Unverified Commit 4396a224 authored by Harisankar Sadasivan's avatar Harisankar Sadasivan Committed by GitHub
Browse files

Merge branch 'develop' into mi300_time_measurement

parents 0a27f07e 501a6b68
## common
this folder is designed not to be included directly by use, e.g. if use include `ck_tile/ops/fmha.hpp`, then everything under `common` should also be included.
to achieve this we will duplicate the header include path under `common` to other module under `ops/*` inside remod.py. for internal developer, you can also include `ck_tile/ops/common.hpp` for convenience. (and so does external users...)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
// TODO: this folder does not match the single namespace rule. need to refactor in the future
namespace ck_tile {
namespace tensor_layout {
struct BaseTensorLayout
{
};
namespace gemm {
struct RowMajor : public BaseTensorLayout
{
static constexpr const char* name = "RowMajor";
};
struct ColumnMajor : public BaseTensorLayout
{
static constexpr const char* name = "ColumnMajor";
};
} // namespace gemm
namespace convolution {
// input tensor
// packed NCW/NCHW/NCDHW
struct NCW : public BaseTensorLayout
{
static constexpr const char* name = "NCW";
};
struct NCHW : public BaseTensorLayout
{
static constexpr const char* name = "NCHW";
};
struct NCDHW : public BaseTensorLayout
{
static constexpr const char* name = "NCDHW";
};
// packed GNCW/GNCHW/GNCDHW
struct GNCW : public BaseTensorLayout
{
static constexpr const char* name = "GNCW";
};
struct GNCHW : public BaseTensorLayout
{
static constexpr const char* name = "GNCHW";
};
struct GNCDHW : public BaseTensorLayout
{
static constexpr const char* name = "GNCDHW";
};
// input tensor
// packed NWC/NHWC/NDHWC
struct NWC : public BaseTensorLayout
{
static constexpr const char* name = "NWC";
};
struct NHWC : public BaseTensorLayout
{
static constexpr const char* name = "NHWC";
};
struct NDHWC : public BaseTensorLayout
{
static constexpr const char* name = "NDHWC";
};
// input tensor
// packed GNWC/GNHWC/GNDHWC
struct GNWC : public BaseTensorLayout
{
static constexpr const char* name = "GNWC";
};
struct GNHWC : public BaseTensorLayout
{
static constexpr const char* name = "GNHWC";
};
struct GNDHWC : public BaseTensorLayout
{
static constexpr const char* name = "GNDHWC";
};
// for input bias
struct GC : public BaseTensorLayout
{
static constexpr const char* name = "GC";
};
// input tensor
// packed NWGC/NHWGC/NDHWGC
struct NWGC : public BaseTensorLayout
{
static constexpr const char* name = "NWGC";
};
struct NHWGC : public BaseTensorLayout
{
static constexpr const char* name = "NHWGC";
};
struct NDHWGC : public BaseTensorLayout
{
static constexpr const char* name = "NDHWGC";
};
// input tensor
// strided layout
struct G_NW_C : public BaseTensorLayout
{
static constexpr const char* name = "G_NW_C";
};
struct G_NHW_C : public BaseTensorLayout
{
static constexpr const char* name = "G_NHW_C";
};
struct G_NDHW_C : public BaseTensorLayout
{
static constexpr const char* name = "G_NDHW_C";
};
// for input bias
struct G_C : public BaseTensorLayout
{
static constexpr const char* name = "G_C";
};
// weight tensor
// packed KCX/KCYX/KCZYX
struct KCX : public BaseTensorLayout
{
static constexpr const char* name = "KCX";
};
struct KCYX : public BaseTensorLayout
{
static constexpr const char* name = "KCYX";
};
struct KCZYX : public BaseTensorLayout
{
static constexpr const char* name = "KCZYX";
};
// weight tensor
// packed KCX/KCYX/KCZYX
struct GKCX : public BaseTensorLayout
{
static constexpr const char* name = "GKCX";
};
struct GKCYX : public BaseTensorLayout
{
static constexpr const char* name = "GKCYX";
};
struct GKCZYX : public BaseTensorLayout
{
static constexpr const char* name = "GKCZYX";
};
// weight tensor
// packed KXC/KYXC/KZYXC
struct KXC : public BaseTensorLayout
{
static constexpr const char* name = "KXC";
};
struct KYXC : public BaseTensorLayout
{
static constexpr const char* name = "KYXC";
};
struct KZYXC : public BaseTensorLayout
{
static constexpr const char* name = "KZYXC";
};
// weight tensor
// packed GKXC/GKYXC/GKZYXC
struct GKXC : public BaseTensorLayout
{
static constexpr const char* name = "GKXC";
};
struct GKYXC : public BaseTensorLayout
{
static constexpr const char* name = "GKYXC";
};
struct GKZYXC : public BaseTensorLayout
{
static constexpr const char* name = "GKZYXC";
};
// weight tensor
// packed KXGC/KYXGC/KZYXGC
struct KXGC : public BaseTensorLayout
{
static constexpr const char* name = "KXGC";
};
struct KYXGC : public BaseTensorLayout
{
static constexpr const char* name = "KYXGC";
};
struct KZYXGC : public BaseTensorLayout
{
static constexpr const char* name = "KZYXGC";
};
// weight tensor
// strided
struct G_K_X_C : public BaseTensorLayout
{
static constexpr const char* name = "G_K_X_C";
};
struct G_K_YX_C : public BaseTensorLayout
{
static constexpr const char* name = "G_K_YX_C";
};
struct G_K_ZYX_C : public BaseTensorLayout
{
static constexpr const char* name = "G_K_ZYX_C";
};
// output tensor
// packed NKW/NKHW/NKDHW
struct NKW : public BaseTensorLayout
{
static constexpr const char* name = "NKW";
};
struct NKHW : public BaseTensorLayout
{
static constexpr const char* name = "NKHW";
};
struct NKDHW : public BaseTensorLayout
{
static constexpr const char* name = "NKDHW";
};
// output tensor
// packed GNKW/GNKHW/GNKDHW
struct GNKW : public BaseTensorLayout
{
static constexpr const char* name = "GNKW";
};
struct GNKHW : public BaseTensorLayout
{
static constexpr const char* name = "GNKHW";
};
struct GNKDHW : public BaseTensorLayout
{
static constexpr const char* name = "GNKDHW";
};
// output tensor
// packed NWK/NHWK/NDHWK
struct NWK : public BaseTensorLayout
{
static constexpr const char* name = "NWK";
};
struct NHWK : public BaseTensorLayout
{
static constexpr const char* name = "NHWK";
};
struct NDHWK : public BaseTensorLayout
{
static constexpr const char* name = "NDHWK";
};
// output tensor
// packed GNWK/GNHWK/GNDHWK
struct GNWK : public BaseTensorLayout
{
static constexpr const char* name = "GNWK";
};
struct GNHWK : public BaseTensorLayout
{
static constexpr const char* name = "GNHWK";
};
struct GNDHWK : public BaseTensorLayout
{
static constexpr const char* name = "GNDHWK";
};
// output tensor
// packed NWGK/NHWGK/NDHWGK
struct NWGK : public BaseTensorLayout
{
static constexpr const char* name = "NWGK";
};
struct NHWGK : public BaseTensorLayout
{
static constexpr const char* name = "NHWGK";
};
struct NDHWGK : public BaseTensorLayout
{
static constexpr const char* name = "NDHWGK";
};
// output tensor
// strided layout
struct G_NW_K : public BaseTensorLayout
{
static constexpr const char* name = "G_NW_K";
};
struct G_NHW_K : public BaseTensorLayout
{
static constexpr const char* name = "G_NHW_K";
};
struct G_NDHW_K : public BaseTensorLayout
{
static constexpr const char* name = "G_NDHW_K";
};
// for output bias
struct G_K : public BaseTensorLayout
{
static constexpr const char* name = "G_K";
};
// K-reduced output tensor (packed)
struct GNW : public BaseTensorLayout
{
static constexpr const char* name = "GNW";
};
struct GNHW : public BaseTensorLayout
{
static constexpr const char* name = "GNHW";
};
struct GNDHW : public BaseTensorLayout
{
static constexpr const char* name = "GNDHW";
};
// K-reduced output tensor (packed)
struct NWG : public BaseTensorLayout
{
static constexpr const char* name = "NWG";
};
struct NHWG : public BaseTensorLayout
{
static constexpr const char* name = "NHWG";
};
struct NDHWG : public BaseTensorLayout
{
static constexpr const char* name = "NDHWG";
};
// K-reduced output tensor (strided)
struct G_NW : public BaseTensorLayout
{
static constexpr const char* name = "G_NW";
};
struct G_NHW : public BaseTensorLayout
{
static constexpr const char* name = "G_NHW";
};
struct G_NDHW : public BaseTensorLayout
{
static constexpr const char* name = "G_NDHW";
};
} // namespace convolution
template <
typename Layout,
typename std::enable_if<std::is_base_of<BaseTensorLayout, Layout>::value, bool>::type = false>
std::ostream& operator<<(std::ostream& os, const Layout&)
{
os << Layout::name;
return os;
}
} // namespace tensor_layout
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/ops/epilogue/default_2d_epilogue.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
// this epilogue just store out a M*N matrix, row major
template <typename AccDataType_, typename ODataType_, bool kPadM_, bool kPadN_>
struct Default2DEpilogueProblem
{
using AccDataType = remove_cvref_t<AccDataType_>;
using ODataType = remove_cvref_t<ODataType_>;
static constexpr bool kPadM = kPadM_;
static constexpr bool kPadN = kPadN_;
};
template <typename Problem_, typename Policy_ = void>
struct Default2DEpilogue
{
using Problem = remove_cvref_t<Problem_>;
using AccDataType = remove_cvref_t<typename Problem::AccDataType>;
using ODataType = remove_cvref_t<typename Problem::ODataType>;
static constexpr bool kPadM = Problem::kPadM;
static constexpr bool kPadN = Problem::kPadN;
CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSize() { return 0; }
// TODO: this function assume store out vector size is the same as OAccTile last dimension size
// how do we fix this ?
template <typename ODramWindowTmp, typename OAccTile>
CK_TILE_DEVICE auto operator()(ODramWindowTmp& o_dram_window_tmp, const OAccTile& o_acc_tile)
{
// TODO: this is ugly
if constexpr(kPadM || kPadN)
{
store_tile_raw(o_dram_window_tmp, cast_tile<ODataType>(o_acc_tile));
buffer_store_fence();
}
else
{
store_tile(o_dram_window_tmp, cast_tile<ODataType>(o_acc_tile));
}
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/ops/fmha/block/block_masking.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_kernel.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_tile_partitioner.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_enum.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_problem.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qr_ks_vs.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qr_ks_vs_async.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qr_ks_vs_async_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qr_ks_vs_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qr_ks_vs_fp8.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qs_ks_vs.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qs_ks_vs_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qx_ks_vs_custom_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/tile_fmha_shape.hpp"
#include "ck_tile/ops/fmha/pipeline/tile_fmha_traits.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
enum struct GenericAttentionMaskEnum
{
NO_MASK = 0,
// below enum could be causal, or sliding window
MASK_FROM_TOP_LEFT = 1,
MASK_FROM_BOTTOM_RIGHT = 2,
// this enum maybe not used by xformer/FA, since it's hard to
// specify left/right window for varlen case. put it here for
// debug purpose
MASK_GENERIC,
};
// clang-format off
/* generic Attention Mask Coordinate
use x(horizontal axis), y(vertical axis) to describe mask.
top-left corner is origin
x=1/y=5(top-left) x=4/y=5(botm-r) x=6/y=5 x=8/y=5(no mask)
1 * * * * * * * 1 1 1 1 * * * * 1 1 1 1 1 1 * * 1 1 1 1 1 1 1 1
1 1 * * * * * * 1 1 1 1 1 * * * 1 1 1 1 1 1 1 * 1 1 1 1 1 1 1 1
1 1 1 * * * * * 1 1 1 1 1 1 * * 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 * * * * 1 1 1 1 1 1 1 * 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 * * * 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
l=7,-1/r=0(tl) l=7,-1/r=0(br)
x=1/y=2 x=4/y=2 x=6/y=2 x=8/y=2
1 * * * * * * * 1 1 1 1 * * * * 1 1 1 1 1 1 * * 1 1 1 1 1 1 1 1
1 1 * * * * * * 1 1 1 1 1 * * * 1 1 1 1 1 1 1 * 1 1 1 1 1 1 1 1
* 1 1 * * * * * * 1 1 1 1 1 * * * 1 1 1 1 1 1 1 * 1 1 1 1 1 1 1
* * 1 1 * * * * * * 1 1 1 1 1 * * * 1 1 1 1 1 1 * * 1 1 1 1 1 1
* * * 1 1 * * * * * * 1 1 1 1 1 * * * 1 1 1 1 1 * * * 1 1 1 1 1
l=1/r=0(tl) l=1/r=3(tl) l=1/r=5(tl) l=1/r=7(tl)
l=4/r=0(br) l=4/r=2(br) l=4/r=4(br)
x=4/y=-1 x=6/y=-1 x=8/y=-1
* * 1 1 * * * * * * 1 1 1 1 * * * * 1 1 1 1 1 1
* * * 1 1 * * * * * * 1 1 1 1 * * * * 1 1 1 1 1
* * * * 1 1 * * * * * * 1 1 1 1 * * * * 1 1 1 1
* * * * * 1 1 * * * * * * 1 1 1 * * * * * 1 1 1
* * * * * * 1 1 * * * * * * 1 1 * * * * * * 1 1
x=-2/y=5 x=1/y=5(top-left) x=0/y=5(botm-r)
* * * * * * * * 1 * * * * * * *
* * * * * * * * 1 1 * * 1 * * *
* * * * * * * * 1 1 1 * 1 1 * *
1 * * * * * * * 1 1 1 1 1 1 1 *
1 1 * * * * * * 1 1 1 1 1 1 1 1
Validations:
x + y > 1 (x + y >= 2)
Note:
y = seq_q, x = 1 -> top-left
y = seq_q, x = seq_k - seq_q + 1 -> bottom-right
y < seq_q, x < seq_k -> local-attn
y = seq_q, x = seq_k -> no mask
*/
namespace impl {
template <bool IsMasking_, bool IsLocal_> struct MaskName;
template<> struct MaskName<false, false> { static constexpr const char * name = "mn"; };
template<> struct MaskName<false, true> { static constexpr const char * name = "mn"; };
template<> struct MaskName<true, false> { static constexpr const char * name = "mc"; };
template<> struct MaskName<true, true> { static constexpr const char * name = "mg"; };
}
// clang-format on
template <bool IsMasking_ = true, bool IsLocal_ = false>
struct GenericAttentionMask
{
static constexpr bool IsMasking = IsMasking_; // false will disable masking
static constexpr bool IsLocal = IsLocal_; // if true, upper/lower area could have mask,
// else only upper-right could have mask
static constexpr const char* name = impl::MaskName<IsMasking, IsLocal>::name;
CK_TILE_HOST_DEVICE GenericAttentionMask(index_t y_total_, index_t x_total_)
: GenericAttentionMask(0, 0, y_total_, x_total_)
{
}
CK_TILE_HOST_DEVICE
GenericAttentionMask(index_t y_, index_t x_, index_t y_total_, index_t x_total_)
: y(y_), x(x_), y_total(y_total_), x_total(x_total_)
{
}
template <typename MaskCoordinates>
CK_TILE_HOST_DEVICE GenericAttentionMask(const MaskCoordinates& mask_coord)
: y(mask_coord.at(number<0>{})),
x(mask_coord.at(number<1>{})),
y_total(mask_coord.at(number<2>{})),
x_total(mask_coord.at(number<3>{}))
{
}
// to get the loop length along X axis, return index:[start, end), end-start=length
// use this if need loop over X axis tile by tile (like k-seqlen loopover)
// TODO: x_end still could be negative, so end-start could be negative(need check)
template <index_t YTile, index_t XTile>
CK_TILE_HOST_DEVICE constexpr auto
GetTileRangeAlongX(index_t i_y, number<YTile>, number<XTile>) const
{
if constexpr(!IsMasking)
{
return ck_tile::make_tuple(0, x_total);
}
else
{
// get the tile start/end range assum we loop over along X tile by tile
index_t x_start = [&]() {
if constexpr(IsLocal)
{
index_t tmp = max(-y + i_y + 1, 0);
return (tmp / XTile) * XTile; // round to tile aligned
}
else
{
return 0;
}
}();
// TODO: end could be negative, we ignore clamp here, and let caller to check
// ... in which case end-start is negative
index_t x_end = [&]() {
index_t tmp = min(i_y + YTile - 1 + x, x_total);
return ((tmp + XTile - 1) / XTile) * XTile;
}();
return ck_tile::make_tuple(x_start, x_end);
}
}
// per-pixel check if out-of-bound, if true, need mask a value(like -INF)
CK_TILE_HOST_DEVICE constexpr auto IsOutOfBound(index_t i_y, index_t i_x) const
{
if constexpr(!IsMasking)
{
return i_x >= x_total;
}
else
{
// no need to do min/max here, since i_x will never be < 0 or >= x_total
index_t x_start = -y + i_y + 1;
index_t x_end = min(i_y + x, x_total);
if constexpr(IsLocal)
{
return i_x < x_start || i_x >= x_end;
}
else
{
return i_x >= x_end;
}
}
}
// if current tile is at the edge, means need per-pixel mask check.
// otherwise no need to check per-pixel
// Attention! assume the idex passed in this function is with in range of GetTileRangeAlongX()
// can be used as a fast-path to decide if do per-pixel check or not
template <index_t TileHeight, index_t TileWidth>
CK_TILE_HOST_DEVICE constexpr auto
IsEdgeTile(index_t i_tile_top, index_t i_tile_left, number<TileHeight>, number<TileWidth>) const
{
if constexpr(IsLocal)
{
// check top-right corner > x or left-borrom corner < x
index_t i_tile_right = i_tile_left + TileWidth;
index_t i_tile_bottom = i_tile_top + TileHeight;
index_t x_end = min(i_tile_top + x, x_total);
bool top_right_edge = i_tile_right > (i_tile_top + x);
bool bottom_left_edge = i_tile_bottom > (i_tile_left + y);
bool is_partial_out_of_bound = i_tile_right > x_end; // only consider right-pad for now
return top_right_edge || bottom_left_edge || is_partial_out_of_bound;
}
else
{
// only need to check top-right corner > x
index_t i_tile_right = i_tile_left + TileWidth;
index_t x_end = min(i_tile_top + x, x_total);
bool top_right_edge = i_tile_right > x_end;
return top_right_edge;
}
}
private:
index_t y, x;
index_t y_total, x_total;
};
// clang-format off
namespace impl {
template <bool IsMasking_> struct SimplifiedMaskName;
template<> struct SimplifiedMaskName<false> { static constexpr const char * name = "nomask"; };
template<> struct SimplifiedMaskName<true> { static constexpr const char * name = "mask"; };
}
// clang-format on
// this version only have 2 variation: masking and non-masking
// This is more friendly to codegen (e.g. need generate less kernel)
// ... with the trade-off that may have more instruction in causal mode
template <bool IsMasking_ = true>
struct SimplifiedGenericAttentionMask
{
static constexpr bool IsMasking = IsMasking_; // false will disable masking
static constexpr const char* name = impl::SimplifiedMaskName<IsMasking>::name;
CK_TILE_HOST_DEVICE SimplifiedGenericAttentionMask(index_t y_total_, index_t x_total_)
: SimplifiedGenericAttentionMask(0, 0, y_total_, x_total_)
{
}
CK_TILE_HOST_DEVICE
SimplifiedGenericAttentionMask(index_t y_, index_t x_, index_t y_total_, index_t x_total_)
: y(y_), x(x_), y_total(y_total_), x_total(x_total_)
{
}
template <typename MaskCoordinates>
CK_TILE_HOST_DEVICE SimplifiedGenericAttentionMask(const MaskCoordinates& mask_coord)
: y(mask_coord.at(number<0>{})),
x(mask_coord.at(number<1>{})),
y_total(mask_coord.at(number<2>{})),
x_total(mask_coord.at(number<3>{}))
{
}
// to get the loop length along X axis, return index:[start, end), end-start=length
// use this if need loop over X axis tile by tile (like k-seqlen loopover)
// TODO: x_end still could be negative, so end-start could be negative(need check)
template <index_t YTile, index_t XTile>
CK_TILE_HOST_DEVICE constexpr auto
GetTileRangeAlongX(index_t i_y, number<YTile>, number<XTile>) const
{
if constexpr(!IsMasking)
{
return ck_tile::make_tuple(0, x_total);
}
else
{
// get the tile start/end range assum we loop over along X tile by tile
index_t x_start = [&]() {
index_t tmp = max(-y + i_y + 1, 0);
return (tmp / XTile) * XTile; // round to tile aligned
}();
// TODO: end could be negative, we ignore clamp here, and let caller to check
// ... in which case end-start is negative
index_t x_end = [&]() {
index_t tmp = min(i_y + YTile - 1 + x, x_total);
return ((tmp + XTile - 1) / XTile) * XTile;
}();
return ck_tile::make_tuple(x_start, x_end);
}
}
// per-pixel check if out-of-bound, if true, need mask a value(like -INF)
CK_TILE_HOST_DEVICE constexpr auto IsOutOfBound(index_t i_y, index_t i_x) const
{
if constexpr(!IsMasking)
{
// the only case that need do following compare is under kPadSeqLenK
// ... for non-masking kernel.
return i_x >= x_total;
}
else
{
index_t x_start = -y + i_y + 1; // this could be negative, but it's fine
index_t x_end = min(i_y + x, x_total); // need min in case x is padded
return i_x < x_start || i_x >= x_end;
}
}
// if current tile is at the edge, means need per-pixel mask check.
// otherwise no need to check per-pixel
// Attention! assume the idex passed in this function is with in range of GetTileRangeAlongX()
// can be used as a fast-path to decide if do per-pixel check or not
template <index_t TileHeight, index_t TileWidth>
CK_TILE_HOST_DEVICE constexpr auto
IsEdgeTile(index_t i_y, index_t i_x, number<TileHeight>, number<TileWidth>) const
{
if constexpr(!IsMasking)
{
// the only case that need do following compare is under kPadSeqLenK
// ... for non-masking kernel.
// return (i_x < x_total) && ((i_x + TileWidth) > x_total);
// TODO: no need to check begin
return (i_x + TileWidth) > x_total;
}
else
{
// check top-right corner > x or left-borrom corner < x
index_t i_x_end = i_x + TileWidth;
index_t i_y_end = i_y + TileHeight;
// index_t x_end = min(i_y + x, x_total);
bool top_right_edge = i_x_end > min(i_y + x, x_total); // consider right pad
bool bottom_left_edge = i_y_end > (i_x + y);
// bool is_partial_out_of_bound = i_x_end > x_end; // only consider right-pad for now
return top_right_edge || bottom_left_edge;
}
}
private:
index_t y, x;
index_t y_total, x_total;
};
// TODO: prefer use this function in host code
// can convert from the FA style left/right to our generic coordinate
// if left_size < 0 && right_size = 0, it is normal causal mask
// local is left_size >=0 or right_size >=0
CK_TILE_HOST_DEVICE constexpr auto
make_generic_attention_mask_coordinates_from_lr_window(index_t left_size,
index_t right_size,
index_t y_total,
index_t x_total,
bool is_top_left = true)
{
// TODO: below should all use sgpr arithmetic
index_t left_size_tmp = is_top_left ? y_total - 1 : x_total - 1;
index_t right_size_tmp = is_top_left ? x_total - 1 : y_total - 1;
left_size = left_size < 0 ? left_size_tmp : left_size;
right_size = right_size < 0 ? right_size_tmp : right_size;
index_t x_tmp = is_top_left ? 0 : x_total - y_total;
index_t y_tmp = is_top_left ? 0 : y_total - x_total;
index_t x = 1 + right_size + x_tmp;
index_t y = 1 + left_size + y_tmp;
return ck_tile::make_tuple(y, x, y_total, x_total);
}
template <typename MaskType>
CK_TILE_HOST_DEVICE constexpr auto
make_generic_attention_mask_from_lr_window(index_t left_size,
index_t right_size,
index_t y_total,
index_t x_total,
bool is_top_left = true)
{
auto r = make_generic_attention_mask_coordinates_from_lr_window(
left_size, right_size, y_total, x_total, is_top_left);
return MaskType{r.at(ck_tile::number<0>{}), r.at(ck_tile::number<1>{}), y_total, x_total};
}
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
#include <string>
#include <type_traits>
// S[seqlen_q, seqlen_k] = Q[seqlen_q, hdim_q] * K[seqlen_k, hdim_q]
// S'[seqlen_q, seqlen_k] = S[seqlen_q, seqlen_k] * Scale[1]
// S''[seqlen_q, seqlen_k] = S'[seqlen_q, seqlen_k] + Bias[seqlen_q, seqlen_k]
// P[seqlen_q, seqlen_k] = Softmax(S[seqlen_q, seqlen_k])
// O[seqlen_q, hdim_v] = P[seqlen_q, seqlen_k] * V[hdim_v, seqlen_k]
namespace ck_tile {
template <typename TilePartitioner_, typename FmhaPipeline_, typename EpiloguePipeline_>
struct FmhaFwdKernel
{
using TilePartitioner = ck_tile::remove_cvref_t<TilePartitioner_>;
using FmhaPipeline = ck_tile::remove_cvref_t<FmhaPipeline_>;
using EpiloguePipeline = ck_tile::remove_cvref_t<EpiloguePipeline_>;
static constexpr ck_tile::index_t kBlockSize = FmhaPipeline::kBlockSize;
static constexpr ck_tile::index_t kBlockPerCu = FmhaPipeline::kBlockPerCu;
static_assert(kBlockPerCu > 0);
static constexpr ck_tile::index_t kBlockPerCuInput = FmhaPipeline::Problem::kBlockPerCu;
using QDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::QDataType>;
using KDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::KDataType>;
using VDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::VDataType>;
using BiasDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::BiasDataType>;
using LSEDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::LSEDataType>;
using ODataType = ck_tile::remove_cvref_t<typename FmhaPipeline::ODataType>;
static constexpr bool kIsFp8 = FmhaPipeline::kIsFp8;
using VLayout = ck_tile::remove_cvref_t<typename FmhaPipeline::VLayout>;
static constexpr bool kIsGroupMode = FmhaPipeline::kIsGroupMode;
static constexpr bool kPadSeqLenQ = FmhaPipeline::kPadSeqLenQ;
static constexpr bool kPadSeqLenK = FmhaPipeline::kPadSeqLenK;
static constexpr bool kPadHeadDimQ = FmhaPipeline::kPadHeadDimQ;
static constexpr bool kPadHeadDimV = FmhaPipeline::kPadHeadDimV;
static constexpr bool kHasBias = FmhaPipeline::kHasBias;
static constexpr bool kStoreLSE = FmhaPipeline::kStoreLSE;
static constexpr bool kDoFp8StaticQuant = FmhaPipeline::Problem::kDoFp8StaticQuant;
using FmhaMask = ck_tile::remove_cvref_t<typename FmhaPipeline::FmhaMask>;
static constexpr bool kHasMask = FmhaMask::IsMasking;
// clang-format off
template <typename T> struct t2s;
template <> struct t2s<float> { static constexpr const char * name = "fp32"; };
template <> struct t2s<ck_tile::fp16_t> { static constexpr const char * name = "fp16"; };
template <> struct t2s<ck_tile::bf16_t> { static constexpr const char * name = "bf16"; };
template <> struct t2s<ck_tile::fp8_t> { static constexpr const char * name = "fp8"; };
template <> struct t2s<ck_tile::bf8_t> { static constexpr const char * name = "bf8"; };
// clang-format on
__host__ static std::string GetName()
{
// sync with generate.py
// clang-format off
using bfs = typename FmhaPipeline::BlockFmhaShape;
using gbr = typename bfs::Gemm0BlockWarps;
using gwt = typename bfs::Gemm0WarpTile;
#define _SS_ std::string
#define _TS_ std::to_string
auto pn = [&] () {
std::string n;
if (kPadSeqLenQ) n += "s";
if (kPadSeqLenK) n += "sk";
if (kPadHeadDimQ) n += "d";
if (kPadHeadDimV) n += "dv";
return n.empty() ? n : std::string("p") + n; }();
return
_SS_("fmha_fwd_d") + _TS_(bfs::kK0BlockLength) + "_" + _SS_(t2s<QDataType>::name) +
"_" + (kIsGroupMode ? "group" : "batch") + "_" +
"b" + _TS_(bfs::kM0) + "x" + _TS_(bfs::kN0) + "x" + _TS_(bfs::kK0) + "x" +
_TS_(bfs::kN1) + "x" + _TS_(bfs::kK1) + "x" + _TS_(bfs::kK0BlockLength) + "_" +
"r" + _TS_(gbr::at(ck_tile::number<0>{})) + "x" + _TS_(gbr::at(ck_tile::number<1>{})) + "x" + _TS_(gbr::at(ck_tile::number<2>{})) + "_" +
"w" + _TS_(gwt::at(ck_tile::number<0>{})) + "x" + _TS_(gwt::at(ck_tile::number<1>{})) + "x" + _TS_(gwt::at(ck_tile::number<2>{})) + "_" +
(kBlockPerCuInput == -1 ? "" : ("o" + _TS_(kBlockPerCu) + "_")) + _SS_(FmhaPipeline::name) + "_" +
"v" + (std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor> ? "r" : "c") + (pn.empty() ? "" : "_" + pn) +
(kHasBias ? "_bias" : "") + (kHasMask ? "_" + _SS_(FmhaMask::name) : "") + (kStoreLSE ? "_lse" : "" ) + (kDoFp8StaticQuant ? "_squant" : "" );
#undef _SS_
#undef _TS_
// clang-format on
}
template <ck_tile::index_t I> // to avoid duplicated base class prblem, introduce an template
// arg
struct FmhaFwdEmptyKargs
{
};
// kargs use aggregate initializer, so no constructor will provided
// use inheritance to minimize karg size
// user need to use MakeKargs() function to create kargs.
struct FmhaFwdCommonKargs
{
const void* q_ptr;
const void* k_ptr;
const void* v_ptr;
void* o_ptr;
ck_tile::index_t seqlen_q;
ck_tile::index_t seqlen_k;
ck_tile::index_t hdim_q;
ck_tile::index_t hdim_v;
// for MQA/GQA, nhead could be different. This parameter is nhead_q / nhead_k
// if this param is larger than 1, indicate MQA/GQA case
ck_tile::index_t nhead_ratio_qk;
float scale_s;
ck_tile::index_t stride_q;
ck_tile::index_t stride_k;
ck_tile::index_t stride_v;
ck_tile::index_t stride_o;
ck_tile::index_t nhead_stride_q;
ck_tile::index_t nhead_stride_k;
ck_tile::index_t nhead_stride_v;
ck_tile::index_t nhead_stride_o;
};
struct FmhaFwdCommonBiasKargs
{
const void* bias_ptr = nullptr;
ck_tile::index_t stride_bias = 0;
ck_tile::index_t nhead_stride_bias = 0;
};
struct FmhaFwdBatchModeBiasKargs : FmhaFwdCommonBiasKargs
{
ck_tile::index_t batch_stride_bias = 0;
};
struct FmhaFwdMaskKargs
{
// ck_tile::index_t window_size_left, window_size_right;
ck_tile::index_t window_size_left, window_size_right;
ck_tile::GenericAttentionMaskEnum mask_type;
};
struct FmhaFwdFp8StaticQuantKargs
{
float scale_p;
float scale_o;
};
struct FmhaFwdCommonLSEKargs
{
void* lse_ptr = nullptr;
ck_tile::index_t nhead_stride_lse = 0;
};
struct FmhaFwdBatchModeLSEKargs : FmhaFwdCommonLSEKargs
{
ck_tile::index_t batch_stride_lse = 0;
};
struct FmhaFwdBatchModeKargs
: FmhaFwdCommonKargs,
std::conditional_t<kHasBias, FmhaFwdBatchModeBiasKargs, FmhaFwdEmptyKargs<0>>,
std::conditional_t<kHasMask, FmhaFwdMaskKargs, FmhaFwdEmptyKargs<1>>,
std::conditional_t<kStoreLSE, FmhaFwdBatchModeLSEKargs, FmhaFwdEmptyKargs<2>>,
std::conditional_t<kDoFp8StaticQuant, FmhaFwdFp8StaticQuantKargs, FmhaFwdEmptyKargs<3>>
{
ck_tile::index_t batch_stride_q;
ck_tile::index_t batch_stride_k;
ck_tile::index_t batch_stride_v;
ck_tile::index_t batch_stride_o;
};
struct FmhaFwdGroupModeKargs
: FmhaFwdCommonKargs,
std::conditional_t<kHasBias, FmhaFwdCommonBiasKargs, FmhaFwdEmptyKargs<0>>,
std::conditional_t<kHasMask, FmhaFwdMaskKargs, FmhaFwdEmptyKargs<1>>,
std::conditional_t<kStoreLSE, FmhaFwdCommonLSEKargs, FmhaFwdEmptyKargs<2>>,
std::conditional_t<kDoFp8StaticQuant, FmhaFwdFp8StaticQuantKargs, FmhaFwdEmptyKargs<3>>
{
const int32_t* seqstart_q_ptr;
const int32_t* seqstart_k_ptr;
const int32_t* seqlen_k_ptr;
};
using Kargs = std::conditional_t<kIsGroupMode, FmhaFwdGroupModeKargs, FmhaFwdBatchModeKargs>;
template <bool Cond = !kIsGroupMode>
__host__ static constexpr std::enable_if_t<Cond, Kargs>
MakeKargs(const void* q_ptr,
const void* k_ptr,
const void* v_ptr,
const void* bias_ptr,
void* lse_ptr,
void* o_ptr,
ck_tile::index_t seqlen_q,
ck_tile::index_t seqlen_k,
ck_tile::index_t hdim_q,
ck_tile::index_t hdim_v,
ck_tile::index_t nhead_ratio_qk,
float scale_s,
float scale_p,
float scale_o,
ck_tile::index_t stride_q,
ck_tile::index_t stride_k,
ck_tile::index_t stride_v,
ck_tile::index_t stride_bias,
ck_tile::index_t stride_o,
ck_tile::index_t nhead_stride_q,
ck_tile::index_t nhead_stride_k,
ck_tile::index_t nhead_stride_v,
ck_tile::index_t nhead_stride_bias,
ck_tile::index_t nhead_stride_lse,
ck_tile::index_t nhead_stride_o,
ck_tile::index_t batch_stride_q,
ck_tile::index_t batch_stride_k,
ck_tile::index_t batch_stride_v,
ck_tile::index_t batch_stride_bias,
ck_tile::index_t batch_stride_lse,
ck_tile::index_t batch_stride_o,
ck_tile::index_t window_size_left,
ck_tile::index_t window_size_right,
ck_tile::index_t mask_type)
{
Kargs kargs{{q_ptr,
k_ptr,
v_ptr,
o_ptr,
seqlen_q,
seqlen_k,
hdim_q,
hdim_v,
nhead_ratio_qk,
#if CK_TILE_FMHA_FWD_FAST_EXP2
static_cast<float>(scale_s * ck_tile::log2e_v<>),
#else
scale_s,
#endif
stride_q,
stride_k,
stride_v,
stride_o,
nhead_stride_q,
nhead_stride_k,
nhead_stride_v,
nhead_stride_o}, // args for common karg
{}, // placeholder for bias
{}, // placeholder for mask
{}, // placeholder for lse
{}, // placeholder for fp8_static_quant args
batch_stride_q,
batch_stride_k,
batch_stride_v,
batch_stride_o};
if constexpr(kHasBias)
{
kargs.bias_ptr = bias_ptr;
kargs.stride_bias = stride_bias;
kargs.nhead_stride_bias = nhead_stride_bias;
kargs.batch_stride_bias = batch_stride_bias;
}
if constexpr(kHasMask)
{
kargs.window_size_left = window_size_left;
kargs.window_size_right = window_size_right;
kargs.mask_type = static_cast<ck_tile::GenericAttentionMaskEnum>(mask_type);
}
if constexpr(kStoreLSE)
{
kargs.lse_ptr = lse_ptr;
kargs.nhead_stride_lse = nhead_stride_lse;
kargs.batch_stride_lse = batch_stride_lse;
}
if constexpr(kDoFp8StaticQuant)
{
kargs.scale_p = scale_p;
kargs.scale_o = scale_o;
}
return kargs;
}
template <bool Cond = kIsGroupMode>
__host__ static constexpr std::enable_if_t<Cond, Kargs>
MakeKargs(const void* q_ptr,
const void* k_ptr,
const void* v_ptr,
const void* bias_ptr,
void* lse_ptr,
void* o_ptr,
const void* seqstart_q_ptr,
const void* seqstart_k_ptr,
const void* seqlen_k_ptr,
ck_tile::index_t hdim_q,
ck_tile::index_t hdim_v,
ck_tile::index_t nhead_ratio_qk,
float scale_s,
float scale_p,
float scale_o,
ck_tile::index_t stride_q,
ck_tile::index_t stride_k,
ck_tile::index_t stride_v,
ck_tile::index_t stride_bias,
ck_tile::index_t stride_o,
ck_tile::index_t nhead_stride_q,
ck_tile::index_t nhead_stride_k,
ck_tile::index_t nhead_stride_v,
ck_tile::index_t nhead_stride_bias,
ck_tile::index_t nhead_stride_lse,
ck_tile::index_t nhead_stride_o,
ck_tile::index_t window_size_left,
ck_tile::index_t window_size_right,
ck_tile::index_t mask_type)
{
Kargs kargs{{q_ptr,
k_ptr,
v_ptr,
o_ptr,
-1, // seqlen will be updated by another pointer
-1, //
hdim_q,
hdim_v,
nhead_ratio_qk,
#if CK_TILE_FMHA_FWD_FAST_EXP2
static_cast<float>(scale_s * ck_tile::log2e_v<>),
#else
scale_s,
#endif
stride_q,
stride_k,
stride_v,
stride_o,
nhead_stride_q,
nhead_stride_k,
nhead_stride_v,
nhead_stride_o}, // args for common karg
{}, // placeholder for bias
{}, // placeholder for mask
{}, // placeholder for lse
{}, // placeholder for fp8_static_quant args
reinterpret_cast<const int32_t*>(seqstart_q_ptr),
reinterpret_cast<const int32_t*>(seqstart_k_ptr),
reinterpret_cast<const int32_t*>(seqlen_k_ptr)};
if constexpr(kHasBias)
{
kargs.bias_ptr = bias_ptr;
kargs.stride_bias = stride_bias;
kargs.nhead_stride_bias = nhead_stride_bias;
}
if constexpr(kHasMask)
{
kargs.window_size_left = window_size_left;
kargs.window_size_right = window_size_right;
kargs.mask_type = static_cast<ck_tile::GenericAttentionMaskEnum>(mask_type);
}
if constexpr(kStoreLSE)
{
kargs.lse_ptr = lse_ptr;
kargs.nhead_stride_lse = nhead_stride_lse;
}
if constexpr(kDoFp8StaticQuant)
{
kargs.scale_p = scale_p;
kargs.scale_o = scale_o;
}
return kargs;
}
__host__ static constexpr auto GridSize(ck_tile::index_t batch_size_,
ck_tile::index_t nhead_,
ck_tile::index_t seqlen_q_,
ck_tile::index_t hdim_v_)
{
return TilePartitioner::GridSize(batch_size_, nhead_, seqlen_q_, hdim_v_);
}
__host__ static constexpr auto BlockSize() { return dim3(kBlockSize); }
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
return ck_tile::max(FmhaPipeline::GetSmemSize(), EpiloguePipeline::GetSmemSize());
}
CK_TILE_DEVICE void operator()(Kargs kargs) const
{
// allocate LDS
__shared__ char smem_ptr[GetSmemSize()];
// divide problem
const auto [i_tile_m, i_tile_n, i_nhead, i_batch] =
TilePartitioner{}(kargs.seqlen_q, kargs.hdim_v);
const index_t i_m0 = __builtin_amdgcn_readfirstlane(i_tile_m * FmhaPipeline::kM0);
const index_t i_n1 = __builtin_amdgcn_readfirstlane(i_tile_n * FmhaPipeline::kN1);
long_index_t batch_offset_q = 0;
long_index_t batch_offset_k = 0;
long_index_t batch_offset_v = 0;
long_index_t batch_offset_bias = 0;
long_index_t batch_offset_lse = 0;
long_index_t batch_offset_o = 0;
if constexpr(kIsGroupMode)
{
// get starting offset for each batch
const long_index_t query_start = kargs.seqstart_q_ptr[i_batch];
const long_index_t key_start = kargs.seqstart_k_ptr[i_batch];
batch_offset_q = query_start * kargs.stride_q;
batch_offset_k = key_start * kargs.stride_k;
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
batch_offset_v = key_start * kargs.stride_v;
}
else
{
batch_offset_v = key_start;
}
if constexpr(kHasBias)
{
batch_offset_bias = query_start * kargs.stride_bias + key_start;
}
else
{
batch_offset_bias = key_start;
}
if constexpr(kStoreLSE)
{
batch_offset_lse = query_start;
}
batch_offset_o = query_start * kargs.stride_o;
// get real # queries & # keys under group mode
const auto adjusted_seqstart_q_ptr = kargs.seqstart_q_ptr + i_batch;
kargs.seqlen_q = adjusted_seqstart_q_ptr[1] - adjusted_seqstart_q_ptr[0];
// # of required blocks is different in each groups, terminate unnecessary blocks
// earlier
if(kargs.seqlen_q <= i_m0)
{
return;
}
if(kargs.seqlen_k_ptr != nullptr)
{
kargs.seqlen_k = kargs.seqlen_k_ptr[i_batch];
}
else
{
const auto adjusted_seqstart_k_ptr = kargs.seqstart_k_ptr + i_batch;
kargs.seqlen_k = adjusted_seqstart_k_ptr[1] - adjusted_seqstart_k_ptr[0];
}
}
else
{
batch_offset_q = static_cast<long_index_t>(i_batch) * kargs.batch_stride_q;
batch_offset_k = static_cast<long_index_t>(i_batch) * kargs.batch_stride_k;
batch_offset_v = static_cast<long_index_t>(i_batch) * kargs.batch_stride_v;
if constexpr(kHasBias)
{
batch_offset_bias = static_cast<long_index_t>(i_batch) * kargs.batch_stride_bias;
}
if constexpr(kStoreLSE)
{
batch_offset_lse = static_cast<long_index_t>(i_batch) * kargs.batch_stride_lse;
}
batch_offset_o = static_cast<long_index_t>(i_batch) * kargs.batch_stride_o;
}
// for simplicity, batch stride we just modify the pointer
const QDataType* q_ptr = reinterpret_cast<const QDataType*>(kargs.q_ptr) +
static_cast<long_index_t>(i_nhead) * kargs.nhead_stride_q +
batch_offset_q;
const KDataType* k_ptr =
reinterpret_cast<const KDataType*>(kargs.k_ptr) +
static_cast<long_index_t>(i_nhead / kargs.nhead_ratio_qk) * kargs.nhead_stride_k +
batch_offset_k;
const VDataType* v_ptr =
reinterpret_cast<const VDataType*>(kargs.v_ptr) +
static_cast<long_index_t>(i_nhead / kargs.nhead_ratio_qk) * kargs.nhead_stride_v +
batch_offset_v;
ODataType* o_ptr = reinterpret_cast<ODataType*>(kargs.o_ptr) +
static_cast<long_index_t>(i_nhead) * kargs.nhead_stride_o +
batch_offset_o;
// Q/K/V DRAM and DRAM window
const auto q_dram = [&]() {
const auto q_dram_naive = make_naive_tensor_view<address_space_enum::global>(
q_ptr,
make_tuple(kargs.seqlen_q, kargs.hdim_q),
make_tuple(kargs.stride_q, 1),
number<FmhaPipeline::kAlignmentQ>{},
number<1>{});
if constexpr(FmhaPipeline::kQLoadOnce)
{
return pad_tensor_view(
q_dram_naive,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kK0BlockLength>{}),
sequence<kPadSeqLenQ, kPadHeadDimQ>{});
}
else
{
return pad_tensor_view(
q_dram_naive,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kK0>{}),
sequence<kPadSeqLenQ, kPadHeadDimQ>{});
}
}();
const auto k_dram = [&]() {
const auto k_dram_naive = make_naive_tensor_view<address_space_enum::global>(
k_ptr,
make_tuple(kargs.seqlen_k, kargs.hdim_q),
make_tuple(kargs.stride_k, 1),
number<FmhaPipeline::kAlignmentK>{},
number<1>{});
return pad_tensor_view(
k_dram_naive,
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK0>{}),
sequence<kPadSeqLenK, kPadHeadDimQ>{});
}();
const auto v_dram = [&]() {
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
const auto v_dram_naive = make_naive_tensor_view<address_space_enum::global>(
v_ptr,
make_tuple(kargs.seqlen_k, kargs.hdim_v),
make_tuple(kargs.stride_v, 1),
number<FmhaPipeline::kAlignmentV>{},
number<1>{});
const auto v_dram_transposed =
transform_tensor_view(v_dram_naive,
make_tuple(make_pass_through_transform(kargs.hdim_v),
make_pass_through_transform(kargs.seqlen_k)),
make_tuple(sequence<1>{}, sequence<0>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return pad_tensor_view(
v_dram_transposed,
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kK1>{}),
sequence<kPadHeadDimV, kPadSeqLenK>{});
}
else
{
const auto v_dram_naive = make_naive_tensor_view<address_space_enum::global>(
v_ptr,
make_tuple(kargs.hdim_v, kargs.seqlen_k),
make_tuple(kargs.stride_v, 1),
number<FmhaPipeline::kAlignmentV>{},
number<1>{});
return pad_tensor_view(
v_dram_naive,
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kK1>{}),
sequence<kPadHeadDimV, kPadSeqLenK>{});
}
}();
auto q_dram_window = make_tile_window(
q_dram,
[&]() {
if constexpr(FmhaPipeline::kQLoadOnce)
return make_tuple(number<FmhaPipeline::kM0>{},
number<FmhaPipeline::kK0BlockLength>{});
else
return make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kK0>{});
}(),
{i_m0, 0});
auto k_dram_window = make_tile_window(
k_dram, make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK0>{}), {0, 0});
auto v_dram_window =
make_tile_window(v_dram,
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kK1>{}),
{i_n1, 0});
/// FIXME: Before C++20, capturing structured binding variables are not supported. Remove
/// following copy capture of the 'i_nhead' if in C++20
const auto bias_dram_window = [&, i_nhead_ = i_nhead]() {
constexpr auto bias_dram_window_lengths =
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kN0>{});
if constexpr(kHasBias)
{
const BiasDataType* bias_ptr =
reinterpret_cast<const BiasDataType*>(kargs.bias_ptr) +
static_cast<long_index_t>(i_nhead_) * kargs.nhead_stride_bias +
batch_offset_bias;
const auto bias_dram = [&]() {
const auto bias_dram_naive = make_naive_tensor_view<address_space_enum::global>(
bias_ptr,
make_tuple(kargs.seqlen_q, kargs.seqlen_k),
make_tuple(kargs.stride_bias, 1),
number<FmhaPipeline::kAlignmentBias>{},
number<1>{});
return pad_tensor_view(bias_dram_naive,
bias_dram_window_lengths,
sequence<kPadSeqLenQ, kPadSeqLenK>{});
}();
return make_tile_window(bias_dram, bias_dram_window_lengths, {i_m0, 0});
}
else
{
return make_null_tile_window(bias_dram_window_lengths);
}
}();
// lse
auto lse_dram_window = [&, i_nhead_ = i_nhead]() {
constexpr auto lse_dram_window_lengths = make_tuple(number<FmhaPipeline::kM0>{});
if constexpr(kStoreLSE)
{
LSEDataType* lse_ptr =
reinterpret_cast<LSEDataType*>(kargs.lse_ptr) +
static_cast<long_index_t>(i_nhead_) * kargs.nhead_stride_lse + batch_offset_lse;
const auto lse_dram = [&]() {
const auto lse_dram_naive = make_naive_tensor_view<address_space_enum::global>(
lse_ptr,
make_tuple(kargs.seqlen_q),
make_tuple(1),
number<1>{},
number<1>{});
return pad_tensor_view(
lse_dram_naive, lse_dram_window_lengths, sequence<kPadSeqLenQ>{});
}();
return make_tile_window(lse_dram, lse_dram_window_lengths, {i_m0});
}
else
{
return make_null_tile_window(lse_dram_window_lengths);
}
}();
FmhaMask mask = [&]() {
if constexpr(kHasMask)
return ck_tile::make_generic_attention_mask_from_lr_window<FmhaMask>(
kargs.window_size_left,
kargs.window_size_right,
kargs.seqlen_q,
kargs.seqlen_k,
kargs.mask_type == GenericAttentionMaskEnum::MASK_FROM_TOP_LEFT);
else
return FmhaMask{kargs.seqlen_q, kargs.seqlen_k};
}();
auto o_acc_tile = [&]() {
if constexpr(kDoFp8StaticQuant)
{
return FmhaPipeline{}(
q_dram_window,
identity{}, // q_element_func
k_dram_window,
identity{}, // k_element_func
v_dram_window,
identity{}, // v_element_func
bias_dram_window,
identity{}, // bias_element_func
lse_dram_window,
identity{}, // lse_element_func
identity{}, // s_acc_element_func
scales{kargs.scale_p}, // p_compute_element_func
composes(saturates<fp8_t>{}, scales{kargs.scale_o}), // o_acc_element_func
mask,
kargs.scale_s,
smem_ptr);
}
else
{
return FmhaPipeline{}(q_dram_window,
k_dram_window,
v_dram_window,
bias_dram_window,
lse_dram_window,
mask,
kargs.scale_s,
smem_ptr);
}
}();
// O DRAM and O DRAM window
auto o_dram = [&]() {
const auto o_dram_naive = make_naive_tensor_view<address_space_enum::global>(
o_ptr,
make_tuple(kargs.seqlen_q, kargs.hdim_v),
make_tuple(kargs.stride_o, 1),
number<FmhaPipeline::kAlignmentO>{},
number<1>{});
return pad_tensor_view(
o_dram_naive,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kN1>{}),
sequence<kPadSeqLenQ, kPadHeadDimV>{});
}();
auto o_dram_window =
make_tile_window(o_dram,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kN1>{}),
{i_m0, i_n1});
EpiloguePipeline{}(o_dram_window, o_acc_tile);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
template <typename BlockFmhaShape_>
struct FmhaFwdTilePartitioner
{
using BlockFmhaShape = ck_tile::remove_cvref_t<BlockFmhaShape_>;
static constexpr ck_tile::index_t kM0 = BlockFmhaShape::kM0;
static constexpr ck_tile::index_t kN0 = BlockFmhaShape::kN0;
static constexpr ck_tile::index_t kK0 = BlockFmhaShape::kK0;
static constexpr ck_tile::index_t kN1 = BlockFmhaShape::kN1;
static constexpr ck_tile::index_t kK1 = BlockFmhaShape::kK1;
__host__ static constexpr auto GridSize(ck_tile::index_t batch_size_,
ck_tile::index_t nhead_,
ck_tile::index_t seqlen_q_,
ck_tile::index_t hdim_v_)
{
// TODO: this may need tuning
return dim3(ck_tile::integer_divide_ceil(seqlen_q_, kM0) *
ck_tile::integer_divide_ceil(hdim_v_, kN1),
nhead_,
batch_size_);
}
CK_TILE_DEVICE auto operator()(ck_tile::index_t /*seqlen_q*/, ck_tile::index_t hdim_v)
{
// const index_t num_tile_m0 = seqlen_q / kM0;
const index_t num_tile_n1 = ck_tile::integer_divide_ceil(hdim_v, kN1);
const index_t i_block = blockIdx.x;
const index_t i_nhead = blockIdx.y;
const index_t i_batch = blockIdx.z;
const auto f = [](index_t dividend, index_t divisor) {
index_t quotient = dividend / divisor;
index_t modulus = dividend - quotient * divisor;
return ck_tile::make_tuple(quotient, modulus);
};
const auto [i_tile_m, i_tile_n] = f(i_block, num_tile_n1);
return ck_tile::make_tuple(i_tile_m, i_tile_n, i_nhead, i_batch);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
namespace ck_tile {
// This class is used for codegen pattern matching
enum class BlockFmhaPipelineEnum
{
QRKSVS = 0,
QRKSVS_ASYNC,
QSKSVS,
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
template <typename QDataType_,
typename KDataType_,
typename VDataType_,
typename SaccDataType_,
typename SMPLComputeDataType_,
typename BiasDataType_,
typename LSEDataType_,
typename PDataType_,
typename OaccDataType_,
typename ODataType_,
typename BlockFmhaShape_,
bool kIsGroupMode_,
typename FmhaMask_,
typename Traits_>
struct BlockFmhaPipelineProblem
{
using QDataType = remove_cvref_t<QDataType_>;
using KDataType = remove_cvref_t<KDataType_>;
using VDataType = remove_cvref_t<VDataType_>;
using SaccDataType = remove_cvref_t<SaccDataType_>;
using SMPLComputeDataType = remove_cvref_t<SMPLComputeDataType_>;
using BiasDataType = remove_cvref_t<BiasDataType_>;
using LSEDataType = remove_cvref_t<LSEDataType_>;
using PDataType = remove_cvref_t<PDataType_>;
using OaccDataType = remove_cvref_t<OaccDataType_>;
using ODataType = remove_cvref_t<ODataType_>;
using BlockFmhaShape = remove_cvref_t<BlockFmhaShape_>;
using FmhaMask = remove_cvref_t<FmhaMask_>;
using Traits = remove_cvref_t<Traits_>;
static constexpr index_t kBlockSize = BlockFmhaShape::NumWarps * get_warp_size();
static constexpr bool kIsGroupMode = kIsGroupMode_;
// attributes from traits
static constexpr bool kPadSeqLenQ = Traits::kPadSeqLenQ;
static constexpr bool kPadSeqLenK = Traits::kPadSeqLenK;
static constexpr bool kPadHeadDimQ = Traits::kPadHeadDimQ;
static constexpr bool kPadHeadDimV = Traits::kPadHeadDimV;
static constexpr bool kHasBias = Traits::kHasBias;
static constexpr bool kStoreLSE = Traits::kStoreLSE;
static constexpr bool kDoFp8StaticQuant = Traits::kDoFp8StaticQuant;
static constexpr index_t kBlockPerCu = Traits::kBlockPerCu;
static constexpr bool kIsFp8 =
(std::is_same_v<QDataType, fp8_t> || std::is_same_v<QDataType, bf8_t>)&&(
std::is_same_v<KDataType, fp8_t> ||
std::is_same_v<KDataType, bf8_t>)&&(std::is_same_v<VDataType, fp8_t> ||
std::is_same_v<VDataType, bf8_t>)&&std::
is_same_v<SaccDataType, float> &&
std::is_same_v<OaccDataType, float>;
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qr_ks_vs_default_policy.hpp"
#include "ck_tile/ops/reduce/block/block_reduce.hpp"
namespace ck_tile {
// This pipeline is qkv all located in LDS
template <typename Problem_, typename Policy_ = BlockFmhaPipelineQRKSVSDefaultPolicy>
struct BlockFmhaPipelineQRKSVS
{
using Problem = remove_cvref_t<Problem_>;
using Policy = remove_cvref_t<Policy_>;
using QDataType = remove_cvref_t<typename Problem::QDataType>;
using KDataType = remove_cvref_t<typename Problem::KDataType>;
using VDataType = remove_cvref_t<typename Problem::VDataType>;
using SaccDataType = remove_cvref_t<typename Problem::SaccDataType>;
using SMPLComputeDataType = remove_cvref_t<typename Problem::SMPLComputeDataType>;
using BiasDataType = remove_cvref_t<typename Problem::BiasDataType>;
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
using PDataType = remove_cvref_t<typename Problem::PDataType>;
using OaccDataType = remove_cvref_t<typename Problem::OaccDataType>;
using ODataType = remove_cvref_t<typename Problem::ODataType>;
using FmhaMask = remove_cvref_t<typename Problem::FmhaMask>;
using BlockFmhaShape = remove_cvref_t<typename Problem::BlockFmhaShape>;
using VLayout = remove_cvref_t<typename BlockFmhaShape::VLayout>;
static constexpr bool kQLoadOnce = true; // if q_tile load whole block length (hdim) at once
static_assert(kQLoadOnce == Policy::QLoadOnce);
static constexpr bool kIsFp8 = Problem::kIsFp8;
static constexpr index_t kBlockSize = Problem::kBlockSize;
static constexpr index_t kM0 = BlockFmhaShape::kM0;
static constexpr index_t kN0 = BlockFmhaShape::kN0;
static constexpr index_t kK0 = BlockFmhaShape::kK0;
static constexpr index_t kN1 = BlockFmhaShape::kN1;
static constexpr index_t kK1 = BlockFmhaShape::kK1;
static constexpr index_t kK0BlockLength = BlockFmhaShape::kK0BlockLength;
static constexpr bool kIsGroupMode = Problem::kIsGroupMode;
static constexpr bool kPadSeqLenQ = Problem::kPadSeqLenQ;
static constexpr bool kPadSeqLenK = Problem::kPadSeqLenK;
static constexpr bool kPadHeadDimQ = Problem::kPadHeadDimQ;
static constexpr bool kPadHeadDimV = Problem::kPadHeadDimV;
static constexpr bool kHasBias = Problem::kHasBias;
static constexpr bool kStoreLSE = Problem::kStoreLSE;
// last dimension vector length used to create tensor view(and decide buffer_load vector length)
// ... together with tensor distribution. tensor dist should able to overwrite this
static constexpr index_t kAlignmentQ =
kPadHeadDimQ ? 1 : Policy::template GetAlignmentQ<Problem>();
static constexpr index_t kAlignmentK =
kPadHeadDimQ ? 1 : Policy::template GetAlignmentK<Problem>();
static constexpr index_t kAlignmentV = []() {
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
return kPadHeadDimV ? 1 : Policy::template GetAlignmentV<Problem>();
else
return kPadSeqLenK ? 1 : Policy::template GetAlignmentV<Problem>();
}();
static constexpr index_t kAlignmentO =
kPadHeadDimV ? 1 : Policy::template GetAlignmentO<Problem>();
static constexpr index_t kAlignmentBias =
kPadSeqLenK ? 1 : Policy::template GetAlignmentBias<Problem>();
static constexpr index_t kBlockPerCu = []() {
if constexpr(Problem::kBlockPerCu != -1)
return Problem::kBlockPerCu;
else
{
if constexpr(kK0BlockLength <= 32)
{
return 2;
}
else if constexpr(kK0BlockLength <= 64)
{
return 3;
}
else if constexpr(kK0BlockLength <= 128)
{
if constexpr(kHasBias)
return 1;
else
return 2;
}
else if constexpr(kK0BlockLength <= 256)
{
return 1;
}
}
}();
static constexpr const char* name = "qr";
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
return Policy::template GetSmemSize<Problem>();
}
template <typename QDramBlockWindowTmp,
typename KDramBlockWindowTmp,
typename VDramBlockWindowTmp,
typename BiasDramBlockWindowTmp,
typename LSEDramBlockWindowTmp,
typename QElementFunction,
typename KElementFunction,
typename VElementFunction,
typename BiasElementFunction,
typename LSEElementFunction,
typename SAccElementFunction,
typename PComputeElementFunction,
typename OAccElementFunction>
CK_TILE_HOST_DEVICE auto
operator()(const QDramBlockWindowTmp& q_dram_block_window_tmp, // M0*K0 tile
const QElementFunction& q_element_func,
const KDramBlockWindowTmp& k_dram_block_window_tmp, // N0*K0 tile
const KElementFunction& k_element_func,
const VDramBlockWindowTmp& v_dram_block_window_tmp, // N1*K1 tile
const VElementFunction& v_element_func,
const BiasDramBlockWindowTmp& bias_dram_block_window_tmp, // M0*N0 tile
const BiasElementFunction& bias_element_func,
LSEDramBlockWindowTmp& lse_dram_window_tmp, // M0*1 tile
const LSEElementFunction& lse_element_func,
const SAccElementFunction& s_acc_element_func,
const PComputeElementFunction& p_compute_element_func,
const OAccElementFunction& o_acc_element_func,
FmhaMask mask,
float scale_s,
void* smem_ptr) const
{
static_assert(
std::is_same_v<QDataType, remove_cvref_t<typename QDramBlockWindowTmp::DataType>> &&
std::is_same_v<KDataType, remove_cvref_t<typename KDramBlockWindowTmp::DataType>> &&
std::is_same_v<VDataType, remove_cvref_t<typename VDramBlockWindowTmp::DataType>>,
"wrong!");
static_assert(kM0 == QDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == KDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kK0 == KDramBlockWindowTmp{}.get_window_lengths()[number<1>{}] &&
kN1 == VDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kK1 == VDramBlockWindowTmp{}.get_window_lengths()[number<1>{}] &&
kM0 == BiasDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == BiasDramBlockWindowTmp{}.get_window_lengths()[number<1>{}],
"wrong!");
// K tile in LDS
KDataType* k_lds_ptr = static_cast<KDataType*>(static_cast<void*>(
static_cast<char*>(smem_ptr) + Policy::template GetSmemSizeQ<Problem>()));
auto k_lds = make_tensor_view<address_space_enum::lds>(
k_lds_ptr, Policy::template MakeKLdsBlockDescriptor<Problem>());
auto k_lds_window =
make_tile_window(k_lds, make_tuple(number<kN0>{}, number<kK0>{}), {0, 0});
// V tile in LDS
auto v_lds = make_tensor_view<address_space_enum::lds>(
reinterpret_cast<VDataType*>(smem_ptr),
Policy::template MakeVLdsBlockDescriptor<Problem>());
auto v_lds_window = make_tile_window(
v_lds, Policy::template MakeVLdsBlockDescriptor<Problem>().get_lengths(), {0, 0});
// Block GEMM
constexpr auto gemm_0 = Policy::template GetQKBlockGemm<Problem>();
constexpr auto gemm_1 = Policy::template GetKVBlockGemm<Problem>();
auto q_dram_window = make_tile_window(
q_dram_block_window_tmp.get_bottom_tensor_view(),
q_dram_block_window_tmp.get_window_lengths(),
q_dram_block_window_tmp.get_window_origin(),
Policy::template MakeQDramTileDistribution<Problem, decltype(gemm_0)>());
auto q = load_tile(q_dram_window);
using SaccBlockTileType = decltype(gemm_0.MakeCBlockTile());
auto s_acc = SaccBlockTileType{};
// reduction function for softmax
const auto f_max = [](auto e0, auto e1) { return max(e0, e1); };
const auto f_sum = [](auto e0, auto e1) { return e0 + e1; };
// infer Sacc, S, P, M, L, Oacc type
using SBlockTileType = decltype(cast_tile<SMPLComputeDataType>(s_acc));
using MLBlockTileType = decltype(block_tile_reduce<SMPLComputeDataType>(
SBlockTileType{}, sequence<1>{}, f_max, SMPLComputeDataType{0}));
using OaccBlockTileType = decltype(gemm_1.MakeCBlockTile());
// init Oacc, M, L
auto o_acc = OaccBlockTileType{};
auto m = MLBlockTileType{};
auto l = MLBlockTileType{};
clear_tile(o_acc);
set_tile(m, -numeric<SMPLComputeDataType>::infinity());
clear_tile(l);
const auto q_origin = q_dram_window.get_window_origin();
const auto [seqlen_k_start, seqlen_k_end] =
mask.GetTileRangeAlongX(q_origin.at(number<0>{}), number<kM0>{}, number<kN0>{});
const auto num_total_loop = integer_divide_ceil(seqlen_k_end - seqlen_k_start, kN0);
// check early exit if masked and no work to do.
if constexpr(FmhaMask::IsMasking)
{
if(num_total_loop <= 0)
{
if constexpr(kStoreLSE)
{
auto lse =
make_static_distributed_tensor<LSEDataType>(m.get_tile_distribution());
set_tile(lse, -numeric<SMPLComputeDataType>::infinity());
store_tile(lse_dram_window_tmp, tile_elementwise_in(lse_element_func, lse));
}
// Note: here occ are all cleard, return it
// Note: q loaded but no fence, ignore it.
return o_acc;
}
}
auto k_dram_block_window =
make_tile_window(k_dram_block_window_tmp.get_bottom_tensor_view(),
k_dram_block_window_tmp.get_window_lengths(),
{seqlen_k_start, 0});
const auto bias_origin = bias_dram_block_window_tmp.get_window_origin();
auto bias_dram_window = make_tile_window(
bias_dram_block_window_tmp.get_bottom_tensor_view(),
bias_dram_block_window_tmp.get_window_lengths(),
{bias_origin.at(number<0>{}), seqlen_k_start}, // M/N
Policy::template MakeBiasDramTileDistribution<Problem, decltype(gemm_0)>());
auto v_dram_window =
make_tile_window(v_dram_block_window_tmp.get_bottom_tensor_view(),
v_dram_block_window_tmp.get_window_lengths(),
{0, seqlen_k_start}, // TODO: hdim split?
Policy::template MakeVDramTileDistribution<Problem>());
auto q_tile = tile_elementwise_in(q_element_func, q);
// prefetch K tile
index_t i_total_loops = 0;
constexpr index_t k0_loops = kK0BlockLength / kK0;
constexpr index_t k1_loops = kN0 / kK1;
static_assert(2 <= k0_loops);
static_assert(1 <= k1_loops);
do
{
// STAGE 1, QK gemm
auto k_dram_window = make_tile_window(
k_dram_block_window.get_bottom_tensor_view(),
k_dram_block_window.get_window_lengths(),
k_dram_block_window.get_window_origin(),
Policy::template MakeKDramTileDistribution<Problem>()); // K DRAM tile window for
// load
auto k_block_tile = load_tile(k_dram_window);
{
move_tile_window(k_dram_window, {0, kK0});
clear_tile(s_acc); // initialize C
store_tile(k_lds_window, tile_elementwise_in(k_element_func, k_block_tile));
k_block_tile = load_tile(k_dram_window);
}
if constexpr(kHasBias)
{
__builtin_amdgcn_sched_barrier(
0); // prevent from messing up the order of global loads
}
const auto bias_tile = load_tile(bias_dram_window); // load bias tile
if constexpr(kHasBias)
{
__builtin_amdgcn_sched_barrier(
0); // prevent from messing up the order of global loads
}
if constexpr(k0_loops > 2)
{
static_for<0, k0_loops - 2, 1>{}([&](auto i_k0) {
block_sync_lds();
gemm_0(s_acc,
get_slice_tile(q_tile,
sequence<0, i_k0 * kK0>{},
sequence<kM0, (i_k0 + 1) * kK0>{}),
k_lds_window);
block_sync_lds();
move_tile_window(k_dram_window, {0, kK0});
store_tile(
k_lds_window,
tile_elementwise_in(k_element_func, k_block_tile)); // LDS write i + 1
k_block_tile = load_tile(k_dram_window); // global read i + 2
});
}
const auto v_prefetch = load_tile(v_dram_window); // prefetch load v tile
{ // tail
block_sync_lds();
gemm_0(s_acc,
get_slice_tile(q_tile,
sequence<0, (k0_loops - 2) * kK0>{},
sequence<kM0, (k0_loops - 1) * kK0>{}),
k_lds_window);
block_sync_lds();
store_tile(k_lds_window, tile_elementwise_in(k_element_func, k_block_tile));
block_sync_lds();
gemm_0(s_acc,
get_slice_tile(q_tile,
sequence<0, (k0_loops - 1) * kK0>{},
sequence<kM0, k0_loops * kK0>{}),
k_lds_window);
}
// STAGE 2, scale_s, add bias, mask, softmax
if constexpr(kHasBias)
{
s_acc = tile_elementwise_in(s_acc_element_func, s_acc);
tile_elementwise_inout([&scale_s](auto& x) { x = x * scale_s; }, s_acc);
tile_elementwise_inout(
[&](auto& x, const auto& y) {
#if !CK_TILE_FMHA_FWD_FAST_EXP2
x += type_convert<SaccDataType>(bias_element_func(y));
#else
x += log2e_v<SaccDataType> *
type_convert<SaccDataType>(bias_element_func(y));
#endif
},
s_acc,
bias_tile);
}
else
{
s_acc = tile_elementwise_in(s_acc_element_func, s_acc);
#if !CK_TILE_FMHA_FWD_FAST_EXP2
tile_elementwise_inout([&scale_s](auto& x) { x = x * scale_s; }, s_acc);
#endif
}
move_tile_window(bias_dram_window, {0, kN0});
if constexpr(kPadSeqLenK || FmhaMask::IsMasking)
{
const auto k_origin = k_dram_block_window.get_window_origin();
bool need_perpixel_check = mask.IsEdgeTile(q_origin.at(number<0>{}),
k_origin.at(number<0>{}),
number<kM0>{},
number<kN0>{});
if(need_perpixel_check)
{
set_tile_if(
s_acc, -numeric<SMPLComputeDataType>::infinity(), [&](auto tile_idx) {
const auto row = q_origin.at(number<0>{}) + tile_idx.at(number<0>{});
const auto col = k_origin.at(number<0>{}) + tile_idx.at(number<1>{});
return mask.IsOutOfBound(row, col);
});
}
}
const auto s = cast_tile<SMPLComputeDataType>(s_acc); // S{j}
auto m_local = block_tile_reduce<SMPLComputeDataType>(
s,
sequence<1>{},
f_max,
-numeric<SMPLComputeDataType>::infinity()); // m_local = rowmax(S{j})
block_tile_reduce_sync(m_local, f_max, bool_constant<false>{});
const auto m_old = m; // m{j-1}
tile_elementwise_inout(
[](auto& e0, auto e1, auto e2) { e0 = max(e1, e2); }, m, m_old, m_local); // m{j}
auto p_compute = make_static_distributed_tensor<SMPLComputeDataType>(
s.get_tile_distribution()); // Pcompute{j}
static const auto get_validated_m = [](SMPLComputeDataType raw_m) {
/// NOTICE: bias might be materialized mask including -inf values, need
/// consideration
if constexpr(kHasBias || FmhaMask::IsMasking)
{
return raw_m == -numeric<SMPLComputeDataType>::infinity()
? type_convert<SMPLComputeDataType>(0.f)
: raw_m;
}
else
{
return raw_m;
}
};
constexpr auto p_spans = decltype(p_compute)::get_distributed_spans();
sweep_tile_span(p_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
#if CK_TILE_FMHA_FWD_FAST_EXP2
auto row_max = scale_s * get_validated_m(m[i_idx]);
#endif
sweep_tile_span(p_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
#if CK_TILE_FMHA_FWD_FAST_EXP2
if constexpr(kHasBias)
{
p_compute(i_j_idx) = exp2(s[i_j_idx] - get_validated_m(m[i_idx]));
}
else
{
p_compute(i_j_idx) = exp2(scale_s * s[i_j_idx] - row_max);
}
#else
p_compute(i_j_idx) = exp(s[i_j_idx] - get_validated_m(m[i_idx]));
#endif
});
});
auto rowsum_p = block_tile_reduce<SMPLComputeDataType>(
p_compute, sequence<1>{}, f_sum, SMPLComputeDataType{0}); // rowsum(Pcompute{j})
block_tile_reduce_sync(rowsum_p, f_sum, bool_constant<false>{});
// l{j}, Oacc{j}
constexpr auto o_spans = decltype(o_acc)::get_distributed_spans();
sweep_tile_span(o_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
#if CK_TILE_FMHA_FWD_FAST_EXP2
const auto tmp = [&]() {
if constexpr(kHasBias)
{
return exp2(m_old[i_idx] - get_validated_m(m[i_idx]));
}
else
{
auto row_max = scale_s * get_validated_m(m[i_idx]);
return exp2(scale_s * m_old[i_idx] - row_max);
}
}();
#else
const auto tmp = exp(m_old[i_idx] - get_validated_m(m[i_idx]));
#endif
l(i_idx) = tmp * l[i_idx] + rowsum_p[i_idx];
sweep_tile_span(o_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
// FIXME: this use different equation from FA v2 paper,
// but produce correc result.
// Is the equation wrong?
o_acc(i_j_idx) *= tmp;
});
});
block_sync_lds();
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
auto v_shuffle_tmp = make_static_distributed_tensor<VDataType>(
Policy::template MakeShuffledVRegBlockDescriptor<Problem>());
shuffle_tile(v_shuffle_tmp, v_prefetch);
store_tile(
v_lds_window,
tile_elementwise_in(v_element_func, v_shuffle_tmp)); // store the prefetch
}
else
{
store_tile(v_lds_window,
tile_elementwise_in(v_element_func, v_prefetch)); // store the prefetch
}
move_tile_window(v_dram_window, {0, kK1});
const auto p =
cast_tile<PDataType>(tile_elementwise_in(p_compute_element_func, p_compute));
// STAGE 3, KV gemm
if constexpr(k1_loops > 1)
{
static_for<0, k1_loops - 1, 1>{}([&](auto i_k1) {
const auto v = load_tile(v_dram_window); // load next v
block_sync_lds();
gemm_1(o_acc,
get_slice_tile(
p, sequence<0, i_k1 * kK1>{}, sequence<kM0, (i_k1 + 1) * kK1>{}),
v_lds_window);
block_sync_lds();
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
auto v_shuffle_tmp = make_static_distributed_tensor<VDataType>(
Policy::template MakeShuffledVRegBlockDescriptor<Problem>());
shuffle_tile(v_shuffle_tmp, v);
store_tile(v_lds_window,
tile_elementwise_in(v_element_func,
v_shuffle_tmp)); // store the prefetch
}
else
{
store_tile(v_lds_window,
tile_elementwise_in(v_element_func, v)); // store next v
}
move_tile_window(v_dram_window, {0, kK1});
});
}
// move K tile windows
move_tile_window(k_dram_block_window, {kN0, 0});
// tail
{
block_sync_lds();
gemm_1(o_acc,
get_slice_tile(p, sequence<0, (k1_loops - 1) * kK1>{}, sequence<kM0, kN0>{}),
v_lds_window);
block_sync_lds();
}
} while(++i_total_loops < num_total_loop);
// store lse
if constexpr(kStoreLSE)
{
auto lse = make_static_distributed_tensor<LSEDataType>(m.get_tile_distribution());
constexpr auto lse_spans = decltype(lse)::get_distributed_spans();
sweep_tile_span(lse_spans[number<0>{}], [&, m_ = m, l_ = l](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
#if CK_TILE_FMHA_FWD_FAST_EXP2
if constexpr(kHasBias)
{
lse(i_idx) = m_[i_idx] / C_LOG2E + log(l_[i_idx]);
}
else
{
lse(i_idx) = m_[i_idx] * scale_s / C_LOG2E + log(l_[i_idx]);
}
#else
lse(i_idx) = m_[i_idx] + log(l_[i_idx]);
#endif
});
store_tile(lse_dram_window_tmp, tile_elementwise_in(lse_element_func, lse));
}
// finally, O
constexpr auto o_spans = decltype(o_acc)::get_distributed_spans();
sweep_tile_span(o_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
const auto tmp = [&]() {
if constexpr(FmhaMask::IsMasking)
{
return l[i_idx] == 0.f ? 0.f : 1 / l[i_idx];
}
else
return 1 / l[i_idx];
}();
sweep_tile_span(o_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
o_acc(i_j_idx) *= tmp;
});
});
o_acc = tile_elementwise_in(o_acc_element_func, o_acc);
return o_acc;
}
template <typename QDramBlockWindowTmp,
typename KDramBlockWindowTmp,
typename VDramBlockWindowTmp,
typename BiasDramBlockWindowTmp,
typename LSEDramBlockWindowTmp>
CK_TILE_HOST_DEVICE auto
operator()(const QDramBlockWindowTmp& q_dram_block_window_tmp, // M0*K0 tile
const KDramBlockWindowTmp& k_dram_block_window_tmp, // N0*K0 tile
const VDramBlockWindowTmp& v_dram_block_window_tmp, // N1*K1 tile
const BiasDramBlockWindowTmp& bias_dram_block_window_tmp, // M0*N0 tile
LSEDramBlockWindowTmp& lse_dram_block_window_tmp, // M0*1 tile
FmhaMask mask,
float scale_s,
void* smem_ptr) const
{
return operator()(q_dram_block_window_tmp,
identity{},
k_dram_block_window_tmp,
identity{},
v_dram_block_window_tmp,
identity{},
bias_dram_block_window_tmp,
identity{},
lse_dram_block_window_tmp,
identity{},
identity{},
identity{},
identity{},
mask,
scale_s,
smem_ptr);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qr_ks_vs_async_default_policy.hpp"
#include "ck_tile/ops/reduce/block/block_reduce.hpp"
namespace ck_tile {
// a variation of qr/ks/vs, where we use async copy to load k (potentially v in the future)
template <typename Problem_, typename Policy_ = BlockFmhaPipelineQRKSVSAsyncDefaultPolicy>
struct BlockFmhaPipelineQRKSVSAsync
{
using Problem = remove_cvref_t<Problem_>;
using Policy = remove_cvref_t<Policy_>;
using QDataType = remove_cvref_t<typename Problem::QDataType>;
using KDataType = remove_cvref_t<typename Problem::KDataType>;
using VDataType = remove_cvref_t<typename Problem::VDataType>;
using SaccDataType = remove_cvref_t<typename Problem::SaccDataType>;
using SMPLComputeDataType = remove_cvref_t<typename Problem::SMPLComputeDataType>;
using BiasDataType = remove_cvref_t<typename Problem::BiasDataType>;
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
using PDataType = remove_cvref_t<typename Problem::PDataType>;
using OaccDataType = remove_cvref_t<typename Problem::OaccDataType>;
using ODataType = remove_cvref_t<typename Problem::ODataType>;
using FmhaMask = remove_cvref_t<typename Problem::FmhaMask>;
using BlockFmhaShape = remove_cvref_t<typename Problem::BlockFmhaShape>;
using VLayout = remove_cvref_t<typename BlockFmhaShape::VLayout>;
static constexpr bool kQLoadOnce = true; // if q_tile load whole block length (hdim) at once
static_assert(kQLoadOnce == Policy::QLoadOnce);
static constexpr bool kIsFp8 = Problem::kIsFp8;
static constexpr index_t kBlockSize = Problem::kBlockSize;
static constexpr index_t kM0 = BlockFmhaShape::kM0;
static constexpr index_t kN0 = BlockFmhaShape::kN0;
static constexpr index_t kK0 = BlockFmhaShape::kK0;
static constexpr index_t kN1 = BlockFmhaShape::kN1;
static constexpr index_t kK1 = BlockFmhaShape::kK1;
static constexpr index_t kK0BlockLength = BlockFmhaShape::kK0BlockLength;
static constexpr bool kIsGroupMode = Problem::kIsGroupMode;
// TODO: seq_q always support padding, hdim_q/v support multiple of vector(like 8x)
// only need special care about seq_k padding (oob need set -INF of p instead of zero)
static_assert(Problem::kPadSeqLenQ == true && Problem::kPadHeadDimQ == true &&
Problem::kPadHeadDimV == true);
static constexpr bool kPadSeqLenQ = true;
static constexpr bool kPadSeqLenK = Problem::kPadSeqLenK;
static constexpr bool kPadHeadDimQ = true; // support multiple of vector(like 8x)
static constexpr bool kPadHeadDimV = true; // support multiple of vector(like 8x)
static constexpr bool kHasBias = Problem::kHasBias;
static constexpr bool kStoreLSE = Problem::kStoreLSE;
// last dimension vector length used to create tensor view(and decide buffer_load vector length)
// ... together with tensor distribution. tensor dist should able to overwrite this
static constexpr index_t kAlignmentQ = Policy::template GetAlignmentQ<Problem>();
static constexpr index_t kAlignmentK = Policy::template GetAlignmentK<Problem>();
static constexpr index_t kAlignmentV = []() {
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
return Policy::template GetAlignmentV<Problem>();
else
return kPadSeqLenK ? 1 : Policy::template GetAlignmentV<Problem>();
}();
static constexpr index_t kAlignmentO = Policy::template GetAlignmentO<Problem>();
static constexpr index_t kAlignmentBias =
kPadSeqLenK ? 1 : Policy::template GetAlignmentBias<Problem>();
#if CK_TILE_FMHA_FWD_FAST_EXP2
static constexpr auto R_LOG2E = 1.0 / log2e_v<SaccDataType>;
#endif
static constexpr index_t kBlockPerCu = []() {
if constexpr(Problem::kBlockPerCu != -1)
return Problem::kBlockPerCu;
else
{
if constexpr(kK0BlockLength <= 32)
{
if constexpr(kPadSeqLenK && kHasBias && FmhaMask::IsMasking)
return 1;
else
return 2;
}
else if constexpr(kK0BlockLength <= 64)
{
if constexpr(kPadSeqLenK && kHasBias)
return 2;
else
return 3;
}
else if constexpr(kK0BlockLength <= 128)
{
if constexpr(kPadSeqLenK && kHasBias)
return 1;
else
return 2;
}
else if constexpr(kK0BlockLength <= 256)
{
return 1;
}
}
}();
static constexpr const char* name = "qr_async";
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
return Policy::template GetSmemSize<Problem>();
}
template <typename QDramBlockWindowTmp,
typename KDramBlockWindowTmp,
typename VDramBlockWindowTmp,
typename BiasDramBlockWindowTmp,
typename LSEDramBlockWindowTmp,
typename QElementFunction,
typename KElementFunction,
typename VElementFunction,
typename BiasElementFunction,
typename LSEElementFunction,
typename SAccElementFunction,
typename PComputeElementFunction,
typename OAccElementFunction>
CK_TILE_HOST_DEVICE auto
operator()(const QDramBlockWindowTmp& q_dram_block_window_tmp, // M0*K0 tile
const QElementFunction& q_element_func,
const KDramBlockWindowTmp& k_dram_block_window_tmp, // N0*K0 tile
const KElementFunction& /*k_element_func*/,
const VDramBlockWindowTmp& v_dram_block_window_tmp, // N1*K1 tile
const VElementFunction& v_element_func,
const BiasDramBlockWindowTmp& bias_dram_block_window_tmp, // M0*N0 tile
const BiasElementFunction& bias_element_func,
LSEDramBlockWindowTmp& lse_dram_window_tmp, // M0*1 tile
const LSEElementFunction& lse_element_func,
const SAccElementFunction& s_acc_element_func,
const PComputeElementFunction& p_compute_element_func,
const OAccElementFunction& o_acc_element_func,
FmhaMask mask,
float scale_s,
void* smem_ptr) const
{
static_assert(
std::is_same_v<QDataType, remove_cvref_t<typename QDramBlockWindowTmp::DataType>> &&
std::is_same_v<KDataType, remove_cvref_t<typename KDramBlockWindowTmp::DataType>> &&
std::is_same_v<VDataType, remove_cvref_t<typename VDramBlockWindowTmp::DataType>>,
"wrong!");
static_assert(kM0 == QDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == KDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kK0 == KDramBlockWindowTmp{}.get_window_lengths()[number<1>{}] &&
kN1 == VDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kK1 == VDramBlockWindowTmp{}.get_window_lengths()[number<1>{}] &&
kM0 == BiasDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == BiasDramBlockWindowTmp{}.get_window_lengths()[number<1>{}],
"wrong!");
constexpr auto LdsSeq = Policy::template GetLdsBufferSequence<Problem>();
// K tile in LDS
auto k_lds_ptr = reinterpret_cast<KDataType*>(smem_ptr);
auto k_lds_store = generate_tuple(
[&](auto i_buf) {
return make_tile_window(
make_tensor_view<address_space_enum::lds>(
k_lds_ptr, Policy::template MakeKLdsStoreBlockDescriptor<Problem>(i_buf)),
Policy::template MakeKLdsStoreBlockDescriptor<Problem>(i_buf).get_lengths(),
{0, 0, 0});
},
number<Policy::NumPrefetchK>{});
#if K_LDS_LOAD_USE_OFFSET_TRANSFORM
auto k_lds_load = generate_tuple(
[&](auto i_buf) {
return make_tile_window(
make_tensor_view<address_space_enum::lds>(
k_lds_ptr, Policy::template MakeKLdsLoadBlockDescriptor<Problem>(i_buf)),
Policy::template MakeKLdsLoadBlockDescriptor<Problem>(i_buf).get_lengths(),
{0, 0});
},
number<Policy::NumPrefetchK>{});
#else
auto k_lds_Load_view = make_tensor_view<address_space_enum::lds>(
k_lds_ptr, Policy::template MakeKLdsLoadBlockDescriptor<Problem>());
auto k_lds_load =
make_tile_window(k_lds_Load_view,
Policy::template MakeKLdsLoadBlockDescriptor<Problem>().get_lengths(),
{0, 0});
#endif
// V tile in LDS
auto v_lds = make_tensor_view<address_space_enum::lds>(
reinterpret_cast<VDataType*>(smem_ptr),
Policy::template MakeVLdsBlockDescriptor<Problem>());
auto v_lds_window = make_tile_window(
v_lds, Policy::template MakeVLdsBlockDescriptor<Problem>().get_lengths(), {0, 0});
// Block GEMM
constexpr auto gemm_0 = Policy::template GetQKBlockGemm<Problem>();
constexpr auto gemm_1 = Policy::template GetKVBlockGemm<Problem>();
auto q_dram_window = make_tile_window(
q_dram_block_window_tmp.get_bottom_tensor_view(),
q_dram_block_window_tmp.get_window_lengths(),
q_dram_block_window_tmp.get_window_origin(),
Policy::template MakeQDramTileDistribution<Problem, decltype(gemm_0)>());
// TODO: we use async Copy for K, which is inline asm
// a side effect is we have to use inline asm for q as well
auto q = decltype(load_tile(q_dram_window)){};
set_tile(q, number<0>{}); // use per-dword clear to avoid scratch
load_tile_raw(q, q_dram_window);
__builtin_amdgcn_sched_barrier(0);
using SaccBlockTileType = decltype(gemm_0.MakeCBlockTile());
auto s_acc = SaccBlockTileType{};
// reduction function for softmax
const auto f_max = [](auto e0, auto e1) { return max(e0, e1); };
const auto f_sum = [](auto e0, auto e1) { return e0 + e1; };
// infer Sacc, S, P, M, L, Oacc type
using SBlockTileType = decltype(cast_tile<SMPLComputeDataType>(s_acc));
using MLBlockTileType = decltype(block_tile_reduce<SMPLComputeDataType>(
SBlockTileType{}, sequence<1>{}, f_max, SMPLComputeDataType{0}));
using OaccBlockTileType = decltype(gemm_1.MakeCBlockTile());
// init Oacc, M, L
auto o_acc = OaccBlockTileType{};
auto m = MLBlockTileType{};
auto l = MLBlockTileType{};
clear_tile(o_acc);
set_tile(m, -numeric<SMPLComputeDataType>::infinity());
clear_tile(l);
__builtin_amdgcn_sched_barrier(0);
const auto q_origin = q_dram_window.get_window_origin();
const auto [seqlen_k_start, seqlen_k_end] =
mask.GetTileRangeAlongX(q_origin.at(number<0>{}), number<kM0>{}, number<kN0>{});
const auto num_total_loop = integer_divide_ceil(seqlen_k_end - seqlen_k_start, kN0);
// check early exit if masked and no work to do.
if constexpr(FmhaMask::IsMasking)
{
if(num_total_loop <= 0)
{
if constexpr(kStoreLSE)
{
auto lse =
make_static_distributed_tensor<LSEDataType>(m.get_tile_distribution());
set_tile(lse, -numeric<SMPLComputeDataType>::infinity());
store_tile(lse_dram_window_tmp, tile_elementwise_in(lse_element_func, lse));
}
buffer_load_fence(0); // rocm-6.1, if whole tile is masked out, need to fence(0)
// otherwise will have compute error(maybe compiler bug?)
// Note: here occ are all cleard, return it
return o_acc;
}
__builtin_amdgcn_sched_barrier(0); // make sure sched_barrier(0) for this check
}
auto k_dram_block_window =
make_tile_window(k_dram_block_window_tmp.get_bottom_tensor_view(),
k_dram_block_window_tmp.get_window_lengths(),
{seqlen_k_start, 0});
auto k_dram_window = make_tile_window(
k_dram_block_window.get_bottom_tensor_view(),
k_dram_block_window.get_window_lengths(),
k_dram_block_window.get_window_origin(),
Policy::template MakeKDramTileDistribution<Problem>()); // K DRAM tile window for
// load
const auto bias_origin = bias_dram_block_window_tmp.get_window_origin();
auto bias_dram_window = make_tile_window(
bias_dram_block_window_tmp.get_bottom_tensor_view(),
bias_dram_block_window_tmp.get_window_lengths(),
{bias_origin.at(number<0>{}), seqlen_k_start}, // M/N
Policy::template MakeBiasDramTileDistribution<Problem, decltype(gemm_0)>());
auto v_dram_window =
make_tile_window(v_dram_block_window_tmp.get_bottom_tensor_view(),
v_dram_block_window_tmp.get_window_lengths(),
{0, seqlen_k_start}, // TODO: hdim split?
Policy::template MakeVDramTileDistribution<Problem>());
// prefetch K tile
async_load_tile_raw(k_lds_store(LdsSeq.at(number<0>{})), k_dram_window);
move_tile_window(k_dram_window, {0, kK0});
__builtin_amdgcn_sched_barrier(0);
buffer_load_fence(k_dram_window.get_num_access(), q.get_thread_buffer());
(void)q_element_func; // ??? rocm-6.x if use q element func will have scratch on hdim=64/32
// auto q_tile = q; // tile_elementwise_in(q_element_func, q);
index_t i_total_loops = 0;
constexpr index_t k0_loops = kK0BlockLength / kK0;
constexpr index_t k1_loops = kN0 / kK1;
static_assert(1 <= k0_loops);
static_assert(1 <= k1_loops);
// main loop
do
{
// STAGE 1, QK gemm
clear_tile(s_acc); // initialize C
if constexpr(k0_loops > 1)
{
static_for<0, k0_loops - 1, 1>{}([&](auto i_k0) {
async_load_tile_raw(k_lds_store(number<LdsSeq.at(number<i_k0 + 1>{})>{}),
k_dram_window);
if constexpr(i_k0 < k0_loops - 1)
move_tile_window(k_dram_window, {0, kK0});
async_load_fence(k_dram_window.get_num_access());
__builtin_amdgcn_s_barrier();
__builtin_amdgcn_sched_barrier(0);
gemm_0(s_acc,
get_slice_tile(
q, sequence<0, i_k0 * kK0>{}, sequence<kM0, (i_k0 + 1) * kK0>{}),
#if K_LDS_LOAD_USE_OFFSET_TRANSFORM
k_lds_load[number<LdsSeq.at(number<i_k0>{})>{}]);
#else
get_slice_tile(k_lds_load,
sequence<(LdsSeq.at(number<i_k0>{})) * kN0, 0>{},
sequence<(LdsSeq.at(number<i_k0>{}) + 1) * kN0, kK0>{}));
#endif
});
}
// TODO: this to fix a bug when loop smaller than 2,
// the following fence/barrier will be scheduled inside 1st loop
if constexpr(k0_loops <= 2)
__builtin_amdgcn_sched_barrier(0);
async_load_fence();
__builtin_amdgcn_s_barrier();
const auto bias_tile = load_tile(bias_dram_window); // load bias tile
auto v_buf = load_tile(v_dram_window, bool_constant<false>{});
__builtin_amdgcn_sched_barrier(0);
{ // tail
gemm_0(s_acc,
get_slice_tile(
q, sequence<0, (k0_loops - 1) * kK0>{}, sequence<kM0, k0_loops * kK0>{}),
#if K_LDS_LOAD_USE_OFFSET_TRANSFORM
k_lds_load[number<LdsSeq.at(number<k0_loops - 1>{})>{}]);
#else
get_slice_tile(
k_lds_load,
sequence<(LdsSeq.at(number<k0_loops - 1>{})) * kN0, 0>{},
sequence<(LdsSeq.at(number<k0_loops - 1>{}) + 1) * kN0, kK0>{}));
#endif
}
__builtin_amdgcn_sched_barrier(1);
// STAGE 2, scale_s, add bias, mask, softmax
if constexpr(kHasBias)
{
s_acc = tile_elementwise_in(s_acc_element_func, s_acc);
tile_elementwise_inout([&scale_s](auto& x) { x = x * scale_s; }, s_acc);
tile_elementwise_inout(
[&](auto& x, const auto& y) {
#if !CK_TILE_FMHA_FWD_FAST_EXP2
x += type_convert<SaccDataType>(bias_element_func(y));
#else
x += log2e_v<SaccDataType> *
type_convert<SaccDataType>(bias_element_func(y));
#endif
},
s_acc,
bias_tile);
}
else
{
s_acc = tile_elementwise_in(s_acc_element_func, s_acc);
#if !CK_TILE_FMHA_FWD_FAST_EXP2
tile_elementwise_inout([&scale_s](auto& x) { x = x * scale_s; }, s_acc);
#endif
}
move_tile_window(bias_dram_window, {0, kN0});
if constexpr(kPadSeqLenK || FmhaMask::IsMasking)
{
const auto k_origin = k_dram_block_window.get_window_origin();
bool need_perpixel_check = mask.IsEdgeTile(q_origin.at(number<0>{}),
k_origin.at(number<0>{}),
number<kM0>{},
number<kN0>{});
if(need_perpixel_check)
{
set_tile_if(
s_acc, -numeric<SMPLComputeDataType>::infinity(), [&](auto tile_idx) {
const auto row = q_origin.at(number<0>{}) + tile_idx.at(number<0>{});
const auto col = k_origin.at(number<0>{}) + tile_idx.at(number<1>{});
return mask.IsOutOfBound(row, col);
});
}
}
const auto s = cast_tile<SMPLComputeDataType>(s_acc); // S{j}
auto m_local = block_tile_reduce<SMPLComputeDataType>(
s,
sequence<1>{},
f_max,
-numeric<SMPLComputeDataType>::infinity()); // m_local = rowmax(S{j})
block_tile_reduce_sync(m_local, f_max, bool_constant<false>{});
const auto m_old = m; // m{j-1}
tile_elementwise_inout(
[](auto& e0, auto e1, auto e2) { e0 = max(e1, e2); }, m, m_old, m_local); // m{j}
auto p_compute = make_static_distributed_tensor<SMPLComputeDataType>(
s.get_tile_distribution()); // Pcompute{j}
__builtin_amdgcn_sched_barrier(0x7F);
// store & prefetch next v, after the max reduction
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
auto v_shuffle_tmp = make_static_distributed_tensor<VDataType>(
Policy::template MakeShuffledVRegBlockDescriptor<Problem>());
shuffle_tile(v_shuffle_tmp, v_buf);
auto v_lds_window_tmp =
get_slice_tile(v_lds_window,
sequence<(LdsSeq.at(number<k0_loops>{})) * kN1, 0>{},
sequence<(LdsSeq.at(number<k0_loops>{}) + 1) * kN1, kK1>{});
store_tile(
v_lds_window_tmp,
tile_elementwise_in(v_element_func, v_shuffle_tmp)); // store the prefetch
}
else
{
auto v_lds_window_tmp =
get_slice_tile(v_lds_window,
sequence<(LdsSeq.at(number<k0_loops>{})) * kN1, 0>{},
sequence<(LdsSeq.at(number<k0_loops>{}) + 1) * kN1, kK1>{});
store_tile(v_lds_window_tmp,
tile_elementwise_in(v_element_func, v_buf)); // store the prefetch
}
if constexpr(k1_loops > 1)
{
move_tile_window(
v_dram_window,
{0, kK1}); // will have scratch if move this right after load_tile(v_dram)...
v_buf = load_tile(v_dram_window, bool_constant<false>{}); // load next v_buf
}
__builtin_amdgcn_sched_barrier(0);
static const auto get_validated_m = [](SMPLComputeDataType raw_m) {
/// NOTICE: bias might be materialized mask including -inf values, need
/// consideration
if constexpr(kHasBias || FmhaMask::IsMasking)
{
return raw_m == -numeric<SMPLComputeDataType>::infinity()
? type_convert<SMPLComputeDataType>(0.f)
: raw_m;
}
else
{
return raw_m;
}
};
constexpr auto p_spans = decltype(p_compute)::get_distributed_spans();
sweep_tile_span(p_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
#if CK_TILE_FMHA_FWD_FAST_EXP2
auto row_max = scale_s * get_validated_m(m[i_idx]);
#endif
sweep_tile_span(p_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
#if CK_TILE_FMHA_FWD_FAST_EXP2
if constexpr(kHasBias)
{
p_compute(i_j_idx) = exp2(s[i_j_idx] - get_validated_m(m[i_idx]));
}
else
{
p_compute(i_j_idx) = exp2(scale_s * s[i_j_idx] - row_max);
}
#else
p_compute(i_j_idx) = exp(s[i_j_idx] - get_validated_m(m[i_idx]));
#endif
});
});
auto rowsum_p = block_tile_reduce<SMPLComputeDataType>(
p_compute, sequence<1>{}, f_sum, SMPLComputeDataType{0}); // rowsum(Pcompute{j})
block_tile_reduce_sync(rowsum_p, f_sum, bool_constant<false>{});
// l{j}, Oacc{j}
constexpr auto o_spans = decltype(o_acc)::get_distributed_spans();
sweep_tile_span(o_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
#if CK_TILE_FMHA_FWD_FAST_EXP2
const auto tmp = [&]() {
if constexpr(kHasBias)
{
return exp2(m_old[i_idx] - get_validated_m(m[i_idx]));
}
else
{
auto row_max = scale_s * get_validated_m(m[i_idx]);
return exp2(scale_s * m_old[i_idx] - row_max);
}
}();
#else
const auto tmp = exp(m_old[i_idx] - get_validated_m(m[i_idx]));
#endif
l(i_idx) = tmp * l[i_idx] + rowsum_p[i_idx];
sweep_tile_span(o_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
// FIXME: this use different equation from FA v2 paper,
// but produce correc result.
// Is the equation wrong?
o_acc(i_j_idx) *= tmp;
});
});
const auto p =
cast_tile<PDataType>(tile_elementwise_in(p_compute_element_func, p_compute));
// STAGE 3, KV gemm
if constexpr(k1_loops > 1)
{
static_for<0, k1_loops - 1, 1>{}([&](auto i_k1) {
if constexpr(i_k1 != 0 && i_k1 < k1_loops - 1)
{
v_buf = load_tile(v_dram_window, bool_constant<false>{}); // load next v_buf
}
block_sync_lds();
gemm_1(o_acc,
get_slice_tile(
p, sequence<0, i_k1 * kK1>{}, sequence<kM0, (i_k1 + 1) * kK1>{}),
get_slice_tile(
v_lds_window,
sequence<(LdsSeq.at(number<k0_loops + i_k1>{})) * kN1, 0>{},
sequence<(LdsSeq.at(number<k0_loops + i_k1>{}) + 1) * kN1, kK1>{}));
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
auto v_shuffle_tmp = make_static_distributed_tensor<VDataType>(
Policy::template MakeShuffledVRegBlockDescriptor<Problem>());
shuffle_tile(v_shuffle_tmp, v_buf);
auto v_lds_window_tmp = get_slice_tile(
v_lds_window,
sequence<(LdsSeq.at(number<k0_loops + i_k1 + 1>{})) * kN1, 0>{},
sequence<(LdsSeq.at(number<k0_loops + i_k1 + 1>{}) + 1) * kN1, kK1>{});
store_tile(v_lds_window_tmp,
tile_elementwise_in(v_element_func,
v_shuffle_tmp)); // store the prefetch
}
else
{
auto v_lds_window_tmp = get_slice_tile(
v_lds_window,
sequence<(LdsSeq.at(number<k0_loops + i_k1 + 1>{})) * kN1, 0>{},
sequence<(LdsSeq.at(number<k0_loops + i_k1 + 1>{}) + 1) * kN1, kK1>{});
store_tile(v_lds_window_tmp,
tile_elementwise_in(v_element_func, v_buf)); // store next v_buf
}
if constexpr(i_k1 < k1_loops - 1)
move_tile_window(v_dram_window, {0, kK1});
});
}
i_total_loops++;
if(i_total_loops < num_total_loop)
{
// move K tile windows
move_tile_window(k_dram_block_window, {kN0, 0});
k_dram_window =
make_tile_window(k_dram_block_window.get_bottom_tensor_view(),
k_dram_block_window.get_window_lengths(),
k_dram_block_window.get_window_origin(),
Policy::template MakeKDramTileDistribution<Problem>());
if constexpr(k1_loops >= 2 &&
LdsSeq.at(number<0>{}) == LdsSeq.at(number<k0_loops + k1_loops - 2>{}))
__builtin_amdgcn_s_barrier();
async_load_tile_raw(k_lds_store(LdsSeq.at(number<0>{})), k_dram_window);
move_tile_window(k_dram_window, {0, kK0});
}
// tail
{
block_sync_lds();
gemm_1(
o_acc,
get_slice_tile(p, sequence<0, (k1_loops - 1) * kK1>{}, sequence<kM0, kN0>{}),
get_slice_tile(
v_lds_window,
sequence<(LdsSeq.at(number<k0_loops + k1_loops - 1>{})) * kN1, 0>{},
sequence<(LdsSeq.at(number<k0_loops + k1_loops - 1>{}) + 1) * kN1, kK1>{}));
}
} while(i_total_loops < num_total_loop);
// store lse
if constexpr(kStoreLSE)
{
auto lse = make_static_distributed_tensor<LSEDataType>(m.get_tile_distribution());
constexpr auto lse_spans = decltype(lse)::get_distributed_spans();
sweep_tile_span(lse_spans[number<0>{}], [&, m_ = m, l_ = l](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
#if CK_TILE_FMHA_FWD_FAST_EXP2
if constexpr(kHasBias)
{
lse(i_idx) = m_[i_idx] * R_LOG2E + log(l_[i_idx]);
}
else
{
lse(i_idx) = m_[i_idx] * scale_s * R_LOG2E + log(l_[i_idx]);
}
#else
lse(i_idx) = m_[i_idx] + log(l_[i_idx]);
#endif
});
store_tile(lse_dram_window_tmp, tile_elementwise_in(lse_element_func, lse));
}
// finally, O
constexpr auto o_spans = decltype(o_acc)::get_distributed_spans();
sweep_tile_span(o_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
const auto tmp = [&]() {
if constexpr(FmhaMask::IsMasking)
{
return l[i_idx] == 0.f ? 0.f : 1 / l[i_idx];
}
else
return 1 / l[i_idx];
}();
sweep_tile_span(o_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
o_acc(i_j_idx) *= tmp;
});
});
o_acc = tile_elementwise_in(o_acc_element_func, o_acc);
return o_acc;
}
template <typename QDramBlockWindowTmp,
typename KDramBlockWindowTmp,
typename VDramBlockWindowTmp,
typename BiasDramBlockWindowTmp,
typename LSEDramBlockWindowTmp>
CK_TILE_HOST_DEVICE auto
operator()(const QDramBlockWindowTmp& q_dram_block_window_tmp, // M0*K0 tile
const KDramBlockWindowTmp& k_dram_block_window_tmp, // N0*K0 tile
const VDramBlockWindowTmp& v_dram_block_window_tmp, // N1*K1 tile
const BiasDramBlockWindowTmp& bias_dram_block_window_tmp, // M0*N0 tile
LSEDramBlockWindowTmp& lse_dram_block_window_tmp, // M0*1 tile
FmhaMask mask,
float scale_s,
void* smem_ptr) const
{
return operator()(q_dram_block_window_tmp,
identity{},
k_dram_block_window_tmp,
identity{},
v_dram_block_window_tmp,
identity{},
bias_dram_block_window_tmp,
identity{},
lse_dram_block_window_tmp,
identity{},
identity{},
identity{},
identity{},
mask,
scale_s,
smem_ptr);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qx_ks_vs_custom_policy.hpp"
namespace ck_tile {
// This pipeline is qkv all located in LDS
using BlockFmhaPipelineQRKSVSAsyncDefaultPolicy =
BlockFmhaPipelineQXKSVSCustomPolicy</* QLoadOnce = */ true,
/* AsyncCopyK = */ true,
/* AsyncCopyV = */ false,
/* NumPrefetchK = */ 3,
/* NumPrefetchV = */ 3>;
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qx_ks_vs_custom_policy.hpp"
namespace ck_tile {
// This pipeline is qkv all located in LDS
using BlockFmhaPipelineQRKSVSDefaultPolicy =
BlockFmhaPipelineQXKSVSCustomPolicy</* QLoadOnce = */ true,
/* AsyncCopyK = */ false,
/* AsyncCopyV = */ false,
/* NumPrefetchK = */ 1,
/* NumPrefetchV = */ 1>;
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qr_ks_vs_default_policy.hpp"
#include "ck_tile/ops/reduce/block/block_reduce.hpp"
namespace ck_tile {
// This pipeline is qkv all located in LDS
template <typename Problem_, typename Policy_ = BlockFmhaPipelineQRKSVSDefaultPolicy>
struct [[deprecated]] BlockFmhaPipelineQRKSVSFp8
{
using Problem = remove_cvref_t<Problem_>;
using Policy = remove_cvref_t<Policy_>;
using QDataType = remove_cvref_t<typename Problem::QDataType>;
using KDataType = remove_cvref_t<typename Problem::KDataType>;
using VDataType = remove_cvref_t<typename Problem::VDataType>;
using SaccDataType = remove_cvref_t<typename Problem::SaccDataType>;
using SMPLComputeDataType = remove_cvref_t<typename Problem::SMPLComputeDataType>;
using BiasDataType = remove_cvref_t<typename Problem::BiasDataType>;
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
using PDataType = remove_cvref_t<typename Problem::PDataType>;
using OaccDataType = remove_cvref_t<typename Problem::OaccDataType>;
using ODataType = remove_cvref_t<typename Problem::ODataType>;
using FmhaMask = remove_cvref_t<typename Problem::FmhaMask>;
using BlockFmhaShape = remove_cvref_t<typename Problem::BlockFmhaShape>;
using VLayout = remove_cvref_t<typename BlockFmhaShape::VLayout>;
static constexpr bool kQLoadOnce = true; // if q_tile load whole block length (hdim) at once
static_assert(kQLoadOnce == Policy::QLoadOnce);
static constexpr bool kIsFp8 = Problem::kIsFp8;
static constexpr index_t kBlockSize = Problem::kBlockSize;
static constexpr index_t kM0 = BlockFmhaShape::kM0;
static constexpr index_t kN0 = BlockFmhaShape::kN0;
static constexpr index_t kK0 = BlockFmhaShape::kK0;
static constexpr index_t kN1 = BlockFmhaShape::kN1;
static constexpr index_t kK1 = BlockFmhaShape::kK1;
static constexpr index_t kK0BlockLength = BlockFmhaShape::kK0BlockLength;
static constexpr bool kIsGroupMode = Problem::kIsGroupMode;
static constexpr bool kPadSeqLenQ = Problem::kPadSeqLenQ;
static constexpr bool kPadSeqLenK = Problem::kPadSeqLenK;
static constexpr bool kPadHeadDimQ = Problem::kPadHeadDimQ;
static constexpr bool kPadHeadDimV = Problem::kPadHeadDimV;
static constexpr bool kHasBias = Problem::kHasBias;
static constexpr bool kStoreLSE = Problem::kStoreLSE;
// last dimension vector length used to create tensor view(and decide buffer_load vector length)
// ... together with tensor distribution. tensor dist should able to overwrite this
static constexpr index_t kAlignmentQ =
kPadHeadDimQ ? 1 : Policy::template GetAlignmentQ<Problem>();
static constexpr index_t kAlignmentK =
kPadHeadDimQ ? 1 : Policy::template GetAlignmentK<Problem>();
static constexpr index_t kAlignmentV = []() {
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
return kPadHeadDimV ? 1 : Policy::template GetAlignmentV<Problem>();
else
return kPadSeqLenK ? 1 : Policy::template GetAlignmentV<Problem>();
}();
static constexpr index_t kAlignmentO =
kPadHeadDimV ? 1 : Policy::template GetAlignmentO<Problem>();
static constexpr index_t kAlignmentBias =
kPadSeqLenK ? 1 : Policy::template GetAlignmentBias<Problem>();
static constexpr index_t kBlockPerCu = []() {
if constexpr(Problem::kBlockPerCu != -1)
return Problem::kBlockPerCu;
else
{
if constexpr(kK0BlockLength <= 32)
{
return 2;
}
else if constexpr(kK0BlockLength <= 64)
{
return 3;
}
else if constexpr(kK0BlockLength <= 128)
{
if constexpr(kHasBias)
return 1;
else
return 2;
}
else if constexpr(kK0BlockLength <= 256)
{
return 1;
}
}
}();
static constexpr const char* name = "qr_fp8";
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
return Policy::template GetSmemSize<Problem>();
}
template <typename QDramBlockWindowTmp,
typename KDramBlockWindowTmp,
typename VDramBlockWindowTmp,
typename BiasDramBlockWindowTmp,
typename LSEDramBlockWindowTmp>
CK_TILE_HOST_DEVICE auto
operator()(const QDramBlockWindowTmp& q_dram_block_window_tmp, // M0*K0 tile
const KDramBlockWindowTmp& k_dram_block_window_tmp, // N0*K0 tile
const VDramBlockWindowTmp& v_dram_block_window_tmp, // N1*K1 tile
const BiasDramBlockWindowTmp& bias_dram_block_window_tmp, // M0*N0 tile
LSEDramBlockWindowTmp& /*lse_dram_window_tmp*/, // not supported
FmhaMask mask,
float scale_s,
float descale_qk,
float descale_sv,
void* smem_ptr) const
{
static_assert(
std::is_same_v<QDataType, remove_cvref_t<typename QDramBlockWindowTmp::DataType>> &&
std::is_same_v<KDataType, remove_cvref_t<typename KDramBlockWindowTmp::DataType>> &&
std::is_same_v<VDataType, remove_cvref_t<typename VDramBlockWindowTmp::DataType>>,
"wrong!");
static_assert(kM0 == QDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == KDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kK0 == KDramBlockWindowTmp{}.get_window_lengths()[number<1>{}] &&
kN1 == VDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kK1 == VDramBlockWindowTmp{}.get_window_lengths()[number<1>{}] &&
kM0 == BiasDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == BiasDramBlockWindowTmp{}.get_window_lengths()[number<1>{}],
"wrong!");
// K tile in LDS
KDataType* k_lds_ptr = static_cast<KDataType*>(static_cast<void*>(
static_cast<char*>(smem_ptr) + Policy::template GetSmemSizeQ<Problem>()));
auto k_lds = make_tensor_view<address_space_enum::lds>(
k_lds_ptr, Policy::template MakeKLdsBlockDescriptor<Problem>());
auto k_lds_window =
make_tile_window(k_lds, make_tuple(number<kN0>{}, number<kK0>{}), {0, 0});
// V tile in LDS
auto v_lds = make_tensor_view<address_space_enum::lds>(
reinterpret_cast<VDataType*>(smem_ptr),
Policy::template MakeVLdsBlockDescriptor<Problem>());
auto v_lds_window = make_tile_window(
v_lds, Policy::template MakeVLdsBlockDescriptor<Problem>().get_lengths(), {0, 0});
// Block GEMM
constexpr auto gemm_0 = Policy::template GetQKBlockGemm<Problem>();
constexpr auto gemm_1 = Policy::template GetKVBlockGemm<Problem>();
auto q_dram_window = make_tile_window(
q_dram_block_window_tmp.get_bottom_tensor_view(),
q_dram_block_window_tmp.get_window_lengths(),
q_dram_block_window_tmp.get_window_origin(),
Policy::template MakeQDramTileDistribution<Problem, decltype(gemm_0)>());
auto q = load_tile(q_dram_window);
using SaccBlockTileType = decltype(gemm_0.MakeCBlockTile());
auto s_acc = SaccBlockTileType{};
// reduction function for softmax
const auto f_max = [](auto e0, auto e1) { return max(e0, e1); };
const auto f_sum = [](auto e0, auto e1) { return e0 + e1; };
// infer Sacc, S, P, M, L, Oacc type
using SBlockTileType = decltype(cast_tile<SMPLComputeDataType>(s_acc));
using MLBlockTileType = decltype(block_tile_reduce<SMPLComputeDataType>(
SBlockTileType{}, sequence<1>{}, f_max, SMPLComputeDataType{0}));
using OaccBlockTileType = decltype(gemm_1.MakeCBlockTile());
// init Oacc, M, L
auto o_acc = OaccBlockTileType{};
auto m = MLBlockTileType{};
auto l = MLBlockTileType{};
clear_tile(o_acc);
set_tile(m, -numeric<SMPLComputeDataType>::infinity());
clear_tile(l);
const auto q_origin = q_dram_window.get_window_origin();
const auto [seqlen_k_start, seqlen_k_end] =
mask.GetTileRangeAlongX(q_origin.at(number<0>{}), number<kM0>{}, number<kN0>{});
const auto num_total_loop = integer_divide_ceil(seqlen_k_end - seqlen_k_start, kN0);
// check early exit if masked and no work to do.
if constexpr(FmhaMask::IsMasking)
{
if(num_total_loop <= 0)
{
// Note: here occ are all cleard, return it
// Note: q loaded but no fence, ignore it.
return o_acc;
}
}
auto k_dram_block_window =
make_tile_window(k_dram_block_window_tmp.get_bottom_tensor_view(),
k_dram_block_window_tmp.get_window_lengths(),
{seqlen_k_start, 0});
const auto bias_origin = bias_dram_block_window_tmp.get_window_origin();
auto bias_dram_window = make_tile_window(
bias_dram_block_window_tmp.get_bottom_tensor_view(),
bias_dram_block_window_tmp.get_window_lengths(),
{bias_origin.at(number<0>{}), seqlen_k_start}, // M/N
Policy::template MakeBiasDramTileDistribution<Problem, decltype(gemm_0)>());
auto v_dram_window =
make_tile_window(v_dram_block_window_tmp.get_bottom_tensor_view(),
v_dram_block_window_tmp.get_window_lengths(),
{0, seqlen_k_start}, // TODO: hdim split?
Policy::template MakeVDramTileDistribution<Problem>());
// auto q_tile = tile_elementwise_in(q_element_func, q);
auto q_tile = q;
// prefetch K tile
index_t i_total_loops = 0;
constexpr index_t k0_loops = kK0BlockLength / kK0;
constexpr index_t k1_loops = kN0 / kK1;
static_assert(2 <= k0_loops);
static_assert(1 <= k1_loops);
scale_s = scale_s * descale_qk;
do
{
// STAGE 1, QK gemm
auto k_dram_window = make_tile_window(
k_dram_block_window.get_bottom_tensor_view(),
k_dram_block_window.get_window_lengths(),
k_dram_block_window.get_window_origin(),
Policy::template MakeKDramTileDistribution<Problem>()); // K DRAM tile window for
// load
auto k_block_tile = load_tile(k_dram_window);
{
move_tile_window(k_dram_window, {0, kK0});
clear_tile(s_acc); // initialize C
store_tile(k_lds_window, k_block_tile);
k_block_tile = load_tile(k_dram_window);
}
if constexpr(kHasBias)
{
__builtin_amdgcn_sched_barrier(
0); // prevent from messing up the order of global loads
}
const auto bias_tile = load_tile(bias_dram_window); // load bias tile
if constexpr(kHasBias)
{
__builtin_amdgcn_sched_barrier(
0); // prevent from messing up the order of global loads
}
if constexpr(k0_loops > 2)
{
static_for<0, k0_loops - 2, 1>{}([&](auto i_k0) {
block_sync_lds();
gemm_0(s_acc,
get_slice_tile(q_tile,
sequence<0, i_k0 * kK0>{},
sequence<kM0, (i_k0 + 1) * kK0>{}),
k_lds_window);
block_sync_lds();
move_tile_window(k_dram_window, {0, kK0});
store_tile(k_lds_window,
k_block_tile); // LDS write i + 1
k_block_tile = load_tile(k_dram_window); // global read i + 2
});
}
const auto v_prefetch = load_tile(v_dram_window); // prefetch load v tile
{ // tail
block_sync_lds();
gemm_0(s_acc,
get_slice_tile(q_tile,
sequence<0, (k0_loops - 2) * kK0>{},
sequence<kM0, (k0_loops - 1) * kK0>{}),
k_lds_window);
block_sync_lds();
store_tile(k_lds_window, k_block_tile);
block_sync_lds();
gemm_0(s_acc,
get_slice_tile(q_tile,
sequence<0, (k0_loops - 1) * kK0>{},
sequence<kM0, k0_loops * kK0>{}),
k_lds_window);
}
// STAGE 2, scale_s, add bias, mask, softmax
if constexpr(kHasBias)
{
tile_elementwise_inout(
[&](auto& x, const auto& y) {
#if !CK_TILE_FMHA_FWD_FAST_EXP2
x = scale_s * x + type_convert<SaccDataType>((y));
#else
x = scale_s * x + log2e_v<SaccDataType> * type_convert<SaccDataType>((y));
#endif
},
s_acc,
bias_tile);
}
else
{
#if !CK_TILE_FMHA_FWD_FAST_EXP2
tile_elementwise_inout([&scale_s](auto& x) { x = x * scale_s; }, s_acc);
#endif
}
move_tile_window(bias_dram_window, {0, kN0});
if constexpr(kPadSeqLenK || FmhaMask::IsMasking)
{
const auto k_origin = k_dram_block_window.get_window_origin();
bool need_perpixel_check = mask.IsEdgeTile(q_origin.at(number<0>{}),
k_origin.at(number<0>{}),
number<kM0>{},
number<kN0>{});
if(need_perpixel_check)
{
set_tile_if(
s_acc, -numeric<SMPLComputeDataType>::infinity(), [&](auto tile_idx) {
const auto row = q_origin.at(number<0>{}) + tile_idx.at(number<0>{});
const auto col = k_origin.at(number<0>{}) + tile_idx.at(number<1>{});
return mask.IsOutOfBound(row, col);
});
}
}
const auto s = cast_tile<SMPLComputeDataType>(s_acc); // S{j}
auto m_local = block_tile_reduce<SMPLComputeDataType>(
s,
sequence<1>{},
f_max,
-numeric<SMPLComputeDataType>::infinity()); // m_local = rowmax(S{j})
block_tile_reduce_sync(m_local, f_max, bool_constant<false>{});
const auto m_old = m; // m{j-1}
tile_elementwise_inout(
[](auto& e0, auto e1, auto e2) { e0 = max(e1, e2); }, m, m_old, m_local); // m{j}
auto p_compute = make_static_distributed_tensor<SMPLComputeDataType>(
s.get_tile_distribution()); // Pcompute{j}
static const auto get_validated_m = [](SMPLComputeDataType raw_m) {
/// NOTICE: bias might be materialized mask including -inf values, need
/// consideration
if constexpr(kHasBias || FmhaMask::IsMasking)
{
return raw_m == -numeric<SMPLComputeDataType>::infinity()
? type_convert<SMPLComputeDataType>(0.f)
: raw_m;
}
else
{
return raw_m;
}
};
constexpr auto p_spans = decltype(p_compute)::get_distributed_spans();
sweep_tile_span(p_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
#if CK_TILE_FMHA_FWD_FAST_EXP2
auto row_max = scale_s * get_validated_m(m[i_idx]);
#endif
sweep_tile_span(p_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
#if CK_TILE_FMHA_FWD_FAST_EXP2
if constexpr(kHasBias)
{
p_compute(i_j_idx) = exp2(s[i_j_idx] - get_validated_m(m[i_idx]));
}
else
{
p_compute(i_j_idx) = exp2(scale_s * s[i_j_idx] - row_max);
}
#else
p_compute(i_j_idx) = exp(s[i_j_idx] - get_validated_m(m[i_idx]));
#endif
});
});
auto rowsum_p = block_tile_reduce<SMPLComputeDataType>(
p_compute, sequence<1>{}, f_sum, SMPLComputeDataType{0}); // rowsum(Pcompute{j})
block_tile_reduce_sync(rowsum_p, f_sum, bool_constant<false>{});
// l{j}, Oacc{j}
constexpr auto o_spans = decltype(o_acc)::get_distributed_spans();
sweep_tile_span(o_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
#if CK_TILE_FMHA_FWD_FAST_EXP2
const auto tmp = [&]() {
if constexpr(kHasBias)
{
return exp2(m_old[i_idx] - get_validated_m(m[i_idx]));
}
else
{
auto row_max = scale_s * get_validated_m(m[i_idx]);
return exp2(scale_s * m_old[i_idx] - row_max);
}
}();
#else
const auto tmp = exp(m_old[i_idx] - get_validated_m(m[i_idx]));
#endif
l(i_idx) = tmp * l[i_idx] + rowsum_p[i_idx];
sweep_tile_span(o_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
// FIXME: this use different equation from FA v2 paper,
// but produce correc result.
// Is the equation wrong?
o_acc(i_j_idx) *= tmp;
});
});
block_sync_lds();
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
auto v_shuffle_tmp = make_static_distributed_tensor<VDataType>(
Policy::template MakeShuffledVRegBlockDescriptor<Problem>());
shuffle_tile(v_shuffle_tmp, v_prefetch);
store_tile(v_lds_window,
v_shuffle_tmp); // store the prefetch
}
else
{
store_tile(v_lds_window,
v_prefetch); // store the prefetch
}
move_tile_window(v_dram_window, {0, kK1});
const auto p = cast_tile<PDataType>(p_compute);
// STAGE 3, KV gemm
if constexpr(k1_loops > 1)
{
static_for<0, k1_loops - 1, 1>{}([&](auto i_k1) {
const auto v = load_tile(v_dram_window); // load next v
block_sync_lds();
gemm_1(o_acc,
get_slice_tile(
p, sequence<0, i_k1 * kK1>{}, sequence<kM0, (i_k1 + 1) * kK1>{}),
v_lds_window);
block_sync_lds();
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
auto v_shuffle_tmp = make_static_distributed_tensor<VDataType>(
Policy::template MakeShuffledVRegBlockDescriptor<Problem>());
shuffle_tile(v_shuffle_tmp, v);
store_tile(v_lds_window, v_shuffle_tmp);
}
else
{
store_tile(v_lds_window, v);
}
move_tile_window(v_dram_window, {0, kK1});
});
}
// move K tile windows
move_tile_window(k_dram_block_window, {kN0, 0});
// tail
{
block_sync_lds();
gemm_1(o_acc,
get_slice_tile(p, sequence<0, (k1_loops - 1) * kK1>{}, sequence<kM0, kN0>{}),
v_lds_window);
block_sync_lds();
}
} while(++i_total_loops < num_total_loop);
// finally, O
constexpr auto o_spans = decltype(o_acc)::get_distributed_spans();
sweep_tile_span(o_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
auto tmp = [&]() {
if constexpr(FmhaMask::IsMasking)
{
return l[i_idx] == 0.f ? 0.f : 1 / l[i_idx];
}
else
return 1 / l[i_idx];
}();
tmp = tmp * descale_sv;
sweep_tile_span(o_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
o_acc(i_j_idx) *= tmp;
});
});
return o_acc;
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qs_ks_vs_default_policy.hpp"
namespace ck_tile {
// This pipeline is qkv all located in LDS
template <typename Problem_, typename Policy_ = BlockFmhaPipelineQSKSVSDefaultPolicy>
struct BlockFmhaPipelineQSKSVS
{
using Problem = remove_cvref_t<Problem_>;
using Policy = remove_cvref_t<Policy_>;
using QDataType = remove_cvref_t<typename Problem::QDataType>;
using KDataType = remove_cvref_t<typename Problem::KDataType>;
using VDataType = remove_cvref_t<typename Problem::VDataType>;
using SaccDataType = remove_cvref_t<typename Problem::SaccDataType>;
using SMPLComputeDataType = remove_cvref_t<typename Problem::SMPLComputeDataType>;
using BiasDataType = remove_cvref_t<typename Problem::BiasDataType>;
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
using PDataType = remove_cvref_t<typename Problem::PDataType>;
using OaccDataType = remove_cvref_t<typename Problem::OaccDataType>;
using ODataType = remove_cvref_t<typename Problem::ODataType>;
using FmhaMask = remove_cvref_t<typename Problem::FmhaMask>;
using BlockFmhaShape = remove_cvref_t<typename Problem::BlockFmhaShape>;
using VLayout = remove_cvref_t<typename BlockFmhaShape::VLayout>;
static constexpr bool kQLoadOnce = false;
static_assert(kQLoadOnce == Policy::QLoadOnce);
static constexpr bool kIsFp8 = Problem::kIsFp8;
static constexpr index_t kBlockSize = Problem::kBlockSize;
static constexpr index_t kM0 = BlockFmhaShape::kM0;
static constexpr index_t kN0 = BlockFmhaShape::kN0;
static constexpr index_t kK0 = BlockFmhaShape::kK0;
static constexpr index_t kN1 = BlockFmhaShape::kN1;
static constexpr index_t kK1 = BlockFmhaShape::kK1;
static constexpr index_t kK0BlockLength = BlockFmhaShape::kK0BlockLength;
static constexpr bool kIsGroupMode = Problem::kIsGroupMode;
static constexpr bool kPadSeqLenQ = Problem::kPadSeqLenQ;
static constexpr bool kPadSeqLenK = Problem::kPadSeqLenK;
static constexpr bool kPadHeadDimQ = Problem::kPadHeadDimQ;
static constexpr bool kPadHeadDimV = Problem::kPadHeadDimV;
static constexpr bool kHasBias = Problem::kHasBias;
static constexpr bool kStoreLSE = Problem::kStoreLSE;
static constexpr index_t kBlockPerCu = []() {
if constexpr(Problem::kBlockPerCu != -1)
return Problem::kBlockPerCu;
else
{
if constexpr(kK0BlockLength <= 32)
{
return 2;
}
else if constexpr(kK0BlockLength <= 64)
{
return 3;
}
else if constexpr(kK0BlockLength <= 128)
{
if constexpr(kHasBias)
return 1;
else
return 2;
}
else if constexpr(kK0BlockLength <= 256)
{
return 1;
}
}
}();
static constexpr const char* name = "qs";
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
return Policy::template GetSmemSize<Problem>();
}
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeQ()
{
return Policy::template GetSmemSizeQ<Problem>();
}
template <typename QDramBlockWindowTmp,
typename KDramBlockWindowTmp,
typename VDramBlockWindowTmp,
typename BiasDramBlockWindowTmp,
typename LSEDramBlockWindowTmp,
typename QElementFunction,
typename KElementFunction,
typename VElementFunction,
typename BiasElementFunction,
typename LSEElementFunction,
typename SAccElementFunction,
typename PComputeElementFunction,
typename OAccElementFunction>
CK_TILE_HOST_DEVICE auto
operator()(const QDramBlockWindowTmp& q_dram_block_window_tmp, // M0*K0 tile
const QElementFunction& q_element_func,
const KDramBlockWindowTmp& k_dram_block_window_tmp, // N0*K0 tile
const KElementFunction& k_element_func,
const VDramBlockWindowTmp& v_dram_block_window_tmp, // N1*K1 tile
const VElementFunction& v_element_func,
const BiasDramBlockWindowTmp& bias_dram_block_window_tmp, // M0*N0 tile
const BiasElementFunction& bias_element_func,
LSEDramBlockWindowTmp& lse_dram_window_tmp, // M0*1 tile
const LSEElementFunction& lse_element_func,
const SAccElementFunction& s_acc_element_func,
const PComputeElementFunction& p_compute_element_func,
const OAccElementFunction& o_acc_element_func,
FmhaMask mask,
float scale_s,
void* smem_ptr) const
{
static_assert(
std::is_same_v<QDataType, remove_cvref_t<typename QDramBlockWindowTmp::DataType>> &&
std::is_same_v<KDataType, remove_cvref_t<typename KDramBlockWindowTmp::DataType>> &&
std::is_same_v<VDataType, remove_cvref_t<typename VDramBlockWindowTmp::DataType>>,
"wrong!");
static_assert(kM0 == QDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == KDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kK0 == KDramBlockWindowTmp{}.get_window_lengths()[number<1>{}] &&
kN1 == VDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kK1 == VDramBlockWindowTmp{}.get_window_lengths()[number<1>{}] &&
kM0 == BiasDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == BiasDramBlockWindowTmp{}.get_window_lengths()[number<1>{}],
"wrong!");
// Q tile in LDS
auto q_lds = make_tensor_view<address_space_enum::lds>(
reinterpret_cast<QDataType*>(smem_ptr),
Policy::template MakeQLdsBlockDescriptor<Problem>());
auto q_lds_window =
make_tile_window(q_lds, make_tuple(number<kM0>{}, number<kK0>{}), {0, 0});
// K tile in LDS
KDataType* k_lds_ptr = static_cast<KDataType*>(static_cast<void*>(
static_cast<char*>(smem_ptr) + Policy::template GetSmemSizeQ<Problem>()));
auto k_lds = make_tensor_view<address_space_enum::lds>(
k_lds_ptr, Policy::template MakeKLdsBlockDescriptor<Problem>());
auto k_lds_window =
make_tile_window(k_lds, make_tuple(number<kN0>{}, number<kK0>{}), {0, 0});
// V tile in LDS
auto v_lds = make_tensor_view<address_space_enum::lds>(
reinterpret_cast<VDataType*>(smem_ptr),
Policy::template MakeVLdsBlockDescriptor<Problem>());
auto v_lds_window = make_tile_window(
v_lds, Policy::template MakeVLdsBlockDescriptor<Problem>().get_lengths(), {0, 0});
// Block GEMM
constexpr auto gemm_0 = Policy::template GetQKBlockGemm<Problem>();
constexpr auto gemm_1 = Policy::template GetKVBlockGemm<Problem>();
using SaccBlockTileType = decltype(gemm_0.MakeCBlockTile());
auto s_acc = SaccBlockTileType{};
// reduction function for softmax
const auto f_max = [](auto e0, auto e1) { return max(e0, e1); };
const auto f_sum = [](auto e0, auto e1) { return e0 + e1; };
// infer Sacc, S, P, M, L, Oacc type
using SBlockTileType = decltype(cast_tile<SMPLComputeDataType>(s_acc));
using MLBlockTileType = decltype(block_tile_reduce<SMPLComputeDataType>(
SBlockTileType{}, sequence<1>{}, f_max, SMPLComputeDataType{0}));
using OaccBlockTileType = decltype(gemm_1.MakeCBlockTile());
// init Oacc, M, L
auto o_acc = OaccBlockTileType{};
auto m = MLBlockTileType{};
auto l = MLBlockTileType{};
clear_tile(o_acc);
set_tile(m, -numeric<SMPLComputeDataType>::infinity());
clear_tile(l);
const auto q_origin = q_dram_block_window_tmp.get_window_origin();
const auto [seqlen_k_start, seqlen_k_end] =
mask.GetTileRangeAlongX(q_origin.at(number<0>{}), number<kM0>{}, number<kN0>{});
const auto num_total_loop = integer_divide_ceil(seqlen_k_end - seqlen_k_start, kN0);
// check early exit if masked and no work to do.
if constexpr(FmhaMask::IsMasking)
{
if(num_total_loop <= 0)
{
if constexpr(kStoreLSE)
{
auto lse =
make_static_distributed_tensor<LSEDataType>(m.get_tile_distribution());
set_tile(lse, -numeric<SMPLComputeDataType>::infinity());
store_tile(lse_dram_window_tmp, tile_elementwise_in(lse_element_func, lse));
}
// Note: here occ are all cleard, return it
// Note: q loaded but no fence, ignore it.
return o_acc;
}
}
auto k_dram_block_window =
make_tile_window(k_dram_block_window_tmp.get_bottom_tensor_view(),
k_dram_block_window_tmp.get_window_lengths(),
{seqlen_k_start, 0});
const auto bias_origin = bias_dram_block_window_tmp.get_window_origin();
auto bias_dram_window = make_tile_window(
bias_dram_block_window_tmp.get_bottom_tensor_view(),
bias_dram_block_window_tmp.get_window_lengths(),
{bias_origin.at(number<0>{}), seqlen_k_start}, // M/N
Policy::template MakeBiasDramTileDistribution<Problem, decltype(gemm_0)>());
auto v_dram_window =
make_tile_window(v_dram_block_window_tmp.get_bottom_tensor_view(),
v_dram_block_window_tmp.get_window_lengths(),
{0, seqlen_k_start}, // TODO: hdim split?
Policy::template MakeVDramTileDistribution<Problem>());
// prefetch K tile
index_t i_total_loops = 0;
constexpr index_t k0_loops = kK0BlockLength / kK0;
constexpr index_t k1_loops = kN0 / kK1;
static_assert(2 <= k0_loops);
static_assert(1 <= k1_loops);
do
{
// STAGE 1, QK gemm
auto q_dram_window =
make_tile_window(q_dram_block_window_tmp.get_bottom_tensor_view(),
q_dram_block_window_tmp.get_window_lengths(),
q_dram_block_window_tmp.get_window_origin(),
Policy::template MakeQDramTileDistribution<Problem>());
auto k_dram_window =
make_tile_window(k_dram_block_window.get_bottom_tensor_view(),
k_dram_block_window.get_window_lengths(),
k_dram_block_window.get_window_origin(),
Policy::template MakeKDramTileDistribution<Problem>());
auto q_block_tile = load_tile(q_dram_window);
auto k_block_tile = load_tile(k_dram_window);
{
move_tile_window(q_dram_window, {0, kK0});
move_tile_window(k_dram_window, {0, kK0});
clear_tile(s_acc); // initialize C
store_tile(q_lds_window, tile_elementwise_in(q_element_func, q_block_tile));
q_block_tile = load_tile(q_dram_window);
store_tile(k_lds_window, tile_elementwise_in(k_element_func, k_block_tile));
k_block_tile = load_tile(k_dram_window);
}
if constexpr(kHasBias)
{
__builtin_amdgcn_sched_barrier(
0); // prevent from messing up the order of global loads
}
const auto bias_tile = load_tile(bias_dram_window); // load bias tile
if constexpr(kHasBias)
{
__builtin_amdgcn_sched_barrier(
0); // prevent from messing up the order of global loads
}
if constexpr(k0_loops > 2)
{
static_for<0, k0_loops - 2, 1>{}([&](auto) {
block_sync_lds();
gemm_0(s_acc, q_lds_window, k_lds_window);
block_sync_lds();
move_tile_window(q_dram_window, {0, kK0});
move_tile_window(k_dram_window, {0, kK0});
store_tile(
q_lds_window,
tile_elementwise_in(q_element_func, q_block_tile)); // LDS write i + 1
q_block_tile = load_tile(q_dram_window); // global read i + 2
store_tile(
k_lds_window,
tile_elementwise_in(k_element_func, k_block_tile)); // LDS write i + 1
k_block_tile = load_tile(k_dram_window); // global read i + 2
});
}
const auto v_prefetch = load_tile(v_dram_window); // prefetch load v tile
{ // tail
block_sync_lds();
gemm_0(s_acc, q_lds_window, k_lds_window);
block_sync_lds();
store_tile(q_lds_window, tile_elementwise_in(q_element_func, q_block_tile));
store_tile(k_lds_window, tile_elementwise_in(k_element_func, k_block_tile));
block_sync_lds();
gemm_0(s_acc, q_lds_window, k_lds_window);
}
// STAGE 2, scale_s, add bias, mask, softmax
if constexpr(kHasBias)
{
s_acc = tile_elementwise_in(s_acc_element_func, s_acc);
tile_elementwise_inout([&scale_s](auto& x) { x = x * scale_s; }, s_acc);
tile_elementwise_inout(
[&](auto& x, const auto& y) {
#if !CK_TILE_FMHA_FWD_FAST_EXP2
x += type_convert<SaccDataType>(bias_element_func(y));
#else
x += log2e_v<SaccDataType> *
type_convert<SaccDataType>(bias_element_func(y));
#endif
},
s_acc,
bias_tile);
}
else
{
s_acc = tile_elementwise_in(s_acc_element_func, s_acc);
#if !CK_TILE_FMHA_FWD_FAST_EXP2
tile_elementwise_inout([&scale_s](auto& x) { x = x * scale_s; }, s_acc);
#endif
}
move_tile_window(bias_dram_window, {0, kN0});
if constexpr(kPadSeqLenK || FmhaMask::IsMasking)
{
const auto k_origin = k_dram_block_window.get_window_origin();
bool need_perpixel_check = mask.IsEdgeTile(q_origin.at(number<0>{}),
k_origin.at(number<0>{}),
number<kM0>{},
number<kN0>{});
if(need_perpixel_check)
{
set_tile_if(
s_acc, -numeric<SMPLComputeDataType>::infinity(), [&](auto tile_idx) {
const auto row = q_origin.at(number<0>{}) + tile_idx.at(number<0>{});
const auto col = k_origin.at(number<0>{}) + tile_idx.at(number<1>{});
return mask.IsOutOfBound(row, col);
});
}
}
const auto s = cast_tile<SMPLComputeDataType>(s_acc); // S{j}
auto m_local = block_tile_reduce<SMPLComputeDataType>(
s,
sequence<1>{},
f_max,
-numeric<SMPLComputeDataType>::infinity()); // m_local = rowmax(S{j})
block_tile_reduce_sync(m_local, f_max, bool_constant<false>{});
const auto m_old = m; // m{j-1}
tile_elementwise_inout(
[](auto& e0, auto e1, auto e2) { e0 = max(e1, e2); }, m, m_old, m_local); // m{j}
auto p_compute = make_static_distributed_tensor<SMPLComputeDataType>(
s.get_tile_distribution()); // Pcompute{j}
static const auto get_validated_m = [](SMPLComputeDataType raw_m) {
/// NOTICE: bias might be materialized mask including -inf values, need
/// consideration
if constexpr(kHasBias || FmhaMask::IsMasking)
{
return raw_m == -numeric<SMPLComputeDataType>::infinity()
? type_convert<SMPLComputeDataType>(0.f)
: raw_m;
}
else
{
return raw_m;
}
};
constexpr auto p_spans = decltype(p_compute)::get_distributed_spans();
sweep_tile_span(p_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
#if CK_TILE_FMHA_FWD_FAST_EXP2
auto row_max = scale_s * get_validated_m(m[i_idx]);
#endif
sweep_tile_span(p_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
#if CK_TILE_FMHA_FWD_FAST_EXP2
if constexpr(kHasBias)
{
p_compute(i_j_idx) = exp2(s[i_j_idx] - get_validated_m(m[i_idx]));
}
else
{
p_compute(i_j_idx) = exp2(scale_s * s[i_j_idx] - row_max);
}
#else
p_compute(i_j_idx) = exp(s[i_j_idx] - get_validated_m(m[i_idx]));
#endif
});
});
auto rowsum_p = block_tile_reduce<SMPLComputeDataType>(
p_compute, sequence<1>{}, f_sum, SMPLComputeDataType{0}); // rowsum(Pcompute{j})
block_tile_reduce_sync(rowsum_p, f_sum, bool_constant<false>{});
// l{j}, Oacc{j}
constexpr auto o_spans = decltype(o_acc)::get_distributed_spans();
sweep_tile_span(o_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
#if CK_TILE_FMHA_FWD_FAST_EXP2
const auto tmp = [&]() {
if constexpr(kHasBias)
{
return exp2(m_old[i_idx] - get_validated_m(m[i_idx]));
}
else
{
auto row_max = scale_s * get_validated_m(m[i_idx]);
return exp2(scale_s * m_old[i_idx] - row_max);
}
}();
#else
const auto tmp = exp(m_old[i_idx] - get_validated_m(m[i_idx]));
#endif
l(i_idx) = tmp * l[i_idx] + rowsum_p[i_idx];
sweep_tile_span(o_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
// FIXME: this use different equation from FA v2 paper,
// but produce correc result.
// Is the equation wrong?
o_acc(i_j_idx) *= tmp;
});
});
block_sync_lds();
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
auto v_shuffle_tmp = make_static_distributed_tensor<VDataType>(
Policy::template MakeShuffledVRegBlockDescriptor<Problem>());
shuffle_tile(v_shuffle_tmp, v_prefetch);
store_tile(
v_lds_window,
tile_elementwise_in(v_element_func, v_shuffle_tmp)); // store the prefetch
}
else
{
store_tile(v_lds_window,
tile_elementwise_in(v_element_func, v_prefetch)); // store the prefetch
}
move_tile_window(v_dram_window, {0, kK1});
const auto p =
cast_tile<PDataType>(tile_elementwise_in(p_compute_element_func, p_compute));
// STAGE 3, KV gemm
if constexpr(k1_loops > 1)
{
static_for<0, k1_loops - 1, 1>{}([&](auto i_k1) {
const auto v = load_tile(v_dram_window); // load next v
block_sync_lds();
gemm_1(o_acc,
get_slice_tile(
p, sequence<0, i_k1 * kK1>{}, sequence<kM0, (i_k1 + 1) * kK1>{}),
v_lds_window);
block_sync_lds();
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
auto v_shuffle_tmp = make_static_distributed_tensor<VDataType>(
Policy::template MakeShuffledVRegBlockDescriptor<Problem>());
shuffle_tile(v_shuffle_tmp, v);
store_tile(v_lds_window,
tile_elementwise_in(v_element_func,
v_shuffle_tmp)); // store the prefetch
}
else
{
store_tile(v_lds_window,
tile_elementwise_in(v_element_func, v)); // store next v
}
move_tile_window(v_dram_window, {0, kK1});
});
}
// move K tile windows
move_tile_window(k_dram_block_window, {kN0, 0});
// tail
{
block_sync_lds();
gemm_1(o_acc,
get_slice_tile(p, sequence<0, (k1_loops - 1) * kK1>{}, sequence<kM0, kN0>{}),
v_lds_window);
block_sync_lds();
}
} while(++i_total_loops < num_total_loop);
// store lse
if constexpr(kStoreLSE)
{
auto lse = make_static_distributed_tensor<LSEDataType>(m.get_tile_distribution());
constexpr auto lse_spans = decltype(lse)::get_distributed_spans();
sweep_tile_span(lse_spans[number<0>{}], [&, m_ = m, l_ = l](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
#if CK_TILE_FMHA_FWD_FAST_EXP2
if constexpr(kHasBias)
{
lse(i_idx) = m_[i_idx] / C_LOG2E + log(l_[i_idx]);
}
else
{
lse(i_idx) = m_[i_idx] * scale_s / C_LOG2E + log(l_[i_idx]);
}
#else
lse(i_idx) = m_[i_idx] + log(l_[i_idx]);
#endif
});
store_tile(lse_dram_window_tmp, tile_elementwise_in(lse_element_func, lse));
}
// finally, O
constexpr auto o_spans = decltype(o_acc)::get_distributed_spans();
sweep_tile_span(o_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
const auto tmp = [&]() {
if constexpr(FmhaMask::IsMasking)
{
return l[i_idx] == 0.f ? 0.f : 1 / l[i_idx];
}
else
return 1 / l[i_idx];
}();
sweep_tile_span(o_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
o_acc(i_j_idx) *= tmp;
});
});
o_acc = tile_elementwise_in(o_acc_element_func, o_acc);
return o_acc;
}
template <typename QDramBlockWindowTmp,
typename KDramBlockWindowTmp,
typename VDramBlockWindowTmp,
typename BiasDramBlockWindowTmp,
typename LSEDramBlockWindowTmp>
CK_TILE_HOST_DEVICE auto
operator()(const QDramBlockWindowTmp& q_dram_block_window_tmp, // M0*K0 tile
const KDramBlockWindowTmp& k_dram_block_window_tmp, // N0*K0 tile
const VDramBlockWindowTmp& v_dram_block_window_tmp, // N1*K1 tile
const BiasDramBlockWindowTmp& bias_dram_block_window_tmp, // M0*N0 tile
LSEDramBlockWindowTmp& lse_dram_block_window_tmp, // M0*1 tile
FmhaMask mask,
float scale_s,
void* smem_ptr) const
{
return operator()(q_dram_block_window_tmp,
identity{},
k_dram_block_window_tmp,
identity{},
v_dram_block_window_tmp,
identity{},
bias_dram_block_window_tmp,
identity{},
lse_dram_block_window_tmp,
identity{},
identity{},
identity{},
identity{},
mask,
scale_s,
smem_ptr);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qx_ks_vs_custom_policy.hpp"
namespace ck_tile {
// This pipeline is qkv all located in LDS
using BlockFmhaPipelineQSKSVSDefaultPolicy =
BlockFmhaPipelineQXKSVSCustomPolicy</* QLoadOnce = */ false,
/* AsyncCopyK = */ false,
/* AsyncCopyV = */ false,
/* NumPrefetchK = */ 1,
/* NumPrefetchV = */ 1>;
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
#include "ck_tile/ops/gemm/pipeline/block_gemm_pipeline_problem.hpp"
#include "ck_tile/ops/gemm/pipeline/tile_gemm_shape.hpp"
#include "ck_tile/ops/gemm/warp/warp_gemm.hpp"
#include "ck_tile/ops/gemm/warp/warp_gemm_dispatcher.hpp"
#include "ck_tile/ops/gemm/block/block_gemm_asmem_bsmem_creg_v1_custom_policy.hpp"
#include "ck_tile/ops/gemm/block/block_gemm_asmem_bsmem_creg_v1.hpp"
#include "ck_tile/ops/gemm/block/block_gemm_areg_bsmem_creg_v1_custom_policy.hpp"
#include "ck_tile/ops/gemm/block/block_gemm_areg_bsmem_creg_v2_custom_policy.hpp"
#include "ck_tile/ops/gemm/block/block_gemm_areg_bsmem_creg_v2.hpp"
// TODO: remove this
#define K_LDS_LOAD_USE_OFFSET_TRANSFORM 0
namespace ck_tile {
template <bool QLoadOnce_>
struct BlockFmhaPipelineQXCustomPolicy;
template <>
struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true>
{
static constexpr bool QLoadOnce = true;
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeQ()
{
return 0;
}
// TODO: GetAlignment*() currently didn't consider if need padding or not
// so in pipeline still need check padding requirement
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentQ()
{
using BlockGemm = remove_cvref_t<decltype(GetQKBlockGemm<Problem>())>;
constexpr auto config = BlockGemm::Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
return WG::kK / WG::WarpGemmAttribute::Impl::kABKLane;
}
template <typename Problem, typename BlockGemm>
CK_TILE_HOST_DEVICE static constexpr auto MakeQDramTileDistribution()
{
constexpr auto config = BlockGemm::Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK0BlockLength;
constexpr index_t K2 = WG::kK / WG::WarpGemmAttribute::Impl::kABKLane;
constexpr index_t K1 = WG::WarpGemmAttribute::Impl::kABKLane;
constexpr index_t K0 = kKPerBlock / (K1 * K2);
constexpr index_t M2 = WG::WarpGemmAttribute::Impl::kAMLane;
constexpr index_t M1 = MWarp;
constexpr index_t M0 = kMPerBlock / (M2 * M1);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1, K2>>,
tuple<sequence<1>, sequence<2, 1>>,
tuple<sequence<1>, sequence<1, 2>>,
sequence<1, 2, 2>,
sequence<0, 0, 2>>{});
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetQKBlockGemm()
{
using BlockGemmProblem =
BlockGemmPipelineProblem<typename Problem::QDataType,
typename Problem::KDataType,
typename Problem::SaccDataType,
Problem::kBlockSize,
TileGemmShape<Problem::BlockFmhaShape::kM0,
Problem::BlockFmhaShape::kN0,
Problem::BlockFmhaShape::kK0>>;
constexpr auto warp_gemm = []() {
if constexpr(std::is_same_v<typename Problem::QDataType, half_t> &&
std::is_same_v<typename Problem::KDataType, half_t> &&
std::is_same_v<typename Problem::SaccDataType, float>)
{
return WarpGemmMfmaF16F16F32M16N16K32SwizzleBTransposedCDistribution{};
}
else if constexpr(std::is_same_v<typename Problem::QDataType, bf16_t> &&
std::is_same_v<typename Problem::KDataType, bf16_t> &&
std::is_same_v<typename Problem::SaccDataType, float>)
{
return WarpGemmMfmaBf16Bf16F32M16N16K32SwizzleBTransposedCDistribution{};
}
else if constexpr(Problem::kIsFp8)
{
constexpr index_t swizzle_factor = 4; // TODO: hard coded here
return WarpGemmImpl<
WarpGemmAtrributeMfmaIterateKAndTransposedCDistribution_SwizzleB<
WarpGemmAttributeMfmaImpl_f32_32x32x16_f8_base<typename Problem::QDataType,
typename Problem::KDataType>,
2,
swizzle_factor>>{};
}
}();
using BlockGemmPolicy =
BlockGemmARegBSmemCRegV2CustomPolicy<typename Problem::QDataType,
typename Problem::KDataType,
typename Problem::SaccDataType,
typename Problem::BlockFmhaShape::Gemm0BlockWarps,
decltype(warp_gemm)>;
return BlockGemmARegBSmemCRegV2<BlockGemmProblem, BlockGemmPolicy>{};
}
};
template <>
struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ false>
{
static constexpr bool QLoadOnce = false;
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeQ()
{
constexpr index_t lds_alignment = 16; // optional
constexpr index_t q_smem_size =
ck_tile::integer_divide_ceil(
sizeof(typename Problem::QDataType) *
MakeQLdsBlockDescriptor<Problem>().get_element_space_size(),
lds_alignment) *
lds_alignment;
return q_smem_size;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentQ()
{
using QDataType = remove_cvref_t<typename Problem::QDataType>;
return 16 / sizeof(QDataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeQDramTileDistribution()
{
using QDataType = remove_cvref_t<typename Problem::QDataType>;
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK0;
constexpr index_t K1 = 16 / sizeof(QDataType); // use dwordx4. TODO: change this
constexpr index_t K0 = kKPerBlock / K1;
constexpr index_t M2 = get_warp_size() / K0;
constexpr index_t M1 = kBlockSize / get_warp_size();
constexpr index_t M0 = kMPerBlock / (M2 * M1);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
// 3d + padding
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeQLdsBlockDescriptor()
{
using QDataType = remove_cvref_t<typename Problem::QDataType>;
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK0;
constexpr index_t kKPack = 16 / sizeof(QDataType);
constexpr auto q_lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<kKPerBlock / kKPack>{}, number<kMPerBlock>{}, number<kKPack>{}),
make_tuple(number<(kMPerBlock + 1) * kKPack>{}, number<kKPack>{}, number<1>{}),
number<8>{},
number<1>{});
constexpr auto q_lds_block_desc = transform_tensor_descriptor(
q_lds_block_desc_0,
make_tuple(make_pass_through_transform(kMPerBlock),
make_merge_transform(make_tuple(kKPerBlock / kKPack, kKPack))),
make_tuple(sequence<1>{}, sequence<0, 2>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return q_lds_block_desc;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetQKBlockGemm()
{
using BlockGemmProblem =
BlockGemmPipelineProblem<typename Problem::QDataType,
typename Problem::KDataType,
typename Problem::SaccDataType,
Problem::kBlockSize,
TileGemmShape<Problem::BlockFmhaShape::kM0,
Problem::BlockFmhaShape::kN0,
Problem::BlockFmhaShape::kK0>>;
constexpr auto warp_gemm = []() {
if constexpr(std::is_same_v<typename Problem::QDataType, half_t> &&
std::is_same_v<typename Problem::KDataType, half_t> &&
std::is_same_v<typename Problem::SaccDataType, float>)
{
return WarpGemmMfmaF16F16F32M16N16K32SwizzleBTransposedCDistribution{};
}
else if constexpr(std::is_same_v<typename Problem::QDataType, bf16_t> &&
std::is_same_v<typename Problem::KDataType, bf16_t> &&
std::is_same_v<typename Problem::SaccDataType, float>)
{
return WarpGemmMfmaBf16Bf16F32M16N16K32SwizzleBTransposedCDistribution{};
}
else if constexpr(Problem::kIsFp8)
{
constexpr index_t swizzle_factor = 4; // TODO: hard coded here
return WarpGemmImpl<
WarpGemmAtrributeMfmaIterateKAndTransposedCDistribution_SwizzleB<
WarpGemmAttributeMfmaImpl_f32_32x32x16_f8_base<typename Problem::QDataType,
typename Problem::KDataType>,
2,
swizzle_factor>>{};
}
}();
using BlockGemmPolicy =
BlockGemmASmemBSmemCRegV1CustomPolicy<typename Problem::QDataType,
typename Problem::KDataType,
typename Problem::SaccDataType,
typename Problem::BlockFmhaShape::Gemm0BlockWarps,
decltype(warp_gemm)>;
return BlockGemmASmemBSmemCRegV1<BlockGemmProblem, BlockGemmPolicy>{};
}
};
// This pipeline is qkv all located in LDS
template <bool QLoadOnce_,
bool AsyncCopyK_,
bool AsyncCopyV_,
index_t NumPrefetchK_,
index_t NumPrefetchV_>
struct BlockFmhaPipelineQXKSVSCustomPolicy : BlockFmhaPipelineQXCustomPolicy<QLoadOnce_>
{
static constexpr bool AsyncCopyK = AsyncCopyK_;
static constexpr bool AsyncCopyV = AsyncCopyV_; // TODO: this not supported yet
static constexpr index_t NumPrefetchK = NumPrefetchK_;
static constexpr index_t NumPrefetchV = NumPrefetchK_;
using QXPolicy = BlockFmhaPipelineQXCustomPolicy<QLoadOnce_>;
template <index_t k_prefetches_, index_t v_prefetches_, index_t k_loops_, index_t v_loops_>
struct LdsBufferSequence
{
static constexpr auto Make()
{
return transform_sequences(
[&](auto i) {
if(i < k_loops_)
return i % k_prefetches_;
return (i - k_loops_) % v_prefetches_;
},
typename arithmetic_sequence_gen<0, k_loops_ + v_loops_, 1>::type{});
};
using type = remove_cvref_t<decltype(Make())>;
};
// clang-format off
template<> struct
LdsBufferSequence<3, 3, 4, 4> { using type = sequence<1, 2, 0, 1, 0, 1, 2, 0>; };
template<> struct
LdsBufferSequence<3, 3, 4, 2> { using type = sequence<1, 2, 0, 1, 2, 0>; };
template<> struct
LdsBufferSequence<3, 3, 2, 4> { using type = sequence<1, 2, 0, 1, 2, 0>; };
template<> struct
LdsBufferSequence<3, 3, 3, 3> { using type = sequence<1, 2, 0, 1, 2, 0>; };
template<> struct
LdsBufferSequence<3, 3, 2, 2> { using type = sequence<1, 2, 1, 0>;};
// clang-format on
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetLdsBufferSequence()
{
using BlockFmhaShape = remove_cvref_t<typename Problem::BlockFmhaShape>;
constexpr index_t kN0 = BlockFmhaShape::kN0;
constexpr index_t kK0 = BlockFmhaShape::kK0;
constexpr index_t kK1 = BlockFmhaShape::kK1;
constexpr index_t kK0BlockLength = BlockFmhaShape::kK0BlockLength;
constexpr index_t k0_loops = kK0BlockLength / kK0;
constexpr index_t k1_loops = kN0 / kK1;
return typename LdsBufferSequence<NumPrefetchK, NumPrefetchV, k0_loops, k1_loops>::type{};
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemKPackK()
{
// TODO: this is for 3d layout
using KDataType = remove_cvref_t<typename Problem::KDataType>;
return 16 / sizeof(KDataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentK()
{
using KDataType = remove_cvref_t<typename Problem::KDataType>;
if constexpr(AsyncCopyK)
{
return 4 / sizeof(KDataType);
}
else
{
return 16 / sizeof(KDataType);
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemKPackV()
{
// TODO: this is for 3d layout
using VDataType = remove_cvref_t<typename Problem::VDataType>;
return 16 / sizeof(VDataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentV()
{
using VLayout = remove_cvref_t<typename Problem::BlockFmhaShape::VLayout>;
using VDataType = remove_cvref_t<typename Problem::VDataType>;
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN1;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK1;
constexpr index_t total_pixels = kNPerBlock * kKPerBlock / kBlockSize;
// TODO: not correct!
if constexpr(total_pixels > 4)
return 4;
else
return 2;
}
else
{
return 16 / sizeof(VDataType);
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentBias()
{
using BlockGemm = remove_cvref_t<decltype(QXPolicy::template GetQKBlockGemm<Problem>())>;
constexpr auto config = BlockGemm::Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
using CWarpDstr = typename WG::CWarpDstr;
constexpr auto vec =
CWarpDstr{}.get_ys_to_d_descriptor().get_lengths().at(number<CWarpDstr::NDimY - 1>{});
return vec;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentO()
{
using BlockGemm = remove_cvref_t<decltype(GetKVBlockGemm<Problem>())>;
constexpr auto config = BlockGemm::Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
using CWarpDstr = typename WG::CWarpDstr;
constexpr auto vec =
CWarpDstr{}.get_ys_to_d_descriptor().get_lengths().at(number<CWarpDstr::NDimY - 1>{});
return vec;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSingleSmemElementSpaceSize()
{
// this function assume K/V can share smem
constexpr index_t SingleKSize = [&]() {
if constexpr(!AsyncCopyK)
{
return MakeKLdsBlockDescriptor<Problem>().get_element_space_size();
}
else
{
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK1;
constexpr index_t NumWarps = Problem::BlockFmhaShape::NumWarps;
constexpr index_t warpSize = ck_tile::get_warp_size();
constexpr index_t KPack = GetSmemKPackK<Problem>(); // this is for lds
constexpr index_t KVector = GetAlignmentK<Problem>(); // this is for global load
constexpr index_t kPad = KPack;
static_assert(warpSize * KVector >= kKPerBlock &&
warpSize * KVector % kKPerBlock == 0);
constexpr index_t LanesPerK = kKPerBlock / KVector;
constexpr index_t LaneGroups = warpSize / LanesPerK;
constexpr index_t NumIssues = kNPerBlock / (LaneGroups * NumWarps);
return NumIssues * NumWarps * (warpSize * KVector + kPad);
}
}();
constexpr index_t SingleVSize = [&]() {
using VDataType = remove_cvref_t<typename Problem::VDataType>;
constexpr index_t Banks = 32; // TODO: need change based on arch
constexpr index_t PixelsPerRow = Banks * 4 / sizeof(VDataType);
constexpr index_t kKPack = GetSmemKPackK<Problem>();
static_assert(PixelsPerRow % kKPack == 0);
constexpr index_t NPerRow = PixelsPerRow / kKPack;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN1;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK1;
static_assert(kNPerBlock % NPerRow == 0);
static_assert(kKPerBlock % kKPack == 0);
return (kKPerBlock / kKPack) * (kNPerBlock / NPerRow) * (PixelsPerRow + kKPack);
}();
return max(SingleKSize, SingleVSize);
}
template <typename Problem, typename BlockGemm>
CK_TILE_HOST_DEVICE static constexpr auto MakeQRegBlockDescriptor()
{
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK0BlockLength;
constexpr auto config = BlockGemm::Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t NWarp = config.template at<2>();
constexpr index_t MIterPerWarp = kMPerBlock / (MWarp * WG::kM);
constexpr index_t KIterPerWarp = kKPerBlock / WG::kK;
constexpr auto q_block_outer_dstr_encoding =
tile_distribution_encoding<sequence<NWarp>,
tuple<sequence<MIterPerWarp, MWarp>, sequence<KIterPerWarp>>,
tuple<sequence<1, 0>>,
tuple<sequence<1, 0>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto q_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
q_block_outer_dstr_encoding, typename WG::AWarpDstrEncoding{});
constexpr auto q_block_dstr = make_static_tile_distribution(q_block_dstr_encode);
return q_block_dstr;
}
// TODO: this is used for non async copy desc. unify in the future
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeKLdsBlockDescriptor()
{
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK1;
constexpr index_t kKPack = GetSmemKPackK<Problem>();
constexpr auto k_lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<kKPerBlock / kKPack>{}, number<kNPerBlock>{}, number<kKPack>{}),
make_tuple(number<(kNPerBlock + 1) * kKPack>{}, number<kKPack>{}, number<1>{}),
number<8>{},
number<1>{});
constexpr auto k_lds_block_desc = transform_tensor_descriptor(
k_lds_block_desc_0,
make_tuple(
make_pass_through_transform(number<kNPerBlock>{}),
make_merge_transform(make_tuple(number<kKPerBlock / kKPack>{}, number<kKPack>{}))),
make_tuple(sequence<1>{}, sequence<0, 2>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return k_lds_block_desc;
}
template <typename Problem, index_t IBuf = 0>
CK_TILE_HOST_DEVICE static constexpr auto
MakeKLdsStoreBlockDescriptor(number<IBuf> = number<0>{})
{
// K is always k-major, we use async-copy to load into LDS
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK1;
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t NumWarps = Problem::BlockFmhaShape::NumWarps;
constexpr index_t warpSize = ck_tile::get_warp_size();
constexpr index_t KPack = GetSmemKPackK<Problem>(); // this is for lds
constexpr index_t KVector = GetAlignmentK<Problem>(); // this is for global load
constexpr index_t kPad =
KPack; // for async-copy, this pad is between warps. Optimize this for lds_read speed
static_assert(warpSize * KVector >= kKPerBlock && warpSize * KVector % kKPerBlock == 0);
constexpr index_t LanesPerK =
kKPerBlock / KVector; // how many lane (within a wave) to load K
constexpr index_t LaneGroups =
warpSize /
LanesPerK; // how many groups (within a wave), they may load different N, but same K
constexpr index_t NumIssues = kNPerBlock / (LaneGroups * NumWarps);
static_assert(NumIssues == kNPerBlock * kKPerBlock / (kBlockSize * KVector));
constexpr auto k_lds_block_desc_0 = make_naive_tensor_descriptor_with_offset(
make_tuple(number<NumIssues>{}, // n0
number<LaneGroups>{}, // n1
number<NumWarps>{}, // n2
number<LanesPerK>{}, // k0
number<KVector>{}), // k1
make_tuple(number<NumWarps*(warpSize * KVector + kPad)>{},
number<kKPerBlock>{},
number<warpSize * KVector + kPad>{},
number<KVector>{},
number<1>{}),
number<IBuf * GetSingleSmemElementSpaceSize<Problem>()>{},
number<KVector>{},
number<1>{});
// TODO this layout is hard coded, and will be used in async copy buffer view load
// in LDS the real layout is (bufs, N0, N2, N1*K0*K1)
constexpr auto k_lds_block_desc_issues_warps_lanes = transform_tensor_descriptor(
k_lds_block_desc_0,
make_tuple(make_pass_through_transform(number<NumIssues>{}),
make_pass_through_transform(number<NumWarps>{}),
make_merge_transform(make_tuple(
number<LaneGroups>{}, number<LanesPerK>{}, number<KVector>{}))),
make_tuple(sequence<0>{}, sequence<2>{}, sequence<1, 3, 4>{}),
make_tuple(sequence<0>{}, sequence<1>{}, sequence<2>{}));
return k_lds_block_desc_issues_warps_lanes;
}
#if K_LDS_LOAD_USE_OFFSET_TRANSFORM
template <typename Problem, index_t IBuf = 0>
CK_TILE_HOST_DEVICE static constexpr auto
MakeKLdsLoadBlockDescriptor(number<IBuf> = number<0>{})
{
// K is always k-major, we use async-copy to load into LDS
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK1;
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t NumWarps = Problem::BlockFmhaShape::NumWarps;
constexpr index_t warpSize = ck_tile::get_warp_size();
constexpr index_t KPack = GetSmemKPackK<Problem>(); // this is for lds
constexpr index_t KVector = GetAlignmentK<Problem>(); // this is for global load
constexpr index_t kPad = KPack; // for async-copy, this pad is between warps
static_assert(warpSize * KVector >= kKPerBlock && warpSize * KVector % kKPerBlock == 0);
constexpr index_t LanesPerK = kKPerBlock / KVector; // within a wave
constexpr index_t LaneGroups = warpSize / LanesPerK; // within a wave
constexpr index_t NumIssues = kNPerBlock / (LaneGroups * NumWarps);
static_assert(NumIssues == kNPerBlock * kKPerBlock / (kBlockSize * KVector));
constexpr auto k_lds_block_desc_0 = make_naive_tensor_descriptor_with_offset(
make_tuple(number<NumIssues>{}, // n0
number<NumWarps>{}, // n2
number<LaneGroups>{}, // n1
number<kKPerBlock / KPack>{}, // k0
number<KPack>{}), // k1
make_tuple(number<NumWarps*(warpSize * KVector + kPad)>{},
number<warpSize * KVector + kPad>{},
number<kKPerBlock>{},
number<KPack>{},
number<1>{}),
number<IBuf * GetSingleSmemElementSpaceSize<Problem>()>{},
number<KPack>{},
number<1>{});
constexpr auto k_lds_block_desc = transform_tensor_descriptor(
k_lds_block_desc_0,
make_tuple(
make_merge_transform(
make_tuple(number<NumIssues>{}, number<LaneGroups>{}, number<NumWarps>{})),
make_merge_transform(make_tuple(number<kKPerBlock / KPack>{}, number<KPack>{}))),
make_tuple(sequence<0, 2, 1>{}, sequence<3, 4>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return k_lds_block_desc;
}
#else
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeKLdsLoadBlockDescriptor()
{
// K is always k-major, we use async-copy to load into LDS
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK1;
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t NumWarps = Problem::BlockFmhaShape::NumWarps;
constexpr index_t warpSize = ck_tile::get_warp_size();
constexpr index_t KPack = GetSmemKPackK<Problem>(); // this is for lds
constexpr index_t KVector = GetAlignmentK<Problem>(); // this is for global load
constexpr index_t kPad = KPack; // for async-copy, this pad is between warps
static_assert(warpSize * KVector >= kKPerBlock && warpSize * KVector % kKPerBlock == 0);
constexpr index_t LanesPerK = kKPerBlock / KVector; // within a wave
constexpr index_t LaneGroups = warpSize / LanesPerK; // within a wave
constexpr index_t NumIssues = kNPerBlock / (LaneGroups * NumWarps);
static_assert(NumIssues == kNPerBlock * kKPerBlock / (kBlockSize * KVector));
// constexpr index_t SingleKSize = NumIssues * NumWarps * (warpSize * KVector + kPad);
// constexpr index_t SingleVSize =
// MakeVLdsBlockDescriptor<Problem>().get_element_space_size();
constexpr index_t BufferSize =
GetSingleSmemElementSpaceSize<Problem>(); // max(SingleKSize, SingleVSize);
constexpr auto k_lds_block_desc_0 =
make_naive_tensor_descriptor(make_tuple(number<NumPrefetchK>{}, // num_buffers
number<NumIssues>{}, // n0
number<NumWarps>{}, // n2
number<LaneGroups>{}, // n1
number<kKPerBlock / KPack>{}, // k0
number<KPack>{}), // k1
make_tuple(number<BufferSize>{},
number<NumWarps*(warpSize * KVector + kPad)>{},
number<warpSize * KVector + kPad>{},
number<kKPerBlock>{},
number<KPack>{},
number<1>{}),
number<KPack>{},
number<1>{});
constexpr auto k_lds_block_desc = transform_tensor_descriptor(
k_lds_block_desc_0,
make_tuple(
make_merge_transform(make_tuple(number<NumPrefetchK>{},
number<NumIssues>{},
number<LaneGroups>{},
number<NumWarps>{})),
make_merge_transform(make_tuple(number<kKPerBlock / KPack>{}, number<KPack>{}))),
make_tuple(sequence<0, 1, 3, 2>{}, sequence<4, 5>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return k_lds_block_desc;
}
#endif
// 3d + padding
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeVLdsBlockDescriptor()
{
using VDataType = remove_cvref_t<typename Problem::VDataType>;
constexpr index_t Banks = 32; // TODO: need change based on arch
constexpr index_t PixelsPerRow = Banks * 4 / sizeof(VDataType);
constexpr index_t kKPack = GetSmemKPackV<Problem>();
static_assert(PixelsPerRow % kKPack == 0);
constexpr index_t NPerRow = PixelsPerRow / kKPack;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN1;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK1;
static_assert(kNPerBlock % NPerRow == 0);
static_assert(kKPerBlock % kKPack == 0);
constexpr auto v_lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<NumPrefetchV>{},
number<kKPerBlock / kKPack>{},
number<kNPerBlock / NPerRow>{},
number<NPerRow>{},
number<kKPack>{}),
make_tuple(number<GetSingleSmemElementSpaceSize<Problem>()>{},
number<(kNPerBlock / NPerRow) * (PixelsPerRow + kKPack)>{},
number<PixelsPerRow + kKPack>{},
number<kKPack>{},
number<1>{}),
number<kKPack>{},
number<1>{});
constexpr auto v_lds_block_desc = transform_tensor_descriptor(
v_lds_block_desc_0,
make_tuple(
make_merge_transform(make_tuple(
number<NumPrefetchV>{}, number<kNPerBlock / NPerRow>{}, number<NPerRow>{})),
make_merge_transform(make_tuple(number<kKPerBlock / kKPack>{}, number<kKPack>{}))),
make_tuple(sequence<0, 2, 3>{}, sequence<1, 4>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return v_lds_block_desc;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
// TODO: assume Q is in register
// TODO: assume K/V has same data type
constexpr index_t single_smem_size =
GetSingleSmemElementSpaceSize<Problem>() * sizeof(typename Problem::KDataType);
return QXPolicy::template GetSmemSizeQ<Problem>() +
single_smem_size * max(NumPrefetchK, NumPrefetchV);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeKDramTileDistribution()
{
if constexpr(!AsyncCopyK)
{
using KDataType = remove_cvref_t<typename Problem::KDataType>;
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK0;
constexpr index_t K1 = 16 / sizeof(KDataType);
constexpr index_t K0 = kKPerBlock / K1;
constexpr index_t N2 = get_warp_size() / K0;
constexpr index_t N1 = kBlockSize / get_warp_size();
constexpr index_t N0 = kNPerBlock / (N2 * N1);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1, N2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
else
{
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK1;
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t NumWarps = Problem::BlockFmhaShape::NumWarps;
constexpr index_t warpSize = ck_tile::get_warp_size();
constexpr index_t KVector = GetAlignmentK<Problem>(); // this is for global load
static_assert(warpSize * KVector >= kKPerBlock && warpSize * KVector % kKPerBlock == 0);
constexpr index_t LanesPerK = kKPerBlock / KVector; // within a wave
constexpr index_t LaneGroups = warpSize / LanesPerK; // within a wave
constexpr index_t NumIssues = kNPerBlock / (LaneGroups * NumWarps);
static_assert(NumIssues == kNPerBlock * kKPerBlock / (kBlockSize * KVector));
constexpr index_t N0 = NumIssues;
constexpr index_t N1 = LaneGroups;
constexpr index_t N2 = NumWarps;
constexpr index_t K0 = LanesPerK;
constexpr index_t K1 = KVector;
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1, N2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<2>, sequence<1, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
}
template <typename Problem>
CK_TILE_DEVICE static constexpr auto MakeVDramTileDistribution()
{
using VLayout = remove_cvref_t<typename Problem::BlockFmhaShape::VLayout>;
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN1;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK1;
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
constexpr index_t N1 = GetAlignmentV<Problem>();
constexpr index_t N0 = kNPerBlock / N1; // P
constexpr index_t total_pixels = kNPerBlock * kKPerBlock / kBlockSize;
static_assert(total_pixels % N1 == 0); // TODO: this is not always true?
constexpr index_t K3 = total_pixels / N1;
constexpr index_t kKPack = GetSmemKPackV<Problem>();
static_assert(kKPack % K3 == 0);
constexpr index_t K2 = kKPack / K3; // TODO: this dimention could be outside single wave
if constexpr(get_warp_size() % (K2 * N0) == 0)
{
constexpr index_t K1 = get_warp_size() / (K2 * N0);
constexpr index_t K0 = kBlockSize / get_warp_size();
static_assert(kKPerBlock == K0 * K1 * K2 * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1>, sequence<K0, K1, K2, K3>>,
tuple<sequence<2>, sequence<2, 1, 2>>,
tuple<sequence<0>, sequence<1, 0, 2>>,
sequence<2, 1>,
sequence<3, 1>>{});
}
else
{
constexpr index_t K1 = (K2 * N0) / get_warp_size();
constexpr index_t K2_m = K2 / K1;
constexpr index_t K0 = kBlockSize / get_warp_size() / K1;
static_assert(kKPerBlock == K0 * K1 * K2_m * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1>, sequence<K0, K1, K2_m, K3>>,
tuple<sequence<2, 2>, sequence<1, 2>>,
tuple<sequence<0, 1>, sequence<0, 2>>,
sequence<2, 1>,
sequence<3, 1>>{});
}
}
else
{
constexpr index_t K1 = GetAlignmentV<Problem>();
constexpr index_t K0 = kKPerBlock / K1;
constexpr index_t N2 = get_warp_size() / K0;
constexpr index_t N1 = kBlockSize / get_warp_size();
constexpr index_t N0 = kNPerBlock / (N2 * N1);
static_assert(N0 != 0);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1, N2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
}
template <typename Problem, typename BlockGemm>
CK_TILE_HOST_DEVICE static constexpr auto MakeBiasDramTileDistribution()
{
constexpr index_t MPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t NPerBlock = Problem::BlockFmhaShape::kN0;
constexpr auto config = BlockGemm::Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t NWarp = config.template at<2>();
constexpr index_t MIterPerWarp = MPerBlock / (MWarp * WG::kM);
constexpr index_t NIterPerWarp = NPerBlock / (NWarp * WG::kN);
// Construct C-Block-HostTensor
constexpr auto c_block_outer_dstr_encoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<MIterPerWarp, MWarp>, sequence<NIterPerWarp, NWarp>>,
tuple<sequence<1, 2>>,
tuple<sequence<1, 1>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto c_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
c_block_outer_dstr_encoding, typename WG::CWarpDstrEncoding{});
constexpr auto c_block_dstr = make_static_tile_distribution(c_block_dstr_encode);
return c_block_dstr;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffledVRegBlockDescriptor()
{
// This descriptor only used when V layout is seqlen * hdim
using VLayout = remove_cvref_t<typename Problem::BlockFmhaShape::VLayout>;
static_assert(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>);
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN1;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK1;
constexpr index_t N1 = GetAlignmentV<Problem>();
constexpr index_t N0 = kNPerBlock / N1;
constexpr index_t total_pixels = kNPerBlock * kKPerBlock / kBlockSize;
static_assert(total_pixels % N1 == 0); // TODO: this is not always true?
constexpr index_t K3 = total_pixels / N1;
constexpr index_t kKPack = GetSmemKPackV<Problem>();
static_assert(kKPack % K3 == 0);
constexpr index_t K2 = kKPack / K3; // TODO: this dimention could be outside single wave
if constexpr(get_warp_size() % (K2 * N0) == 0)
{
constexpr index_t K1 = get_warp_size() / (K2 * N0);
constexpr index_t K0 = kBlockSize / get_warp_size();
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1>, sequence<K0, K1, K2, K3>>,
tuple<sequence<2>, sequence<2, 1, 2>>,
tuple<sequence<0>, sequence<1, 0, 2>>,
sequence<1, 2>,
sequence<1, 3>>{});
}
else
{
constexpr index_t K1 = (K2 * N0) / get_warp_size();
constexpr index_t K2_m = K2 / K1;
constexpr index_t K0 = kBlockSize / get_warp_size() / K1;
static_assert(kKPerBlock == K0 * K1 * K2_m * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1>, sequence<K0, K1, K2_m, K3>>,
tuple<sequence<2, 2>, sequence<1, 2>>,
tuple<sequence<0, 1>, sequence<0, 2>>,
sequence<1, 2>,
sequence<1, 3>>{});
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetKVBlockGemm()
{
using BlockGemmProblem =
BlockGemmPipelineProblem<typename Problem::PDataType,
typename Problem::VDataType,
typename Problem::OaccDataType,
Problem::kBlockSize,
TileGemmShape<Problem::BlockFmhaShape::kM0,
Problem::BlockFmhaShape::kN1,
Problem::BlockFmhaShape::kK1>>;
auto warp_gemm = [&]() {
if constexpr(Problem::kIsFp8)
{
return WarpGemmImpl<WarpGemmAtrributeMfmaIterateKAndTransposedCDistribution<
WarpGemmAttributeMfmaImpl_f32_32x32x16_f8_base<typename Problem::PDataType,
typename Problem::VDataType>,
2>>{};
// return
// WarpGemmImpl<WarpGemmAtrributeMfmaTransposedCDistribution_SwizzleB<
// WarpGemmAttributeMfmaImpl_f32_32x32x16_f8_base<typename
// Problem::PDataType, typename Problem::VDataType>>>{};
}
else
{
return WarpGemmMfmaDispatcher<
typename Problem::PDataType,
typename Problem::VDataType,
typename Problem::OaccDataType,
Problem::BlockFmhaShape::Gemm1WarpTile::at(number<0>{}),
Problem::BlockFmhaShape::Gemm1WarpTile::at(number<1>{}),
Problem::BlockFmhaShape::Gemm1WarpTile::at(number<2>{}),
true>{};
}
}();
using WarpGemm = remove_cvref_t<decltype(warp_gemm)>;
using BlockGemmPolicy =
BlockGemmARegBSmemCRegV2CustomPolicy<typename Problem::PDataType,
typename Problem::VDataType,
typename Problem::OaccDataType,
typename Problem::BlockFmhaShape::Gemm1BlockWarps,
WarpGemm>;
return BlockGemmARegBSmemCRegV2<BlockGemmProblem, BlockGemmPolicy>{};
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
template <typename BlockTile_, // sequence<...
typename Gemm0BlockWarps_,
typename Gemm0WarpTile_,
typename Gemm1BlockWarps_,
typename Gemm1WarpTile_,
bool IsVLayoutRowMajor_>
struct TileFmhaShape
{
using BlockTile = remove_cvref_t<BlockTile_>;
using Gemm0BlockWarps = remove_cvref_t<Gemm0BlockWarps_>;
using Gemm0WarpTile = remove_cvref_t<Gemm0WarpTile_>;
using Gemm1BlockWarps = remove_cvref_t<Gemm1BlockWarps_>;
using Gemm1WarpTile = remove_cvref_t<Gemm1WarpTile_>;
static constexpr index_t NumWarps =
reduce_on_sequence(Gemm0BlockWarps{}, multiplies{}, number<1>{});
static_assert(NumWarps == reduce_on_sequence(Gemm1BlockWarps{}, multiplies{}, number<1>{}));
static constexpr index_t kM0 = BlockTile::at(number<0>{}); // tile size along q seqlen
static constexpr index_t kN0 = BlockTile::at(number<1>{}); // tile size along k seqlen
static constexpr index_t kK0 = BlockTile::at(number<2>{}); // tile size along qk gemm unroll
static constexpr index_t kN1 = BlockTile::at(number<3>{}); // tile size along v head_dim
static constexpr index_t kK1 = BlockTile::at(number<4>{}); // tile size along kv gemm unroll
static constexpr index_t kK0BlockLength =
BlockTile::at(number<5>{}); // total length of K0, used for pipeline that need load Q at
// once (or repeately load Q as a whole tile)
static_assert(kK0BlockLength % kK0 == 0, "kK0BlockLength should be divisible by kK0");
// v, rowmajor : seqlen*hdim, colmajor : hdim*seqlen
static constexpr bool IsVLayoutRowMajor = IsVLayoutRowMajor_;
using VLayout = std::conditional_t<IsVLayoutRowMajor,
ck_tile::tensor_layout::gemm::RowMajor,
ck_tile::tensor_layout::gemm::ColumnMajor>;
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
template <bool kPadSeqLenQ_ /* padding for seqlen_q */,
bool kPadSeqLenK_ /* padding for seqlen_k */,
bool kPadHeadDimQ_ /* paddding for hdim_q */,
bool kPadHeadDimV_ /* paddding for hdim_v */,
bool kHasBias_,
bool kStoreLSE_,
bool kDoFp8StaticQuant_,
index_t kBlockPerCu_ = -1 /* overwrite occupancy if not -1 */>
struct TileFmhaTraits
{
static constexpr bool kPadSeqLenQ = kPadSeqLenQ_;
static constexpr bool kPadSeqLenK = kPadSeqLenK_;
static constexpr bool kPadHeadDimQ = kPadHeadDimQ_;
static constexpr bool kPadHeadDimV = kPadHeadDimV_;
static constexpr bool kHasBias = kHasBias_;
static constexpr bool kStoreLSE = kStoreLSE_;
static constexpr bool kDoFp8StaticQuant = kDoFp8StaticQuant_;
static constexpr index_t kBlockPerCu = kBlockPerCu_;
};
} // namespace ck_tile
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment