], %[scale_1], %[c5] \n"
" v_mul_f32 %[c6], %[scale_1], %[c6] \n"
" v_mul_f32 %[c7], %[scale_1], %[c7] \n"
" v_mul_f32 %[c8], %[scale_0], %[c8] \n"
" v_mul_f32 %[c9], %[scale_0], %[c9] \n"
" v_mul_f32 %[c10], %[scale_0], %[c10] \n"
" v_mul_f32 %[c11], %[scale_0], %[c11] \n"
" v_mul_f32 %[c12], %[scale_1], %[c12] \n"
" v_mul_f32 %[c13], %[scale_1], %[c13] \n"
" v_mul_f32 %[c14], %[scale_1], %[c14] \n"
" v_mul_f32 %[c15], %[scale_1], %[c15] \n"
_UK_PK_CVT_("%[c0]", "%[c1]", "%[c0]")
_UK_PK_CVT_("%[c2]", "%[c3]", "%[c1]")
_UK_PK_CVT_("%[c4]", "%[c5]", "%[c2]")
_UK_PK_CVT_("%[c6]", "%[c7]", "%[c3]")
_UK_PK_CVT_("%[c8]", "%[c9]", "%[c4]")
_UK_PK_CVT_("%[c10]", "%[c11]", "%[c5]")
_UK_PK_CVT_("%[c12]", "%[c13]", "%[c6]")
_UK_PK_CVT_("%[c14]", "%[c15]", "%[c7]")
" ;------------------------------ \n"
" ds_write_b64 %[v_sfl_sst], [%[c0],%[c1]] offset:0 + %[shfl_base] \n"
" ds_write_b64 %[v_sfl_sst], [%[c2],%[c3]] offset:4352 + %[shfl_base] \n"
" ds_write_b64 %[v_sfl_sst], [%[c4],%[c5]] offset:2176 + %[shfl_base] \n"
" ds_write_b64 %[v_sfl_sst], [%[c6],%[c7]] offset:6528 + %[shfl_base] \n"
" s_waitcnt lgkmcnt(0) \n"
" s_barrier \n"
" ds_read_b32 %[c0], %[v_sfl_sld] offset:0 + %[shfl_base] \n"
" ds_read_b32 %[c1], %[v_sfl_sld] offset:32 + %[shfl_base] \n"
" ds_read_b32 %[c2], %[v_sfl_sld] offset:64 + %[shfl_base] \n"
" ds_read_b32 %[c3], %[v_sfl_sld] offset:96 + %[shfl_base] \n"
" ds_read_b32 %[c4], %[v_sfl_sld] offset:4352 + %[shfl_base] \n"
" ds_read_b32 %[c5], %[v_sfl_sld] offset:4384 + %[shfl_base] \n"
" ds_read_b32 %[c6], %[v_sfl_sld] offset:4416 + %[shfl_base] \n"
" ds_read_b32 %[c7], %[v_sfl_sld] offset:4448 + %[shfl_base] \n"
" s_waitcnt lgkmcnt(0) \n"
" s_mov_b64 exec, %[s_execflag_0] \n"
_UK_ATOMIC_ADD_ " %[v_os_o0], %[c0], s[8:9] \n"
" s_mov_b64 exec, %[s_execflag_1] \n"
_UK_ATOMIC_ADD_ " %[v_os_o1], %[c1], s[8:9] \n"
" s_mov_b64 exec, %[s_execflag_2] \n"
_UK_ATOMIC_ADD_ " %[v_os_o2], %[c2], s[8:9] \n"
" s_mov_b64 exec, %[s_execflag_3] \n"
_UK_ATOMIC_ADD_ " %[v_os_o3], %[c3], s[8:9] \n"
" s_mov_b64 exec, %[s_execflag_4] \n"
_UK_ATOMIC_ADD_ " %[v_os_o4], %[c4], s[8:9] \n"
" s_mov_b64 exec, %[s_execflag_5] \n"
_UK_ATOMIC_ADD_ " %[v_os_o5], %[c5], s[8:9] \n"
" s_mov_b64 exec, %[s_execflag_6] \n"
_UK_ATOMIC_ADD_ " %[v_os_o6], %[c6], s[8:9] \n"
" s_mov_b64 exec, %[s_execflag_7] \n"
_UK_ATOMIC_ADD_ " %[v_os_o7], %[c7], s[8:9] \n"
" s_mov_b64 exec, s[38:39] \n"
" s_sub_i32 %[s_loop_cnt], %[s_loop_cnt], 1 ; k-- \n"
" s_cmp_gt_i32 %[s_loop_cnt] 0 \n"
" s_cbranch_scc0 L_end%= \n"
" s_cmp_gt_i32 %[s_loop_cnt] 1 ; move b with cond \n"
" s_cselect_b32 s86, %[s_tile_os_b], 0 \n"
" s_add_u32 s12, s86, s12 \n"
" s_addc_u32 s13, 0, s13 \n"
" s_add_u32 s8, %[s_tile_os_o], s8 \n"
" s_addc_u32 s9, 0, s9 \n"
" s_waitcnt vmcnt(32) \n"
" s_barrier \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[128:129], v[128:129], 0 \n"
" buffer_load_dwordx4 acc[0:3], %[v_os_b0], s[12:15], 0 offen \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[130:131], v[130:131], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[132:133], v[132:133], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[134:135], v[134:135], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[136:137], v[136:137], [%[c16],%[c17],%[c18],%[c19]] \n"
" buffer_load_dwordx4 acc[4:7], %[v_os_b0], s[12:15], 0 offen offset:1024 \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[138:139], v[138:139], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[140:141], v[140:141], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[142:143], v[142:143], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[128:129], v[192:193], 0 \n"
" buffer_load_dwordx4 acc[8:11], %[v_os_b0], s[12:15], 0 offen offset:2048 \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[130:131], v[194:195], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[132:133], v[196:197], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[134:135], v[198:199], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[136:137], v[200:201], [%[c20],%[c21],%[c22],%[c23]] \n"
" buffer_load_dwordx4 acc[12:15], %[v_os_b0], s[12:15], 0 offen offset:3072 \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[138:139], v[202:203], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[140:141], v[204:205], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[142:143], v[206:207], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[144:145], v[128:129], 0 \n"
" buffer_load_dwordx4 acc[16:19], %[v_os_b1], s[12:15], 0 offen \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[146:147], v[130:131], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[148:149], v[132:133], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[150:151], v[134:135], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[152:153], v[136:137], [%[c24],%[c25],%[c26],%[c27]] \n"
" buffer_load_dwordx4 acc[20:23], %[v_os_b1], s[12:15], 0 offen offset:1024 \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[154:155], v[138:139], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[156:157], v[140:141], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[158:159], v[142:143], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[144:145], v[192:193], 0 \n"
" buffer_load_dwordx4 acc[24:27], %[v_os_b1], s[12:15], 0 offen offset:2048 \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[146:147], v[194:195], [%[c28],%[c29],%[c30],%[c31]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[148:149], v[196:197], [%[c28],%[c29],%[c30],%[c31]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[150:151], v[198:199], [%[c28],%[c29],%[c30],%[c31]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[152:153], v[200:201], [%[c28],%[c29],%[c30],%[c31]] \n"
" buffer_load_dwordx4 acc[28:31], %[v_os_b1], s[12:15], 0 offen offset:3072 \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[154:155], v[202:203], [%[c28],%[c29],%[c30],%[c31]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[156:157], v[204:205], [%[c28],%[c29],%[c30],%[c31]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[158:159], v[206:207], [%[c28],%[c29],%[c30],%[c31]] \n"
" s_waitcnt vmcnt(32) \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[160:161], v[144:145], [%[c16],%[c17],%[c18],%[c19]] \n"
" buffer_load_dwordx4 acc[32:35], %[v_os_b2], s[12:15], 0 offen \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[162:163], v[146:147], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[164:165], v[148:149], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[166:167], v[150:151], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[168:169], v[152:153], [%[c16],%[c17],%[c18],%[c19]] \n"
" buffer_load_dwordx4 acc[36:39], %[v_os_b2], s[12:15], 0 offen offset:1024 \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[170:171], v[154:155], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[172:173], v[156:157], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[174:175], v[158:159], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[160:161], v[208:209], [%[c20],%[c21],%[c22],%[c23]] \n"
" buffer_load_dwordx4 acc[40:43], %[v_os_b2], s[12:15], 0 offen offset:2048 \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[162:163], v[210:211], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[164:165], v[212:213], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[166:167], v[214:215], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[168:169], v[216:217], [%[c20],%[c21],%[c22],%[c23]] \n"
" buffer_load_dwordx4 acc[44:47], %[v_os_b2], s[12:15], 0 offen offset:3072 \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[170:171], v[218:219], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[172:173], v[220:221], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[174:175], v[222:223], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[176:177], v[144:145], [%[c24],%[c25],%[c26],%[c27]] \n"
" buffer_load_dwordx4 acc[48:51], %[v_os_b3], s[12:15], 0 offen \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[178:179], v[146:147], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[180:181], v[148:149], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[182:183], v[150:151], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[184:185], v[152:153], [%[c24],%[c25],%[c26],%[c27]] \n"
" buffer_load_dwordx4 acc[52:55], %[v_os_b3], s[12:15], 0 offen offset:1024 \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[186:187], v[154:155], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[188:189], v[156:157], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[190:191], v[158:159], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[176:177], v[208:209], [%[c28],%[c29],%[c30],%[c31]] \n"
" buffer_load_dwordx4 acc[56:59], %[v_os_b3], s[12:15], 0 offen offset:2048 \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[178:179], v[210:211], [%[c28],%[c29],%[c30],%[c31]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[180:181], v[212:213], [%[c28],%[c29],%[c30],%[c31]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[182:183], v[214:215], [%[c28],%[c29],%[c30],%[c31]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[184:185], v[216:217], [%[c28],%[c29],%[c30],%[c31]] \n"
" buffer_load_dwordx4 acc[60:63], %[v_os_b3], s[12:15], 0 offen offset:3072 \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[186:187], v[218:219], [%[c28],%[c29],%[c30],%[c31]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[188:189], v[220:221], [%[c28],%[c29],%[c30],%[c31]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[190:191], v[222:223], [%[c28],%[c29],%[c30],%[c31]] \n"
" s_waitcnt vmcnt(32) \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[192:193], v[160:161], [%[c16],%[c17],%[c18],%[c19]] \n"
" buffer_load_dwordx4 acc[64:67], %[v_os_b4], s[12:15], 0 offen \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[194:195], v[162:163], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[196:197], v[164:165], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[198:199], v[166:167], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[200:201], v[168:169], [%[c16],%[c17],%[c18],%[c19]] \n"
" buffer_load_dwordx4 acc[68:71], %[v_os_b4], s[12:15], 0 offen offset:1024 \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[202:203], v[170:171], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[204:205], v[172:173], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[206:207], v[174:175], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[192:193], v[224:225], [%[c20],%[c21],%[c22],%[c23]] \n"
" buffer_load_dwordx4 acc[72:75], %[v_os_b4], s[12:15], 0 offen offset:2048 \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[194:195], v[226:227], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[196:197], v[228:229], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[198:199], v[230:231], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[200:201], v[232:233], [%[c20],%[c21],%[c22],%[c23]] \n"
" buffer_load_dwordx4 acc[76:79], %[v_os_b4], s[12:15], 0 offen offset:3072 \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[202:203], v[234:235], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[204:205], v[236:237], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[206:207], v[238:239], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[208:209], v[160:161], [%[c24],%[c25],%[c26],%[c27]] \n"
" buffer_load_dwordx4 acc[80:83], %[v_os_b5], s[12:15], 0 offen \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[210:211], v[162:163], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[212:213], v[164:165], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[214:215], v[166:167], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[216:217], v[168:169], [%[c24],%[c25],%[c26],%[c27]] \n"
" buffer_load_dwordx4 acc[84:87], %[v_os_b5], s[12:15], 0 offen offset:1024 \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[218:219], v[170:171], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[220:221], v[172:173], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[222:223], v[174:175], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[208:209], v[224:225], [%[c28],%[c29],%[c30],%[c31]] \n"
" buffer_load_dwordx4 acc[88:91], %[v_os_b5], s[12:15], 0 offen offset:2048 \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[210:211], v[226:227], [%[c28],%[c29],%[c30],%[c31]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[212:213], v[228:229], [%[c28],%[c29],%[c30],%[c31]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[214:215], v[230:231], [%[c28],%[c29],%[c30],%[c31]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[216:217], v[232:233], [%[c28],%[c29],%[c30],%[c31]] \n"
" buffer_load_dwordx4 acc[92:95], %[v_os_b5], s[12:15], 0 offen offset:3072 \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[218:219], v[234:235], [%[c28],%[c29],%[c30],%[c31]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[220:221], v[236:237], [%[c28],%[c29],%[c30],%[c31]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[222:223], v[238:239], [%[c28],%[c29],%[c30],%[c31]] \n"
" s_waitcnt vmcnt(32) \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[224:225], v[176:177], [%[c16],%[c17],%[c18],%[c19]] \n"
" buffer_load_dwordx4 acc[96:99], %[v_os_b6], s[12:15], 0 offen \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[226:227], v[178:179], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[228:229], v[180:181], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[230:231], v[182:183], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[232:233], v[184:185], [%[c16],%[c17],%[c18],%[c19]] \n"
" buffer_load_dwordx4 acc[100:103], %[v_os_b6], s[12:15], 0 offen offset:1024 \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[234:235], v[186:187], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[236:237], v[188:189], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c16],%[c17],%[c18],%[c19]], acc[238:239], v[190:191], [%[c16],%[c17],%[c18],%[c19]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[224:225], v[240:241], [%[c20],%[c21],%[c22],%[c23]] \n"
" buffer_load_dwordx4 acc[104:107], %[v_os_b6], s[12:15], 0 offen offset:2048 \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[226:227], v[242:243], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[228:229], v[244:245], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[230:231], v[246:247], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[232:233], v[248:249], [%[c20],%[c21],%[c22],%[c23]] \n"
" buffer_load_dwordx4 acc[108:111], %[v_os_b6], s[12:15], 0 offen offset:3072 \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[234:235], v[250:251], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[236:237], v[252:253], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c20],%[c21],%[c22],%[c23]], acc[238:239], v[254:255], [%[c20],%[c21],%[c22],%[c23]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[240:241], v[176:177], [%[c24],%[c25],%[c26],%[c27]] \n"
" buffer_load_dwordx4 acc[112:115], %[v_os_b7], s[12:15], 0 offen \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[242:243], v[178:179], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[244:245], v[180:181], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[246:247], v[182:183], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[248:249], v[184:185], [%[c24],%[c25],%[c26],%[c27]] \n"
" buffer_load_dwordx4 acc[116:119], %[v_os_b7], s[12:15], 0 offen offset:1024 \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[250:251], v[186:187], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[252:253], v[188:189], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c24],%[c25],%[c26],%[c27]], acc[254:255], v[190:191], [%[c24],%[c25],%[c26],%[c27]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[240:241], v[240:241], [%[c28],%[c29],%[c30],%[c31]] \n"
" buffer_load_dwordx4 acc[120:123], %[v_os_b7], s[12:15], 0 offen offset:2048 \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[242:243], v[242:243], [%[c28],%[c29],%[c30],%[c31]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[244:245], v[244:245], [%[c28],%[c29],%[c30],%[c31]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[246:247], v[246:247], [%[c28],%[c29],%[c30],%[c31]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[248:249], v[248:249], [%[c28],%[c29],%[c30],%[c31]] \n"
" buffer_load_dwordx4 acc[124:127], %[v_os_b7], s[12:15], 0 offen offset:3072 \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[250:251], v[250:251], [%[c28],%[c29],%[c30],%[c31]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[252:253], v[252:253], [%[c28],%[c29],%[c30],%[c31]] \n"
_UK_MFMA_ " [%[c28],%[c29],%[c30],%[c31]], acc[254:255], v[254:255], [%[c28],%[c29],%[c30],%[c31]]\n"
" v_mul_f32 %[c16], %[scale_0], %[c16] \n"
" v_mul_f32 %[c17], %[scale_0], %[c17] \n"
" v_mul_f32 %[c18], %[scale_0], %[c18] \n"
" v_mul_f32 %[c19], %[scale_0], %[c19] \n"
" v_mul_f32 %[c20], %[scale_1], %[c20] \n"
" v_mul_f32 %[c21], %[scale_1], %[c21] \n"
" v_mul_f32 %[c22], %[scale_1], %[c22] \n"
" v_mul_f32 %[c23], %[scale_1], %[c23] \n"
" v_mul_f32 %[c24], %[scale_0], %[c24] \n"
" v_mul_f32 %[c25], %[scale_0], %[c25] \n"
" v_mul_f32 %[c26], %[scale_0], %[c26] \n"
" v_mul_f32 %[c27], %[scale_0], %[c27] \n"
" v_mul_f32 %[c28], %[scale_1], %[c28] \n"
" v_mul_f32 %[c29], %[scale_1], %[c29] \n"
" v_mul_f32 %[c30], %[scale_1], %[c30] \n"
" v_mul_f32 %[c31], %[scale_1], %[c31] \n"
_UK_PK_CVT_("%[c16]", "%[c17]", "%[c16]")
_UK_PK_CVT_("%[c18]", "%[c19]", "%[c17]")
_UK_PK_CVT_("%[c20]", "%[c21]", "%[c18]")
_UK_PK_CVT_("%[c22]", "%[c23]", "%[c19]")
_UK_PK_CVT_("%[c24]", "%[c25]", "%[c20]")
_UK_PK_CVT_("%[c26]", "%[c27]", "%[c21]")
_UK_PK_CVT_("%[c28]", "%[c29]", "%[c22]")
_UK_PK_CVT_("%[c30]", "%[c31]", "%[c23]")
" ;------------------------------ \n"
" ds_write_b64 %[v_sfl_sst], [%[c16],%[c17]] offset:0 + %[shfl_base] \n"
" ds_write_b64 %[v_sfl_sst], [%[c18],%[c19]] offset:4352 + %[shfl_base] \n"
" ds_write_b64 %[v_sfl_sst], [%[c20],%[c21]] offset:2176 + %[shfl_base] \n"
" ds_write_b64 %[v_sfl_sst], [%[c22],%[c23]] offset:6528 + %[shfl_base] \n"
" s_waitcnt lgkmcnt(0) \n"
" s_barrier \n"
" ds_read_b32 %[c16], %[v_sfl_sld] offset:0 + %[shfl_base] \n"
" ds_read_b32 %[c17], %[v_sfl_sld] offset:32 + %[shfl_base] \n"
" ds_read_b32 %[c18], %[v_sfl_sld] offset:64 + %[shfl_base] \n"
" ds_read_b32 %[c19], %[v_sfl_sld] offset:96 + %[shfl_base] \n"
" ds_read_b32 %[c20], %[v_sfl_sld] offset:4352 + %[shfl_base] \n"
" ds_read_b32 %[c21], %[v_sfl_sld] offset:4384 + %[shfl_base] \n"
" ds_read_b32 %[c22], %[v_sfl_sld] offset:4416 + %[shfl_base] \n"
" ds_read_b32 %[c23], %[v_sfl_sld] offset:4448 + %[shfl_base] \n"
" s_waitcnt lgkmcnt(0) \n"
" s_mov_b64 exec, %[s_execflag_0] \n"
_UK_ATOMIC_ADD_ " %[v_os_o0], %[c16], s[8:9] \n"
" s_mov_b64 exec, %[s_execflag_1] \n"
_UK_ATOMIC_ADD_ " %[v_os_o1], %[c17], s[8:9] \n"
" s_mov_b64 exec, %[s_execflag_2] \n"
_UK_ATOMIC_ADD_ " %[v_os_o2], %[c18], s[8:9] \n"
" s_mov_b64 exec, %[s_execflag_3] \n"
_UK_ATOMIC_ADD_ " %[v_os_o3], %[c19], s[8:9] \n"
" s_mov_b64 exec, %[s_execflag_4] \n"
_UK_ATOMIC_ADD_ " %[v_os_o4], %[c20], s[8:9] \n"
" s_mov_b64 exec, %[s_execflag_5] \n"
_UK_ATOMIC_ADD_ " %[v_os_o5], %[c21], s[8:9] \n"
" s_mov_b64 exec, %[s_execflag_6] \n"
_UK_ATOMIC_ADD_ " %[v_os_o6], %[c22], s[8:9] \n"
" s_mov_b64 exec, %[s_execflag_7] \n"
_UK_ATOMIC_ADD_ " %[v_os_o7], %[c23], s[8:9] \n"
" s_mov_b64 exec, s[38:39] \n"
" s_sub_i32 %[s_loop_cnt], %[s_loop_cnt], 1 ; k-- \n"
" s_cmp_gt_i32 %[s_loop_cnt] 0 \n"
" s_cbranch_scc0 L_end%= \n"
" s_cmp_gt_i32 %[s_loop_cnt] 1 ; move b with cond \n"
" s_cselect_b32 s86, %[s_tile_os_b], 0 \n"
" s_add_u32 s12, s86, s12 \n"
" s_addc_u32 s13, 0, s13 \n"
" s_add_u32 s8, %[s_tile_os_o], s8 \n"
" s_addc_u32 s9, 0, s9 \n"
" s_branch L_start%= \n"
"L_end%=: \n"
#undef _UK_MFMA_
#undef _UK_PK_CVT_
#undef _UK_ATOMIC_ADD_
#ifndef CK_TILE_FLATMM_UK_MFMA
#define CK_TILE_FLATMM_UK_MFMA CK_TILE_FLATMM_UK_MFMA_BF16
#endif
#if CK_TILE_FLATMM_UK_MFMA == CK_TILE_FLATMM_UK_MFMA_BF16
#define _UK_MFMA_ "v_mfma_f32_16x16x16_bf16"
#elif CK_TILE_FLATMM_UK_MFMA == CK_TILE_FLATMM_UK_MFMA_FP16
#define _UK_MFMA_ "v_mfma_f32_16x16x16_f16"
#endif
"s_mov_b32 s16, %[s_res_a0] \n"
"s_mov_b32 s17, %[s_res_a1] \n"
"s_mov_b32 s18, %[s_res_a2] \n"
"s_mov_b32 s19, %[s_res_a3] \n"
"s_mov_b32 s20, %[s_res_b0] \n"
"s_mov_b32 s21, %[s_res_b1] \n"
"s_mov_b32 s22, %[s_res_b2] \n"
"s_mov_b32 s23, %[s_res_b3] \n"
// "s_nop 4\n"
"; -- prefetch A0\n"
"s_add_u32 m0, 0, %[s_m0_init] \n"
"buffer_load_dword %[v_os_a0], s[16:19], 0 offen lds \n"
"s_add_u32 m0, %[s_size_per_issue], m0 \n"
"buffer_load_dword %[v_os_a1], s[16:19], 0 offen lds \n"
"s_add_u32 m0, %[s_size_per_issue], m0 \n"
"buffer_load_dword %[v_os_a2], s[16:19], 0 offen lds \n"
"s_add_u32 m0, %[s_size_per_issue], m0 \n"
"buffer_load_dword %[v_os_a3], s[16:19], 0 offen lds \n"
"s_add_u32 m0, %[s_size_per_issue], m0 \n"
"buffer_load_dword %[v_os_a4], s[16:19], 0 offen lds \n"
"s_add_u32 m0, %[s_size_per_issue], m0 \n"
"buffer_load_dword %[v_os_a5], s[16:19], 0 offen lds \n"
"s_add_u32 m0, %[s_size_per_issue], m0 \n"
"buffer_load_dword %[v_os_a6], s[16:19], 0 offen lds \n"
"s_add_u32 m0, %[s_size_per_issue], m0 \n"
"buffer_load_dword %[v_os_a7], s[16:19], 0 offen lds \n"
"s_add_u32 m0, %[smem_sz], %[s_m0_init] \n"
"s_cmp_gt_i32 %[s_loop_cnt] 1 ; move a with cond \n"
"s_cselect_b32 s86, %[s_tile_os_a], 0 ; move a with cond \n"
"s_add_u32 s16, s86, s16 ; move a with cond \n"
"s_addc_u32 s17, 0, s17 ; move a with cond \n"
"; -- prefetch A1\n"
"buffer_load_dword %[v_os_a0], s[16:19], 0 offen lds \n"
"s_add_u32 m0, %[s_size_per_issue], m0 \n"
"buffer_load_dword %[v_os_a1], s[16:19], 0 offen lds \n"
"s_add_u32 m0, %[s_size_per_issue], m0 \n"
"buffer_load_dword %[v_os_a2], s[16:19], 0 offen lds \n"
"s_add_u32 m0, %[s_size_per_issue], m0 \n"
"buffer_load_dword %[v_os_a3], s[16:19], 0 offen lds \n"
"s_add_u32 m0, %[s_size_per_issue], m0 \n"
"buffer_load_dword %[v_os_a4], s[16:19], 0 offen lds \n"
"s_add_u32 m0, %[s_size_per_issue], m0 \n"
"buffer_load_dword %[v_os_a5], s[16:19], 0 offen lds \n"
"s_add_u32 m0, %[s_size_per_issue], m0 \n"
"buffer_load_dword %[v_os_a6], s[16:19], 0 offen lds \n"
"s_add_u32 m0, %[s_size_per_issue], m0 \n"
"buffer_load_dword %[v_os_a7], s[16:19], 0 offen lds \n"
"s_add_u32 m0, 0, %[s_m0_init] \n"
"s_cmp_gt_i32 %[s_loop_cnt] 2 ; move a with cond \n"
"s_cselect_b32 s86, %[s_tile_os_a], 0 ; move a with cond \n"
"s_add_u32 s16, s86, s16 ; move a with cond \n"
"s_addc_u32 s17, 0, s17 ; move a with cond \n"
"; -- prefetch B0\n"
"buffer_load_dwordx4 acc[0:3], %[v_os_b0], s[20:23], 0 offen \n"
"buffer_load_dwordx4 acc[4:7], %[v_os_b0], s[20:23], 0 offen offset:1024 \n"
"buffer_load_dwordx4 acc[8:11], %[v_os_b0], s[20:23], 0 offen offset:2048 \n"
"buffer_load_dwordx4 acc[12:15], %[v_os_b0], s[20:23], 0 offen offset:3072 \n"
"buffer_load_dwordx4 acc[16:19], %[v_os_b1], s[20:23], 0 offen \n"
"buffer_load_dwordx4 acc[20:23], %[v_os_b1], s[20:23], 0 offen offset:1024 \n"
"buffer_load_dwordx4 acc[24:27], %[v_os_b1], s[20:23], 0 offen offset:2048 \n"
"buffer_load_dwordx4 acc[28:31], %[v_os_b1], s[20:23], 0 offen offset:3072 \n"
"buffer_load_dwordx4 acc[32:35], %[v_os_b2], s[20:23], 0 offen \n"
"buffer_load_dwordx4 acc[36:39], %[v_os_b2], s[20:23], 0 offen offset:1024 \n"
"buffer_load_dwordx4 acc[40:43], %[v_os_b2], s[20:23], 0 offen offset:2048 \n"
"buffer_load_dwordx4 acc[44:47], %[v_os_b2], s[20:23], 0 offen offset:3072 \n"
"buffer_load_dwordx4 acc[48:51], %[v_os_b3], s[20:23], 0 offen \n"
"buffer_load_dwordx4 acc[52:55], %[v_os_b3], s[20:23], 0 offen offset:1024 \n"
"buffer_load_dwordx4 acc[56:59], %[v_os_b3], s[20:23], 0 offen offset:2048 \n"
"buffer_load_dwordx4 acc[60:63], %[v_os_b3], s[20:23], 0 offen offset:3072 \n"
"buffer_load_dwordx4 acc[64:67], %[v_os_b4], s[20:23], 0 offen \n"
"buffer_load_dwordx4 acc[68:71], %[v_os_b4], s[20:23], 0 offen offset:1024 \n"
"buffer_load_dwordx4 acc[72:75], %[v_os_b4], s[20:23], 0 offen offset:2048 \n"
"buffer_load_dwordx4 acc[76:79], %[v_os_b4], s[20:23], 0 offen offset:3072 \n"
"buffer_load_dwordx4 acc[80:83], %[v_os_b5], s[20:23], 0 offen \n"
"buffer_load_dwordx4 acc[84:87], %[v_os_b5], s[20:23], 0 offen offset:1024 \n"
"buffer_load_dwordx4 acc[88:91], %[v_os_b5], s[20:23], 0 offen offset:2048 \n"
"buffer_load_dwordx4 acc[92:95], %[v_os_b5], s[20:23], 0 offen offset:3072 \n"
"buffer_load_dwordx4 acc[96:99], %[v_os_b6], s[20:23], 0 offen \n"
"buffer_load_dwordx4 acc[100:103], %[v_os_b6], s[20:23], 0 offen offset:1024 \n"
"buffer_load_dwordx4 acc[104:107], %[v_os_b6], s[20:23], 0 offen offset:2048 \n"
"buffer_load_dwordx4 acc[108:111], %[v_os_b6], s[20:23], 0 offen offset:3072 \n"
"buffer_load_dwordx4 acc[112:115], %[v_os_b7], s[20:23], 0 offen \n"
"buffer_load_dwordx4 acc[116:119], %[v_os_b7], s[20:23], 0 offen offset:1024 \n"
"buffer_load_dwordx4 acc[120:123], %[v_os_b7], s[20:23], 0 offen offset:2048 \n"
"buffer_load_dwordx4 acc[124:127], %[v_os_b7], s[20:23], 0 offen offset:3072 \n"
"s_cmp_gt_i32 %[s_loop_cnt] 1 ; move b with cond \n"
"s_cselect_b32 s86, %[s_tile_os_b], 0 ; move b with cond \n"
"s_add_u32 s20, s86, s20 ; move b with cond \n"
"s_addc_u32 s21, 0, s21 ; move b with cond \n"
"s_waitcnt vmcnt(40) \n"
"s_barrier \n"
"ds_read_b128 v[64:67], %[v_os_slda] offset:0*%[smem_sz] + %[sld_os_0]\n" // 1024: N stride, 64 K stride
"ds_read_b128 v[68:71], %[v_os_slda] offset:0*%[smem_sz] + %[sld_os_1]\n"
"ds_read_b128 v[72:75], %[v_os_slda] offset:0*%[smem_sz] + %[sld_os_2]\n"
"ds_read_b128 v[76:79], %[v_os_slda] offset:0*%[smem_sz] + %[sld_os_3]\n"
"ds_read_b128 v[80:83], %[v_os_slda] offset:0*%[smem_sz] + %[sld_os_4]\n"
"ds_read_b128 v[84:87], %[v_os_slda] offset:0*%[smem_sz] + %[sld_os_5]\n"
"ds_read_b128 v[88:91], %[v_os_slda] offset:0*%[smem_sz] + %[sld_os_6]\n"
"ds_read_b128 v[92:95], %[v_os_slda] offset:0*%[smem_sz] + %[sld_os_7]\n"
"L_start%=: \n"
" s_waitcnt vmcnt(24) & lgkmcnt(0) \n"
" s_barrier \n"
_UK_MFMA_ " %[v_acc_0], acc[0:1], v[64:65], %[v_acc_0] \n"
_UK_MFMA_ " %[v_acc_0], acc[2:3], v[66:67], %[v_acc_0] \n"
" buffer_load_dwordx4 acc[128:131], %[v_os_b0], s[20:23], 0 offen \n"
_UK_MFMA_ " %[v_acc_0], acc[4:5], v[68:69], %[v_acc_0] \n"
_UK_MFMA_ " %[v_acc_0], acc[6:7], v[70:71], %[v_acc_0] \n"
" buffer_load_dword %[v_os_a0], s[16:19], 0 offen lds \n"
" s_add_u32 m0, %[s_size_per_issue], m0 \n"
_UK_MFMA_ " %[v_acc_0], acc[8:9], v[72:73], %[v_acc_0] \n"
_UK_MFMA_ " %[v_acc_0], acc[10:11], v[74:75], %[v_acc_0] \n"
" buffer_load_dwordx4 acc[132:135], %[v_os_b0], s[20:23], 0 offen offset:1024 \n"
_UK_MFMA_ " %[v_acc_0], acc[12:13], v[76:77], %[v_acc_0] \n"
_UK_MFMA_ " %[v_acc_0], acc[14:15], v[78:79], %[v_acc_0] \n"
" buffer_load_dword %[v_os_a1], s[16:19], 0 offen lds \n"
" s_add_u32 m0, %[s_size_per_issue], m0 \n"
_UK_MFMA_ " %[v_acc_1], acc[0:1], v[80:81], %[v_acc_1] \n"
_UK_MFMA_ " %[v_acc_1], acc[2:3], v[82:83], %[v_acc_1] \n"
" buffer_load_dwordx4 acc[136:139], %[v_os_b0], s[20:23], 0 offen offset:2048 \n"
_UK_MFMA_ " %[v_acc_1], acc[4:5], v[84:85], %[v_acc_1] \n"
_UK_MFMA_ " %[v_acc_1], acc[6:7], v[86:87], %[v_acc_1] \n"
" buffer_load_dword %[v_os_a2], s[16:19], 0 offen lds \n"
" s_add_u32 m0, %[s_size_per_issue], m0 \n"
_UK_MFMA_ " %[v_acc_1], acc[8:9], v[88:89], %[v_acc_1] \n"
_UK_MFMA_ " %[v_acc_1], acc[10:11], v[90:91], %[v_acc_1] \n"
" buffer_load_dwordx4 acc[140:143], %[v_os_b0], s[20:23], 0 offen offset:3072 \n"
_UK_MFMA_ " %[v_acc_1], acc[12:13], v[92:93], %[v_acc_1] \n"
_UK_MFMA_ " %[v_acc_1], acc[14:15], v[94:95], %[v_acc_1] \n"
" buffer_load_dword %[v_os_a3], s[16:19], 0 offen lds \n"
" s_add_u32 m0, %[s_size_per_issue], m0 \n"
_UK_MFMA_ " %[v_acc_2], acc[16:17], v[64:65], %[v_acc_2] \n"
_UK_MFMA_ " %[v_acc_2], acc[18:19], v[66:67], %[v_acc_2] \n"
" buffer_load_dwordx4 acc[144:147], %[v_os_b1], s[20:23], 0 offen \n"
_UK_MFMA_ " %[v_acc_2], acc[20:21], v[68:69], %[v_acc_2] \n"
_UK_MFMA_ " %[v_acc_2], acc[22:23], v[70:71], %[v_acc_2] \n"
" buffer_load_dword %[v_os_a4], s[16:19], 0 offen lds \n"
" s_add_u32 m0, %[s_size_per_issue], m0 \n"
_UK_MFMA_ " %[v_acc_2], acc[24:25], v[72:73], %[v_acc_2] \n"
_UK_MFMA_ " %[v_acc_2], acc[26:27], v[74:75], %[v_acc_2] \n"
" buffer_load_dwordx4 acc[148:151], %[v_os_b1], s[20:23], 0 offen offset:1024 \n"
_UK_MFMA_ " %[v_acc_2], acc[28:29], v[76:77], %[v_acc_2] \n"
_UK_MFMA_ " %[v_acc_2], acc[30:31], v[78:79], %[v_acc_2] \n"
" buffer_load_dword %[v_os_a5], s[16:19], 0 offen lds \n"
" s_add_u32 m0, %[s_size_per_issue], m0 \n"
_UK_MFMA_ " %[v_acc_3], acc[16:17], v[80:81], %[v_acc_3] \n"
_UK_MFMA_ " %[v_acc_3], acc[18:19], v[82:83], %[v_acc_3] \n"
" buffer_load_dwordx4 acc[152:155], %[v_os_b1], s[20:23], 0 offen offset:2048 \n"
_UK_MFMA_ " %[v_acc_3], acc[20:21], v[84:85], %[v_acc_3] \n"
_UK_MFMA_ " %[v_acc_3], acc[22:23], v[86:87], %[v_acc_3] \n"
" buffer_load_dword %[v_os_a6], s[16:19], 0 offen lds \n"
" s_add_u32 m0, %[s_size_per_issue], m0 \n"
_UK_MFMA_ " %[v_acc_3], acc[24:25], v[88:89], %[v_acc_3] \n"
_UK_MFMA_ " %[v_acc_3], acc[26:27], v[90:91], %[v_acc_3] \n"
" buffer_load_dwordx4 acc[156:159], %[v_os_b1], s[20:23], 0 offen offset:3072 \n"
_UK_MFMA_ " %[v_acc_3], acc[28:29], v[92:93], %[v_acc_3] \n"
_UK_MFMA_ " %[v_acc_3], acc[30:31], v[94:95], %[v_acc_3] \n"
" buffer_load_dword %[v_os_a7], s[16:19], 0 offen lds \n"
" s_add_u32 m0, %[smem_sz], %[s_m0_init] \n"
" s_waitcnt vmcnt(32) \n"
_UK_MFMA_ " %[v_acc_4], acc[32:33], v[64:65], %[v_acc_4] \n"
_UK_MFMA_ " %[v_acc_4], acc[34:35], v[66:67], %[v_acc_4] \n"
" buffer_load_dwordx4 acc[160:163], %[v_os_b2], s[20:23], 0 offen \n"
_UK_MFMA_ " %[v_acc_4], acc[36:37], v[68:69], %[v_acc_4] \n"
_UK_MFMA_ " %[v_acc_4], acc[38:39], v[70:71], %[v_acc_4] \n"
" ds_read_b128 v[96:99], %[v_os_slda], offset:1*%[smem_sz] + %[sld_os_0] \n"
_UK_MFMA_ " %[v_acc_4], acc[40:41], v[72:73], %[v_acc_4] \n"
_UK_MFMA_ " %[v_acc_4], acc[42:43], v[74:75], %[v_acc_4] \n"
" buffer_load_dwordx4 acc[164:167], %[v_os_b2], s[20:23], 0 offen offset:1024 \n"
_UK_MFMA_ " %[v_acc_4], acc[44:45], v[76:77], %[v_acc_4] \n"
_UK_MFMA_ " %[v_acc_4], acc[46:47], v[78:79], %[v_acc_4] \n"
" ds_read_b128 v[100:103], %[v_os_slda], offset:1*%[smem_sz] + %[sld_os_1] \n"
_UK_MFMA_ " %[v_acc_5], acc[32:33], v[80:81], %[v_acc_5] \n"
_UK_MFMA_ " %[v_acc_5], acc[34:35], v[82:83], %[v_acc_5] \n"
" buffer_load_dwordx4 acc[168:171], %[v_os_b2], s[20:23], 0 offen offset:2048 \n"
_UK_MFMA_ " %[v_acc_5], acc[36:37], v[84:85], %[v_acc_5] \n"
_UK_MFMA_ " %[v_acc_5], acc[38:39], v[86:87], %[v_acc_5] \n"
" ds_read_b128 v[104:107], %[v_os_slda], offset:1*%[smem_sz] + %[sld_os_2] \n"
_UK_MFMA_ " %[v_acc_5], acc[40:41], v[88:89], %[v_acc_5] \n"
_UK_MFMA_ " %[v_acc_5], acc[42:43], v[90:91], %[v_acc_5] \n"
" buffer_load_dwordx4 acc[172:175], %[v_os_b2], s[20:23], 0 offen offset:3072 \n"
_UK_MFMA_ " %[v_acc_5], acc[44:45], v[92:93], %[v_acc_5] \n"
_UK_MFMA_ " %[v_acc_5], acc[46:47], v[94:95], %[v_acc_5] \n"
" ds_read_b128 v[108:111], %[v_os_slda], offset:1*%[smem_sz] + %[sld_os_3] \n"
_UK_MFMA_ " %[v_acc_6], acc[48:49], v[64:65], %[v_acc_6] \n"
_UK_MFMA_ " %[v_acc_6], acc[50:51], v[66:67], %[v_acc_6] \n"
" buffer_load_dwordx4 acc[176:179], %[v_os_b3], s[20:23], 0 offen \n"
_UK_MFMA_ " %[v_acc_6], acc[52:53], v[68:69], %[v_acc_6] \n"
_UK_MFMA_ " %[v_acc_6], acc[54:55], v[70:71], %[v_acc_6] \n"
" ds_read_b128 v[112:115], %[v_os_slda], offset:1*%[smem_sz] + %[sld_os_4] \n"
_UK_MFMA_ " %[v_acc_6], acc[56:57], v[72:73], %[v_acc_6] \n"
_UK_MFMA_ " %[v_acc_6], acc[58:59], v[74:75], %[v_acc_6] \n"
" buffer_load_dwordx4 acc[180:183], %[v_os_b3], s[20:23], 0 offen offset:1024 \n"
_UK_MFMA_ " %[v_acc_6], acc[60:61], v[76:77], %[v_acc_6] \n"
_UK_MFMA_ " %[v_acc_6], acc[62:63], v[78:79], %[v_acc_6] \n"
" ds_read_b128 v[116:119], %[v_os_slda], offset:1*%[smem_sz] + %[sld_os_5] \n"
_UK_MFMA_ " %[v_acc_7], acc[48:49], v[80:81], %[v_acc_7] \n"
_UK_MFMA_ " %[v_acc_7], acc[50:51], v[82:83], %[v_acc_7] \n"
" buffer_load_dwordx4 acc[184:187], %[v_os_b3], s[20:23], 0 offen offset:2048 \n"
_UK_MFMA_ " %[v_acc_7], acc[52:53], v[84:85], %[v_acc_7] \n"
_UK_MFMA_ " %[v_acc_7], acc[54:55], v[86:87], %[v_acc_7] \n"
" ds_read_b128 v[120:123], %[v_os_slda], offset:1*%[smem_sz] + %[sld_os_6] \n"
_UK_MFMA_ " %[v_acc_7], acc[56:57], v[88:89], %[v_acc_7] \n"
_UK_MFMA_ " %[v_acc_7], acc[58:59], v[90:91], %[v_acc_7] \n"
" buffer_load_dwordx4 acc[188:191], %[v_os_b3], s[20:23], 0 offen offset:3072 \n"
_UK_MFMA_ " %[v_acc_7], acc[60:61], v[92:93], %[v_acc_7] \n"
_UK_MFMA_ " %[v_acc_7], acc[62:63], v[94:95], %[v_acc_7] \n"
" ds_read_b128 v[124:127], %[v_os_slda], offset:1*%[smem_sz] + %[sld_os_7] \n"
" s_waitcnt vmcnt(32) \n"
_UK_MFMA_ " %[v_acc_8], acc[64:65], v[64:65], %[v_acc_8] \n"
_UK_MFMA_ " %[v_acc_8], acc[66:67], v[66:67], %[v_acc_8] \n"
" buffer_load_dwordx4 acc[192:195], %[v_os_b4], s[20:23], 0 offen \n"
_UK_MFMA_ " %[v_acc_8], acc[68:69], v[68:69], %[v_acc_8] \n"
_UK_MFMA_ " %[v_acc_8], acc[70:71], v[70:71], %[v_acc_8] \n"
_UK_MFMA_ " %[v_acc_8], acc[72:73], v[72:73], %[v_acc_8] \n"
_UK_MFMA_ " %[v_acc_8], acc[74:75], v[74:75], %[v_acc_8] \n"
" buffer_load_dwordx4 acc[196:199], %[v_os_b4], s[20:23], 0 offen offset:1024 \n"
_UK_MFMA_ " %[v_acc_8], acc[76:77], v[76:77], %[v_acc_8] \n"
_UK_MFMA_ " %[v_acc_8], acc[78:79], v[78:79], %[v_acc_8] \n"
_UK_MFMA_ " %[v_acc_9], acc[64:65], v[80:81], %[v_acc_9] \n"
_UK_MFMA_ " %[v_acc_9], acc[66:67], v[82:83], %[v_acc_9] \n"
" buffer_load_dwordx4 acc[200:203], %[v_os_b4], s[20:23], 0 offen offset:2048 \n"
_UK_MFMA_ " %[v_acc_9], acc[68:69], v[84:85], %[v_acc_9] \n"
_UK_MFMA_ " %[v_acc_9], acc[70:71], v[86:87], %[v_acc_9] \n"
_UK_MFMA_ " %[v_acc_9], acc[72:73], v[88:89], %[v_acc_9] \n"
_UK_MFMA_ " %[v_acc_9], acc[74:75], v[90:91], %[v_acc_9] \n"
" buffer_load_dwordx4 acc[204:207], %[v_os_b4], s[20:23], 0 offen offset:3072 \n"
_UK_MFMA_ " %[v_acc_9], acc[76:77], v[92:93], %[v_acc_9] \n"
_UK_MFMA_ " %[v_acc_9], acc[78:79], v[94:95], %[v_acc_9] \n"
_UK_MFMA_ " %[v_acc_10], acc[80:81], v[64:65], %[v_acc_10] \n"
_UK_MFMA_ " %[v_acc_10], acc[82:83], v[66:67], %[v_acc_10] \n"
" buffer_load_dwordx4 acc[208:211], %[v_os_b5], s[20:23], 0 offen \n"
_UK_MFMA_ " %[v_acc_10], acc[84:85], v[68:69], %[v_acc_10] \n"
_UK_MFMA_ " %[v_acc_10], acc[86:87], v[70:71], %[v_acc_10] \n"
_UK_MFMA_ " %[v_acc_10], acc[88:89], v[72:73], %[v_acc_10] \n"
_UK_MFMA_ " %[v_acc_10], acc[90:91], v[74:75], %[v_acc_10] \n"
" buffer_load_dwordx4 acc[212:215], %[v_os_b5], s[20:23], 0 offen offset:1024 \n"
_UK_MFMA_ " %[v_acc_10], acc[92:93], v[76:77], %[v_acc_10] \n"
_UK_MFMA_ " %[v_acc_10], acc[94:95], v[78:79], %[v_acc_10] \n"
_UK_MFMA_ " %[v_acc_11], acc[80:81], v[80:81], %[v_acc_11] \n"
_UK_MFMA_ " %[v_acc_11], acc[82:83], v[82:83], %[v_acc_11] \n"
" buffer_load_dwordx4 acc[216:219], %[v_os_b5], s[20:23], 0 offen offset:2048 \n"
_UK_MFMA_ " %[v_acc_11], acc[84:85], v[84:85], %[v_acc_11] \n"
_UK_MFMA_ " %[v_acc_11], acc[86:87], v[86:87], %[v_acc_11] \n"
_UK_MFMA_ " %[v_acc_11], acc[88:89], v[88:89], %[v_acc_11] \n"
_UK_MFMA_ " %[v_acc_11], acc[90:91], v[90:91], %[v_acc_11] \n"
" buffer_load_dwordx4 acc[220:223], %[v_os_b5], s[20:23], 0 offen offset:3072 \n"
_UK_MFMA_ " %[v_acc_11], acc[92:93], v[92:93], %[v_acc_11] \n"
_UK_MFMA_ " %[v_acc_11], acc[94:95], v[94:95], %[v_acc_11] \n"
" s_waitcnt vmcnt(32) \n"
_UK_MFMA_ " %[v_acc_12], acc[96:97], v[64:65], %[v_acc_12] \n"
_UK_MFMA_ " %[v_acc_12], acc[98:99], v[66:67], %[v_acc_12] \n"
" buffer_load_dwordx4 acc[224:227], %[v_os_b6], s[20:23], 0 offen \n"
_UK_MFMA_ " %[v_acc_12], acc[100:101], v[68:69], %[v_acc_12] \n"
_UK_MFMA_ " %[v_acc_12], acc[102:103], v[70:71], %[v_acc_12] \n"
_UK_MFMA_ " %[v_acc_12], acc[104:105], v[72:73], %[v_acc_12] \n"
_UK_MFMA_ " %[v_acc_12], acc[106:107], v[74:75], %[v_acc_12] \n"
" buffer_load_dwordx4 acc[228:231], %[v_os_b6], s[20:23], 0 offen offset:1024 \n"
_UK_MFMA_ " %[v_acc_12], acc[108:109], v[76:77], %[v_acc_12] \n"
_UK_MFMA_ " %[v_acc_12], acc[110:111], v[78:79], %[v_acc_12] \n"
_UK_MFMA_ " %[v_acc_13], acc[96:97], v[80:81], %[v_acc_13] \n"
_UK_MFMA_ " %[v_acc_13], acc[98:99], v[82:83], %[v_acc_13] \n"
" buffer_load_dwordx4 acc[232:235], %[v_os_b6], s[20:23], 0 offen offset:2048 \n"
_UK_MFMA_ " %[v_acc_13], acc[100:101], v[84:85], %[v_acc_13] \n"
_UK_MFMA_ " %[v_acc_13], acc[102:103], v[86:87], %[v_acc_13] \n"
_UK_MFMA_ " %[v_acc_13], acc[104:105], v[88:89], %[v_acc_13] \n"
_UK_MFMA_ " %[v_acc_13], acc[106:107], v[90:91], %[v_acc_13] \n"
" buffer_load_dwordx4 acc[236:239], %[v_os_b6], s[20:23], 0 offen offset:3072 \n"
_UK_MFMA_ " %[v_acc_13], acc[108:109], v[92:93], %[v_acc_13] \n"
_UK_MFMA_ " %[v_acc_13], acc[110:111], v[94:95], %[v_acc_13] \n"
_UK_MFMA_ " %[v_acc_14], acc[112:113], v[64:65], %[v_acc_14] \n"
_UK_MFMA_ " %[v_acc_14], acc[114:115], v[66:67], %[v_acc_14] \n"
" buffer_load_dwordx4 acc[240:243], %[v_os_b7], s[20:23], 0 offen \n"
_UK_MFMA_ " %[v_acc_14], acc[116:117], v[68:69], %[v_acc_14] \n"
_UK_MFMA_ " %[v_acc_14], acc[118:119], v[70:71], %[v_acc_14] \n"
_UK_MFMA_ " %[v_acc_14], acc[120:121], v[72:73], %[v_acc_14] \n"
_UK_MFMA_ " %[v_acc_14], acc[122:123], v[74:75], %[v_acc_14] \n"
" buffer_load_dwordx4 acc[244:247], %[v_os_b7], s[20:23], 0 offen offset:1024 \n"
_UK_MFMA_ " %[v_acc_14], acc[124:125], v[76:77], %[v_acc_14] \n"
_UK_MFMA_ " %[v_acc_14], acc[126:127], v[78:79], %[v_acc_14] \n"
_UK_MFMA_ " %[v_acc_15], acc[112:113], v[80:81], %[v_acc_15] \n"
_UK_MFMA_ " %[v_acc_15], acc[114:115], v[82:83], %[v_acc_15] \n"
" buffer_load_dwordx4 acc[248:251], %[v_os_b7], s[20:23], 0 offen offset:2048 \n"
_UK_MFMA_ " %[v_acc_15], acc[116:117], v[84:85], %[v_acc_15] \n"
_UK_MFMA_ " %[v_acc_15], acc[118:119], v[86:87], %[v_acc_15] \n"
_UK_MFMA_ " %[v_acc_15], acc[120:121], v[88:89], %[v_acc_15] \n"
_UK_MFMA_ " %[v_acc_15], acc[122:123], v[90:91], %[v_acc_15] \n"
" buffer_load_dwordx4 acc[252:255], %[v_os_b7], s[20:23], 0 offen offset:3072\n"
_UK_MFMA_ " %[v_acc_15], acc[124:125], v[92:93], %[v_acc_15] \n"
_UK_MFMA_ " %[v_acc_15], acc[126:127], v[94:95], %[v_acc_15] \n"
" s_sub_i32 %[s_loop_cnt], %[s_loop_cnt], 1 \n"
" s_cmp_gt_i32 %[s_loop_cnt] 0 \n"
" s_cbranch_scc0 L_end%= \n"
" s_cmp_gt_i32 %[s_loop_cnt] 2 ; move a with cond \n"
" s_cselect_b32 s86, %[s_tile_os_a], 0 \n"
" s_add_u32 s16, s86, s16 \n"
" s_addc_u32 s17, 0, s17 \n"
" s_cmp_gt_i32 %[s_loop_cnt] 1 ; move b with cond \n"
" s_cselect_b32 s86, %[s_tile_os_b], 0 \n"
" s_add_u32 s20, s86, s20 \n"
" s_addc_u32 s21, 0, s21 \n"
" ;------------------------------------------ \n"
" s_waitcnt vmcnt(24) & lgkmcnt(0) \n"
" s_barrier \n"
_UK_MFMA_ " %[v_acc_0], acc[128:129], v[96:97], %[v_acc_0] \n"
_UK_MFMA_ " %[v_acc_0], acc[130:131], v[98:99], %[v_acc_0] \n"
" buffer_load_dwordx4 acc[0:3], %[v_os_b0], s[20:23], 0 offen \n"
_UK_MFMA_ " %[v_acc_0], acc[132:133], v[100:101], %[v_acc_0] \n"
_UK_MFMA_ " %[v_acc_0], acc[134:135], v[102:103], %[v_acc_0] \n"
" buffer_load_dword %[v_os_a0], s[16:19], 0 offen lds \n"
" s_add_u32 m0, %[s_size_per_issue], m0 \n"
_UK_MFMA_ " %[v_acc_0], acc[136:137], v[104:105], %[v_acc_0] \n"
_UK_MFMA_ " %[v_acc_0], acc[138:139], v[106:107], %[v_acc_0] \n"
" buffer_load_dwordx4 acc[4:7], %[v_os_b0], s[20:23], 0 offen offset:1024 \n"
_UK_MFMA_ " %[v_acc_0], acc[140:141], v[108:109], %[v_acc_0] \n"
_UK_MFMA_ " %[v_acc_0], acc[142:143], v[110:111], %[v_acc_0] \n"
" buffer_load_dword %[v_os_a1], s[16:19], 0 offen lds \n"
" s_add_u32 m0, %[s_size_per_issue], m0 \n"
_UK_MFMA_ " %[v_acc_1], acc[128:129], v[112:113], %[v_acc_1] \n"
_UK_MFMA_ " %[v_acc_1], acc[130:131], v[114:115], %[v_acc_1] \n"
" buffer_load_dwordx4 acc[8:11], %[v_os_b0], s[20:23], 0 offen offset:2048 \n"
_UK_MFMA_ " %[v_acc_1], acc[132:133], v[116:117], %[v_acc_1] \n"
_UK_MFMA_ " %[v_acc_1], acc[134:135], v[118:119], %[v_acc_1] \n"
" buffer_load_dword %[v_os_a2], s[16:19], 0 offen lds \n"
" s_add_u32 m0, %[s_size_per_issue], m0 \n"
_UK_MFMA_ " %[v_acc_1], acc[136:137], v[120:121], %[v_acc_1] \n"
_UK_MFMA_ " %[v_acc_1], acc[138:139], v[122:123], %[v_acc_1] \n"
" buffer_load_dwordx4 acc[12:15], %[v_os_b0], s[20:23], 0 offen offset:3072 \n"
_UK_MFMA_ " %[v_acc_1], acc[140:141], v[124:125], %[v_acc_1] \n"
_UK_MFMA_ " %[v_acc_1], acc[142:143], v[126:127], %[v_acc_1] \n"
" buffer_load_dword %[v_os_a3], s[16:19], 0 offen lds \n"
" s_add_u32 m0, %[s_size_per_issue], m0 \n"
_UK_MFMA_ " %[v_acc_2], acc[144:145], v[96:97], %[v_acc_2] \n"
_UK_MFMA_ " %[v_acc_2], acc[146:147], v[98:99], %[v_acc_2] \n"
" buffer_load_dwordx4 acc[16:19], %[v_os_b1], s[20:23], 0 offen \n"
_UK_MFMA_ " %[v_acc_2], acc[148:149], v[100:101], %[v_acc_2] \n"
_UK_MFMA_ " %[v_acc_2], acc[150:151], v[102:103], %[v_acc_2] \n"
" buffer_load_dword %[v_os_a4], s[16:19], 0 offen lds \n"
" s_add_u32 m0, %[s_size_per_issue], m0 \n"
_UK_MFMA_ " %[v_acc_2], acc[152:153], v[104:105], %[v_acc_2] \n"
_UK_MFMA_ " %[v_acc_2], acc[154:155], v[106:107], %[v_acc_2] \n"
" buffer_load_dwordx4 acc[20:23], %[v_os_b1], s[20:23], 0 offen offset:1024 \n"
_UK_MFMA_ " %[v_acc_2], acc[156:157], v[108:109], %[v_acc_2] \n"
_UK_MFMA_ " %[v_acc_2], acc[158:159], v[110:111], %[v_acc_2] \n"
" buffer_load_dword %[v_os_a5], s[16:19], 0 offen lds \n"
" s_add_u32 m0, %[s_size_per_issue], m0 \n"
_UK_MFMA_ " %[v_acc_3], acc[144:145], v[112:113], %[v_acc_3] \n"
_UK_MFMA_ " %[v_acc_3], acc[146:147], v[114:115], %[v_acc_3] \n"
" buffer_load_dwordx4 acc[24:27], %[v_os_b1], s[20:23], 0 offen offset:2048 \n"
_UK_MFMA_ " %[v_acc_3], acc[148:149], v[116:117], %[v_acc_3] \n"
_UK_MFMA_ " %[v_acc_3], acc[150:151], v[118:119], %[v_acc_3] \n"
" buffer_load_dword %[v_os_a6], s[16:19], 0 offen lds \n"
" s_add_u32 m0, %[s_size_per_issue], m0 \n"
_UK_MFMA_ " %[v_acc_3], acc[152:153], v[120:121], %[v_acc_3] \n"
_UK_MFMA_ " %[v_acc_3], acc[154:155], v[122:123], %[v_acc_3] \n"
" buffer_load_dwordx4 acc[28:31], %[v_os_b1], s[20:23], 0 offen offset:3072 \n"
_UK_MFMA_ " %[v_acc_3], acc[156:157], v[124:125], %[v_acc_3] \n"
_UK_MFMA_ " %[v_acc_3], acc[158:159], v[126:127], %[v_acc_3] \n"
" buffer_load_dword %[v_os_a7], s[16:19], 0 offen lds \n"
" s_add_u32 m0, 0, %[s_m0_init] \n"
" s_waitcnt vmcnt(32) \n"
_UK_MFMA_ " %[v_acc_4], acc[160:161], v[96:97], %[v_acc_4] \n"
_UK_MFMA_ " %[v_acc_4], acc[162:163], v[98:99], %[v_acc_4] \n"
" buffer_load_dwordx4 acc[32:35], %[v_os_b2], s[20:23], 0 offen \n"
_UK_MFMA_ " %[v_acc_4], acc[164:165], v[100:101], %[v_acc_4] \n"
_UK_MFMA_ " %[v_acc_4], acc[166:167], v[102:103], %[v_acc_4] \n"
" ds_read_b128 v[64:67], %[v_os_slda] offset:0*%[smem_sz] + %[sld_os_0] \n"
_UK_MFMA_ " %[v_acc_4], acc[168:169], v[104:105], %[v_acc_4] \n"
_UK_MFMA_ " %[v_acc_4], acc[170:171], v[106:107], %[v_acc_4] \n"
" buffer_load_dwordx4 acc[36:39], %[v_os_b2], s[20:23], 0 offen offset:1024 \n"
_UK_MFMA_ " %[v_acc_4], acc[172:173], v[108:109], %[v_acc_4] \n"
_UK_MFMA_ " %[v_acc_4], acc[174:175], v[110:111], %[v_acc_4] \n"
" ds_read_b128 v[68:71], %[v_os_slda] offset:0*%[smem_sz] + %[sld_os_1] \n"
_UK_MFMA_ " %[v_acc_5], acc[160:161], v[112:113], %[v_acc_5] \n"
_UK_MFMA_ " %[v_acc_5], acc[162:163], v[114:115], %[v_acc_5] \n"
" buffer_load_dwordx4 acc[40:43], %[v_os_b2], s[20:23], 0 offen offset:2048 \n"
_UK_MFMA_ " %[v_acc_5], acc[164:165], v[116:117], %[v_acc_5] \n"
_UK_MFMA_ " %[v_acc_5], acc[166:167], v[118:119], %[v_acc_5] \n"
" ds_read_b128 v[72:75], %[v_os_slda] offset:0*%[smem_sz] + %[sld_os_2] \n"
_UK_MFMA_ " %[v_acc_5], acc[168:169], v[120:121], %[v_acc_5] \n"
_UK_MFMA_ " %[v_acc_5], acc[170:171], v[122:123], %[v_acc_5] \n"
" buffer_load_dwordx4 acc[44:47], %[v_os_b2], s[20:23], 0 offen offset:3072 \n"
_UK_MFMA_ " %[v_acc_5], acc[172:173], v[124:125], %[v_acc_5] \n"
_UK_MFMA_ " %[v_acc_5], acc[174:175], v[126:127], %[v_acc_5] \n"
" ds_read_b128 v[76:79], %[v_os_slda] offset:0*%[smem_sz] + %[sld_os_3] \n"
_UK_MFMA_ " %[v_acc_6], acc[176:177], v[96:97], %[v_acc_6] \n"
_UK_MFMA_ " %[v_acc_6], acc[178:179], v[98:99], %[v_acc_6] \n"
" buffer_load_dwordx4 acc[48:51], %[v_os_b3], s[20:23], 0 offen \n"
_UK_MFMA_ " %[v_acc_6], acc[180:181], v[100:101], %[v_acc_6] \n"
_UK_MFMA_ " %[v_acc_6], acc[182:183], v[102:103], %[v_acc_6] \n"
" ds_read_b128 v[80:83], %[v_os_slda] offset:0*%[smem_sz] + %[sld_os_4] \n"
_UK_MFMA_ " %[v_acc_6], acc[184:185], v[104:105], %[v_acc_6] \n"
_UK_MFMA_ " %[v_acc_6], acc[186:187], v[106:107], %[v_acc_6] \n"
" buffer_load_dwordx4 acc[52:55], %[v_os_b3], s[20:23], 0 offen offset:1024 \n"
_UK_MFMA_ " %[v_acc_6], acc[188:189], v[108:109], %[v_acc_6] \n"
_UK_MFMA_ " %[v_acc_6], acc[190:191], v[110:111], %[v_acc_6] \n"
" ds_read_b128 v[84:87], %[v_os_slda] offset:0*%[smem_sz] + %[sld_os_5] \n"
_UK_MFMA_ " %[v_acc_7], acc[176:177], v[112:113], %[v_acc_7] \n"
_UK_MFMA_ " %[v_acc_7], acc[178:179], v[114:115], %[v_acc_7] \n"
" buffer_load_dwordx4 acc[56:59], %[v_os_b3], s[20:23], 0 offen offset:2048 \n"
_UK_MFMA_ " %[v_acc_7], acc[180:181], v[116:117], %[v_acc_7] \n"
_UK_MFMA_ " %[v_acc_7], acc[182:183], v[118:119], %[v_acc_7] \n"
" ds_read_b128 v[88:91], %[v_os_slda] offset:0*%[smem_sz] + %[sld_os_6] \n"
_UK_MFMA_ " %[v_acc_7], acc[184:185], v[120:121], %[v_acc_7] \n"
_UK_MFMA_ " %[v_acc_7], acc[186:187], v[122:123], %[v_acc_7] \n"
" buffer_load_dwordx4 acc[60:63], %[v_os_b3], s[20:23], 0 offen offset:3072 \n"
_UK_MFMA_ " %[v_acc_7], acc[188:189], v[124:125], %[v_acc_7] \n"
_UK_MFMA_ " %[v_acc_7], acc[190:191], v[126:127], %[v_acc_7] \n"
" ds_read_b128 v[92:95], %[v_os_slda] offset:0*%[smem_sz] + %[sld_os_7] \n"
" s_waitcnt vmcnt(32) \n"
_UK_MFMA_ " %[v_acc_8], acc[192:193], v[96:97], %[v_acc_8] \n"
_UK_MFMA_ " %[v_acc_8], acc[194:195], v[98:99], %[v_acc_8] \n"
" buffer_load_dwordx4 acc[64:67], %[v_os_b4], s[20:23], 0 offen \n"
_UK_MFMA_ " %[v_acc_8], acc[196:197], v[100:101], %[v_acc_8] \n"
_UK_MFMA_ " %[v_acc_8], acc[198:199], v[102:103], %[v_acc_8] \n"
_UK_MFMA_ " %[v_acc_8], acc[200:201], v[104:105], %[v_acc_8] \n"
_UK_MFMA_ " %[v_acc_8], acc[202:203], v[106:107], %[v_acc_8] \n"
" buffer_load_dwordx4 acc[68:71], %[v_os_b4], s[20:23], 0 offen offset:1024 \n"
_UK_MFMA_ " %[v_acc_8], acc[204:205], v[108:109], %[v_acc_8] \n"
_UK_MFMA_ " %[v_acc_8], acc[206:207], v[110:111], %[v_acc_8] \n"
_UK_MFMA_ " %[v_acc_9], acc[192:193], v[112:113], %[v_acc_9] \n"
_UK_MFMA_ " %[v_acc_9], acc[194:195], v[114:115], %[v_acc_9] \n"
" buffer_load_dwordx4 acc[72:75], %[v_os_b4], s[20:23], 0 offen offset:2048 \n"
_UK_MFMA_ " %[v_acc_9], acc[196:197], v[116:117], %[v_acc_9] \n"
_UK_MFMA_ " %[v_acc_9], acc[198:199], v[118:119], %[v_acc_9] \n"
_UK_MFMA_ " %[v_acc_9], acc[200:201], v[120:121], %[v_acc_9] \n"
_UK_MFMA_ " %[v_acc_9], acc[202:203], v[122:123], %[v_acc_9] \n"
" buffer_load_dwordx4 acc[76:79], %[v_os_b4], s[20:23], 0 offen offset:3072 \n"
_UK_MFMA_ " %[v_acc_9], acc[204:205], v[124:125], %[v_acc_9] \n"
_UK_MFMA_ " %[v_acc_9], acc[206:207], v[126:127], %[v_acc_9] \n"
_UK_MFMA_ " %[v_acc_10], acc[208:209], v[96:97], %[v_acc_10] \n"
_UK_MFMA_ " %[v_acc_10], acc[210:211], v[98:99], %[v_acc_10] \n"
" buffer_load_dwordx4 acc[80:83], %[v_os_b5], s[20:23], 0 offen \n"
_UK_MFMA_ " %[v_acc_10], acc[212:213], v[100:101], %[v_acc_10] \n"
_UK_MFMA_ " %[v_acc_10], acc[214:215], v[102:103], %[v_acc_10] \n"
_UK_MFMA_ " %[v_acc_10], acc[216:217], v[104:105], %[v_acc_10] \n"
_UK_MFMA_ " %[v_acc_10], acc[218:219], v[106:107], %[v_acc_10] \n"
" buffer_load_dwordx4 acc[84:87], %[v_os_b5], s[20:23], 0 offen offset:1024 \n"
_UK_MFMA_ " %[v_acc_10], acc[220:221], v[108:109], %[v_acc_10] \n"
_UK_MFMA_ " %[v_acc_10], acc[222:223], v[110:111], %[v_acc_10] \n"
_UK_MFMA_ " %[v_acc_11], acc[208:209], v[112:113], %[v_acc_11] \n"
_UK_MFMA_ " %[v_acc_11], acc[210:211], v[114:115], %[v_acc_11] \n"
" buffer_load_dwordx4 acc[88:91], %[v_os_b5], s[20:23], 0 offen offset:2048 \n"
_UK_MFMA_ " %[v_acc_11], acc[212:213], v[116:117], %[v_acc_11] \n"
_UK_MFMA_ " %[v_acc_11], acc[214:215], v[118:119], %[v_acc_11] \n"
_UK_MFMA_ " %[v_acc_11], acc[216:217], v[120:121], %[v_acc_11] \n"
_UK_MFMA_ " %[v_acc_11], acc[218:219], v[122:123], %[v_acc_11] \n"
" buffer_load_dwordx4 acc[92:95], %[v_os_b5], s[20:23], 0 offen offset:3072 \n"
_UK_MFMA_ " %[v_acc_11], acc[220:221], v[124:125], %[v_acc_11] \n"
_UK_MFMA_ " %[v_acc_11], acc[222:223], v[126:127], %[v_acc_11] \n"
" s_waitcnt vmcnt(32) \n"
_UK_MFMA_ " %[v_acc_12], acc[224:225], v[96:97], %[v_acc_12] \n"
_UK_MFMA_ " %[v_acc_12], acc[226:227], v[98:99], %[v_acc_12] \n"
" buffer_load_dwordx4 acc[96:99], %[v_os_b6], s[20:23], 0 offen \n"
_UK_MFMA_ " %[v_acc_12], acc[228:229], v[100:101], %[v_acc_12] \n"
_UK_MFMA_ " %[v_acc_12], acc[230:231], v[102:103], %[v_acc_12] \n"
_UK_MFMA_ " %[v_acc_12], acc[232:233], v[104:105], %[v_acc_12] \n"
_UK_MFMA_ " %[v_acc_12], acc[234:235], v[106:107], %[v_acc_12] \n"
" buffer_load_dwordx4 acc[100:103], %[v_os_b6], s[20:23], 0 offen offset:1024 \n"
_UK_MFMA_ " %[v_acc_12], acc[236:237], v[108:109], %[v_acc_12] \n"
_UK_MFMA_ " %[v_acc_12], acc[238:239], v[110:111], %[v_acc_12] \n"
_UK_MFMA_ " %[v_acc_13], acc[224:225], v[112:113], %[v_acc_13] \n"
_UK_MFMA_ " %[v_acc_13], acc[226:227], v[114:115], %[v_acc_13] \n"
" buffer_load_dwordx4 acc[104:107], %[v_os_b6], s[20:23], 0 offen offset:2048 \n"
_UK_MFMA_ " %[v_acc_13], acc[228:229], v[116:117], %[v_acc_13] \n"
_UK_MFMA_ " %[v_acc_13], acc[230:231], v[118:119], %[v_acc_13] \n"
_UK_MFMA_ " %[v_acc_13], acc[232:233], v[120:121], %[v_acc_13] \n"
_UK_MFMA_ " %[v_acc_13], acc[234:235], v[122:123], %[v_acc_13] \n"
" buffer_load_dwordx4 acc[108:111], %[v_os_b6], s[20:23], 0 offen offset:3072 \n"
_UK_MFMA_ " %[v_acc_13], acc[236:237], v[124:125], %[v_acc_13] \n"
_UK_MFMA_ " %[v_acc_13], acc[238:239], v[126:127], %[v_acc_13] \n"
_UK_MFMA_ " %[v_acc_14], acc[240:241], v[96:97], %[v_acc_14] \n"
_UK_MFMA_ " %[v_acc_14], acc[242:243], v[98:99], %[v_acc_14] \n"
" buffer_load_dwordx4 acc[112:115], %[v_os_b7], s[20:23], 0 offen \n"
_UK_MFMA_ " %[v_acc_14], acc[244:245], v[100:101], %[v_acc_14] \n"
_UK_MFMA_ " %[v_acc_14], acc[246:247], v[102:103], %[v_acc_14] \n"
_UK_MFMA_ " %[v_acc_14], acc[248:249], v[104:105], %[v_acc_14] \n"
_UK_MFMA_ " %[v_acc_14], acc[250:251], v[106:107], %[v_acc_14] \n"
" buffer_load_dwordx4 acc[116:119], %[v_os_b7], s[20:23], 0 offen offset:1024 \n"
_UK_MFMA_ " %[v_acc_14], acc[252:253], v[108:109], %[v_acc_14] \n"
_UK_MFMA_ " %[v_acc_14], acc[254:255], v[110:111], %[v_acc_14] \n"
_UK_MFMA_ " %[v_acc_15], acc[240:241], v[112:113], %[v_acc_15] \n"
_UK_MFMA_ " %[v_acc_15], acc[242:243], v[114:115], %[v_acc_15] \n"
" buffer_load_dwordx4 acc[120:123], %[v_os_b7], s[20:23], 0 offen offset:2048 \n"
_UK_MFMA_ " %[v_acc_15], acc[244:245], v[116:117], %[v_acc_15] \n"
_UK_MFMA_ " %[v_acc_15], acc[246:247], v[118:119], %[v_acc_15] \n"
_UK_MFMA_ " %[v_acc_15], acc[248:249], v[120:121], %[v_acc_15] \n"
_UK_MFMA_ " %[v_acc_15], acc[250:251], v[122:123], %[v_acc_15] \n"
" buffer_load_dwordx4 acc[124:127], %[v_os_b7], s[20:23], 0 offen offset:3072 \n"
_UK_MFMA_ " %[v_acc_15], acc[252:253], v[124:125], %[v_acc_15] \n"
_UK_MFMA_ " %[v_acc_15], acc[254:255], v[126:127], %[v_acc_15] \n"
" s_sub_i32 %[s_loop_cnt], %[s_loop_cnt], 1 \n"
" s_cmp_gt_i32 %[s_loop_cnt] 0 \n"
" s_cbranch_scc0 L_end%= \n"
" s_cmp_gt_i32 %[s_loop_cnt] 2 ; move a with cond \n"
" s_cselect_b32 s86, %[s_tile_os_a], 0 \n"
" s_add_u32 s16, s86, s16 \n"
" s_addc_u32 s17, 0, s17 \n"
" s_cmp_gt_i32 %[s_loop_cnt] 1 ; move b with cond \n"
" s_cselect_b32 s86, %[s_tile_os_b], 0 \n"
" s_add_u32 s20, s86, s20 \n"
" s_addc_u32 s21, 0, s21 \n"
" s_branch L_start%= \n"
"L_end%=: \n"
" s_nop 2 \n"
#undef _UK_MFMA_
......@@ -331,7 +331,8 @@ struct BlockFmhaPipelineQRKSVSAsync
Policy::template MakeVDramTileDistribution<Problem>());
// prefetch K tile
async_load_tile_raw(k_lds_store(LdsSeq.at(number<0>{})), k_dram_window, k_oob_ck, k_pre_np);
async_load_tile_raw(
k_lds_store(LdsSeq.at(number<0>{})), k_dram_window, number<-1>{}, k_oob_ck, k_pre_np);
move_tile_window(k_dram_window, {0, kK0});
__builtin_amdgcn_sched_barrier(0);
......@@ -355,6 +356,7 @@ struct BlockFmhaPipelineQRKSVSAsync
static_for<0, k0_loops - 1, 1>{}([&](auto i_k0) {
async_load_tile_raw(k_lds_store(number<LdsSeq.at(number<i_k0 + 1>{})>{}),
k_dram_window,
number<-1>{},
k_oob_ck,
k_pre_np);
if constexpr(i_k0 < k0_loops - 1)
......@@ -386,7 +388,7 @@ struct BlockFmhaPipelineQRKSVSAsync
__builtin_amdgcn_s_barrier();
const auto bias_tile = load_tile(bias_dram_window); // load bias tile
auto v_buf = load_tile(v_dram_window, bool_constant<false>{});
auto v_buf = load_tile(v_dram_window, number<-1>{}, bool_constant<false>{});
__builtin_amdgcn_sched_barrier(0);
{ // tail
gemm_0(s_acc,
......@@ -514,7 +516,8 @@ struct BlockFmhaPipelineQRKSVSAsync
move_tile_window(
v_dram_window,
{0, kK1}); // will have scratch if move this right after load_tile(v_dram)...
v_buf = load_tile(v_dram_window, bool_constant<false>{}); // load next v_buf
v_buf = load_tile(
v_dram_window, number<-1>{}, bool_constant<false>{}); // load next v_buf
}
__builtin_amdgcn_sched_barrier(0);
......@@ -618,7 +621,8 @@ struct BlockFmhaPipelineQRKSVSAsync
static_for<0, k1_loops - 1, 1>{}([&](auto i_k1) {
if constexpr(i_k1 != 0 && i_k1 < k1_loops - 1)
{
v_buf = load_tile(v_dram_window, bool_constant<false>{}); // load next v_buf
v_buf = load_tile(
v_dram_window, number<-1>{}, bool_constant<false>{}); // load next v_buf
}
block_sync_lds();
gemm_1(o_acc,
......@@ -665,8 +669,11 @@ struct BlockFmhaPipelineQRKSVSAsync
if constexpr(k1_loops >= 2 &&
LdsSeq.at(number<0>{}) == LdsSeq.at(number<k0_loops + k1_loops - 2>{}))
__builtin_amdgcn_s_barrier();
async_load_tile_raw(
k_lds_store(LdsSeq.at(number<0>{})), k_dram_window, k_oob_ck, k_pre_np);
async_load_tile_raw(k_lds_store(LdsSeq.at(number<0>{})),
k_dram_window,
number<-1>{},
k_oob_ck,
k_pre_np);
move_tile_window(k_dram_window, {0, kK0});
}
// tail
......
......@@ -3,7 +3,15 @@
#pragma once
#include "ck_tile/ops/fused_moe/kernel/fused_moegemm_kernel.hpp"
#include "ck_tile/ops/fused_moe/kernel/fused_moegemm_shape.hpp"
#include "ck_tile/ops/fused_moe/kernel/fused_moegemm_tile_partitioner.hpp"
#include "ck_tile/ops/fused_moe/kernel/moe_sorting_kernel.hpp"
#include "ck_tile/ops/fused_moe/pipeline/fused_moegemm_pipeline_flatmm_ex.hpp"
#include "ck_tile/ops/fused_moe/pipeline/fused_moegemm_pipeline_flatmm_policy.hpp"
#include "ck_tile/ops/fused_moe/pipeline/fused_moegemm_pipeline_flatmm_uk.hpp"
#include "ck_tile/ops/fused_moe/pipeline/fused_moegemm_pipeline_problem.hpp"
#include "ck_tile/ops/fused_moe/pipeline/fused_moegemm_traits.hpp"
#include "ck_tile/ops/fused_moe/pipeline/moe_sorting_pipeline.hpp"
#include "ck_tile/ops/fused_moe/pipeline/moe_sorting_policy.hpp"
#include "ck_tile/ops/fused_moe/pipeline/moe_sorting_problem.hpp"
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
#include "ck_tile/ops/elementwise.hpp"
#include <string>
#include <type_traits>
// clang-format off
// [indexing implementation-1]
// using M_a as constexpr block_size to partition all tokens into different slices
// each slice map to one expert, and one expert can have multiple slices
// e.g. num_experts = 6, topk=3, M_a = 4, input_tokens = 5
// before sort, topk_ids is : [[0, 3, 5], [2, 3, 5], [1, 3, 5], [1, 2, 3], [1, 3, 5]]
// tok-0 tok-1 tok-2 tok-3 tok-4
// topk_weight is : [[a, b, c], [d, e, f], [g, h, i], [j, k, l], [m, n, o]] (some float number)
//
// token_id_per_expert is : [[0], [2, 3, 4], [1, 3], [0, 1, 2, 3, 4], [], [0, 1, 2, 5]]
// (only for reference) exp-0 exp-1 exp-2 exp-3 exp-4 exp-5
// weight_id_per_expert is: [[a], [g, j, m], [d, k], [b, e, h, l, n], [], [c, f, i, o]]
//
// max_num_tokens_padded : topk * input_tokens + num_experts * (M_a - 1)
// * this could be larger than actual, since actual tokens are on GPU
//
// sorted_token_ids_ptr : [0, 6, 6, 6, 2, 3, 4, 6, 1, 3, 6, 6, 0, 1, 2, 3, 4, 6, 6, 6, 6, 6, 6, 6, 0, 1, 2, 5]
// |- exp-0 -|- exp-1 -|- exp-2 -|- exp-3 -|- exp-4 -|- exp-5 -|
// sorted_weight_ptr : [a, *, *, *, g, j, m, *, d, k, *, *, b, e, h, l, n, *, *, *, *, *, *, *, c, f, i, o]
//
// * length is max_num_tokens_padded, actual size is num_tokens_post_padded_ptr
//
// * Note on token_id_per_expert/sorted_token_ids_ptr data:
// currently we do not have topk information from the data of token_id_per_expert/sorted_token_ids_ptr.
// In some cases(like smooth-quant), we need topk information to indexing into tokens quant from
// different expert smooth quant. So we modify the number stored inside token_id_per_expert/sorted_token_ids_ptr
//
// 32bit 0........23 24.....31 bit
// (data) -> (token_id | topk_id)
// low 24 bit is for token id, top 8 bit is for topk id
//
// the input after smooth-quant is [token, topk, hidden_dim], originally it is [token, hidden_dim]
// the input scale for token is [topk, token, 1], the smooth-quant scale for first gemm is [expert, interm_dim]
//
// sorted_expert_ids_ptr : [0, 1, 2, 3, 3, 4, 5]
// * length is (max_num_tokens_padded + block_size - 1) / block_size
//
// num_tokens_post_padded_ptr : [28]
// num_sorted_tiles_ptr : [7]
//
// * different from vLLM
// 1) token_id stored in sorted_token_ids_ptr is actual token_id, not token_id*top_K expanded id
// 2)need sorted_weight_ptr
// 3) use num_sorted_tiles_ptr, already divided by M_a
//
// * below used for indexing
// 1) sorted_token_ids_ptr [max_num_tokens_padded]
// 2) sorted_weight_ptr
// 3) sorted_expert_ids_ptr
// 4)num_tokens_post_padded_ptr/num_sorted_tiles_ptr (select one)
//
// max_num_tokens_padded: opk_ids.numel() + num_experts * (block_size - 1)
//
// [indexing implementation-2]
// before sort, topk_ids is : [[0, 3, 5], [2, 3, 5], [1, 3, 5], [1, 2, 3], [1, 3, 5]]
// tok-0 tok-1 tok-2 tok-3 tok-4
// topk_weight is : [[a, b, c], [d, e, f], [g, h, i], [j, k, l], [m, n, o]] (some float number)
//
// we generate original rol/col id as
// topk_rc_ids : [[0, 5, A], [1, 6, B], [2, 7, C], [3, 8, D], [4, 9, E]]
// let x be one element of above, we can get:
// tpok_row_id(token_id) = x % num_tokens(5)
// tpok_col_id(expert_Id) = x / num_tokens
// topk_row_id/col_id can be used to access original topk_ids/topk_weight
//
// token_id_per_expert is : [[0], [2, 3, 4], [1, 3], [0, 1, 2, 3, 4], [], [0, 1, 5, 5]]
// (only for reference) exp-0 exp-1 exp-2 exp-3 exp-4 exp-5
// weight_id_per_expert is: [[a], [g, j, m], [d, k], [b, e, h, l, n], [], [c, f, i, o]]
//
// we can get permuted_rc_ids:
// [[0], [2, 3, 4], [1, 8], [5, 6, 7, D, 9], [], [A, B, C, E]]
//
//
// clang-format on
//
namespace ck_tile {
// m: num_tokens (or token*input-batch)
// k: intermediate_size
// n: intermediate_size used between 2 FC (TP slice this)
// e: num expert
// if doing pre-shuffle
// nr : n / Block_Nr
// kr : k / Block_Kr
// w : fattened 1d wave buffer
struct FusedMoeGemmHostArgs
{
const void* a_ptr; // [m, k], input token
const void* a_scale_ptr; // [m, 1], token scale
const void* g_ptr; // [e, n, k]/[e, 2*n, k], pre-shuffle([e, nr, kr, w])
const void* d_ptr; // [e, n, k], pre-shuffle([e, nr, kr, w])
const void* g_scale_ptr; // [e, 1, n], gate(up) scale
const void* d_scale_ptr; // [e, 1, k], down scale
const void* y_smooth_scale_ptr; // [e, 1, n], smooth-quant-scale for 2nd gemm input
void* o_ptr; // [m, k], output token
const void* sorted_token_ids_ptr; // [max_num_tokens_padded]
const void* sorted_weight_ptr; // [max_num_tokens_padded]
const void* sorted_expert_ids_ptr; // [(max_num_tokens_padded + block_size - 1) / block_size]
const void* num_sorted_tiles_ptr; // [1]
index_t hidden_size; // k
index_t intermediate_size; // n / TP, for Gate. if Gate+Up, Down need divide by 2
index_t num_tokens; // input number of tokens for current iteration
index_t num_experts; // number of groups
index_t topk; // need this?
index_t stride_token; // for input/output, stride for each row, should >= hidden_size
};
// This is scatter/gather b2b group-gemm
template <typename Partitioner_, typename Pipeline_, typename Epilogue_>
struct FusedMoeGemmKernel
{
using Partitioner = remove_cvref_t<Partitioner_>;
using Pipeline = remove_cvref_t<Pipeline_>;
using Epilogue = remove_cvref_t<Epilogue_>; // TODO: not used
// static constexpr index_t kBlockPerCu = Pipeline::kBlockPerCu;
// static_assert(kBlockPerCu > 0);
using BlockShape = typename Pipeline::BlockShape; // this is FusedMoeGemmShape
static constexpr index_t BlockSize_ = BlockShape::BlockSize;
using ADataType = typename Pipeline::Problem::ADataType;
using GDataType = typename Pipeline::Problem::GDataType;
using DDataType = typename Pipeline::Problem::DDataType;
using AccDataType = typename Pipeline::Problem::AccDataType;
using ODataType = typename Pipeline::Problem::ODataType;
using AScaleDataType = typename Pipeline::Problem::AScaleDataType;
using GScaleDataType = typename Pipeline::Problem::GScaleDataType;
using DScaleDataType = typename Pipeline::Problem::DScaleDataType;
using YSmoothScaleDataType = typename Pipeline::Problem::YSmoothScaleDataType;
using TopkWeightDataType = typename Pipeline::Problem::TopkWeightDataType;
using IndexDataType = typename Pipeline::Problem::IndexDataType;
using YDataType = typename Pipeline::Problem::YDataType;
using Traits = typename Pipeline::Problem::Traits;
static constexpr bool UseUK = true;
static constexpr bool IsGateOnly = Traits::IsGateOnly;
static constexpr bool UseSmoothQuant = Traits::UseSmoothQuant;
static constexpr bool PadHiddenSize = Traits::PadHiddenSize;
static constexpr bool PadIntermediateSize = Traits::PadIntermediateSize;
// clang-format off
template <typename T> struct t2s;
template <> struct t2s<float> { static constexpr const char * name = "fp32"; };
template <> struct t2s<fp16_t> { static constexpr const char * name = "fp16"; };
template <> struct t2s<bf16_t> { static constexpr const char * name = "bf16"; };
template <> struct t2s<fp8_t> { static constexpr const char * name = "fp8"; };
template <> struct t2s<bf8_t> { static constexpr const char * name = "bf8"; };
template <> struct t2s<int8_t> { static constexpr const char * name = "int8"; };
// clang-format on
CK_TILE_HOST static std::string GetName()
{
#define _SS_ std::string
#define _TS_ std::to_string
// clang-format off
using S_ = BlockShape;
auto prec_str = [&] () {
std::string base_str = _SS_(t2s<ADataType>::name);
if (!std::is_same_v<ADataType, GDataType>) {
base_str += _SS_("_") + _SS_(t2s<GDataType>::name);
}
return base_str;
}();
return _SS_("fused_moe_") + _SS_(prec_str) + "_" +
_TS_(S_::Block_M0) + "x" + _TS_(S_::Block_N0) + "x" + _TS_(S_::Block_K0) + "x" + _TS_(S_::Block_N1) + "_" +
_TS_(S_::WarpPerBlock_M0) + "x" + _TS_(S_::WarpPerBlock_N0) + "x" + _TS_(S_::WarpPerBlock_K0) + "_" +
_TS_(S_::Warp_M0) + "x" + _TS_(S_::Warp_N0) + "x" + _TS_(S_::Warp_K0) + "_" + _SS_(Pipeline::name);
#undef _SS_
#undef _TS_
// clang-format on
}
struct FusedMoeGemmKargs
{
const void* a_ptr; // [m, k], input token
const void* a_scale_ptr; // [m, 1], token scale
const void* g_ptr; // [e, n, k]/[e, 2*n, k], pre-shuffle([e, nr, kr, w])
const void* d_ptr; // [e, n, k], pre-shuffle([e, nr, kr, w])
const void* g_scale_ptr; // [e, 1, n], gate(up) scale
const void* d_scale_ptr; // [e, 1, k], down scale
const void* y_smooth_scale_ptr; // [e, 1, n], smooth-quant-scale for 2nd gemm input
void* o_ptr; // [m, k], output token
const void* sorted_token_ids_ptr;
const void* sorted_weight_ptr;
const void* sorted_expert_ids_ptr;
const void* num_sorted_tiles_ptr;
index_t hidden_size; // k
index_t intermediate_size; // n / TP, for Gate. if Gate+Up, Down need divide by 2
index_t num_tokens; // input number of tokens for current iteration
index_t num_experts; // number of groups
index_t topk; // need this?
index_t stride_token; // for input/output, stride for each row, should >= hidden_size
};
// TODO: switch karg based on
using Kargs = FusedMoeGemmKargs;
using Hargs = FusedMoeGemmHostArgs;
CK_TILE_HOST static constexpr Kargs MakeKargs(const Hargs& hargs)
{
// TODO: hargs/kargs not guranteed to be the same
return bit_cast<Kargs>(hargs);
}
CK_TILE_HOST static constexpr auto GridSize(const Hargs& hargs)
{
constexpr index_t block_m = BlockShape::Block_M0;
int max_num_tokens_padded =
hargs.topk * hargs.num_tokens + hargs.num_experts * block_m - hargs.topk;
// printf("xxx max_num_tokens_padded:%d\n", max_num_tokens_padded);
return Partitioner::GridSize(max_num_tokens_padded, hargs.intermediate_size);
}
CK_TILE_HOST static constexpr auto BlockSize() { return dim3(BlockSize_); }
CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSize() { return Pipeline::GetSmemSize(); }
CK_TILE_DEVICE void operator()(Kargs kargs) const
{
if constexpr(UseUK)
{
__shared__ CK_TILE_LDS_ADDR ADataType smem[GetSmemSize()];
IndexDataType num_sorted_tiles = __builtin_amdgcn_readfirstlane(
*reinterpret_cast<const IndexDataType*>(kargs.num_sorted_tiles_ptr));
num_sorted_tiles = num_sorted_tiles / BlockShape::Block_M0;
const auto [sorted_tile_id, intermediate_tile_id] =
Partitioner{}(num_sorted_tiles, kargs.intermediate_size);
// if(threadIdx.x == 0)
// printf("bid:%d,%d, num_sorted_tiles:%d, sorted_tile_id:%d(%d),
// intermediate_tile_id:%d\n", static_cast<int>(blockIdx.x),
// static_cast<int>(blockIdx.y), num_sorted_tiles, sorted_tile_id, sorted_tile_id >=
// num_sorted_tiles? 1 : 0, intermediate_tile_id);
if(sorted_tile_id >= num_sorted_tiles)
return;
Pipeline{}(kargs, smem, sorted_tile_id, intermediate_tile_id);
}
else
{
// allocate LDS
// __shared__ char smem_ptr[GetSmemSize()];
IndexDataType num_sorted_tiles = __builtin_amdgcn_readfirstlane(
*reinterpret_cast<const IndexDataType*>(kargs.num_sorted_tiles_ptr));
constexpr index_t hidden_radio_0 = IsGateOnly ? 1 : 2;
index_t nr_0 = kargs.intermediate_size / BlockShape::Block_Nr0;
index_t kr_0 = kargs.hidden_size / BlockShape::Block_Kr0;
index_t nr_1 = kargs.hidden_size / BlockShape::Block_Nr1; // should be same as kr_0
index_t kr_1 =
kargs.intermediate_size / BlockShape::Block_Kr1; // should be same as nr_0
index_t expert_stride_0 = kargs.intermediate_size * hidden_radio_0 * kargs.hidden_size;
index_t expert_stride_1 = kargs.intermediate_size * kargs.hidden_size;
__shared__ CK_TILE_LDS_ADDR ADataType smem[GetSmemSize()];
// note this is in unit of tile, need multiple tile size to get the index
const auto [sorted_tile_id, intermediate_tile_id] =
Partitioner{}(num_sorted_tiles, kargs.intermediate_size);
if(sorted_tile_id >= num_sorted_tiles)
return;
const IndexDataType expert_id =
__builtin_amdgcn_readfirstlane(reinterpret_cast<const IndexDataType*>(
kargs.sorted_expert_ids_ptr)[sorted_tile_id]);
// index along intermediate_size
// index_t hidden_idx = __builtin_amdgcn_readfirstlane(intermediate_tile_id *
// BlockShape::Block_N0);
index_t interm_idx_nr =
__builtin_amdgcn_readfirstlane(intermediate_tile_id * BlockShape::Block_Nr0);
const auto a_coord = Pipeline::GetACoord(); // 2d thread offset, [i_row, i_col]
const auto sorted_token_id =
a_coord[number<0>{}] + sorted_tile_id * BlockShape::Block_M0;
index_t token_id =
reinterpret_cast<const index_t*>(kargs.sorted_token_ids_ptr)[sorted_token_id];
auto topk_weight = reinterpret_cast<const TopkWeightDataType*>(
kargs.sorted_weight_ptr)[sorted_token_id];
const auto a_window = [&]() {
// A is already pre-padded in previous kernel
const ADataType* a_ptr = reinterpret_cast<const ADataType*>(kargs.a_ptr);
const auto a_view_ = make_naive_tensor_view<address_space_enum::global>(
a_ptr,
make_tuple(kargs.num_tokens, kargs.hidden_size),
make_tuple(kargs.stride_token, 1),
number<Pipeline::kAlignmentA>{},
number<1>{});
// gather is here use indexing transform
const auto a_gather_view_ = transform_tensor_view(
a_view_,
make_tuple(make_indexing_transform(kargs.num_tokens, token_id),
make_pass_through_transform(kargs.hidden_size)),
make_tuple(sequence<0>{}, sequence<1>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
const auto a_window_ = make_tile_window(
a_gather_view_,
make_tuple(number<BlockShape::Block_M0>{}, number<BlockShape::Block_K0>{}),
{0, 0});
return a_window_;
}();
// TODO: gtile using NSub to have less register pressure
const auto g_window = [&]() {
const GDataType* g_ptr = reinterpret_cast<const GDataType*>(kargs.g_ptr) +
static_cast<long_index_t>(expert_id) * expert_stride_0 +
interm_idx_nr * kr_0 * BlockShape::Block_W0;
const auto g_view_ = make_naive_tensor_view<address_space_enum::global>(
g_ptr,
make_tuple(nr_0, kr_0, number<BlockShape::Block_W0>{}),
make_tuple(kr_0 * BlockShape::Block_W0, number<BlockShape::Block_W0>{}, 1),
number<Pipeline::kAlignmentG>{},
number<1>{});
const auto g_view_1_ =
pad_tensor_view(g_view_,
make_tuple(number<BlockShape::Block_Nr0>{},
number<BlockShape::Block_Kr0>{},
number<BlockShape::Block_W0>{}),
sequence<PadIntermediateSize, PadHiddenSize, 0>{});
const auto g_window_ = make_tile_window(g_view_1_,
make_tuple(number<BlockShape::Block_Nr0>{},
number<BlockShape::Block_Kr0>{},
number<BlockShape::Block_W0>{}),
{0, 0, 0});
return g_window_;
}();
const auto d_window = [&]() {
const DDataType* d_ptr = reinterpret_cast<const DDataType*>(kargs.d_ptr) +
static_cast<long_index_t>(expert_id) * expert_stride_1 +
interm_idx_nr * BlockShape::Block_W1;
// note interm_idx_nr is along the gemm-k dim of 2nd gemm
const auto d_view_ = make_naive_tensor_view<address_space_enum::global>(
d_ptr,
make_tuple(nr_1, kr_1, BlockShape::Block_W1),
make_tuple(kr_1 * BlockShape::Block_W1, BlockShape::Block_W1, 1),
number<Pipeline::kAlignmentD>{},
number<1>{});
const auto d_view_1_ =
pad_tensor_view(d_view_,
make_tuple(number<BlockShape::Block_Nr1>{},
number<BlockShape::Block_Kr1>{},
number<BlockShape::Block_W1>{}),
sequence<PadHiddenSize, PadIntermediateSize, 0>{});
const auto d_window_ = make_tile_window(d_view_1_,
make_tuple(number<BlockShape::Block_Nr1>{},
number<BlockShape::Block_Kr1>{},
number<BlockShape::Block_W1>{}),
{0, 0, 0});
return d_window_;
}();
auto o_window = [&]() {
ODataType* o_ptr = reinterpret_cast<ODataType*>(kargs.o_ptr);
auto o_view_ = make_naive_tensor_view<address_space_enum::global,
memory_operation_enum::atomic_add>(
o_ptr,
make_tuple(kargs.num_tokens, kargs.hidden_size),
make_tuple(kargs.stride_token, 1),
number<Pipeline::kAlignmentO>{},
number<1>{});
// gather is here
auto o_scatter_view_ = transform_tensor_view(
o_view_,
make_tuple(make_indexing_transform(kargs.num_tokens, token_id),
make_pass_through_transform(kargs.hidden_size)),
make_tuple(sequence<0>{}, sequence<1>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
auto o_window_ = make_tile_window(
o_scatter_view_,
make_tuple(number<BlockShape::Block_M1>{}, number<BlockShape::Block_N1>{}),
{0, 0});
return o_window_;
}();
// do compute yeah
Pipeline{}(a_window,
g_window,
d_window,
o_window,
topk_weight,
smem,
kargs.hidden_size,
kargs.intermediate_size,
kargs.stride_token);
}
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
/*
tensors:
1. act (A): input feature map
2. gate (G): B matrix for first gemm, output will do activation(Silu)
3. up (U): B matrix for first gemm
4. down (D): B matrix for second gemm
N1
/ \
+----------+ |
| Down | |
x----------x |
hidden hidden K1 | | |
N0 N0 x----------x |
| +------x-----x------+------x-----x------+ | | |
dim | | Gate | | | Up | | | | | |
contiguous | | | | | | | | | | |
| | | | | | | | | | |
v +------x-----x------+------x-----x------+ +----------+ V
K0 | | | | | contiguous
/ \ v v v v |
+---------+ +------x-----x------+------x-----x------+ |
M0 | A | | | | | | | | |
+---------+ +------x-----x------+------x-----x------+ |
----------> | | |
contiguous | V V
| x-----x +----------+
+------------> M1 | Y | ---------> | Out(O) |
ACT x-----x +----------+
K1 = N0 dim
* Note: Act could be Gelu/Silu/...
* Note: some model does not have Up
*/
template <typename BlockTile_0_,
typename WarpPerBlock_0_,
typename WarpTile_0_,
typename BlockTile_1_,
typename WarpPerBlock_1_,
typename WarpTile_1_>
struct FusedMoeGemmShape
{
using BlockTile_0 = remove_cvref_t<BlockTile_0_>;
using WarpPerBlock_0 = remove_cvref_t<WarpPerBlock_0_>;
using WarpTile_0 = remove_cvref_t<WarpTile_0_>;
using BlockTile_1 = remove_cvref_t<BlockTile_1_>;
using WarpPerBlock_1 = remove_cvref_t<WarpPerBlock_1_>;
using WarpTile_1 = remove_cvref_t<WarpTile_1_>;
static constexpr index_t NumWarps =
reduce_on_sequence(WarpPerBlock_0{}, multiplies{}, number<1>{});
// TODO: we don't support half warps aound to 1 warp here
static_assert(NumWarps == reduce_on_sequence(WarpPerBlock_1{}, multiplies{}, number<1>{}));
static constexpr index_t Block_M0 = BlockTile_0::at(number<0>{});
static constexpr index_t Block_N0 = BlockTile_0::at(number<1>{});
static constexpr index_t Block_K0 = BlockTile_0::at(number<2>{});
static constexpr index_t WarpPerBlock_M0 = WarpPerBlock_0::at(number<0>{});
static constexpr index_t WarpPerBlock_N0 = WarpPerBlock_0::at(number<1>{});
static constexpr index_t WarpPerBlock_K0 = WarpPerBlock_0::at(number<2>{});
static constexpr index_t Warp_M0 = WarpTile_0::at(number<0>{});
static constexpr index_t Warp_N0 = WarpTile_0::at(number<1>{});
static constexpr index_t Warp_K0 = WarpTile_0::at(number<2>{});
static constexpr index_t ThreadPerBlock_M0 = Warp_M0 * WarpPerBlock_M0;
static constexpr index_t ThreadPerBlock_N0 = Warp_N0 * WarpPerBlock_N0;
static constexpr index_t ThreadPerBlock_K0 = Warp_K0 * WarpPerBlock_K0;
static_assert(Block_M0 % ThreadPerBlock_M0 == 0);
static_assert(Block_N0 % ThreadPerBlock_N0 == 0);
static_assert(Block_K0 % ThreadPerBlock_K0 == 0);
static constexpr index_t Repeat_M0 = Block_M0 / ThreadPerBlock_M0;
static constexpr index_t Repeat_N0 = Block_N0 / ThreadPerBlock_N0;
static constexpr index_t Repeat_K0 = Block_K0 / ThreadPerBlock_K0;
static constexpr index_t Block_M1 = BlockTile_1::at(number<0>{});
static constexpr index_t Block_N1 = BlockTile_1::at(number<1>{});
static constexpr index_t Block_K1 = BlockTile_1::at(number<2>{});
static constexpr index_t WarpPerBlock_M1 = WarpPerBlock_1::at(number<0>{});
static constexpr index_t WarpPerBlock_N1 = WarpPerBlock_1::at(number<1>{});
static constexpr index_t WarpPerBlock_K1 = WarpPerBlock_1::at(number<2>{});
static constexpr index_t Warp_M1 = WarpTile_1::at(number<0>{});
static constexpr index_t Warp_N1 = WarpTile_1::at(number<1>{});
static constexpr index_t Warp_K1 = WarpTile_1::at(number<2>{});
static constexpr index_t ThreadPerBlock_M1 = Warp_M1 * WarpPerBlock_M1;
static constexpr index_t ThreadPerBlock_N1 = Warp_N1 * WarpPerBlock_N1;
static constexpr index_t ThreadPerBlock_K1 = Warp_K1 * WarpPerBlock_K1;
static_assert(Block_M1 % ThreadPerBlock_M1 == 0);
static_assert(Block_N1 % ThreadPerBlock_N1 == 0);
static_assert(Block_K1 % ThreadPerBlock_K1 == 0);
static constexpr index_t Repeat_M1 = Block_M1 / ThreadPerBlock_M1;
static constexpr index_t Repeat_N1 = Block_N1 / ThreadPerBlock_N1;
static constexpr index_t Repeat_K1 = Block_K1 / ThreadPerBlock_K1;
static constexpr index_t BlockSize = warpSize * NumWarps;
// some assert
static_assert(Block_M0 == Block_M1);
static_assert(Block_N0 == Block_K1 || (Block_N0 / 2) == Block_K1); // Gate Only or Gate+Up
// pre-shuffle tile size compute (assume only for B matrix)
// we flatten the each wave tile to a 1d linear tensor(at model loading time)
// e.g. originally we have Block_N*Block_K tile size, after pre-shuffle
// we can have Block_Nr*Block_Kr*Block_W, where Block_W is Warp_N*Warp_K,
// and Block_Nr=Block_N/Warp_N, Block_Kr=Block_K/Warp_K
static constexpr index_t Block_W0 = Warp_N0 * Warp_K0;
static constexpr index_t Block_Nr0 = Block_N0 / Warp_N0;
static constexpr index_t Block_Kr0 = Block_K0 / Warp_K0;
static constexpr index_t Block_W1 = Warp_N1 * Warp_K1;
static constexpr index_t Block_Nr1 = Block_N1 / Warp_N1;
static constexpr index_t Block_Kr1 = Block_K1 / Warp_K1;
static_assert(Block_W0 == Block_W1);
// static_assert(Block_Nr0 == Block_Kr1);
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
namespace ck_tile {
template <typename BlockShape_>
struct FusedMoeGemmTilePartitioner_Linear
{
// FusedMoeGemmShape
using BlockShape = ck_tile::remove_cvref_t<BlockShape_>;
static constexpr const char* name = "lin";
CK_TILE_DEVICE auto operator()(ck_tile::index_t /*num_sorted_tiles*/,
ck_tile::index_t /*intermediate_size*/)
{
index_t i_n = blockIdx.x;
index_t i_m = blockIdx.y;
return ck_tile::make_tuple(i_m, i_n);
}
CK_TILE_HOST static constexpr auto GridSize(index_t max_tokens, index_t intermediate_size)
{
// TODO: this may need tuning
index_t ms = ck_tile::integer_divide_ceil(max_tokens, BlockShape::Block_M0);
index_t ns = ck_tile::integer_divide_ceil(intermediate_size, BlockShape::Block_N0);
return dim3(ns, ms, 1);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
#include "ck_tile/ops/fused_moe/pipeline/fused_moegemm_pipeline_flatmm_policy.hpp"
namespace ck_tile {
/*
This pipeline deal with a gemm(actually 2 gemm) with one very small(token), one very big(weight)
we need to design the pipeline such that all waves along gemm-N dim (gemm-m only 1 wave)
<----- gemm-N ------>
+----+----+----+----+
| w0 | w1 | w2 | w3 | gemm-m
+----+----+----+----+
*/
template <typename Problem_, typename Policy_ = FusedMoeGemmPipelineFlatmmPolicy>
struct FusedMoeGemmPipeline_FlatmmEx
{
using Problem = remove_cvref_t<Problem_>;
using Policy = remove_cvref_t<Policy_>;
using BlockShape = typename Problem::BlockShape; // this is FusedMoeGemmShape
using ADataType = typename Problem::ADataType;
using GDataType = typename Problem::GDataType;
using DDataType = typename Problem::DDataType;
using AccDataType = typename Problem::AccDataType;
using ODataType = typename Problem::ODataType;
using AScaleDataType = typename Problem::AScaleDataType;
using GScaleDataType = typename Problem::GScaleDataType;
using DScaleDataType = typename Problem::DScaleDataType;
using YSmoothScaleDataType = typename Problem::YSmoothScaleDataType;
using TopkWeightDataType = typename Problem::TopkWeightDataType;
using IndexDataType = typename Problem::IndexDataType;
using YDataType = typename Problem::YDataType;
using Traits = typename Problem::Traits;
static constexpr bool IsGateOnly = Traits::IsGateOnly;
static constexpr bool UseSmoothQuant = Traits::UseSmoothQuant;
static constexpr bool PadHiddenSize = Traits::PadHiddenSize;
static constexpr bool PadIntermediateSize = Traits::PadIntermediateSize;
static constexpr index_t kAlignmentA = Policy::template GetAlignment_A<Problem>();
static constexpr index_t kAlignmentG = Policy::template GetAlignment_G<Problem>();
static constexpr index_t kAlignmentD = Policy::template GetAlignment_D<Problem>();
static constexpr index_t kAlignmentO = Policy::template GetAlignment_O<Problem>();
static constexpr index_t SLD_A = static_cast<index_t>(FusedMoeGemmPipelineSequencerEnum::SLD_A);
static constexpr index_t GLD_A = static_cast<index_t>(FusedMoeGemmPipelineSequencerEnum::GLD_A);
static constexpr index_t GLD_B = static_cast<index_t>(FusedMoeGemmPipelineSequencerEnum::GLD_B);
static constexpr index_t GST_O = static_cast<index_t>(FusedMoeGemmPipelineSequencerEnum::GST_O);
static constexpr index_t kBlockPerCu = []() {
if constexpr(Problem::kBlockPerCu != -1)
return Problem::kBlockPerCu;
else
{
// minimize occupancy
return 2;
}
}();
static constexpr const char* name = "fused_moe_flatmm";
// TODO: there are multiple buffers
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize_A()
{
return Policy::template GetSmemSize_A<Problem>();
}
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
return Policy::template GetSmemSize<Problem>();
}
// this is the thread-offset along row/col
CK_TILE_HOST_DEVICE static auto GetACoord()
{
constexpr auto a_dist = Policy::template MakeGlobalTileDistribution_A<Problem>();
const auto a_coord = a_dist.calculate_index();
return a_coord;
}
// this is the thread-offset along row/col
CK_TILE_HOST_DEVICE static auto GetOCoord()
{
constexpr auto o_dist = Policy::template MakeOGlobalTileDistribution<Problem>();
const auto o_coord = o_dist.calculate_index();
return o_coord;
}
template <typename AWindow, typename GWindow, typename DWindow, typename OWindow>
CK_TILE_DEVICE auto operator()(const AWindow& a_window_,
const GWindow& g_window_,
const DWindow& d_window_,
OWindow& o_window_,
TopkWeightDataType /*topk_weight*/,
CK_TILE_LDS_ADDR void* smem,
index_t hidden_size,
index_t intermediate_size)
{
_Pragma("clang diagnostic push") _Pragma("clang diagnostic ignored \"-Wc++20-extensions\"");
constexpr auto NEG1 = number<-1>{};
constexpr auto I0 = number<0>{};
constexpr auto I1 = number<1>{};
constexpr auto TRUE = bool_constant<true>{};
constexpr auto FALSE = bool_constant<false>{};
CK_TILE_LDS_ADDR ADataType* smem_0 = reinterpret_cast<CK_TILE_LDS_ADDR ADataType*>(smem);
CK_TILE_LDS_ADDR ADataType* smem_1 = reinterpret_cast<CK_TILE_LDS_ADDR ADataType*>(
reinterpret_cast<CK_TILE_LDS_ADDR char*>(smem) +
Policy::template GetSmemSize_A<Problem>());
auto g_view = g_window_.get_bottom_tensor_view();
auto u_view = [&]() {
if constexpr(IsGateOnly)
{
return g_view;
}
else
{
index_t nr_0 = intermediate_size / BlockShape::Block_Nr0;
index_t kr_0 = hidden_size / BlockShape::Block_Kr0;
const GDataType* g_ptr =
g_window_.get_bottom_tensor_view().get_buffer_view().p_data_;
const GDataType* u_ptr = g_ptr + (nr_0 / 2) * kr_0 * number<BlockShape::Block_W0>{};
const auto u_view_ = make_naive_tensor_view<address_space_enum::global>(
u_ptr,
make_tuple(nr_0, kr_0, number<BlockShape::Block_W0>{}),
make_tuple(kr_0 * BlockShape::Block_W0, number<BlockShape::Block_W0>{}, 1),
number<kAlignmentG>{},
number<1>{});
const auto u_view_1_ =
pad_tensor_view(u_view_,
make_tuple(number<BlockShape::Block_Nr0>{},
number<BlockShape::Block_Kr0>{},
number<BlockShape::Block_W0>{}),
sequence<PadIntermediateSize, PadHiddenSize, 0>{});
return u_view_1_;
}
}();
auto a_win = make_tile_window_linear(
a_window_, Policy::template MakeGlobalTileDistribution_A<Problem>());
auto g_win =
make_tile_window_linear(g_window_,
Policy::template MakeGlobalTileDistribution_G<Problem>(),
sequence<0, 1, 1>{});
auto d_win =
make_tile_window_linear(d_window_,
Policy::template MakeGlobalTileDistribution_D<Problem>(),
sequence<0, 1, 1>{});
auto o_win = make_tile_window_linear(
o_window_, Policy::template MakeGlobalTileDistribution_O<Problem>());
using g_thread_type = decltype(load_tile(g_win));
using d_thread_type = decltype(load_tile(d_win));
using WarpGemm0 = decltype(Policy::template GetWarpGemm0<Problem>());
using WarpGemm1 = decltype(Policy::template GetWarpGemm1<Problem>());
auto warp_gemm_0 = WarpGemm0{};
auto warp_gemm_1 = WarpGemm1{};
// issues_warps_lanes
auto a_sst_win0 =
make_tile_window(make_tensor_view<address_space_enum::lds>(
smem_0, Policy::template MakeLdsStoreDesc_A<Problem>()),
Policy::template MakeLdsStoreDesc_A<Problem>().get_lengths(),
{0, 0, 0});
auto a_sst_win1 =
make_tile_window(make_tensor_view<address_space_enum::lds>(
smem_1, Policy::template MakeLdsStoreDesc_A<Problem>()),
Policy::template MakeLdsStoreDesc_A<Problem>().get_lengths(),
{0, 0, 0});
// m*k
auto a_sld_win0 = [&]() {
using WG = WarpGemm0;
constexpr auto a_outer_dstr_enc = tile_distribution_encoding<
sequence<>,
tuple<sequence<BlockShape::Repeat_M0, BlockShape::WarpPerBlock_M0>,
sequence<BlockShape::Repeat_K0>>,
tuple<sequence<1>>,
tuple<sequence<1>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto a_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
a_outer_dstr_enc, typename WG::AWarpDstrEncoding{});
return make_tile_window_linear(
make_tensor_view<address_space_enum::lds>(
smem_0, Policy::template MakeLdsLoadDesc_A<Problem>()),
Policy::template MakeLdsLoadDesc_A<Problem>().get_lengths(),
{0, 0},
make_static_tile_distribution(a_block_dstr_encode));
}();
// m*k
auto a_sld_win1 = [&]() {
using WG = WarpGemm0;
constexpr auto a_outer_dstr_enc = tile_distribution_encoding<
sequence<>,
tuple<sequence<BlockShape::Repeat_M0, BlockShape::WarpPerBlock_M0>,
sequence<BlockShape::Repeat_K0>>,
tuple<sequence<1>>,
tuple<sequence<1>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto a_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
a_outer_dstr_enc, typename WG::AWarpDstrEncoding{});
return make_tile_window_linear(
make_tensor_view<address_space_enum::lds>(
smem_1, Policy::template MakeLdsLoadDesc_A<Problem>()),
Policy::template MakeLdsLoadDesc_A<Problem>().get_lengths(),
{0, 0},
make_static_tile_distribution(a_block_dstr_encode));
}();
auto bridge_sst_win = [&]() {
return make_tile_window(
make_tensor_view<address_space_enum::lds>(
reinterpret_cast<YDataType*>(smem),
Policy::template MakeBridgeLdsStoreDesc<Problem>()),
Policy::template MakeBridgeLdsStoreDesc<Problem>().get_lengths(),
{0, 0});
}();
auto bridge_sld_win = [&]() {
return make_tile_window_linear(
make_tensor_view<address_space_enum::lds>(
reinterpret_cast<YDataType*>(smem),
Policy::template MakeBridgeLdsLoadDesc<Problem>()),
Policy::template MakeBridgeLdsLoadDesc<Problem>().get_lengths(),
{0, 0},
Policy::template MakeYTileDistribution<Problem>());
}();
// also OK with C array, 2 register buffer
statically_indexed_array<g_thread_type, 2> gs;
constexpr auto issues_a = number<a_win.get_num_of_access()>{};
constexpr auto issues_g = number<g_win.get_num_of_access()>{};
// constexpr auto issues_d = number<d_win.get_num_of_access()>{};
// constexpr auto issues_o = number<o_win.get_num_of_access()>{};
constexpr auto issues_gemm0 =
number<BlockShape::Repeat_M0 * BlockShape::Repeat_N0 * BlockShape::Repeat_K0 *
warp_gemm_0.get_num_of_access()>{};
constexpr auto issues_gemm1 =
number<BlockShape::Repeat_M1 * BlockShape::Repeat_N1 * BlockShape::Repeat_K1 *
warp_gemm_1.get_num_of_access()>{};
// constexpr auto issues_sld_a = number<a_sld_win0.get_num_of_access()>{};
const index_t num_blocks_k0 =
(hidden_size + BlockShape::Block_K0 - 1) / BlockShape::Block_K0;
const index_t num_blocks_n1 =
(hidden_size + BlockShape::Block_N1 - 1) / BlockShape::Block_N1;
using a_thread_type = decltype(load_tile(a_sld_win0));
statically_indexed_array<a_thread_type, 2> as;
auto gld_a = [&]<typename PreNop = bool_constant<false>>(
auto& a_store_, auto i_access, PreNop = {})
{
async_load_tile_raw(a_store_, a_win, i_access, PreNop{});
};
auto move_a = [&]() {
move_tile_window(a_win, {number<0>{}, number<BlockShape::Block_K0>{}});
};
auto sld_a = [&](auto& a_, auto& win_, auto i_access) {
load_tile_raw(a_, win_, i_access);
};
auto gld_g = [&]<typename PreNop = bool_constant<false>>(
auto& g_, auto i_access, PreNop = {})
{
if constexpr(IsGateOnly)
{
// TODO: hack!
if constexpr(i_access.value == 0)
{
g_win.bottom_tensor_view_ = g_view;
}
else if constexpr(i_access.value == issues_g / 2)
{
g_win.bottom_tensor_view_ = u_view;
}
}
load_tile_raw(g_, g_win, i_access, FALSE, PreNop{});
};
auto move_g = [&]() {
move_tile_window(g_win, {number<0>{}, number<BlockShape::Block_Kr0>{}, number<0>{}});
};
statically_indexed_array<d_thread_type, 2> ds;
auto gld_d = [&]<typename PreNop = bool_constant<false>>(
auto& d_, auto i_access, PreNop = {})
{
load_tile_raw(d_, d_win, i_access, FALSE, PreNop{});
};
auto move_d = [&]() {
// d move along gemm-n
move_tile_window(d_win, {number<BlockShape::Block_N1>{}, number<0>{}});
};
auto atomic_add_o = [&]<typename PreNop = bool_constant<false>>(
auto& o_, auto i_access, PreNop = {})
{
update_tile_raw(o_win, o_, i_access, TRUE, PreNop{});
};
auto acc_0 = Policy::template MakeCBlockTile_Gemm0<Problem>();
auto acc_1s = generate_tuple(
[&](auto) { return Policy::template MakeCBlockTile_Gemm1<Problem>(); }, number<2>{});
// clang-format off
auto gemm_0 = [&]<typename PostNop = bool_constant<false>>
(auto& t_c, auto& t_a, auto& t_b, auto i_access, PostNop = {}) {
using WarpGemm = remove_cvref_t<decltype(warp_gemm_0)>;
constexpr auto repeat_sub = WarpGemm::get_num_of_access();
constexpr auto repeat_m = BlockShape::Repeat_M0;
// constexpr auto repeat_n = BlockShape::Repeat_N0;
constexpr auto repeat_k = BlockShape::Repeat_K0;
// loop order n->m->k
constexpr auto i_sub = i_access % repeat_sub;
constexpr auto i_k = (i_access / repeat_sub) % repeat_k;
constexpr auto i_m = (i_access / (repeat_sub * repeat_k )) % repeat_m;
constexpr auto i_n = (i_access / (repeat_sub * repeat_k )) / repeat_m;
using AWarpTensor = typename WarpGemm::AWarpTensor;
using BWarpTensor = typename WarpGemm::BWarpTensor;
using CWarpTensor = typename WarpGemm::CWarpTensor;
using AWarpDstr = typename WarpGemm::AWarpDstr;
using BWarpDstr = typename WarpGemm::BWarpDstr;
using CWarpDstr = typename WarpGemm::CWarpDstr;
constexpr auto a_warp_y_index_zeros = uniform_sequence_gen_t<AWarpDstr::NDimY, 0>{};
constexpr auto b_warp_y_index_zeros = uniform_sequence_gen_t<BWarpDstr::NDimY, 0>{};
constexpr auto c_warp_y_index_zeros = uniform_sequence_gen_t<CWarpDstr::NDimY, 0>{};
constexpr auto a_warp_y_lengths = to_sequence(AWarpDstr{}.get_ys_to_d_descriptor().get_lengths());
constexpr auto b_warp_y_lengths = to_sequence(BWarpDstr{}.get_ys_to_d_descriptor().get_lengths());
constexpr auto c_warp_y_lengths = to_sequence(CWarpDstr{}.get_ys_to_d_descriptor().get_lengths());
AWarpTensor w_a;
w_a.get_thread_buffer() = t_a.get_y_sliced_thread_data(
merge_sequences(sequence<i_m, i_k>{}, a_warp_y_index_zeros),
merge_sequences(sequence<1, 1>{}, a_warp_y_lengths));
BWarpTensor w_b;
w_b.get_thread_buffer() = t_b.get_y_sliced_thread_data(
merge_sequences(sequence<i_n, i_k>{}, b_warp_y_index_zeros),
merge_sequences(sequence<1, 1>{}, b_warp_y_lengths));
CWarpTensor w_c;
w_c.get_thread_buffer() = t_c.get_y_sliced_thread_data(
merge_sequences(sequence<i_m, i_n>{}, c_warp_y_index_zeros),
merge_sequences(sequence<1, 1>{}, c_warp_y_lengths));
warp_gemm_0(w_c, w_a, w_b, number<i_sub>{}, PostNop{});
t_c.set_y_sliced_thread_data(
merge_sequences(sequence<i_m, i_n>{}, c_warp_y_index_zeros),
merge_sequences(sequence<1, 1>{}, c_warp_y_lengths),
w_c.get_thread_buffer());
};
// clang-format on
// clang-format off
auto gemm_1 = [&]<typename PostNop = bool_constant<false>>
(auto& t_c, auto& t_a, auto& t_b, auto i_access, PostNop = {}) {
using WarpGemm = remove_cvref_t<decltype(warp_gemm_1)>;
constexpr auto repeat_sub = WarpGemm::get_num_of_access();
constexpr auto repeat_m = BlockShape::Repeat_M0;
// constexpr auto repeat_n = BlockShape::Repeat_N0;
constexpr auto repeat_k = BlockShape::Repeat_K0;
// loop order n->m->k
constexpr auto i_sub = i_access % repeat_sub;
constexpr auto i_k = (i_access / repeat_sub) % repeat_k;
constexpr auto i_m = (i_access / (repeat_sub * repeat_k )) % repeat_m;
constexpr auto i_n = (i_access / (repeat_sub * repeat_k )) / repeat_m;
using AWarpTensor = typename WarpGemm::AWarpTensor;
using BWarpTensor = typename WarpGemm::BWarpTensor;
using CWarpTensor = typename WarpGemm::CWarpTensor;
using AWarpDstr = typename WarpGemm::AWarpDstr;
using BWarpDstr = typename WarpGemm::BWarpDstr;
using CWarpDstr = typename WarpGemm::CWarpDstr;
constexpr auto a_warp_y_index_zeros = uniform_sequence_gen_t<AWarpDstr::NDimY, 0>{};
constexpr auto b_warp_y_index_zeros = uniform_sequence_gen_t<BWarpDstr::NDimY, 0>{};
constexpr auto c_warp_y_index_zeros = uniform_sequence_gen_t<CWarpDstr::NDimY, 0>{};
constexpr auto a_warp_y_lengths = to_sequence(AWarpDstr{}.get_ys_to_d_descriptor().get_lengths());
constexpr auto b_warp_y_lengths = to_sequence(BWarpDstr{}.get_ys_to_d_descriptor().get_lengths());
constexpr auto c_warp_y_lengths = to_sequence(CWarpDstr{}.get_ys_to_d_descriptor().get_lengths());
AWarpTensor w_a;
w_a.get_thread_buffer() = t_a.get_y_sliced_thread_data(
merge_sequences(sequence<i_m, i_k>{}, a_warp_y_index_zeros),
merge_sequences(sequence<1, 1>{}, a_warp_y_lengths));
BWarpTensor w_b;
w_b.get_thread_buffer() = t_b.get_y_sliced_thread_data(
merge_sequences(sequence<i_n, i_k>{}, b_warp_y_index_zeros),
merge_sequences(sequence<1, 1>{}, b_warp_y_lengths));
CWarpTensor w_c;
w_c.get_thread_buffer() = t_c.get_y_sliced_thread_data(
merge_sequences(sequence<i_m, i_n>{}, c_warp_y_index_zeros),
merge_sequences(sequence<1, 1>{}, c_warp_y_lengths));
warp_gemm_1(w_c, w_a, w_b, number<i_sub>{}, PostNop{});
t_c.set_y_sliced_thread_data(
merge_sequences(sequence<i_m, i_n>{}, c_warp_y_index_zeros),
merge_sequences(sequence<1, 1>{}, c_warp_y_lengths),
w_c.get_thread_buffer());
};
// clang-format on
_Pragma("clang diagnostic pop");
// this gemm pipeline is designed with assumption that issues of buffer-load/ds_read can
// be hide under mfma. In other words, issues of mfma is >= memory this is true if we
// pre-shuffle B matrix, and A matrix is relatively small we prefer use multiple mfma
// paired with 1 buffer-load B matrix, to get max throughput of buffer_load. and by
// preshuffle, we always pack to dwordx4 load, and this will already extend to multiple
// mfma but that is already consumed inside warpgemm-impl. So indeed how many extra
// mfma(that can reuse the B matrix) only affected by M repeat.
auto pipeline_gemm0 = [&]() {
constexpr index_t total_loops = issues_gemm0;
constexpr auto sr = Policy::template GetSequencer_0<Problem>();
static_assert(sr.size() == total_loops);
constexpr auto c_sld_a_0 = MAKE_SC();
constexpr auto c_gld_a_0 = MAKE_SC();
constexpr auto c_gld_b_0 = MAKE_SC();
// compute buffer 1
static_for<0, total_loops, 1>{}([&](auto i_issue) {
gemm_0(acc_0, as[I0], gs[I0], i_issue);
constexpr index_t slot = sr.at(i_issue);
if constexpr(slot & SLD_A)
sld_a(as[I1], a_sld_win1, number<NEXT_SCI(c_sld_a_0, i_issue)>{});
if constexpr(slot & GLD_A)
gld_a(a_sst_win0, number<NEXT_SCI(c_gld_a_0, i_issue)>{});
if constexpr(slot & GLD_B)
gld_g(gs[I0], number<NEXT_SCI(c_gld_b_0, i_issue)>{});
});
move_g();
move_a();
block_sync_load_raw(issues_a + issues_g);
lds_load_fence();
constexpr auto c_sld_a_1 = MAKE_SC();
constexpr auto c_gld_a_1 = MAKE_SC();
constexpr auto c_gld_b_1 = MAKE_SC();
// compute buffer 1
static_for<0, total_loops, 1>{}([&](auto i_issue) {
gemm_0(acc_0, as[I1], gs[I1], i_issue);
constexpr index_t slot = sr.at(i_issue);
if constexpr(slot & SLD_A)
sld_a(as[I0], a_sld_win0, number<NEXT_SCI(c_sld_a_1, i_issue)>{});
if constexpr(slot & GLD_A)
gld_a(a_sst_win1, number<NEXT_SCI(c_gld_a_1, i_issue)>{});
if constexpr(slot & GLD_B)
gld_g(gs[I1], number<NEXT_SCI(c_gld_b_1, i_issue)>{});
});
move_g();
move_a();
block_sync_load_raw(issues_a + issues_g);
lds_load_fence();
};
auto pipeline_gemm0_tail = [&]() {
constexpr index_t total_loops = issues_gemm0;
constexpr auto sr = Policy::template GetSequencer_0<Problem>();
static_assert(sr.size() == total_loops);
constexpr auto c_gld_b_0 = MAKE_SC();
// compute buffer 0
static_for<0, total_loops, 1>{}([&](auto i_issue) {
gemm_0(acc_0, as[I0], gs[I0], i_issue);
constexpr index_t slot = sr.at(i_issue);
if constexpr(slot & GLD_B)
gld_g(gs[I1], number<NEXT_SCI(c_gld_b_0, i_issue)>{});
});
block_sync_load_raw(issues_g);
sld_a(as[I1], a_sld_win1, NEG1);
// compute buffer 1
static_for<0, total_loops, 1>{}([&](auto i_issue) {
constexpr auto last_nop = [&]() {
if constexpr(i_issue == (total_loops - 1))
return TRUE;
else
return FALSE;
}();
gemm_0(acc_0, as[I1], gs[I1], i_issue, last_nop); // last gemm has nop
});
};
auto y = Policy::template MakeYBlockTile<Problem>();
auto pipeline_bridge = [&]() {
// cast to Y data
auto y_pre = cast_tile<YDataType>(acc_0);
store_tile(bridge_sst_win, y_pre);
clear_tile(acc_1s(I0));
// wave_barrier();
load_tile(y, bridge_sld_win);
clear_tile(acc_1s(I1));
};
// note, gemm-1 start from idx-1 to N-2 (0, 1, 2....N-1)
auto pipeline_gemm1 = [&]() {
constexpr index_t total_loops = issues_gemm1;
constexpr auto sr = Policy::template GetSequencer_1<Problem>();
static_assert(sr.size() == total_loops);
constexpr auto c_gld_b_0 = MAKE_SC();
constexpr auto c_gst_o_0 = MAKE_SC();
constexpr auto c_gld_b_1 = MAKE_SC();
constexpr auto c_gst_o_1 = MAKE_SC();
// compute buffer 0
static_for<0, total_loops, 1>{}([&](auto i_issue) {
gemm_1(acc_1s[I1], y, ds[I1], i_issue);
constexpr index_t slot = sr.at(i_issue);
if constexpr(slot & GLD_B)
gld_d(ds[I0], number<NEXT_SCI(c_gld_b_0, i_issue)>{});
if constexpr(slot & GST_O)
{
auto out = cast_tile<ODataType>(acc_1s[I0]);
atomic_add_o(out, number<NEXT_SCI(c_gst_o_0, i_issue)>{});
}
});
move_d();
// move_o();
// compute buffer 1
static_for<0, total_loops, 1>{}([&](auto i_issue) {
gemm_1(acc_1s[I0], y, ds[I0], i_issue);
constexpr index_t slot = sr.at(i_issue);
if constexpr(slot & GLD_B)
gld_d(ds[I1], number<NEXT_SCI(c_gld_b_1, i_issue)>{});
if constexpr(slot & GST_O)
{
auto out = cast_tile<ODataType>(acc_1s[I1]);
atomic_add_o(out, number<NEXT_SCI(c_gst_o_1, i_issue)>{});
}
});
move_d();
};
auto pipeline_gemm1_head = [&]() {
constexpr index_t total_loops = issues_gemm1;
constexpr auto sr = Policy::template GetSequencer_1<Problem>();
static_assert(sr.size() == total_loops);
constexpr auto c_gld_b_0 = MAKE_SC();
// compute buffer 0
static_for<0, total_loops, 1>{}([&](auto i_issue) {
gemm_1(acc_1s[I0], y, ds[I0], i_issue);
constexpr index_t slot = sr.at(i_issue);
if constexpr(slot & GLD_B)
gld_d(ds[I1], number<NEXT_SCI(c_gld_b_0, i_issue)>{});
});
move_d();
};
auto pipeline_gemm1_tail = [&]() {
constexpr index_t total_loops = issues_gemm1;
constexpr auto sr = Policy::template GetSequencer_1<Problem>();
static_assert(sr.size() == total_loops);
constexpr auto c_gst_o_0 = MAKE_SC();
// compute buffer 1
static_for<0, total_loops, 1>{}([&](auto i_issue) {
gemm_1(acc_1s[I1], y, ds[I1], i_issue);
constexpr index_t slot = sr.at(i_issue);
if constexpr(slot & GST_O)
{
auto out = cast_tile<ODataType>(acc_1s[I0]);
atomic_add_o(out, number<NEXT_SCI(c_gst_o_0, i_issue)>{});
}
});
{
auto out = cast_tile<ODataType>(acc_1s[I1]);
atomic_add_o(out, NEG1);
}
};
// start of pipeline
// clang-format off
gld_a(a_sst_win0, NEG1, TRUE);
gld_g(gs[I0], NEG1, TRUE);
move_a();
move_g();
clear_tile(acc_0);
// preload for next round
gld_a(a_sst_win1, NEG1);
gld_g(gs[I1], NEG1);
// make sure a,g loaded
block_sync_load_raw(issues_a + issues_g);
lds_load_fence();
// we manually unroll double buffer inside hot loop
const index_t iters_0 = (num_blocks_k0 - 2) / 2;
index_t i_0 = 0; // (void)i_0; (void)iters_0; (void)pipeline_gemm0;
while(i_0++ < iters_0)
{
pipeline_gemm0();
}
pipeline_gemm0_tail();
pipeline_bridge();
const index_t iters_1 = (num_blocks_n1 - 2) / 2;
index_t i_1 = 0; // (void) i_1; (void)iters_1; (void)pipeline_gemm1;
pipeline_gemm1_head();
while(i_1++ < iters_1)
{
pipeline_gemm1();
}
pipeline_gemm1_tail();
// clang-format on
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/fused_moe/pipeline/fused_moegemm_traits.hpp"
#include "ck_tile/ops/flatmm.hpp"
#include "ck_tile/ops/gemm/warp/warp_gemm.hpp"
#include "ck_tile/ops/gemm/warp/warp_gemm_dispatcher.hpp"
namespace ck_tile {
struct FusedMoeGemmPipelineFlatmmPolicy
{
CK_TILE_HOST_DEVICE static constexpr index_t GetAsyncCopyDwords()
{
// TODO: always 1 dword
return 1;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignment_A()
{
// using async
constexpr index_t copy_bytes = 4 * GetAsyncCopyDwords();
constexpr index_t data_bytes = sizeof(typename Problem::ADataType);
static_assert(copy_bytes % data_bytes == 0);
return copy_bytes / data_bytes;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignment_G()
{
constexpr index_t copy_bytes = [&]() { return 16; }();
constexpr index_t data_bytes = sizeof(typename Problem::GDataType);
static_assert(copy_bytes % data_bytes == 0);
return copy_bytes / data_bytes;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignment_D()
{
constexpr index_t copy_bytes = [&]() { return 16; }();
constexpr index_t data_bytes = sizeof(typename Problem::DDataType);
static_assert(copy_bytes % data_bytes == 0);
return copy_bytes / data_bytes;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignment_O()
{
if constexpr(Problem::Traits::OAtomic == 1)
{
// pack fp16/bf16 atomic
static_assert(sizeof(typename Problem::ODataType) == 2);
return 2;
}
else if constexpr(Problem::Traits::OAtomic == 2)
{
// fp32 atomic
return 1;
}
else
{
return 16 / sizeof(typename Problem::ODataType);
}
}
template <typename DataType_>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemKPack()
{
// TODO: this is for 3d layout
return 16 / sizeof(remove_cvref_t<DataType_>);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemKPack_A()
{
return GetSmemKPack<typename Problem::ADataType>();
}
// used for bridge LDS shuffle
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemKPack_Y()
{
// TODO: this should match mfma layout
return 16 / sizeof(typename Problem::YDataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize_A()
{
constexpr auto a_sld_desc = MakeLdsLoadDesc_A<Problem>();
constexpr auto a_sst_desc = MakeLdsStoreDesc_A<Problem>();
static_assert(a_sld_desc.get_element_space_size() == a_sst_desc.get_element_space_size());
return a_sld_desc.get_element_space_size();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize_Bridge()
{
constexpr auto bridge_sld_desc = MakeBridgeLdsLoadDesc<Problem>();
constexpr auto bridge_sst_desc = MakeBridgeLdsStoreDesc<Problem>();
static_assert(bridge_sld_desc.get_element_space_size() ==
bridge_sst_desc.get_element_space_size());
return bridge_sld_desc.get_element_space_size();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
constexpr index_t a_lds = GetSmemSize_A<Problem>();
constexpr index_t bridge_lds = GetSmemSize_Bridge<Problem>();
return max(a_lds, bridge_lds);
}
template <index_t MPerBlock, index_t KPerBlock, index_t NumWarps, index_t Alignment>
CK_TILE_HOST_DEVICE static constexpr auto MakeGlobalTileDistribution_SimpleMxK()
{
constexpr index_t K_vec = Alignment;
constexpr index_t K_rem = KPerBlock / K_vec;
if constexpr(get_warp_size() < K_rem)
{
static_assert(K_rem % get_warp_size() == 0);
constexpr index_t K_lan = get_warp_size(); // lane within same wave is along gemm-k
constexpr index_t K_wav = K_rem / get_warp_size();
static_assert(K_wav <= NumWarps, "not not support thread has repeat along K yet");
constexpr index_t M_wav = NumWarps / K_wav;
static_assert(MPerBlock % M_wav == 0, "this tile size is too small please check");
constexpr index_t M_rep = MPerBlock / M_wav;
return make_static_tile_distribution(
tile_distribution_encoding<
sequence<1>,
tuple<sequence<M_rep, M_wav>, sequence<K_wav, K_lan, K_vec>>,
tuple<sequence<1, 2>, sequence<2>>,
tuple<sequence<1, 0>, sequence<1>>,
sequence<1, 2>,
sequence<0, 2>>{});
}
else
{
constexpr index_t K_lan = K_rem;
constexpr index_t M_lan = get_warp_size() / K_lan;
constexpr index_t M_wav = NumWarps;
static_assert(MPerBlock % (M_lan * M_wav) == 0,
"this tile size is too small please check");
constexpr index_t M_rep = MPerBlock / (M_lan * M_wav);
return make_static_tile_distribution(
tile_distribution_encoding<
sequence<1>,
tuple<sequence<M_rep, M_wav, M_lan>, sequence<K_lan, K_vec>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
}
// optimized version for async, not same as simple MXK dist(pay attention!!)
template <index_t MPerBlock, index_t KPerBlock, index_t NumWarps, index_t Alignment>
CK_TILE_HOST_DEVICE static constexpr auto MakeGlobalTileDistribution_SimpleMxK_Async()
{
constexpr index_t K_vec = Alignment;
constexpr index_t K_rem = KPerBlock / K_vec;
if constexpr(get_warp_size() <= K_rem)
{
static_assert(K_rem % get_warp_size() == 0);
constexpr index_t K_lan = get_warp_size(); // lane within same wave is along gemm-k
constexpr index_t K_wav = K_rem / get_warp_size();
static_assert(K_wav <= NumWarps, "do not support thread has repeat along K yet");
constexpr index_t M_wav = NumWarps / K_wav;
static_assert(MPerBlock % M_wav == 0, "this tile size is too small please check");
constexpr index_t M_rep = MPerBlock / M_wav;
// NOTE: no swap, but hard to avoid LDS bank conflict
return make_static_tile_distribution(
tile_distribution_encoding<
sequence<1>,
tuple<sequence<M_rep, M_wav>, sequence<K_wav, K_lan, K_vec>>,
tuple<sequence<1, 2>, sequence<2>>,
tuple<sequence<1, 0>, sequence<1>>,
sequence<1, 2>,
sequence<0, 2>>{});
}
else
{
constexpr index_t K_lan = K_rem;
constexpr index_t M_lan = get_warp_size() / K_lan;
constexpr index_t M_wav = NumWarps;
static_assert(MPerBlock % (M_lan * M_wav) == 0,
"this tile size is too small please check");
constexpr index_t M_rep = MPerBlock / (M_lan * M_wav);
// NOTE: swapped for LDS load bank conflict free
return make_static_tile_distribution(
tile_distribution_encoding<
sequence<1>,
// Note M_wave(num waves) is the fastest dim, different from sipmle 2d
// distribution
tuple<sequence<M_rep, M_lan, M_wav>, sequence<K_lan, K_vec>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<2>, sequence<1, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
}
template <index_t WarpPerBlock_N_,
index_t WarpPerBlock_K_,
index_t Repeat_N_,
index_t Repeat_K_,
index_t WarpSize_,
index_t Alignment_>
CK_TILE_HOST_DEVICE static constexpr auto MakeGlobalTileDistribution_Nr_Kr_W()
{
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<Repeat_N_, WarpPerBlock_N_>,
sequence<Repeat_K_, WarpPerBlock_K_>,
sequence<WarpSize_, Alignment_>>,
tuple<sequence<1, 2>, sequence<3>>,
tuple<sequence<1, 1>, sequence<0>>,
sequence<1, 2, 3>,
sequence<0, 0, 1>>{});
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeGlobalTileDistribution_A()
{
constexpr index_t Block_M_ = Problem::BlockShape::Block_M0;
constexpr index_t Block_K_ = Problem::BlockShape::Block_K0;
constexpr index_t NumWarps_ = Problem::BlockShape::NumWarps;
constexpr index_t Alignment_ = GetAlignment_A<Problem>();
return MakeGlobalTileDistribution_SimpleMxK_Async<Block_M_,
Block_K_,
NumWarps_,
Alignment_>();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeGlobalTileDistribution_G()
{
constexpr auto PermuteEnum = Problem::Traits::PermuteEnum;
// constexpr index_t hidden_radio_0 = Problem::Traits::IsGateOnly ? 1 : 2;
using S_ = typename Problem::BlockShape;
if constexpr(PermuteEnum == FusedMoeGemmWeightPermuteEnum::b_nr_kr_waveflatten)
{
// number<S_::WarpPerBlock_N0>{}.rrr();
// number<S_::Repeat_N0>{}.eee();
return MakeGlobalTileDistribution_Nr_Kr_W<S_::WarpPerBlock_N0,
S_::WarpPerBlock_K0,
S_::Repeat_N0, /// hidden_radio_0,
S_::Repeat_K0,
get_warp_size(),
GetAlignment_G<Problem>()>();
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeGlobalTileDistribution_D()
{
constexpr auto PermuteEnum = Problem::Traits::PermuteEnum;
using S_ = typename Problem::BlockShape;
if constexpr(PermuteEnum == FusedMoeGemmWeightPermuteEnum::b_nr_kr_waveflatten)
{
return MakeGlobalTileDistribution_Nr_Kr_W<S_::WarpPerBlock_N1,
S_::WarpPerBlock_K1,
S_::Repeat_N1,
S_::Repeat_K1,
get_warp_size(),
GetAlignment_D<Problem>()>();
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeGlobalTileDistribution_O()
{
using S_ = remove_cvref_t<typename Problem::BlockShape>;
using WarpGemm = remove_cvref_t<decltype(GetWarpGemm1<Problem>())>;
// using CDataType = typename WarpGemm::CDataType;
constexpr auto c_block_outer_dstr_encoding =
tile_distribution_encoding<sequence<>,
tuple<sequence<S_::Repeat_M1, S_::WarpPerBlock_M1>,
sequence<S_::Repeat_N1, S_::WarpPerBlock_N1>>,
tuple<sequence<1, 2>>,
tuple<sequence<1, 1>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto c_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
c_block_outer_dstr_encoding, typename WarpGemm::CWarpDstrEncoding{});
constexpr auto c_block_dstr = make_static_tile_distribution(c_block_dstr_encode);
return c_block_dstr;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeLdsStoreDesc_A()
{
// A async->LDS
constexpr index_t Block_M = Problem::BlockShape::Block_M0;
constexpr index_t Block_K = Problem::BlockShape::Block_K0;
// constexpr index_t BlockSize = Problem::BlockShape::BlockSize;
constexpr index_t warpSize = ck_tile::get_warp_size();
constexpr index_t NumWarps = Problem::BlockShape::NumWarps;
constexpr index_t KPack = GetSmemKPack_A<Problem>(); // LDS
constexpr index_t KVector = GetAlignment_A<Problem>(); // async copy 1 dword
constexpr index_t KPad = KPack; // pad between warps
static_assert(Block_K % KVector == 0);
constexpr index_t LanesPerK = Block_K / KVector; // how many thread loading K
if constexpr(LanesPerK >= warpSize)
{
// need multiple waves to load K
static_assert(LanesPerK % warpSize == 0);
constexpr index_t wavesPerK = LanesPerK / warpSize;
if constexpr(wavesPerK > NumWarps)
{
// TODO: need multiple issues along K to load all data
}
else
{
constexpr index_t wavesPerM = NumWarps / wavesPerK;
constexpr index_t NumIssues = Block_M / wavesPerM;
constexpr auto lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<NumIssues>{}, // m0
number<wavesPerM>{}, // m1
number<wavesPerK>{}, // k0
number<warpSize>{}, // k1
number<KVector>{}), // k2
make_tuple(number<NumWarps*(warpSize * KVector + KPad)>{}, // m0
number<wavesPerK*(warpSize * KVector + KPad)>{}, // m1
number<warpSize * KVector + KPad>{}, // k0
number<KVector>{}, // k1
number<1>{}), // k2
number<KVector>{}, // lds store vector(actually no explicit store)
number<1>{});
constexpr auto lds_block_desc_issues_warps_lanes = transform_tensor_descriptor(
lds_block_desc_0,
make_tuple(
make_pass_through_transform(number<NumIssues>{}),
make_merge_transform(make_tuple(number<wavesPerM>{}, number<wavesPerK>{})),
make_merge_transform(make_tuple(number<warpSize>{}, number<KVector>{}))),
make_tuple(sequence<0>{}, sequence<1, 2>{}, sequence<3, 4>{}),
make_tuple(sequence<0>{}, sequence<1>{}, sequence<2>{}));
return lds_block_desc_issues_warps_lanes;
}
}
else
{
// lanes within a wave load different M but same K
static_assert(warpSize % LanesPerK == 0);
constexpr index_t LaneGroups = warpSize / LanesPerK; // along m
constexpr index_t NumIssues = Block_M / (LaneGroups * NumWarps);
constexpr auto lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<NumIssues>{}, // m0
number<LaneGroups>{}, // m1
number<NumWarps>{}, // m2
number<LanesPerK>{}, // k0
number<KVector>{}), // k1
make_tuple(number<NumWarps*(warpSize * KVector + KPad)>{}, // m0
number<Block_K>{}, // m1
number<warpSize * KVector + KPad>{}, // m2
number<KVector>{}, // k0
number<1>{}), // k1
number<KVector>{}, // lds store vector(actually no explicit store)
number<1>{});
constexpr auto lds_block_desc_issues_warps_lanes = transform_tensor_descriptor(
lds_block_desc_0,
make_tuple(make_pass_through_transform(number<NumIssues>{}),
make_pass_through_transform(number<NumWarps>{}),
make_merge_transform(make_tuple(
number<LaneGroups>{}, number<LanesPerK>{}, number<KVector>{}))),
make_tuple(sequence<0>{}, sequence<2>{}, sequence<1, 3, 4>{}),
make_tuple(sequence<0>{}, sequence<1>{}, sequence<2>{}));
return lds_block_desc_issues_warps_lanes;
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeLdsLoadDesc_A()
{
// A async->LDS
// Note that, this descriptor is only to construct the layout inside LDS
// in real Gemm pipeline, ds_read may not follow this pattern
// (may follow that in tile_distribution)
// below code is almost the same as SmemStore dist, with difference:
// 1). modify the GuaranteedLastDimensionVectorLength of naive tensor desc
// 2). return discriptor is in NxK 2d layout
constexpr index_t Block_M = Problem::BlockShape::Block_M0;
constexpr index_t Block_K = Problem::BlockShape::Block_K0;
// constexpr index_t BlockSize = Problem::BlockShape::BlockSize;
constexpr index_t warpSize = ck_tile::get_warp_size();
constexpr index_t NumWarps = Problem::BlockShape::NumWarps;
constexpr index_t KPack = GetSmemKPack_A<Problem>(); // LDS
constexpr index_t KVector = GetAlignment_A<Problem>(); // async copy 1 dword
constexpr index_t KPad = KPack; // pad between warps
static_assert(Block_K % KVector == 0);
constexpr index_t LanesPerK = Block_K / KVector; // how many thread loading K
if constexpr(LanesPerK >= warpSize)
{
// need multiple waves to load K
static_assert(LanesPerK % warpSize == 0);
constexpr index_t wavesPerK = LanesPerK / warpSize;
if constexpr(wavesPerK >= NumWarps)
{
// TODO: need multiple issues along K to load all data
}
else
{
constexpr index_t wavesPerM = NumWarps / wavesPerK;
constexpr index_t NumIssues = Block_M / wavesPerM;
constexpr auto lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<NumIssues>{}, // m0
number<wavesPerM>{}, // m1
number<wavesPerK>{}, // k0
number<warpSize>{}, // k1
number<KVector>{}), // k2
make_tuple(number<NumWarps*(warpSize * KVector + KPad)>{}, // m0
number<wavesPerK*(warpSize * KVector + KPad)>{}, // m1
number<warpSize * KVector + KPad>{}, // k0
number<KVector>{}, // k1
number<1>{}), // k2
number<KPack>{}, // lds load vector
number<1>{});
constexpr auto lds_desc_m_k = transform_tensor_descriptor(
lds_block_desc_0,
make_tuple(
make_merge_transform(make_tuple(number<NumIssues>{}, number<wavesPerM>{})),
make_merge_transform(make_tuple(
number<wavesPerK>{}, number<warpSize>{}, number<KVector>{}))),
make_tuple(sequence<0, 1>{}, sequence<2, 3, 4>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return lds_desc_m_k;
}
}
else
{
// lanes within a wave load different M but same K
static_assert(warpSize % LanesPerK == 0);
constexpr index_t LaneGroups = warpSize / LanesPerK; // along m
constexpr index_t NumIssues = Block_M / (LaneGroups * NumWarps);
constexpr auto lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<NumIssues>{}, // m0
number<LaneGroups>{}, // m1
number<NumWarps>{}, // m2
number<LanesPerK>{}, // k0
number<KVector>{}), // k1
make_tuple(number<NumWarps*(warpSize * KVector + KPad)>{}, // m0
number<Block_K>{}, // m1
number<warpSize * KVector + KPad>{}, // m2
number<KVector>{}, // k0
number<1>{}), // k1
number<KPack>{}, // lds load vector
number<1>{});
constexpr auto lds_desc_m_k = transform_tensor_descriptor(
lds_block_desc_0,
make_tuple(
make_merge_transform(
make_tuple(number<NumIssues>{}, number<LaneGroups>{}, number<NumWarps>{})),
make_merge_transform(make_tuple(number<LanesPerK>{}, number<KVector>{}))),
make_tuple(sequence<0, 1, 2>{}, sequence<3, 4>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return lds_desc_m_k;
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeBridgeLdsLoadDesc()
{
constexpr index_t Block_M = Problem::BlockShape::Block_M0;
constexpr index_t Block_N = Problem::BlockShape::Block_N0;
constexpr index_t KVector = GetSmemKPack_Y<Problem>(); // async copy 1 dword
constexpr index_t KPad = 0; // pad between warps
constexpr auto desc =
make_naive_tensor_descriptor(make_tuple(number<Block_M>{}, number<Block_N>{}),
make_tuple(number<Block_N + KPad>{}, number<1>{}),
number<KVector>{},
number<1>{});
return desc;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeBridgeLdsStoreDesc()
{
constexpr index_t Block_M = Problem::BlockShape::Block_M0;
constexpr index_t Block_N = Problem::BlockShape::Block_N0;
constexpr index_t KVector = GetSmemKPack_Y<Problem>(); // async copy 1 dword
constexpr index_t KPad = 0; // KVector; // pad between warps
constexpr auto desc =
make_naive_tensor_descriptor(make_tuple(number<Block_M>{}, number<Block_N>{}),
make_tuple(number<Block_N + KPad>{}, number<1>{}),
number<KVector>{},
number<1>{});
return desc;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeBridgeLdsStoreForUKDesc()
{
constexpr index_t WarpPerBlock_N = Problem::BlockShape::WarpPerBlock_N0;
constexpr index_t Repeat_N = Problem::BlockShape::Repeat_N0;
constexpr index_t Repeat_M = Problem::BlockShape::Repeat_M0;
constexpr index_t kAMLane = 16;
constexpr index_t kABKLane = 4;
constexpr index_t kABKPerLane = 4;
constexpr index_t KPack = kABKPerLane;
constexpr auto lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<Repeat_M>{}, // m
number<Repeat_N>{}, // n
number<WarpPerBlock_N>{}, // n
number<kABKLane>{}, // n
number<kAMLane>{}, // m
number<KPack>{}), // n
make_tuple(number<Repeat_N * WarpPerBlock_N * kABKLane * kAMLane * KPack>{}, // m
number<WarpPerBlock_N * kABKLane * kAMLane * KPack>{}, // n
number<kABKLane * kAMLane * KPack>{}, // n
number<kAMLane * KPack>{}, // n
number<KPack>{}, // m
number<1>{}), // n
number<KPack>{}, // lds store vector(actually no explicit store)
number<1>{});
constexpr auto desc = transform_tensor_descriptor(
lds_block_desc_0,
make_tuple(make_merge_transform(make_tuple(number<Repeat_M>{}, number<kAMLane>{})),
make_merge_transform(make_tuple(number<Repeat_N>{},
number<WarpPerBlock_N>{},
number<kABKLane>{},
number<KPack>{}))),
make_tuple(sequence<0, 4>{}, sequence<1, 2, 3, 5>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return desc;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetWarpGemm0()
{
using S_ = typename Problem::BlockShape;
// A is vgpr, B is agpr. But since we transposed, so also need swap this
// TODO: this is ugly
constexpr auto wg_ctrl = WGAttrCtlEnum::Raw_avv;
// TODO: ugly
if constexpr(std::is_same_v<typename Problem::ADataType, ck_tile::bf16_t> &&
std::is_same_v<typename Problem::GDataType, ck_tile::bf16_t> &&
S_::Warp_M0 == 32 && S_::Warp_N0 == 32 && S_::Warp_K0 == 16)
{
return WarpGemmImpl<WarpGemmAtrributeMfmaIterateKAndTransposedCDistribution_SwizzleB<
WarpGemmAttributeMfmaImplBf16Bf16F32M32N32K8<wg_ctrl>,
2>>{};
}
else if constexpr(std::is_same_v<typename Problem::ADataType, ck_tile::int8_t> &&
std::is_same_v<typename Problem::GDataType, ck_tile::int8_t> &&
S_::Warp_M0 == 32 && S_::Warp_N0 == 32 && S_::Warp_K0 == 32)
{
return WarpGemmImpl<WarpGemmAtrributeMfmaIterateKAndTransposedCDistribution_SwizzleB<
WarpGemmAttributeMfmaImpl_i32_32x32x16_i8<wg_ctrl>,
2>>{};
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSequencer_0()
{
// this function return seq<...> used to identify gld/sld/valu... inside mfma sequence
// the purpose is to hide thoes instructions under mfma
// every value inside seq<...> is a mask, indicating a specific operation
using S_ = typename Problem::BlockShape;
constexpr index_t SLD_A = static_cast<index_t>(FusedMoeGemmPipelineSequencerEnum::SLD_A);
constexpr index_t GLD_A = static_cast<index_t>(FusedMoeGemmPipelineSequencerEnum::GLD_A);
constexpr index_t GLD_B = static_cast<index_t>(FusedMoeGemmPipelineSequencerEnum::GLD_B);
if constexpr(std::is_same_v<typename Problem::YDataType, ck_tile::bf16_t> &&
std::is_same_v<typename Problem::DDataType, ck_tile::bf16_t> &&
S_::Warp_M0 == 32 && S_::Warp_N0 == 32 && S_::Warp_K0 == 16 &&
S_::Block_M0 == 32 && S_::Block_N0 == 512 && S_::Block_K0 == 128 &&
S_::Block_N1 == 128)
{
// Total 64 instructions, 32 buffer-load-dwordx4 gld_b, 8x buffer-load-dwordx1-async
// gld_a 8x ds_read_b128 sld_a total 64 slot :)
// clang-format off
constexpr auto seq_all =
// 0 1 2 3 4 5 6 7
sequence<GLD_B, GLD_A, GLD_B, GLD_A, GLD_B, GLD_A, GLD_B, GLD_A, // 0
GLD_B, GLD_A, GLD_B, GLD_A, GLD_B, GLD_A, GLD_B, GLD_A, // 1
GLD_B, SLD_A, GLD_B, SLD_A, GLD_B, SLD_A, GLD_B, SLD_A, // 2
GLD_B, SLD_A, GLD_B, SLD_A, GLD_B, SLD_A, GLD_B, SLD_A, // 3
GLD_B, 0, GLD_B, 0, GLD_B, 0, GLD_B, 0, // 4
GLD_B, 0, GLD_B, 0, GLD_B, 0, GLD_B, 0, // 5
GLD_B, 0, GLD_B, 0, GLD_B, 0, GLD_B, 0, // 6
GLD_B, 0, GLD_B, 0, GLD_B, 0, GLD_B, 0>{}; // 7
return seq_all;
// clang-format on
}
else if constexpr(std::is_same_v<typename Problem::YDataType, ck_tile::bf16_t> &&
std::is_same_v<typename Problem::DDataType, ck_tile::bf16_t> &&
S_::Warp_M0 == 32 && S_::Warp_N0 == 32 && S_::Warp_K0 == 16 &&
S_::Block_M0 == 32 && S_::Block_N0 == 256 && S_::Block_K0 == 128 &&
S_::Block_N1 == 128)
{
// Total 32 instructions, 16 buffer-load-dwordx4 gld_b, 8x buffer-load-dwordx1-async
// gld_a 8x ds_read_b128 sld_a total 64 slot :)
// clang-format off
constexpr auto seq_all =
// 0 1 2 3 4 5 6 7
sequence<GLD_B, GLD_A, GLD_B, GLD_A, GLD_B, GLD_A, GLD_B, GLD_A, // 0
GLD_B, GLD_A, GLD_B, GLD_A, GLD_B, GLD_A, GLD_B, GLD_A, // 1
GLD_B, SLD_A, GLD_B, SLD_A, GLD_B, SLD_A, GLD_B, SLD_A, // 2
GLD_B, SLD_A, GLD_B, SLD_A, GLD_B, SLD_A, GLD_B, SLD_A>{}; // 3
return seq_all;
// clang-format on
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSequencer_1()
{
// this function return seq<...> used to identify gld/sld/valu... inside mfma sequence
// the purpose is to hide thoes instructions under mfma
// every value inside seq<...> is a mask, indicating a specific operation
using S_ = typename Problem::BlockShape;
constexpr index_t GLD_B = static_cast<index_t>(FusedMoeGemmPipelineSequencerEnum::GLD_B);
constexpr index_t GST_O = static_cast<index_t>(FusedMoeGemmPipelineSequencerEnum::GST_O);
if constexpr(std::is_same_v<typename Problem::YDataType, ck_tile::bf16_t> &&
std::is_same_v<typename Problem::DDataType, ck_tile::bf16_t> &&
S_::Warp_M1 == 32 && S_::Warp_N1 == 32 && S_::Warp_K1 == 16 &&
S_::Block_M0 == 32 && S_::Block_N0 == 512 && S_::Block_K0 == 128 &&
S_::Block_N1 == 128)
{
// Total 64 instructions, 32 buffer-load-dwordx4 gld_b, 8x buffer-load-dwordx1-async
// gld_a 8x ds_read_b128 sld_a total 64 slot :)
// clang-format off
constexpr auto seq_all =
// 0 1 2 3 4 5 6 7
sequence<GLD_B, GST_O, GLD_B, GST_O, GLD_B, GST_O, GLD_B, GST_O, // 0
GLD_B, GST_O, GLD_B, GST_O, GLD_B, GST_O, GLD_B, GST_O, // 1
GLD_B, 0, GLD_B, 0, GLD_B, 0, GLD_B, 0, // 2
GLD_B, 0, GLD_B, 0, GLD_B, 0, GLD_B, 0, // 3
GLD_B, 0, GLD_B, 0, GLD_B, 0, GLD_B, 0, // 4
GLD_B, 0, GLD_B, 0, GLD_B, 0, GLD_B, 0, // 5
GLD_B, 0, GLD_B, 0, GLD_B, 0, GLD_B, 0, // 6
GLD_B, 0, GLD_B, 0, GLD_B, 0, GLD_B, 0>{}; // 7
return seq_all;
// clang-format on
}
else if constexpr(std::is_same_v<typename Problem::YDataType, ck_tile::bf16_t> &&
std::is_same_v<typename Problem::DDataType, ck_tile::bf16_t> &&
S_::Warp_M1 == 32 && S_::Warp_N1 == 32 && S_::Warp_K1 == 16 &&
S_::Block_M0 == 32 && S_::Block_N0 == 256 && S_::Block_K0 == 128 &&
S_::Block_N1 == 128)
{
// Total 64 instructions, 32 buffer-load-dwordx4 gld_b, 8x buffer-load-dwordx1-async
// gld_a 8x ds_read_b128 sld_a total 64 slot :)
// clang-format off
constexpr auto seq_all =
// 0 1 2 3 4 5 6 7
sequence<GLD_B, GST_O, GLD_B, GST_O, GLD_B, GST_O, GLD_B, GST_O, // 0
GLD_B, GST_O, GLD_B, GST_O, GLD_B, GST_O, GLD_B, GST_O, // 1
GLD_B, 0, GLD_B, 0, GLD_B, 0, GLD_B, 0, // 2
GLD_B, 0, GLD_B, 0, GLD_B, 0, GLD_B, 0>{}; // 3
return seq_all;
// clang-format on
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetWarpGemm1()
{
using S_ = typename Problem::BlockShape;
constexpr auto wg_ctrl = WGAttrCtlEnum::Raw_avv;
// TODO: ugly
if constexpr(std::is_same_v<typename Problem::YDataType, ck_tile::bf16_t> &&
std::is_same_v<typename Problem::DDataType, ck_tile::bf16_t> &&
S_::Warp_M0 == 32 && S_::Warp_N0 == 32 && S_::Warp_K0 == 16)
{
return WarpGemmImpl<WarpGemmAtrributeMfmaIterateKAndTransposedCDistribution_SwizzleB<
WarpGemmAttributeMfmaImplBf16Bf16F32M32N32K8<wg_ctrl>,
2>>{};
}
else if constexpr(std::is_same_v<typename Problem::YDataType, ck_tile::int8_t> &&
std::is_same_v<typename Problem::DDataType, ck_tile::int8_t> &&
S_::Warp_M0 == 32 && S_::Warp_N0 == 32 && S_::Warp_K0 == 32)
{
return WarpGemmImpl<WarpGemmAtrributeMfmaIterateKAndTransposedCDistribution_SwizzleB<
WarpGemmAttributeMfmaImpl_i32_32x32x16_i8<wg_ctrl>,
2>>{};
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeCBlockTile_Gemm0()
{
using S_ = remove_cvref_t<typename Problem::BlockShape>;
using WarpGemm = remove_cvref_t<decltype(GetWarpGemm0<Problem>())>;
using CDataType = typename WarpGemm::CDataType;
constexpr auto c_block_outer_dstr_encoding =
tile_distribution_encoding<sequence<>,
tuple<sequence<S_::Repeat_M0, S_::WarpPerBlock_M0>,
sequence<S_::Repeat_N0, S_::WarpPerBlock_N0>>,
tuple<sequence<1, 2>>,
tuple<sequence<1, 1>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto c_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
c_block_outer_dstr_encoding, typename WarpGemm::CWarpDstrEncoding{});
constexpr auto c_block_dstr = make_static_tile_distribution(c_block_dstr_encode);
auto c_block_tensor = make_static_distributed_tensor<CDataType>(c_block_dstr);
return c_block_tensor;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeCBlockTile_Gemm1()
{
using S_ = remove_cvref_t<typename Problem::BlockShape>;
using WarpGemm = remove_cvref_t<decltype(GetWarpGemm1<Problem>())>;
using CDataType = typename WarpGemm::CDataType;
constexpr auto c_block_outer_dstr_encoding =
tile_distribution_encoding<sequence<>,
tuple<sequence<S_::Repeat_M1, S_::WarpPerBlock_M1>,
sequence<S_::Repeat_N1, S_::WarpPerBlock_N1>>,
tuple<sequence<1, 2>>,
tuple<sequence<1, 1>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto c_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
c_block_outer_dstr_encoding, typename WarpGemm::CWarpDstrEncoding{});
constexpr auto c_block_dstr = make_static_tile_distribution(c_block_dstr_encode);
auto c_block_tensor = make_static_distributed_tensor<CDataType>(c_block_dstr);
return c_block_tensor;
}
// this is used as A matrix for 2nd gemm
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeYTileDistribution()
{
using S_ = remove_cvref_t<typename Problem::BlockShape>;
using WarpGemm = remove_cvref_t<decltype(GetWarpGemm1<Problem>())>;
// TODO: all waves a along different N, but same M
constexpr auto y_outer_dstr_enc =
tile_distribution_encoding<sequence<S_::WarpPerBlock_M1>,
tuple<sequence<S_::Repeat_M1>, sequence<S_::Repeat_K1>>,
tuple<sequence<0>>,
tuple<sequence<0>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto y_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
y_outer_dstr_enc, typename WarpGemm::AWarpDstrEncoding{});
constexpr auto y_block_dstr = make_static_tile_distribution(y_block_dstr_encode);
return y_block_dstr;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeYBlockTile()
{
constexpr auto y_block_dstr = MakeYTileDistribution<Problem>();
auto y_block_tensor =
make_static_distributed_tensor<typename Problem::YDataType>(y_block_dstr);
return y_block_tensor;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetUK_0()
{
using S_ = typename Problem::BlockShape;
if constexpr(std::is_same_v<typename Problem::ADataType, ck_tile::bf16_t> &&
std::is_same_v<typename Problem::GDataType, ck_tile::bf16_t> &&
S_::Block_M0 == 32 && S_::Block_N0 == 512 && S_::Block_K0 == 128 &&
S_::Warp_M0 == 16 && S_::Warp_N0 == 16 && S_::Warp_K0 == 32)
{
return Flatmm_32x512x128_1x4x1_16x16x32_BF16{};
}
else if constexpr(std::is_same_v<typename Problem::ADataType, ck_tile::fp16_t> &&
std::is_same_v<typename Problem::GDataType, ck_tile::fp16_t> &&
S_::Block_M0 == 32 && S_::Block_N0 == 512 && S_::Block_K0 == 128 &&
S_::Warp_M0 == 16 && S_::Warp_N0 == 16 && S_::Warp_K0 == 32)
{
return Flatmm_32x512x128_1x4x1_16x16x32_FP16{};
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetUK_1()
{
using S_ = typename Problem::BlockShape;
if constexpr(std::is_same_v<typename Problem::YDataType, ck_tile::bf16_t> &&
std::is_same_v<typename Problem::DDataType, ck_tile::bf16_t> &&
std::is_same_v<typename Problem::TopkWeightDataType, float> &&
S_::Block_M1 == 32 && S_::Block_N1 == 128 && S_::Block_K1 == 512 &&
S_::Warp_M0 == 16 && S_::Warp_N0 == 16 && S_::Warp_K0 == 32)
{
return FlatmmSn_32x128x512_1x4x1_16x16x32_BF16{};
}
else if constexpr(std::is_same_v<typename Problem::YDataType, ck_tile::fp16_t> &&
std::is_same_v<typename Problem::DDataType, ck_tile::fp16_t> &&
std::is_same_v<typename Problem::TopkWeightDataType, float> &&
S_::Block_M1 == 32 && S_::Block_N1 == 128 && S_::Block_K1 == 512 &&
S_::Warp_M0 == 16 && S_::Warp_N0 == 16 && S_::Warp_K0 == 32)
{
return FlatmmSn_32x128x512_1x4x1_16x16x32_FP16{};
}
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
#include "ck_tile/ops/fused_moe/pipeline/fused_moegemm_pipeline_flatmm_policy.hpp"
namespace ck_tile {
/*
This pipeline deal with a gemm(actually 2 gemm) with one very small(token), one very big(weight)
we need to design the pipeline such that all waves along gemm-N dim (gemm-m only 1 wave)
<----- gemm-N ------>
+----+----+----+----+
| w0 | w1 | w2 | w3 | gemm-m
+----+----+----+----+
*/
template <typename Problem_, typename Policy_ = FusedMoeGemmPipelineFlatmmPolicy>
struct FusedMoeGemmPipeline_FlatmmUk
{
using Problem = remove_cvref_t<Problem_>;
using Policy = remove_cvref_t<Policy_>;
using BlockShape = typename Problem::BlockShape; // this is FusedMoeGemmShape
using ADataType = typename Problem::ADataType;
using GDataType = typename Problem::GDataType;
using DDataType = typename Problem::DDataType;
using AccDataType = typename Problem::AccDataType;
using ODataType = typename Problem::ODataType;
using AScaleDataType = typename Problem::AScaleDataType;
using GScaleDataType = typename Problem::GScaleDataType;
using DScaleDataType = typename Problem::DScaleDataType;
using YSmoothScaleDataType = typename Problem::YSmoothScaleDataType;
using TopkWeightDataType = typename Problem::TopkWeightDataType;
using IndexDataType = typename Problem::IndexDataType;
using YDataType = typename Problem::YDataType;
using Traits = typename Problem::Traits;
static constexpr bool IsGateOnly = Traits::IsGateOnly;
static constexpr bool UseSmoothQuant = Traits::UseSmoothQuant;
static constexpr bool PadHiddenSize = Traits::PadHiddenSize;
static constexpr bool PadIntermediateSize = Traits::PadIntermediateSize;
static constexpr index_t kAlignmentA = Policy::template GetAlignment_A<Problem>();
static constexpr index_t kAlignmentG = Policy::template GetAlignment_G<Problem>();
static constexpr index_t kAlignmentD = Policy::template GetAlignment_D<Problem>();
static constexpr index_t kAlignmentO = Policy::template GetAlignment_O<Problem>();
static constexpr index_t SLD_A = static_cast<index_t>(FusedMoeGemmPipelineSequencerEnum::SLD_A);
static constexpr index_t GLD_A = static_cast<index_t>(FusedMoeGemmPipelineSequencerEnum::GLD_A);
static constexpr index_t GLD_B = static_cast<index_t>(FusedMoeGemmPipelineSequencerEnum::GLD_B);
static constexpr index_t GST_O = static_cast<index_t>(FusedMoeGemmPipelineSequencerEnum::GST_O);
static constexpr index_t kBlockPerCu = []() {
if constexpr(Problem::kBlockPerCu != -1)
return Problem::kBlockPerCu;
else
{
// minimize occupancy
return 2;
}
}();
static constexpr const char* name = "flatmm_uk";
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
constexpr index_t smem_0 = Policy::template GetUK_0<Problem>().GetSmemSize();
constexpr index_t smem_1 = Policy::template GetUK_1<Problem>().GetSmemSize();
constexpr index_t smem_bridge =
BlockShape::Block_M0 * BlockShape::Block_N0 * sizeof(YDataType);
return max(smem_0, max(smem_1, smem_bridge));
}
// this is the thread-offset along row/col
CK_TILE_HOST_DEVICE static auto GetACoord()
{
constexpr auto a_dist = Policy::template MakeGlobalTileDistribution_A<Problem>();
const auto a_coord = a_dist.calculate_index();
return a_coord;
}
// this is the thread-offset along row/col
CK_TILE_HOST_DEVICE static auto GetOCoord()
{
constexpr auto o_dist = Policy::template MakeOGlobalTileDistribution<Problem>();
const auto o_coord = o_dist.calculate_index();
return o_coord;
}
CK_TILE_DEVICE constexpr auto GetNumRowCoords_A()
{
constexpr index_t KLans = BlockShape::Block_K0 / kAlignmentA;
constexpr index_t MLans = BlockShape::BlockSize / KLans;
constexpr index_t MRepeat = BlockShape::Block_M0 / MLans;
return MRepeat;
}
// TODO: properlly support scatter/gather
CK_TILE_DEVICE auto GetRowCoords_A(index_t base_offset)
{
constexpr index_t KLans = BlockShape::Block_K0 / kAlignmentA;
constexpr index_t MLans = BlockShape::BlockSize / KLans;
constexpr index_t MRepeat = BlockShape::Block_M0 / MLans;
auto base_coord = threadIdx.x / KLans + base_offset;
array<index_t, MRepeat> coords;
static_for<0, MRepeat, 1>{}([&](auto i) { coords.at(i) = base_coord + i * MLans; });
return coords;
}
template <typename ROW_COORDS>
CK_TILE_DEVICE auto GetRowID(const ROW_COORDS coords, const IndexDataType* sorted_token_ids_ptr)
{
constexpr index_t n_size = coords.size();
array<index_t, n_size> row_ids;
static_for<0, n_size, 1>{}([&](auto i) {
row_ids.at(i) = sorted_token_ids_ptr[coords[i]]; // base_coord + i * MLans;
});
return row_ids;
}
template <typename ROW_COORDS>
CK_TILE_DEVICE auto GetWeightScale(const ROW_COORDS coords,
const TopkWeightDataType* sorted_weight_ptr)
{
constexpr index_t n_size = coords.size();
array<TopkWeightDataType, n_size> w;
static_for<0, n_size, 1>{}([&](auto i) {
w.at(i) = sorted_weight_ptr[coords[i]]; // base_coord + i * MLans;
});
return w;
}
// TODO: this row id is before shuffle atomic, need use acc distribution
CK_TILE_DEVICE auto GetRowCoords_O(index_t base_offset)
{
constexpr index_t MLanes = BlockShape::Warp_M1;
constexpr index_t Repeat_M = BlockShape::Repeat_M1;
auto base_coord = threadIdx.x % MLanes + base_offset;
array<index_t, Repeat_M> coords;
static_for<0, Repeat_M, 1>{}([&](auto i) { coords.at(i) = base_coord + i * MLanes; });
return coords;
}
template <typename Karg>
CK_TILE_DEVICE auto operator()(const Karg& kargs,
CK_TILE_LDS_ADDR void* smem,
index_t sorted_tile_id,
index_t intermediate_tile_id)
{
constexpr index_t hidden_radio_0 = IsGateOnly ? 1 : 2;
ck_tile::index_t shared_intermediate_size_0 = kargs.intermediate_size;
ck_tile::index_t shared_intermediate_size_1 = kargs.intermediate_size / hidden_radio_0;
index_t nr_0 = shared_intermediate_size_0 / BlockShape::Warp_N0; // divide N in W
index_t kr_0 = kargs.hidden_size / BlockShape::Warp_K0; // divide K in W
index_t nr_1 = kargs.hidden_size / BlockShape::Warp_N1;
index_t kr_1 = shared_intermediate_size_1 / BlockShape::Warp_K1;
const IndexDataType expert_id = __builtin_amdgcn_readfirstlane(
reinterpret_cast<const IndexDataType*>(kargs.sorted_expert_ids_ptr)[sorted_tile_id]);
index_t expert_stride_0 = shared_intermediate_size_0 * kargs.hidden_size;
index_t expert_stride_1 = shared_intermediate_size_1 * kargs.hidden_size;
// nr*kr*w
index_t interm_idx_nr0 = __builtin_amdgcn_readfirstlane(
intermediate_tile_id *
BlockShape::Block_Nr0); // intermediate_tile_id * Block_N / (N in W)
index_t interm_idx_kr1 = __builtin_amdgcn_readfirstlane(
intermediate_tile_id *
BlockShape::Block_Kr1); // intermediate_tile_id * Block_N / (N in W)
auto row_coords_a = GetRowCoords_A(sorted_tile_id * BlockShape::Block_M0);
auto row_ids_a = GetRowID(
row_coords_a, reinterpret_cast<const IndexDataType*>(kargs.sorted_token_ids_ptr));
auto a_coords = generate_tuple(
[&](auto i) {
return row_ids_a[i] * kargs.stride_token +
threadIdx.x % (BlockShape::Block_K0 / kAlignmentA) * kAlignmentA;
},
number<row_ids_a.size()>{});
auto a_res =
make_wave_buffer_resource(reinterpret_cast<const ADataType*>(kargs.a_ptr),
kargs.num_tokens * kargs.stride_token * sizeof(ADataType));
auto g_win = [&]() {
const GDataType* g_ptr = reinterpret_cast<const GDataType*>(kargs.g_ptr) +
static_cast<long_index_t>(expert_id) * expert_stride_0 +
interm_idx_nr0 * kr_0 * BlockShape::Block_W0;
auto g_view_ = make_naive_tensor_view<address_space_enum::global>(
g_ptr,
make_tuple(nr_0, kr_0, number<BlockShape::Block_W0>{}),
make_tuple(kr_0 * BlockShape::Block_W0, number<BlockShape::Block_W0>{}, 1),
number<kAlignmentG>{},
number<1>{});
auto g_window_ = make_tile_window_linear_raw(
g_view_,
make_tuple(number<BlockShape::Block_Nr0>{},
number<BlockShape::Block_Kr0>{},
number<BlockShape::Block_W0>{}),
{0, 0, 0},
Policy::template MakeGlobalTileDistribution_G<Problem>(),
sequence<0, 1, 1>{});
return g_window_;
}();
auto g_res = g_win.get_bottom_tensor_view().get_buffer_view().cached_buf_res_;
auto g_coords = generate_tuple([&](auto i) { return g_win.cached_coords_[i].get_offset(); },
number<decltype(g_win)::NumAccess_NonLinear>{});
const auto d_win = [&]() {
const DDataType* d_ptr = reinterpret_cast<const DDataType*>(kargs.d_ptr) +
static_cast<long_index_t>(expert_id) * expert_stride_1 +
interm_idx_kr1 * BlockShape::Block_W1;
// note interm_idx_nr0 is along the gemm-k dim of 2nd gemm
const auto d_view_ = make_naive_tensor_view<address_space_enum::global>(
d_ptr,
make_tuple(nr_1, kr_1, BlockShape::Block_W1),
make_tuple(kr_1 * BlockShape::Block_W1, BlockShape::Block_W1, 1),
number<kAlignmentD>{},
number<1>{});
const auto d_window_ = make_tile_window_linear_raw(
d_view_,
make_tuple(number<BlockShape::Block_Nr1>{},
number<BlockShape::Block_Kr1>{},
number<BlockShape::Block_W1>{}),
{0, 0, 0},
Policy::template MakeGlobalTileDistribution_D<Problem>(),
sequence<0, 1, 1>{});
return d_window_;
}();
auto d_res = d_win.get_bottom_tensor_view().get_buffer_view().cached_buf_res_;
// TODO: load D order is N0.K0...127, N64.K0...127, N0.K128...255, N64.K128...255
// block-k=512, block-n=128
// wg |<----- W_ ----->|
// Nr(2)*Nw(4)* Kr *Kr0(4)*Kr1(4) * [Kl(4)*Nl(16)*Kv(8)]->one issue
// y p y y p p y
// 1 2 0(imm)
auto d_coords = [&]() {
constexpr index_t Nr_ = 2;
constexpr index_t Nw_ = 4;
constexpr index_t Kr0_ = 4;
constexpr index_t Kr1_ = 4;
constexpr index_t Kl_ = 4;
constexpr index_t Nl_ = 16;
constexpr index_t Kv_ = 8;
constexpr index_t W_ = Kl_ * Nl_ * Kv_;
constexpr index_t num_offsets_ = Nr_ * Kr0_;
index_t base_os_ = (threadIdx.x % 64) * Kv_ + (threadIdx.x / 64) *
shared_intermediate_size_1 *
Nl_; // Kr0_ * Kr1_ * W_;
return generate_tuple(
[&](auto i) {
constexpr auto i_nr_ = number<i % Nr_>{};
constexpr auto i_kr0_ = number<i / Nr_>{};
return i_nr_ * shared_intermediate_size_1 * Nw_ * Nl_ + i_kr0_ * Kr1_ * W_ +
base_os_;
},
number<num_offsets_>{});
}();
auto o_coords = generate_tuple(
[&](auto i) {
return row_ids_a[i] * kargs.stride_token +
threadIdx.x % (BlockShape::Block_N1 / kAlignmentO) * kAlignmentO;
},
number<row_ids_a.size()>{});
auto o_flags =
generate_tuple([&](auto i) { return cmp_lt_to_exec(row_ids_a[i], kargs.num_tokens); },
number<row_ids_a.size()>{});
auto bridge_sst_win = [&]() {
constexpr auto desc_ = Policy::template MakeBridgeLdsStoreForUKDesc<Problem>();
constexpr auto dist_ = Policy::template GetUK_0<Problem>().MakeCBlockDist();
return make_tile_window_linear(make_tensor_view<address_space_enum::lds>(
reinterpret_cast<YDataType*>(smem), desc_),
desc_.get_lengths(),
{0, 0},
dist_);
}();
auto o_res =
make_wave_buffer_resource(reinterpret_cast<const ODataType*>(kargs.o_ptr),
kargs.num_tokens * kargs.stride_token * sizeof(ODataType));
auto row_coords_o = GetRowCoords_O(sorted_tile_id * BlockShape::Block_M0);
auto w_scale = GetWeightScale(
row_coords_o, reinterpret_cast<const TopkWeightDataType*>(kargs.sorted_weight_ptr));
auto uk_0 = Policy::template GetUK_0<Problem>();
auto acc_0 = uk_0(a_res,
a_coords,
g_res,
g_coords,
smem,
kargs.hidden_size,
BlockShape::Block_K0, // tile offset for B matrix each unroll
BlockShape::Block_Kr0 *
BlockShape::Block_W0); // tile offset for B matrix each unroll
sweep_tile(
acc_0,
[&](auto idx0, auto idx1) {
fp32x2_t v_{acc_0(idx0), acc_0(idx1)};
typename Problem::GateActivation{}(v_, v_);
acc_0(idx0) = v_.x;
acc_0(idx1) = v_.y;
},
sequence<1, 2>{});
auto y_pre = cast_tile<YDataType>(acc_0);
block_sync_lds();
store_tile(bridge_sst_win, y_pre);
block_sync_lds();
auto uk_1 = Policy::template GetUK_1<Problem>();
uk_1(d_res,
d_coords,
o_res,
o_coords,
o_flags,
smem,
kargs.hidden_size, // total n number
w_scale,
BlockShape::Block_Nr1 * kr_1 * BlockShape::Block_W1, // along N
BlockShape::Block_N1); // along N
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
// TODO: alow 2 gemm have different type
template <typename ADataType_,
typename GDataType_,
typename DDataType_,
typename AccDataType_,
typename ODataType_,
typename AScaleDataType_,
typename GScaleDataType_,
typename DScaleDataType_,
typename YSmoothScaleDataType_,
typename TopkWeightDataType_,
typename IndexDataType_, // data type for all indexing
typename GateActivation_, // = ck_tile::element_wise::Silu,
typename BlockShape_, // shoule be FusedMoeGemmShape
typename Traits_>
struct FusedMoeGemmPipelineProblem
{
using ADataType = remove_cvref_t<ADataType_>;
using GDataType = remove_cvref_t<GDataType_>;
using DDataType = remove_cvref_t<DDataType_>;
using AccDataType = remove_cvref_t<AccDataType_>;
using ODataType = remove_cvref_t<ODataType_>;
using AScaleDataType = remove_cvref_t<AScaleDataType_>;
using GScaleDataType = remove_cvref_t<GScaleDataType_>;
using DScaleDataType = remove_cvref_t<DScaleDataType_>;
using YSmoothScaleDataType = remove_cvref_t<YSmoothScaleDataType_>;
using TopkWeightDataType = remove_cvref_t<TopkWeightDataType_>;
using IndexDataType = remove_cvref_t<IndexDataType_>;
// the input for next gemm should have same time as
using YDataType = ADataType;
using GateActivation = remove_cvref_t<GateActivation_>;
using BlockShape = remove_cvref_t<BlockShape_>;
using Traits = remove_cvref_t<Traits_>;
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
enum class FusedMoeGemmWeightPermuteEnum
{
// permute_b_n0_k0_n1_k1_n2_k2 = 0, // 0,1,4,2,5,3,6
// permute_b_n0_n1_k0_k1_n2_k2 = 1, // 0,1,2,4,5,3,6
no_permute = 0,
b_nr_kr_kw_nw_kv = 1, // 0,1,3,4,2,5
b_nr_kr_waveflatten = b_nr_kr_kw_nw_kv,
};
template <bool IsGateOnly_,
bool UseSmoothQuant_,
index_t OAtomic_, // 0-no atomic, 1-atomic-pk-f16/bf16, 2-atomic-f32
FusedMoeGemmWeightPermuteEnum PermuteEnum_ =
FusedMoeGemmWeightPermuteEnum::b_nr_kr_waveflatten,
bool PadHiddenSize_ = false,
bool PadIntermediateSize_ = false>
struct FusedMoeGemmTraits
{
// Gate+Up or Gate only
static constexpr bool IsGateOnly = IsGateOnly_;
static constexpr bool UseSmoothQuant = UseSmoothQuant_;
static constexpr index_t OAtomic = OAtomic_;
static constexpr FusedMoeGemmWeightPermuteEnum PermuteEnum = PermuteEnum_;
static constexpr bool PadHiddenSize = PadHiddenSize_;
static constexpr bool PadIntermediateSize = PadIntermediateSize_;
};
// Note: this need to be a bit mask
enum class FusedMoeGemmPipelineSequencerEnum
{
SLD_A = 1 << 0, // shared load a
SLD_B = 1 << 1,
GLD_A = 1 << 2, // global load a
GLD_B = 1 << 3,
SST_A = 1 << 4, // shared store a
SST_B = 1 << 5,
GST_O = 1 << 6, // global store out
};
} // namespace ck_tile
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment