Commit 43596386 authored by Po Yen Chen's avatar Po Yen Chen
Browse files

Merge branch 'feature/add-splitkv-instance' into...

Merge branch 'feature/add-splitkv-instance' into feature/support-vllm-kcache-layout-add-splitkv-instance
parents 250399cd af07d650
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream> #include <iostream>
#include <numeric> #include <numeric>
...@@ -194,9 +194,9 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co ...@@ -194,9 +194,9 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b1_tensors[i].GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5}); b1_tensors[i].GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break; break;
default: default:
a0_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{}); a0_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<A0DataType, 0>{});
b0_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{}); b0_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<B0DataType, 1>{});
b1_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{}); b1_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<B1DataType, 1>{});
} }
d0_tensors[i].GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5}); d0_tensors[i].GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5});
......
...@@ -184,9 +184,9 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co ...@@ -184,9 +184,9 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<B0DataType>{-0.5, 0.5}); b_tensors[i].GenerateTensorValue(GeneratorTensor_3<B0DataType>{-0.5, 0.5});
break; break;
default: default:
a0_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{}); a0_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<A0DataType, 0>{});
a1_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{}); a1_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<A1DataType, 0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{}); b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<B0DataType, 1>{});
} }
d0_tensors[i].GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5}); d0_tensors[i].GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5});
......
...@@ -172,12 +172,13 @@ bool run_grouped_conv_fwd(bool do_verification, ...@@ -172,12 +172,13 @@ bool run_grouped_conv_fwd(bool do_verification,
{ {
case 0: break; case 0: break;
case 1: case 1:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}); // values generated: -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5}); in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 6});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-1.0, 1.0});
break; break;
default: default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0}); in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5}); wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-1.0, 1.0});
} }
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize()); DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
......
...@@ -205,7 +205,6 @@ int main(int argc, char* argv[]) ...@@ -205,7 +205,6 @@ int main(int argc, char* argv[])
a1_device_buf.ToDevice(a1_m_k.mData.data()); a1_device_buf.ToDevice(a1_m_k.mData.data());
b0_device_buf.ToDevice(b0_k_n.mData.data()); b0_device_buf.ToDevice(b0_k_n.mData.data());
b1_device_buf.ToDevice(b1_k_n.mData.data()); b1_device_buf.ToDevice(b1_k_n.mData.data());
e_device_buf.ToDevice(e_m_n_device_result.mData.data());
auto a_element_op = AElementOp{}; auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{}; auto b_element_op = BElementOp{};
...@@ -253,8 +252,6 @@ int main(int argc, char* argv[]) ...@@ -253,8 +252,6 @@ int main(int argc, char* argv[])
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s" std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl; << std::endl;
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
if(do_verification) if(do_verification)
{ {
Tensor<AccDataType> c_m_n({M, N}); Tensor<AccDataType> c_m_n({M, N});
......
...@@ -54,6 +54,13 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME) ...@@ -54,6 +54,13 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME)
list(REMOVE_ITEM FILE_NAME "${source}") list(REMOVE_ITEM FILE_NAME "${source}")
endif() endif()
endforeach() endforeach()
#Do not build any DPP examples if DL_KERNELS not set
foreach(source IN LISTS FILE_NAME)
if(NOT DEFINED DL_KERNELS AND source MATCHES "_dpp")
message("removing dpp example ${source} ")
list(REMOVE_ITEM FILE_NAME "${source}")
endif()
endforeach()
#Do not build any XDL examples if gfx9 targets are not on the list #Do not build any XDL examples if gfx9 targets are not on the list
foreach(source IN LISTS FILE_NAME) foreach(source IN LISTS FILE_NAME)
if(NOT EX_TARGETS MATCHES "gfx9" AND source MATCHES "_xdl") if(NOT EX_TARGETS MATCHES "gfx9" AND source MATCHES "_xdl")
......
[Back to the main page](../README.md)
# Composable Kernel examples
\ No newline at end of file
...@@ -2,10 +2,17 @@ ...@@ -2,10 +2,17 @@
# Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved. # Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
# generate kernel instances to speed up compilation # generate kernel instances to speed up compilation
DTYPE_MAP = { FWD_DTYPE_MAP = {
"fp16": "ck_tile::fp16_t", "fp16" : "FmhaFwdFp16",
"bf16": "ck_tile::bf16_t", "bf16" : "FmhaFwdBf16",
"fp8" : "ck_tile::fp8_t" "fp8" : "FmhaFwdFp8",
"fp8fp16": "FmhaFwdFp8Fp16",
"fp8bf16": "FmhaFwdFp8Bf16"
}
BWD_DTYPE_MAP = {
"fp16": "FmhaBwdFp16",
"bf16": "FmhaBwdBf16"
} }
MASK_IMPL = { MASK_IMPL = {
......
...@@ -283,7 +283,7 @@ class FmhaBwdApiPool: ...@@ -283,7 +283,7 @@ class FmhaBwdApiPool:
inners = inners + FMHA_BWD_API_INNER_DISPATCH.format(F_if=if_k, F_mode=MODE_MAP[trait.mode], F_pipeline_enum=BWD_DQDKDV_PIPELINE_ENUM_MAP[trait.pipeline], inners = inners + FMHA_BWD_API_INNER_DISPATCH.format(F_if=if_k, F_mode=MODE_MAP[trait.mode], F_pipeline_enum=BWD_DQDKDV_PIPELINE_ENUM_MAP[trait.pipeline],
F_mask_check=get_mask_check_map(self.mask_impl)[trait.mask], F_mask=get_mask_map(self.mask_impl)[trait.mask], F_bias_check=BIAS_CHECK_MAP[trait.bias], F_mask_check=get_mask_check_map(self.mask_impl)[trait.mask], F_mask=get_mask_map(self.mask_impl)[trait.mask], F_bias_check=BIAS_CHECK_MAP[trait.bias],
F_bias=BIAS_MAP[trait.bias], F_dbias=BOOL_MAP[trait.dbias], F_dropout_check=DROPOUT_CHECK_MAP[trait.dropout], F_dropout=DROPOUT_MAP[trait.dropout], F_bias=BIAS_MAP[trait.bias], F_dbias=BOOL_MAP[trait.dbias], F_dropout_check=DROPOUT_CHECK_MAP[trait.dropout], F_dropout=DROPOUT_MAP[trait.dropout],
F_scheck=trait.scheck(spad1=spad1), F_skcheck=trait.skcheck, F_dcheck=trait.dcheck, F_dvcheck=trait.dvcheck, F_hdim=hdim, F_dtype=DTYPE_MAP[dtype], F_scheck=trait.scheck(spad1=spad1), F_skcheck=trait.skcheck, F_dcheck=trait.dcheck, F_dvcheck=trait.dvcheck, F_hdim=hdim, F_dtype=BWD_DTYPE_MAP[dtype],
F_spad0=BOOL_MAP[trait.spad], F_spad1=BOOL_MAP[spad1], F_skpad=BOOL_MAP[trait.skpad], F_dpad=BOOL_MAP[trait.dpad], F_dvpad=BOOL_MAP[trait.dvpad], F_spad0=BOOL_MAP[trait.spad], F_spad1=BOOL_MAP[spad1], F_skpad=BOOL_MAP[trait.skpad], F_dpad=BOOL_MAP[trait.dpad], F_dvpad=BOOL_MAP[trait.dvpad],
F_deterministic=BOOL_MAP[trait.deterministic]) F_deterministic=BOOL_MAP[trait.deterministic])
...@@ -360,7 +360,7 @@ class FmhaBwdDQDKDVKernel: ...@@ -360,7 +360,7 @@ class FmhaBwdDQDKDVKernel:
FMHA_BWD_DQ_DK_DV_KERNEL_BODY.format( FMHA_BWD_DQ_DK_DV_KERNEL_BODY.format(
F_idx = self.F_idx, F_idx = self.F_idx,
F_hdim = self.F_hdim, F_hdim = self.F_hdim,
F_dtype = DTYPE_MAP[self.F_dtype], F_dtype = BWD_DTYPE_MAP[self.F_dtype],
F_bm0 = self.F_tile.F_bm0, F_bm0 = self.F_tile.F_bm0,
F_bn0 = self.F_tile.F_bn0, F_bn0 = self.F_tile.F_bn0,
F_bk0 = self.F_tile.F_bk0, F_bk0 = self.F_tile.F_bk0,
...@@ -469,7 +469,7 @@ def get_bwd_dq_dk_dv_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> ...@@ -469,7 +469,7 @@ def get_bwd_dq_dk_dv_blobs(kernel_filter : Optional[str], receipt, mask_impl) ->
gen = list() gen = list()
api_pool = FmhaBwdApiPool(mask_impl) api_pool = FmhaBwdApiPool(mask_impl)
for dtype in DTYPE_MAP.keys(): for dtype in BWD_DTYPE_MAP.keys():
d = get_fmha_bwd_dq_dk_dv_tile_ppl_dict_from_dtype(dtype) d = get_fmha_bwd_dq_dk_dv_tile_ppl_dict_from_dtype(dtype)
if d == None: if d == None:
continue continue
...@@ -585,7 +585,7 @@ class FmhaBwdOGradDotOKernel: ...@@ -585,7 +585,7 @@ class FmhaBwdOGradDotOKernel:
FMHA_BWD_DOT_DO_O_KERNEL_BODY.format( FMHA_BWD_DOT_DO_O_KERNEL_BODY.format(
F_idx = self.F_idx, F_idx = self.F_idx,
F_hdim = self.F_hdim, F_hdim = self.F_hdim,
F_dtype = DTYPE_MAP[self.F_dtype], F_dtype = BWD_DTYPE_MAP[self.F_dtype],
F_spad = BOOL_MAP[self.F_spad], F_spad = BOOL_MAP[self.F_spad],
F_dvpad = BOOL_MAP[self.F_dvpad], F_dvpad = BOOL_MAP[self.F_dvpad],
F_mode = MODE_MAP[self.F_mode], F_mode = MODE_MAP[self.F_mode],
...@@ -616,7 +616,7 @@ def get_bwd_dot_do_o_blobs() -> List[FmhaBwdOGradDotOKernel]: ...@@ -616,7 +616,7 @@ def get_bwd_dot_do_o_blobs() -> List[FmhaBwdOGradDotOKernel]:
gen = list() gen = list()
for dtype in DTYPE_MAP.keys(): for dtype in BWD_DTYPE_MAP.keys():
d = get_fmha_bwd_dq_dk_dv_tile_ppl_dict_from_dtype(dtype) d = get_fmha_bwd_dq_dk_dv_tile_ppl_dict_from_dtype(dtype)
if d == None: if d == None:
continue continue
...@@ -716,7 +716,7 @@ class FmhaBwdConvertQGradKernel: ...@@ -716,7 +716,7 @@ class FmhaBwdConvertQGradKernel:
FMHA_BWD_CONVERT_DQ_KERNEL_BODY.format( FMHA_BWD_CONVERT_DQ_KERNEL_BODY.format(
F_idx = self.F_idx, F_idx = self.F_idx,
F_hdim = self.F_hdim, F_hdim = self.F_hdim,
F_dtype = DTYPE_MAP[self.F_dtype], F_dtype = BWD_DTYPE_MAP[self.F_dtype],
F_bm0 = self.F_bm0, F_bm0 = self.F_bm0,
F_bn0 = self.F_bn0, F_bn0 = self.F_bn0,
F_spad = BOOL_MAP[self.F_spad], F_spad = BOOL_MAP[self.F_spad],
...@@ -751,7 +751,7 @@ def get_bwd_convert_dq_blobs() -> List[FmhaBwdConvertQGradKernel]: ...@@ -751,7 +751,7 @@ def get_bwd_convert_dq_blobs() -> List[FmhaBwdConvertQGradKernel]:
gen = list() gen = list()
for dtype in DTYPE_MAP.keys(): for dtype in BWD_DTYPE_MAP.keys():
d = get_fmha_bwd_dq_dk_dv_tile_ppl_dict_from_dtype(dtype) d = get_fmha_bwd_dq_dk_dv_tile_ppl_dict_from_dtype(dtype)
if d == None: if d == None:
continue continue
......
...@@ -282,7 +282,7 @@ class FmhaFwdApiPool: ...@@ -282,7 +282,7 @@ class FmhaFwdApiPool:
F_squant=BOOL_MAP[trait.squant], F_scheck=trait.scheck, F_skcheck=trait.skcheck, F_dcheck=trait.dcheck, F_dvcheck=trait.dvcheck, F_squant=BOOL_MAP[trait.squant], F_scheck=trait.scheck, F_skcheck=trait.skcheck, F_dcheck=trait.dcheck, F_dvcheck=trait.dvcheck,
F_spad=BOOL_MAP[trait.spad], F_skpad=BOOL_MAP[trait.skpad], F_dpad=BOOL_MAP[trait.dpad], F_dvpad=BOOL_MAP[trait.dvpad], F_spad=BOOL_MAP[trait.spad], F_skpad=BOOL_MAP[trait.skpad], F_dpad=BOOL_MAP[trait.dpad], F_dvpad=BOOL_MAP[trait.dvpad],
F_bm0=trait.bm0, F_bn0=trait.bn0, F_bk0=trait.bk0, F_bn1=trait.bn1, F_bk1=trait.bk1, F_bk0max=trait.bk0max, F_bm0=trait.bm0, F_bn0=trait.bn0, F_bk0=trait.bk0, F_bn1=trait.bn1, F_bk1=trait.bk1, F_bk0max=trait.bk0max,
F_hdim=hdim, F_dtype=DTYPE_MAP[dtype]) F_hdim=hdim, F_dtype=FWD_DTYPE_MAP[dtype])
if_j = 'if' if j == 0 else 'else if' if_j = 'if' if j == 0 else 'else if'
per_hdim_case = per_hdim_case + FMHA_FWD_API_PER_HDIM_CASE.format(F_if=if_j, F_hdim=hdim, F_inner_dispatch=inners) per_hdim_case = per_hdim_case + FMHA_FWD_API_PER_HDIM_CASE.format(F_if=if_j, F_hdim=hdim, F_inner_dispatch=inners)
if_i = 'if' if i == 0 else 'else if' if_i = 'if' if i == 0 else 'else if'
...@@ -339,7 +339,7 @@ class FmhaFwdKernel: ...@@ -339,7 +339,7 @@ class FmhaFwdKernel:
FMHA_FWD_KERNEL_BODY.format( FMHA_FWD_KERNEL_BODY.format(
F_idx = self.F_idx, F_idx = self.F_idx,
F_hdim = self.F_hdim, F_hdim = self.F_hdim,
F_dtype = DTYPE_MAP[self.F_dtype], F_dtype = FWD_DTYPE_MAP[self.F_dtype],
F_bm0 = self.F_tile.F_bm0, F_bm0 = self.F_tile.F_bm0,
F_bn0 = self.F_tile.F_bn0, F_bn0 = self.F_tile.F_bn0,
F_bk0 = self.F_tile.F_bk0, F_bk0 = self.F_tile.F_bk0,
...@@ -411,7 +411,7 @@ def get_fmha_fwd_tile_dict_from_dtype(dtype : str) -> Optional[dict]: ...@@ -411,7 +411,7 @@ def get_fmha_fwd_tile_dict_from_dtype(dtype : str) -> Optional[dict]:
return { return {
'32' : FmhaFwdTileSize(128, 64, 16, 32, 32, 32, 2, 1, 1, 2, 1, 1, 32, 32, 16, -1), '32' : FmhaFwdTileSize(128, 64, 16, 32, 32, 32, 2, 1, 1, 2, 1, 1, 32, 32, 16, -1),
'64' : FmhaFwdTileSize(128, 64, 32, 64, 32, 64, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1), '64' : FmhaFwdTileSize(128, 64, 32, 64, 32, 64, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1),
## '96' : FmhaFwdTileSize(128, 128, 32, 128, 32, 96, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1), ### '96' : FmhaFwdTileSize(128, 128, 32, 128, 32, 96, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1),
'128' : FmhaFwdTileSize(128, 128, 32, 128, 32, 128, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1), '128' : FmhaFwdTileSize(128, 128, 32, 128, 32, 128, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1),
'256' : FmhaFwdTileSize(128, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1), '256' : FmhaFwdTileSize(128, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1),
} }
...@@ -462,6 +462,9 @@ def get_fwd_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> Tuple[Fm ...@@ -462,6 +462,9 @@ def get_fwd_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> Tuple[Fm
# no need lse/dropout kernels # no need lse/dropout kernels
for mask, bias in itertools.product(get_mask_map(mask_impl).keys(), BIAS_MAP.keys()): for mask, bias in itertools.product(get_mask_map(mask_impl).keys(), BIAS_MAP.keys()):
pipelines.append(FmhaFwdPipeline('qr', 'col', 'f', 'f', 'f', 'f', bias, 'f', 'f', squant, mask)) pipelines.append(FmhaFwdPipeline('qr', 'col', 'f', 'f', 'f', 'f', bias, 'f', 'f', squant, mask))
elif dtype in ['fp8fp16', 'fp8bf16']:
# TODO
None
else: else:
assert False assert False
return pipelines return pipelines
...@@ -469,7 +472,7 @@ def get_fwd_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> Tuple[Fm ...@@ -469,7 +472,7 @@ def get_fwd_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> Tuple[Fm
gen = list() gen = list()
api_pool = FmhaFwdApiPool(mask_impl) api_pool = FmhaFwdApiPool(mask_impl)
for dtype in DTYPE_MAP.keys(): for dtype in FWD_DTYPE_MAP.keys():
d = get_fmha_fwd_tile_dict_from_dtype(dtype) d = get_fmha_fwd_tile_dict_from_dtype(dtype)
if d == None: if d == None:
continue continue
......
...@@ -181,7 +181,7 @@ class FmhaFwdAppendKVApiPool: ...@@ -181,7 +181,7 @@ class FmhaFwdAppendKVApiPool:
inners = inners + FMHA_FWD_APPENDKV_API_INNER_DISPATCH.format(F_if=if_k, F_vlayout=LAYOUT_MAP[trait.vlayout], inners = inners + FMHA_FWD_APPENDKV_API_INNER_DISPATCH.format(F_if=if_k, F_vlayout=LAYOUT_MAP[trait.vlayout],
F_scheck=trait.scheck, F_skcheck=trait.skcheck, F_dcheck=trait.dcheck, F_dvcheck=trait.dvcheck, F_rope_check=ROPE_CHECK_MAP[trait.rope], F_scheck=trait.scheck, F_skcheck=trait.skcheck, F_dcheck=trait.dcheck, F_dvcheck=trait.dvcheck, F_rope_check=ROPE_CHECK_MAP[trait.rope],
F_pagedkv=BOOL_MAP[trait.pagedkv], F_spad=BOOL_MAP[trait.spad], F_skpad=BOOL_MAP[trait.skpad], F_dpad=BOOL_MAP[trait.dpad], F_dvpad=BOOL_MAP[trait.dvpad], F_pagedkv=BOOL_MAP[trait.pagedkv], F_spad=BOOL_MAP[trait.spad], F_skpad=BOOL_MAP[trait.skpad], F_dpad=BOOL_MAP[trait.dpad], F_dvpad=BOOL_MAP[trait.dvpad],
F_rope=ROPE_MAP[trait.rope], F_bs=trait.bs, F_bsk=trait.bsk, F_bd=trait.bd, F_bdv=trait.bdv, F_hdim=hdim, F_dtype=DTYPE_MAP[dtype]) F_rope=ROPE_MAP[trait.rope], F_bs=trait.bs, F_bsk=trait.bsk, F_bd=trait.bd, F_bdv=trait.bdv, F_hdim=hdim, F_dtype=FWD_DTYPE_MAP[dtype])
if_j = 'if' if j == 0 else 'else if' if_j = 'if' if j == 0 else 'else if'
per_hdim_case = per_hdim_case + FMHA_FWD_API_PER_HDIM_CASE.format(F_if=if_j, F_hdim=hdim, F_inner_dispatch=inners) per_hdim_case = per_hdim_case + FMHA_FWD_API_PER_HDIM_CASE.format(F_if=if_j, F_hdim=hdim, F_inner_dispatch=inners)
if_i = 'if' if i == 0 else 'else if' if_i = 'if' if i == 0 else 'else if'
...@@ -216,7 +216,7 @@ class FmhaFwdAppendKVKernel: ...@@ -216,7 +216,7 @@ class FmhaFwdAppendKVKernel:
FMHA_FWD_APPENDKV_KERNEL_BODY.format( FMHA_FWD_APPENDKV_KERNEL_BODY.format(
F_idx = self.F_idx, F_idx = self.F_idx,
F_hdim = self.F_hdim, F_hdim = self.F_hdim,
F_dtype = DTYPE_MAP[self.F_dtype], F_dtype = FWD_DTYPE_MAP[self.F_dtype],
F_bs = self.F_tile.F_bs, F_bs = self.F_tile.F_bs,
F_bsk = self.F_tile.F_bsk, F_bsk = self.F_tile.F_bsk,
F_bd = self.F_tile.F_bd, F_bd = self.F_tile.F_bd,
...@@ -301,6 +301,9 @@ def get_fwd_appendkv_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> ...@@ -301,6 +301,9 @@ def get_fwd_appendkv_blobs(kernel_filter : Optional[str], receipt, mask_impl) ->
elif dtype in ['fp8', 'bf8']: elif dtype in ['fp8', 'bf8']:
# rope/paged-kv is not supported # rope/paged-kv is not supported
pipelines.append(FmhaFwdAppendKVPipeline('col', 't', 't', 't', 't', 'no', 'f')) pipelines.append(FmhaFwdAppendKVPipeline('col', 't', 't', 't', 't', 'no', 'f'))
elif dtype in ['fp8fp16', 'fp8bf16']:
# TODO
None
else: else:
assert False assert False
return pipelines return pipelines
...@@ -308,7 +311,7 @@ def get_fwd_appendkv_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> ...@@ -308,7 +311,7 @@ def get_fwd_appendkv_blobs(kernel_filter : Optional[str], receipt, mask_impl) ->
gen = list() gen = list()
api_pool = FmhaFwdAppendKVApiPool(mask_impl) api_pool = FmhaFwdAppendKVApiPool(mask_impl)
for dtype in DTYPE_MAP.keys(): for dtype in FWD_DTYPE_MAP.keys():
d = get_fmha_fwd_appendkv_tile_dict_from_dtype(dtype) d = get_fmha_fwd_appendkv_tile_dict_from_dtype(dtype)
if d == None: if d == None:
continue continue
......
...@@ -12,9 +12,9 @@ from typing import List, Optional, Tuple, Union ...@@ -12,9 +12,9 @@ from typing import List, Optional, Tuple, Union
from codegen.cmake_config import * from codegen.cmake_config import *
from codegen.cpp_symbol_map import * from codegen.cpp_symbol_map import *
import codegen.ops.fmha_fwd
from codegen.ops.fmha_fwd import ( from codegen.ops.fmha_fwd import (
FmhaFwdTileSize, FmhaFwdTileSize,
FmhaFwdApiTrait,
FMHA_FWD_KERNEL_HEADER, FMHA_FWD_KERNEL_HEADER,
FMHA_FWD_API_PER_DTYPE, FMHA_FWD_API_PER_DTYPE,
FMHA_FWD_API_PER_HDIM_CASE, FMHA_FWD_API_PER_HDIM_CASE,
...@@ -47,7 +47,7 @@ using fmha_dtype_{F_idx} = {F_dtype}; ...@@ -47,7 +47,7 @@ using fmha_dtype_{F_idx} = {F_dtype};
using fmha_mask_{F_idx} = {F_mask}; using fmha_mask_{F_idx} = {F_mask};
namespace {{ namespace {{
template <bool kHasUnevenSplits> template <bool kHasUnevenSplits, bool kIsMultipleSplits>
struct kernel_runner {{ struct kernel_runner {{
using fmha_block_tile = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}>; using fmha_block_tile = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}>;
using fmha_warp_tile = ck_tile::sequence<{F_wm}, {F_wn}, {F_wk}>; using fmha_warp_tile = ck_tile::sequence<{F_wm}, {F_wn}, {F_wk}>;
...@@ -81,7 +81,11 @@ using fmha_pipeline_problem = ck_tile::BlockFmhaFwdSplitKVPipelineProblem< ...@@ -81,7 +81,11 @@ using fmha_pipeline_problem = ck_tile::BlockFmhaFwdSplitKVPipelineProblem<
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::LSEDataType, typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::LSEDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::PDataType, typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::PDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::OaccDataType, typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::OaccDataType,
std::conditional_t<
kIsMultipleSplits,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::OaccDataType, typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::OaccDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::ODataType
>,
fmha_shape, fmha_shape,
{F_mode}, {F_mode},
fmha_mask_{F_idx}, fmha_mask_{F_idx},
...@@ -90,10 +94,17 @@ using fmha_pipeline_problem = ck_tile::BlockFmhaFwdSplitKVPipelineProblem< ...@@ -90,10 +94,17 @@ using fmha_pipeline_problem = ck_tile::BlockFmhaFwdSplitKVPipelineProblem<
using fmha_pipeline = {F_pipeline}< using fmha_pipeline = {F_pipeline}<
fmha_pipeline_problem>; fmha_pipeline_problem>;
/// FIXME: use {F_spad}/{F_dvpad} as kPadM/kPadN parameters after solving
/// store_tile_raw() data corruption issue
using fmha_epilogue = using fmha_epilogue =
ck_tile::Default2DEpilogue<ck_tile::Default2DEpilogueProblem<typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType, ck_tile::Default2DEpilogue<ck_tile::Default2DEpilogueProblem<
typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType, typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType,
{F_spad}, {F_dvpad}>>; std::conditional_t<
kIsMultipleSplits,
typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType,
typename FmhaFwdTypeConfig<{F_dtype}>::ODataType
>,
false, false>>;
using fmha_kernel = using fmha_kernel =
ck_tile::FmhaFwdSplitKVKernel<ck_tile::FmhaFwdSplitKVTilePartitioner<fmha_shape>, ck_tile::FmhaFwdSplitKVKernel<ck_tile::FmhaFwdSplitKVTilePartitioner<fmha_shape>,
...@@ -120,25 +131,19 @@ using trait_{F_idx} = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F ...@@ -120,25 +131,19 @@ using trait_{F_idx} = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F
template<> template<>
void fmha_fwd_splitkv_oneshot_<trait_{F_idx}>(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a) void fmha_fwd_splitkv_oneshot_<trait_{F_idx}>(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a)
{{ {{
if constexpr({F_mode} == false) {{ // batch mode /// NOTICE: kHasUnevenSplits=false may be able to speed-up the batch mode kernel,
// we don't check every seqlen_k values for kvcache /// but we use kHasUnevenSplits=true here to reduce compilation time
if (a.seqlen_k_ptr != nullptr) {{ if (1 < a.num_splits) {{
kernel_runner<true>::run(s, a); kernel_runner</*kHasUnevenSplits=*/true, /*kIsMultipleSplits=*/true>::run(s, a);
// make sure F_bn0 is divisible by F_bk1
}} else if (a.seqlen_k % (a.num_splits * {F_bn0}) == 0) {{
kernel_runner<false>::run(s, a);
}} else {{ }} else {{
kernel_runner<true>::run(s, a); kernel_runner</*kHasUnevenSplits=*/true, /*kIsMultipleSplits=*/false>::run(s, a);
}}
}} else {{
kernel_runner<true>::run(s, a);
}} }}
}} }}
template<> template<>
std::string fmha_fwd_splitkv_get_name_<trait_{F_idx}>() std::string fmha_fwd_splitkv_get_name_<trait_{F_idx}>()
{{ {{
using k_ = kernel_runner<true>::fmha_kernel; /// FIXME: choose real kernel type using k_ = kernel_runner<true, true>::fmha_kernel; /// FIXME: choose real kernel type
return k_::GetName(); return k_::GetName();
}} }}
""" """
...@@ -225,9 +230,21 @@ FMHA_FWD_SPLITKV_API_FILENAME="fmha_fwd_splitkv_api.cpp" ...@@ -225,9 +230,21 @@ FMHA_FWD_SPLITKV_API_FILENAME="fmha_fwd_splitkv_api.cpp"
FMHA_FWD_SPLITKV_API=""" FMHA_FWD_SPLITKV_API="""
#include <iostream> #include <iostream>
template<typename fmha_fwd_splitkv_traits_, typename fmha_fwd_splitkv_combine_traits_> template<typename fmha_fwd_splitkv_traits_, typename fmha_fwd_splitkv_combine_traits_ = void>
float fmha_fwd_splitkv_(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a) float fmha_fwd_splitkv_(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a)
{{ {{
// fmha_fwd_splitkv_combine_traits_=void, launch splitkv kernel only
if constexpr (std::is_same_v<fmha_fwd_splitkv_combine_traits_, void>) {{
if(s.log_level_ > 0)
std::cout
<< ", " << fmha_fwd_splitkv_get_name_<fmha_fwd_splitkv_traits_>()
<< std::flush;
return ck_tile::launch_kernel(s,
[=](const ck_tile::stream_config& s_){{ fmha_fwd_splitkv_oneshot_<fmha_fwd_splitkv_traits_>(s_, a); }}
);
// launch both splitkv & combine kernels
}} else {{
if(s.log_level_ > 0) if(s.log_level_ > 0)
std::cout std::cout
<< ", " << fmha_fwd_splitkv_get_name_<fmha_fwd_splitkv_traits_>() << ", " << fmha_fwd_splitkv_get_name_<fmha_fwd_splitkv_traits_>()
...@@ -238,6 +255,7 @@ float fmha_fwd_splitkv_(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a ...@@ -238,6 +255,7 @@ float fmha_fwd_splitkv_(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a
[=](const ck_tile::stream_config& s_){{ fmha_fwd_splitkv_oneshot_<fmha_fwd_splitkv_traits_>(s_, a); }}, [=](const ck_tile::stream_config& s_){{ fmha_fwd_splitkv_oneshot_<fmha_fwd_splitkv_traits_>(s_, a); }},
[=](const ck_tile::stream_config& s_){{ fmha_fwd_splitkv_combine_oneshot_<fmha_fwd_splitkv_combine_traits_>(s_, a); }} [=](const ck_tile::stream_config& s_){{ fmha_fwd_splitkv_combine_oneshot_<fmha_fwd_splitkv_combine_traits_>(s_, a); }}
); );
}}
}} }}
float fmha_fwd_splitkv(fmha_fwd_splitkv_traits t, fmha_fwd_splitkv_args a, const ck_tile::stream_config& s){{ float fmha_fwd_splitkv(fmha_fwd_splitkv_traits t, fmha_fwd_splitkv_args a, const ck_tile::stream_config& s){{
...@@ -249,6 +267,8 @@ float fmha_fwd_splitkv(fmha_fwd_splitkv_traits t, fmha_fwd_splitkv_args a, const ...@@ -249,6 +267,8 @@ float fmha_fwd_splitkv(fmha_fwd_splitkv_traits t, fmha_fwd_splitkv_args a, const
FMHA_FWD_SPLITKV_API_INNER_DISPATCH=""" {F_if}((t.is_group_mode == {F_mode}) && (t.is_v_rowmajor == {F_vlayout}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.do_fp8_static_quant == {F_squant}) && FMHA_FWD_SPLITKV_API_INNER_DISPATCH=""" {F_if}((t.is_group_mode == {F_mode}) && (t.is_v_rowmajor == {F_vlayout}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.do_fp8_static_quant == {F_squant}) &&
((a.block_table_ptr != nullptr) == {F_pagedkv}) && ({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck})) {{ ((a.block_table_ptr != nullptr) == {F_pagedkv}) && ({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck})) {{
if (1 < a.num_splits) {{
using traits_ = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, true, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>; using traits_ = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, true, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
if (t.has_lse) {{ if (t.has_lse) {{
if constexpr (std::is_same_v<{F_dtype}, ck_tile::fp8_t>) {{ if constexpr (std::is_same_v<{F_dtype}, ck_tile::fp8_t>) {{
...@@ -263,6 +283,17 @@ FMHA_FWD_SPLITKV_API_INNER_DISPATCH=""" {F_if}((t.is_group_mode == {F ...@@ -263,6 +283,17 @@ FMHA_FWD_SPLITKV_API_INNER_DISPATCH=""" {F_if}((t.is_group_mode == {F
return fmha_fwd_splitkv_<traits_, traits2_>(s, a); return fmha_fwd_splitkv_<traits_, traits2_>(s, a);
}} }}
}} else {{
if (t.has_lse) {{
using traits_ = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, true, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
return fmha_fwd_splitkv_<traits_>(s, a);
}} else {{
using traits_ = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, false, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
return fmha_fwd_splitkv_<traits_>(s, a);
}}
}}
}} }}
""" """
...@@ -435,7 +466,7 @@ class FmhaFwdSplitKVApiPool: ...@@ -435,7 +466,7 @@ class FmhaFwdSplitKVApiPool:
F_scheck=trait.scheck, F_skcheck=trait.skcheck, F_dcheck=trait.dcheck, F_dvcheck=trait.dvcheck, F_scheck=trait.scheck, F_skcheck=trait.skcheck, F_dcheck=trait.dcheck, F_dvcheck=trait.dvcheck,
F_spad=BOOL_MAP[trait.spad], F_skpad=BOOL_MAP[trait.skpad], F_dpad=BOOL_MAP[trait.dpad], F_dvpad=BOOL_MAP[trait.dvpad], F_spad=BOOL_MAP[trait.spad], F_skpad=BOOL_MAP[trait.skpad], F_dpad=BOOL_MAP[trait.dpad], F_dvpad=BOOL_MAP[trait.dvpad],
F_bm0=trait.bm0, F_bn0=trait.bn0, F_bk0=trait.bk0, F_bn1=trait.bn1, F_bk1=trait.bk1, F_bk0max=trait.bk0max, F_bm0=trait.bm0, F_bn0=trait.bn0, F_bk0=trait.bk0, F_bn1=trait.bn1, F_bk1=trait.bk1, F_bk0max=trait.bk0max,
F_hdim=hdim, F_dtype=DTYPE_MAP[dtype]) F_hdim=hdim, F_dtype=FWD_DTYPE_MAP[dtype])
if_j = 'if' if j == 0 else 'else if' if_j = 'if' if j == 0 else 'else if'
per_hdim_case = per_hdim_case + FMHA_FWD_API_PER_HDIM_CASE.format(F_if=if_j, F_hdim=hdim, F_inner_dispatch=inners) per_hdim_case = per_hdim_case + FMHA_FWD_API_PER_HDIM_CASE.format(F_if=if_j, F_hdim=hdim, F_inner_dispatch=inners)
if_i = 'if' if i == 0 else 'else if' if_i = 'if' if i == 0 else 'else if'
...@@ -472,7 +503,7 @@ class FmhaFwdSplitKVKernel: ...@@ -472,7 +503,7 @@ class FmhaFwdSplitKVKernel:
FMHA_FWD_SPLITKV_KERNEL_BODY.format( FMHA_FWD_SPLITKV_KERNEL_BODY.format(
F_idx = self.F_idx, F_idx = self.F_idx,
F_hdim = self.F_hdim, F_hdim = self.F_hdim,
F_dtype = DTYPE_MAP[self.F_dtype], F_dtype = FWD_DTYPE_MAP[self.F_dtype],
F_bm0 = self.F_tile.F_bm0, F_bm0 = self.F_tile.F_bm0,
F_bn0 = self.F_tile.F_bn0, F_bn0 = self.F_tile.F_bn0,
F_bk0 = self.F_tile.F_bk0, F_bk0 = self.F_tile.F_bk0,
...@@ -552,7 +583,7 @@ class FmhaFwdSplitKVCombineKernel: ...@@ -552,7 +583,7 @@ class FmhaFwdSplitKVCombineKernel:
FMHA_FWD_SPLITKV_COMBINE_KERNEL_BODY.format( FMHA_FWD_SPLITKV_COMBINE_KERNEL_BODY.format(
F_idx = self.F_idx, F_idx = self.F_idx,
F_hdim = self.F_hdim, F_hdim = self.F_hdim,
F_dtype = DTYPE_MAP[self.F_dtype], F_dtype = FWD_DTYPE_MAP[self.F_dtype],
F_bm0 = self.F_tile.F_bm0, F_bm0 = self.F_tile.F_bm0,
F_bn1 = self.F_tile.F_bn1, F_bn1 = self.F_tile.F_bn1,
F_spad = BOOL_MAP[self.F_pipeline.F_spad], F_spad = BOOL_MAP[self.F_pipeline.F_spad],
...@@ -579,9 +610,9 @@ def get_fmha_fwd_tile_dict_from_dtype(dtype : str) -> Optional[dict]: ...@@ -579,9 +610,9 @@ def get_fmha_fwd_tile_dict_from_dtype(dtype : str) -> Optional[dict]:
return { return {
'32' : FmhaFwdTileSize(32, 64, 16, 32, 32, 32, 2, 1, 1, 2, 1, 1, 16, 16, 16, -1), '32' : FmhaFwdTileSize(32, 64, 16, 32, 32, 32, 2, 1, 1, 2, 1, 1, 16, 16, 16, -1),
'64' : FmhaFwdTileSize(64, 64, 32, 64, 32, 64, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1), '64' : FmhaFwdTileSize(64, 64, 32, 64, 32, 64, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1),
## '96' : FmhaFwdTileSize(64, 128, 32, 128, 32, 96, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1), ### '96' : FmhaFwdTileSize(64, 128, 32, 128, 32, 96, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1),
'128' : FmhaFwdTileSize(64, 128, 32, 128, 32, 128, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1), '128' : FmhaFwdTileSize(64, 128, 32, 128, 32, 128, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1),
'256' : FmhaFwdTileSize(64, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1), '256' : FmhaFwdTileSize(64, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 16, 16, 16, 1),
} }
elif dtype == 'fp8' or dtype == 'bf8': elif dtype == 'fp8' or dtype == 'bf8':
return { return {
...@@ -595,17 +626,18 @@ def get_fmha_fwd_tile_dict_from_dtype(dtype : str) -> Optional[dict]: ...@@ -595,17 +626,18 @@ def get_fmha_fwd_tile_dict_from_dtype(dtype : str) -> Optional[dict]:
def get_fmha_fwd_splitkv_combine_tile_dict_from_dtype(dtype : str) -> Optional[dict]: def get_fmha_fwd_splitkv_combine_tile_dict_from_dtype(dtype : str) -> Optional[dict]:
if dtype == 'fp16' or dtype == 'bf16': if dtype == 'fp16' or dtype == 'bf16':
return { return {
'32' : FmhaFwdSplitKVCombineTileSize(16, 16, -1), # tile size for decode tile size for prefill
'64' : FmhaFwdSplitKVCombineTileSize(32, 32, -1), '32' : [FmhaFwdSplitKVCombineTileSize(16, 16, -1), FmhaFwdSplitKVCombineTileSize(64, 16, -1)],
## '96' : FmhaFwdSplitKVCombineTileSize(32, 64, -1), '64' : [FmhaFwdSplitKVCombineTileSize(32, 32, -1), FmhaFwdSplitKVCombineTileSize(64, 32, -1)],
'128' : FmhaFwdSplitKVCombineTileSize(32, 64, -1), ### '96' : [FmhaFwdSplitKVCombineTileSize(32, 64, -1), FmhaFwdSplitKVCombineTileSize(64, 64, -1)],
'256' : FmhaFwdSplitKVCombineTileSize(32, 128, -1), '128' : [FmhaFwdSplitKVCombineTileSize(32, 64, -1), FmhaFwdSplitKVCombineTileSize(64, 64, -1)],
'256' : [FmhaFwdSplitKVCombineTileSize(32, 128, -1), FmhaFwdSplitKVCombineTileSize(64, 128, -1)],
} }
elif dtype == 'fp8' or dtype == 'bf8': elif dtype == 'fp8' or dtype == 'bf8':
return { return {
'64' : FmhaFwdSplitKVCombineTileSize(64, 32, -1), '64' : [FmhaFwdSplitKVCombineTileSize(64, 32, -1)],
'128' : FmhaFwdSplitKVCombineTileSize(64, 64, -1), '128' : [FmhaFwdSplitKVCombineTileSize(64, 64, -1)],
'256' : FmhaFwdSplitKVCombineTileSize(64, 128, -1), '256' : [FmhaFwdSplitKVCombineTileSize(64, 128, -1)],
} }
else: else:
return None return None
...@@ -624,26 +656,32 @@ def get_fwd_splitkv_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> ...@@ -624,26 +656,32 @@ def get_fwd_splitkv_blobs(kernel_filter : Optional[str], receipt, mask_impl) ->
squant = 't' if dtype == 'fp8' else 'f' squant = 't' if dtype == 'fp8' else 'f'
pipelines = [] pipelines = []
if dtype in ['fp16', 'bf16']: if dtype in ['fp16', 'bf16']:
for mask, bias, pagedkv in itertools.product(get_mask_map(mask_impl).keys(), BIAS_MAP.keys(), ["t", "f"]): for mask, bias, lse, pagedkv in itertools.product(get_mask_map(mask_impl).keys(), BIAS_MAP.keys(), ["t", "f"], ["t", "f"]):
# TODO: use async pipeline when compiler is more stable # TODO: use async pipeline when compiler is more stable
if hdim == 256 or hdim in [32, 64, 128]: ### [32, 64, 96, 128]: if hdim == 256 or hdim in [32, 64, 128]: ### [32, 64, 96, 128]:
# if True: # if True:
pipelines.append(Pipeline('qr', 'row', 'f', 't', 'f', 'f', bias, 't', squant, pagedkv, mask)) pipelines.append(Pipeline('qr', 'row', 'f', 't', 'f', 'f', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'col', 'f', 't', 'f', 'f', bias, 't', squant, pagedkv, mask)) pipelines.append(Pipeline('qr', 'col', 'f', 't', 'f', 'f', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'row', 't', 't', 'f', 'f', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'col', 't', 't', 'f', 'f', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'row', 't', 't', 't', 't', bias, 't', squant, pagedkv, mask)) pipelines.append(Pipeline('qr', 'row', 't', 't', 't', 't', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'col', 't', 't', 't', 't', bias, 't', squant, pagedkv, mask)) pipelines.append(Pipeline('qr', 'col', 't', 't', 't', 't', bias, lse, squant, pagedkv, mask))
else: else:
pipelines.append(Pipeline('qr_async', 'row', 't', 'f', 't', 't', bias, 't', squant, pagedkv, mask)) pipelines.append(Pipeline('qr_async', 'row', 't', 'f', 't', 't', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr_async', 'row', 't', 't', 't', 't', bias, 't', squant, pagedkv, mask)) pipelines.append(Pipeline('qr_async', 'row', 't', 't', 't', 't', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr_async', 'col', 't', 'f', 't', 't', bias, 't', squant, pagedkv, mask)) pipelines.append(Pipeline('qr_async', 'col', 't', 'f', 't', 't', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr_async', 'col', 't', 't', 't', 't', bias, 't', squant, pagedkv, mask)) pipelines.append(Pipeline('qr_async', 'col', 't', 't', 't', 't', bias, lse, squant, pagedkv, mask))
if receipt == 1: if receipt == 1:
pipelines.append(Pipeline('qr', 'row', 't', 't', 't', 't', bias, 't', squant, pagedkv, mask)) # TODO: cover arbitraty hdim pipelines.append(Pipeline('qr', 'row', 't', 't', 't', 't', bias, lse, squant, pagedkv, mask)) # TODO: cover arbitraty hdim
pipelines.append(Pipeline('qr', 'col', 't', 'f', 't', 't', bias, 't', squant, pagedkv, mask)) # TODO: cover arbitraty hdim pipelines.append(Pipeline('qr', 'col', 't', 'f', 't', 't', bias, lse, squant, pagedkv, mask)) # TODO: cover arbitraty hdim
elif dtype in ['fp8', 'bf8']: elif dtype in ['fp8', 'bf8']:
for mask, bias in itertools.product(get_mask_map(mask_impl).keys(), BIAS_MAP.keys()): for mask, bias in itertools.product(get_mask_map(mask_impl).keys(), BIAS_MAP.keys()):
pipelines.append(Pipeline('qr', 'col', 'f', 'f', 'f', 'f', bias, 't', squant, 'f', mask)) pipelines.append(Pipeline('qr', 'col', 'f', 'f', 'f', 'f', bias, 't', squant, 'f', mask))
elif dtype in ['fp8fp16', 'fp8bf16']:
# TODO
None
else: else:
assert False assert False
return pipelines return pipelines
...@@ -651,19 +689,29 @@ def get_fwd_splitkv_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> ...@@ -651,19 +689,29 @@ def get_fwd_splitkv_blobs(kernel_filter : Optional[str], receipt, mask_impl) ->
gen = list() gen = list()
api_pool = FmhaFwdSplitKVApiPool(mask_impl) api_pool = FmhaFwdSplitKVApiPool(mask_impl)
for dtype in DTYPE_MAP.keys(): for dtype in FWD_DTYPE_MAP.keys():
d = get_fmha_fwd_tile_dict_from_dtype(dtype) prefill_tiles = codegen.ops.fmha_fwd.get_fmha_fwd_tile_dict_from_dtype(dtype)
if d == None: decode_tiles = get_fmha_fwd_tile_dict_from_dtype(dtype)
if decode_tiles == None:
continue continue
# make sure if all the hdim str keys in decode_tiles are also available in prefill_tiles
assert all(tile in prefill_tiles.keys() for tile in decode_tiles.keys())
#for hdim_str, mode, mask, bias, lse in itertools.product(d.keys(), MODE_MAP.keys(), MASK_MAP.keys(), ["t", "f"], ["t", "f"]): #for hdim_str, mode, mask, bias, lse in itertools.product(d.keys(), MODE_MAP.keys(), MASK_MAP.keys(), ["t", "f"], ["t", "f"]):
for hdim_str, mode in itertools.product(d.keys(), MODE_MAP.keys()): for hdim_str, mode in itertools.product(decode_tiles.keys(), MODE_MAP.keys()):
tile = d[hdim_str] prefill_tile = prefill_tiles[hdim_str]
decode_tile = decode_tiles[hdim_str]
hdim = int(hdim_str) hdim = int(hdim_str)
for pipeline in get_pipelines(dtype, hdim): for pipeline in get_pipelines(dtype, hdim):
if mode == "group": if mode == "group":
if pipeline.F_spad != 't' or pipeline.F_skpad != 't': if pipeline.F_spad != 't' or pipeline.F_skpad != 't':
# in group mode, spad/skpad must be true, since we can't predict if seqlen of current batch need pad or not # in group mode, spad/skpad must be true, since we can't predict if seqlen of current batch need pad or not
continue continue
is_prefill = (mode == "group" and pipeline.F_pagedkv == 't')
tile = prefill_tile if is_prefill else decode_tile
k = Kernel(F_idx=0, k = Kernel(F_idx=0,
F_hdim=hdim, F_hdim=hdim,
F_dtype=dtype, F_dtype=dtype,
...@@ -710,16 +758,17 @@ def get_fwd_splitkv_combine_blobs(kernel_filter : Optional[str], receipt) -> Lis ...@@ -710,16 +758,17 @@ def get_fwd_splitkv_combine_blobs(kernel_filter : Optional[str], receipt) -> Lis
gen = list() gen = list()
for dtype in DTYPE_MAP.keys(): for dtype in FWD_DTYPE_MAP.keys():
d = get_fmha_fwd_splitkv_combine_tile_dict_from_dtype(dtype) d = get_fmha_fwd_splitkv_combine_tile_dict_from_dtype(dtype)
if d == None: if d == None:
continue continue
#for hdim_str, mode, mask, bias, lse in itertools.product(d.keys(), MODE_MAP.keys(), MASK_MAP.keys(), ["t", "f"], ["t", "f"]): #for hdim_str, mode, mask, bias, lse in itertools.product(d.keys(), MODE_MAP.keys(), MASK_MAP.keys(), ["t", "f"], ["t", "f"]):
for hdim_str, mode in itertools.product(d.keys(), MODE_MAP.keys()): for hdim_str, mode in itertools.product(d.keys(), MODE_MAP.keys()):
tile = d[hdim_str] # include prefill tile size if in group mode
tiles = d[hdim_str][0 : 2 if mode == 'group' else 1]
hdim = int(hdim_str) hdim = int(hdim_str)
for pipeline in get_pipelines(dtype, hdim): for tile, pipeline in itertools.product(tiles, get_pipelines(dtype, hdim)):
if mode == "group": if mode == 'group':
if pipeline.F_spad != 't': if pipeline.F_spad != 't':
# in group mode, spad/skpad must be true, since we can't predict if seqlen of current batch need pad or not # in group mode, spad/skpad must be true, since we can't predict if seqlen of current batch need pad or not
continue continue
......
...@@ -101,7 +101,7 @@ auto create_args(int argc, char* argv[]) ...@@ -101,7 +101,7 @@ auto create_args(int argc, char* argv[])
} }
// different threshold for different dtype // different threshold for different dtype
template <typename DataType> template <typename DataTypeConfig>
auto get_elimit(ck_tile::index_t /*hdim_q*/, ck_tile::index_t /*hdim_v*/) auto get_elimit(ck_tile::index_t /*hdim_q*/, ck_tile::index_t /*hdim_v*/)
{ {
double rtol = 1e-2; double rtol = 1e-2;
...@@ -110,7 +110,7 @@ auto get_elimit(ck_tile::index_t /*hdim_q*/, ck_tile::index_t /*hdim_v*/) ...@@ -110,7 +110,7 @@ auto get_elimit(ck_tile::index_t /*hdim_q*/, ck_tile::index_t /*hdim_v*/)
} }
template <> template <>
auto get_elimit<ck_tile::bf16_t>(ck_tile::index_t hdim_q, ck_tile::index_t hdim_v) auto get_elimit<FmhaBwdBf16>(ck_tile::index_t hdim_q, ck_tile::index_t hdim_v)
{ {
double rtol = 1e-2; double rtol = 1e-2;
double atol = 1e-2; double atol = 1e-2;
...@@ -122,7 +122,7 @@ auto get_elimit<ck_tile::bf16_t>(ck_tile::index_t hdim_q, ck_tile::index_t hdim_ ...@@ -122,7 +122,7 @@ auto get_elimit<ck_tile::bf16_t>(ck_tile::index_t hdim_q, ck_tile::index_t hdim_
return ck_tile::make_tuple(rtol, atol); return ck_tile::make_tuple(rtol, atol);
} }
template <typename DataType> template <typename DataTypeConfig>
bool run(const ck_tile::ArgParser& arg_parser) bool run(const ck_tile::ArgParser& arg_parser)
{ {
std::string data_type = arg_parser.get_str("prec"); std::string data_type = arg_parser.get_str("prec");
...@@ -209,7 +209,7 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -209,7 +209,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
const auto seqstart_q_host = generate_seqstarts(mode, batch, seqlen_q); const auto seqstart_q_host = generate_seqstarts(mode, batch, seqlen_q);
const auto seqstart_k_host = generate_seqstarts(mode, batch, seqlen_k); const auto seqstart_k_host = generate_seqstarts(mode, batch, seqlen_k);
using TypeConfig = FmhaBwdTypeConfig<DataType>; using TypeConfig = FmhaBwdTypeConfig<DataTypeConfig>;
using QDataType = typename TypeConfig::QDataType; using QDataType = typename TypeConfig::QDataType;
using KDataType = typename TypeConfig::KDataType; using KDataType = typename TypeConfig::KDataType;
...@@ -933,7 +933,7 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -933,7 +933,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
} }
// clang-format on // clang-format on
auto [rtol, atol] = get_elimit<DataType>(hdim_q, hdim_v); auto [rtol, atol] = get_elimit<DataTypeConfig>(hdim_q, hdim_v);
bool dq_cur_pass = ck_tile::check_err(dq_host_result, bool dq_cur_pass = ck_tile::check_err(dq_host_result,
dq_host_ref, dq_host_ref,
std::string("Error: QGrad Incorrect results!"), std::string("Error: QGrad Incorrect results!"),
...@@ -986,11 +986,11 @@ int main(int argc, char* argv[]) ...@@ -986,11 +986,11 @@ int main(int argc, char* argv[])
const std::string data_type = arg_parser.get_str("prec"); const std::string data_type = arg_parser.get_str("prec");
if(data_type == "fp16") if(data_type == "fp16")
{ {
return run<ck_tile::half_t>(arg_parser) ? 0 : -2; return run<FmhaBwdFp16>(arg_parser) ? 0 : -2;
} }
else if(data_type == "bf16") else if(data_type == "bf16")
{ {
return run<ck_tile::bf16_t>(arg_parser) ? 0 : -2; return run<FmhaBwdBf16>(arg_parser) ? 0 : -2;
} }
return -3; return -3;
......
...@@ -14,11 +14,19 @@ ...@@ -14,11 +14,19 @@
#include <utility> #include <utility>
#include <variant> #include <variant>
struct FmhaBwdFp16
{
};
struct FmhaBwdBf16
{
};
template <typename DataType> template <typename DataType>
struct FmhaBwdTypeConfig; struct FmhaBwdTypeConfig;
template <> template <>
struct FmhaBwdTypeConfig<ck_tile::half_t> struct FmhaBwdTypeConfig<FmhaBwdFp16>
{ {
using QDataType = ck_tile::half_t; using QDataType = ck_tile::half_t;
using KDataType = ck_tile::half_t; using KDataType = ck_tile::half_t;
...@@ -38,7 +46,7 @@ struct FmhaBwdTypeConfig<ck_tile::half_t> ...@@ -38,7 +46,7 @@ struct FmhaBwdTypeConfig<ck_tile::half_t>
}; };
template <> template <>
struct FmhaBwdTypeConfig<ck_tile::bf16_t> struct FmhaBwdTypeConfig<FmhaBwdBf16>
{ {
using QDataType = ck_tile::bf16_t; using QDataType = ck_tile::bf16_t;
using KDataType = ck_tile::bf16_t; using KDataType = ck_tile::bf16_t;
......
...@@ -3,6 +3,7 @@ ...@@ -3,6 +3,7 @@
#include "fmha_fwd.hpp" #include "fmha_fwd.hpp"
#include "ck_tile/host.hpp" #include "ck_tile/host.hpp"
#include "ck_tile/ref/naive_attention.hpp"
#include "mask.hpp" #include "mask.hpp"
#include "rotary.hpp" #include "rotary.hpp"
#include "utils.hpp" #include "utils.hpp"
...@@ -10,6 +11,7 @@ ...@@ -10,6 +11,7 @@
#include <array> #include <array>
#include <cstring> #include <cstring>
#include <functional> #include <functional>
#include <map>
#include <numeric> #include <numeric>
#include <ostream> #include <ostream>
#include <string> #include <string>
...@@ -41,7 +43,7 @@ std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) ...@@ -41,7 +43,7 @@ std::ostream& operator<<(std::ostream& os, const std::vector<T>& v)
auto create_args(int argc, char* argv[]) auto create_args(int argc, char* argv[])
{ {
ck_tile::ArgParser arg_parser; ck_tile::ArgParser arg_parser;
arg_parser.insert("v", "1", "weather do CPU validation or not") arg_parser.insert("v", "1", "0:no validation, 2:cpu validation, 2:gpu validation(experimental)")
.insert("mode", "0", "kernel mode. 0:batch, 1:group") .insert("mode", "0", "kernel mode. 0:batch, 1:group")
.insert("b", "2", "batch size") .insert("b", "2", "batch size")
.insert("h", "8", "num of head, for q") .insert("h", "8", "num of head, for q")
...@@ -142,7 +144,7 @@ auto create_args(int argc, char* argv[]) ...@@ -142,7 +144,7 @@ auto create_args(int argc, char* argv[])
} }
// different threshold for different dtype // different threshold for different dtype
template <typename DataType> template <typename DataTypeConfig>
auto get_elimit(std::string /*init_method*/) auto get_elimit(std::string /*init_method*/)
{ {
double rtol = 1e-3; double rtol = 1e-3;
...@@ -151,7 +153,7 @@ auto get_elimit(std::string /*init_method*/) ...@@ -151,7 +153,7 @@ auto get_elimit(std::string /*init_method*/)
} }
template <> template <>
auto get_elimit<ck_tile::bf16_t>(std::string /*init_method*/) auto get_elimit<FmhaFwdBf16>(std::string /*init_method*/)
{ {
double rtol = 1e-2; double rtol = 1e-2;
double atol = 1e-2; double atol = 1e-2;
...@@ -159,7 +161,7 @@ auto get_elimit<ck_tile::bf16_t>(std::string /*init_method*/) ...@@ -159,7 +161,7 @@ auto get_elimit<ck_tile::bf16_t>(std::string /*init_method*/)
} }
template <> template <>
auto get_elimit<ck_tile::fp8_t>(std::string init_method) auto get_elimit<FmhaFwdFp8>(std::string init_method)
{ {
if(init_method == "ui" || init_method == "ni") if(init_method == "ui" || init_method == "ni")
{ {
...@@ -175,61 +177,14 @@ auto get_elimit<ck_tile::fp8_t>(std::string init_method) ...@@ -175,61 +177,14 @@ auto get_elimit<ck_tile::fp8_t>(std::string init_method)
} }
} }
int num_splits_heuristic(int batch_nhead_mblocks, int num_SMs, int num_n_blocks, int max_splits) int override_num_splits_if_necessary(int batch,
{ int nhead,
// If we have enough to almost fill the SMs, then just use 1 split int max_seqlen_q,
if(batch_nhead_mblocks >= 0.8f * num_SMs) int hdim_q,
{ int hdim_v,
return 1; float p_drop,
} bool is_prefill,
max_splits = std::min({max_splits, num_SMs, num_n_blocks}); int num_splits)
float max_efficiency = 0.f;
std::vector<float> efficiency;
efficiency.reserve(max_splits);
auto ceildiv = [](int a, int b) { return (a + b - 1) / b; };
// Some splits are not eligible. For example, if we have 64 blocks and choose 11 splits,
// we'll have 6 * 10 + 4 blocks. If we choose 12 splits, we'll have 6 * 11 + (-2) blocks
// (i.e. it's 11 splits anyway).
// So we check if the number of blocks per split is the same as the previous num_splits.
auto is_split_eligible = [&ceildiv, &num_n_blocks](int num_splits) {
return num_splits == 1 ||
ceildiv(num_n_blocks, num_splits) != ceildiv(num_n_blocks, num_splits - 1);
};
for(int num_splits = 1; num_splits <= max_splits; num_splits++)
{
if(!is_split_eligible(num_splits))
{
efficiency.push_back(0.f);
}
else
{
float n_waves = float(batch_nhead_mblocks * num_splits) / num_SMs;
float eff = n_waves / ceil(n_waves);
// printf("num_splits = %d, eff = %f\n", num_splits, eff);
if(eff > max_efficiency)
{
max_efficiency = eff;
}
efficiency.push_back(eff);
}
}
for(int num_splits = 1; num_splits <= max_splits; num_splits++)
{
if(!is_split_eligible(num_splits))
{
continue;
}
if(efficiency[num_splits - 1] >= 0.85 * max_efficiency)
{
// printf("num_splits chosen = %d\n", num_splits);
return num_splits;
}
}
return 1;
}
int override_num_splits_if_necessary(
int batch, int nhead, int max_seqlen_q, int hdim_v, float p_drop, int num_splits)
{ {
int device; int device;
auto status = hipGetDevice(&device); auto status = hipGetDevice(&device);
...@@ -245,23 +200,47 @@ int override_num_splits_if_necessary( ...@@ -245,23 +200,47 @@ int override_num_splits_if_necessary(
return num_splits; return num_splits;
} }
// tile size should match the generate.py const int kM0 = [&] {
const int kM0 = 64; // get kM0 for prefill phase
const int kN1 = hdim_v; if(is_prefill)
{
return 128;
}
// get kM0 for decode phase
/// TODO: take dtype=fp8/bf8 into consideration
const std::map<int, int> hdim_to_m0 = {
{32, 32},
{64, 64},
// {96, 64},
{128, 64},
{256, 64},
};
for(auto [hdim, m0] : hdim_to_m0)
{
if(hdim_q <= hdim && hdim_v <= hdim)
{
return m0;
}
}
return 64; // meet unsupported hdim_q/hdim_v
}();
// const int kN1 = hdim_v;
const int num_m_blocks = ck_tile::integer_divide_ceil(max_seqlen_q, kM0); const int num_m_blocks = ck_tile::integer_divide_ceil(max_seqlen_q, kM0);
const int num_n_blocks = ck_tile::integer_divide_ceil(hdim_v, kN1); // const int num_n_blocks = ck_tile::integer_divide_ceil(hdim_v, kN1); // always 1
if(num_splits < 1 && p_drop == 0.0f) if(num_splits < 1 && p_drop == 0.0f)
{ {
return num_splits_heuristic( return num_splits_heuristic(batch * nhead * num_m_blocks, props.multiProcessorCount * 2, 8);
batch * nhead * num_m_blocks, props.multiProcessorCount * 2, num_n_blocks, 128);
} }
return num_splits; return num_splits;
} }
template <typename DataType> template <typename DataTypeConfig>
bool run(const ck_tile::ArgParser& arg_parser) bool run(const ck_tile::ArgParser& arg_parser)
{ {
std::string data_type = arg_parser.get_str("prec"); std::string data_type = arg_parser.get_str("prec");
...@@ -305,8 +284,8 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -305,8 +284,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
} }
ck_tile::index_t rotary_dim = arg_parser.get_int("rotary_dim"); ck_tile::index_t rotary_dim = arg_parser.get_int("rotary_dim");
if constexpr(!(std::is_same_v<DataType, ck_tile::fp16_t> || if constexpr(!(std::is_same_v<DataTypeConfig, FmhaFwdFp16> ||
std::is_same_v<DataType, ck_tile::bf16_t>)) std::is_same_v<DataTypeConfig, FmhaFwdBf16>))
{ {
if(0 < rotary_dim) if(0 < rotary_dim)
{ {
...@@ -428,25 +407,6 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -428,25 +407,6 @@ bool run(const ck_tile::ArgParser& arg_parser)
return atoi(squant_str.c_str()) != 0 ? true : false; return atoi(squant_str.c_str()) != 0 ? true : false;
}(); }();
float range_q = arg_parser.get_float("range_q");
float range_k = arg_parser.get_float("range_k");
float range_v = arg_parser.get_float("range_v");
float range_p = arg_parser.get_float("range_p");
float range_o = arg_parser.get_float("range_o");
float dtype_max = ck_tile::type_convert<float>(ck_tile::numeric<DataType>::max());
float scale_p = 1.f;
float scale_o = 1.f;
if(squant)
{
scale_s = scale_s * (range_q / dtype_max) * (range_k / dtype_max);
scale_p = dtype_max / range_p;
// scale_p = [max(fp8_t)/range_o] * [range_p/max(fp8_t)] * [range_v/max(fp8_t)]
scale_o = range_p * range_v / range_o / dtype_max;
}
std::string vlayout = arg_parser.get_str("vlayout"); std::string vlayout = arg_parser.get_str("vlayout");
bool lse = arg_parser.get_bool("lse"); bool lse = arg_parser.get_bool("lse");
...@@ -466,7 +426,7 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -466,7 +426,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
} }
bool s_randval = false; bool s_randval = false;
if(p_drop > 0.0f && do_validation) if(p_drop > 0.0f && do_validation != 0)
{ {
s_randval = true; s_randval = true;
} }
...@@ -499,7 +459,7 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -499,7 +459,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
const auto seqstart_k_host = to_seqstarts(seqlen_ks); const auto seqstart_k_host = to_seqstarts(seqlen_ks);
const auto seqstart_k_with_padding_host = to_seqstarts(seqlen_kpads); const auto seqstart_k_with_padding_host = to_seqstarts(seqlen_kpads);
using TypeConfig = FmhaFwdTypeConfig<DataType>; using TypeConfig = FmhaFwdTypeConfig<DataTypeConfig>;
using QDataType = typename TypeConfig::QDataType; using QDataType = typename TypeConfig::QDataType;
using KDataType = typename TypeConfig::KDataType; using KDataType = typename TypeConfig::KDataType;
...@@ -513,6 +473,28 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -513,6 +473,28 @@ bool run(const ck_tile::ArgParser& arg_parser)
using OaccDataType = typename TypeConfig::OaccDataType; using OaccDataType = typename TypeConfig::OaccDataType;
using ODataType = typename TypeConfig::ODataType; using ODataType = typename TypeConfig::ODataType;
float range_q = arg_parser.get_float("range_q");
float range_k = arg_parser.get_float("range_k");
float range_v = arg_parser.get_float("range_v");
float range_p = arg_parser.get_float("range_p");
float range_o = arg_parser.get_float("range_o");
float q_dtype_max = ck_tile::type_convert<float>(ck_tile::numeric<QDataType>::max());
float k_dtype_max = ck_tile::type_convert<float>(ck_tile::numeric<KDataType>::max());
float v_dtype_max = ck_tile::type_convert<float>(ck_tile::numeric<VDataType>::max());
float p_dtype_max = v_dtype_max; // assume p and v is the same type
float o_dtype_max = ck_tile::type_convert<float>(ck_tile::numeric<ODataType>::max());
float scale_p = 1.f;
float scale_o = 1.f;
if(squant)
{
scale_s = scale_s * (range_q / q_dtype_max) * (range_k / k_dtype_max);
scale_p = p_dtype_max / range_p;
scale_o = (o_dtype_max / range_o) * (range_p / p_dtype_max) * (range_v / v_dtype_max);
}
// accumulation numbers for performance evaluation // accumulation numbers for performance evaluation
std::size_t flop = 0, num_byte = 0; std::size_t flop = 0, num_byte = 0;
auto max_seqlen_q = auto max_seqlen_q =
...@@ -552,8 +534,15 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -552,8 +534,15 @@ bool run(const ck_tile::ArgParser& arg_parser)
// legalize num_splits according to other options // legalize num_splits according to other options
if(num_splits < 1) if(num_splits < 1)
{ {
num_splits = override_num_splits_if_necessary( num_splits = override_num_splits_if_necessary(batch,
batch, nhead, max_seqlen_q, hdim_v, p_drop, num_splits); nhead,
max_seqlen_q,
hdim_q,
hdim_v,
p_drop,
/*is_prefill=*/mode == mode_enum::group &&
0 < page_block_size,
num_splits);
} }
if(128 < num_splits) if(128 < num_splits)
{ {
...@@ -628,12 +617,13 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -628,12 +617,13 @@ bool run(const ck_tile::ArgParser& arg_parser)
auto [rotary_cos_host, rotary_sin_host] = generate_rotary_cos_sin<KDataType>( auto [rotary_cos_host, rotary_sin_host] = generate_rotary_cos_sin<KDataType>(
std::max(shape_seqlen_q, shape_seqlen_k), rotary_dim, seed); std::max(shape_seqlen_q, shape_seqlen_k), rotary_dim, seed);
// lse_acc_host & o_acc_host are only used when 1 < num_spilts
ck_tile::HostTensor<LSEDataType> lse_acc_host( ck_tile::HostTensor<LSEDataType> lse_acc_host(
1 < num_splits || use_kvcache 1 < num_splits
? std::array<ck_tile::index_t, 4>{shape_batch, nhead, num_splits, shape_seqlen_q} ? std::array<ck_tile::index_t, 4>{shape_batch, nhead, num_splits, shape_seqlen_q}
: std::array<ck_tile::index_t, 4>{1, 1, 1, 1}); : std::array<ck_tile::index_t, 4>{1, 1, 1, 1});
ck_tile::HostTensor<OaccDataType> o_acc_host( ck_tile::HostTensor<OaccDataType> o_acc_host(
1 < num_splits || use_kvcache ? std::array<ck_tile::index_t, 5>{shape_batch, 1 < num_splits ? std::array<ck_tile::index_t, 5>{shape_batch,
nhead, nhead,
num_splits, num_splits,
shape_seqlen_q, shape_seqlen_q,
...@@ -709,14 +699,14 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -709,14 +699,14 @@ bool run(const ck_tile::ArgParser& arg_parser)
else if(init_method == "ufq" || init_method == "uf:q" || else if(init_method == "ufq" || init_method == "uf:q" ||
init_method == "3") // suitable for fp8 quantization init_method == "3") // suitable for fp8 quantization
{ {
ck_tile::FillUniformDistribution<QDataType>{-dtype_max, dtype_max, seed}(q_host); ck_tile::FillUniformDistribution<QDataType>{-q_dtype_max, q_dtype_max, seed}(q_host);
ck_tile::FillUniformDistribution<KDataType>{-dtype_max, dtype_max, seed}(k_host); ck_tile::FillUniformDistribution<KDataType>{-k_dtype_max, k_dtype_max, seed}(k_host);
ck_tile::FillUniformDistribution<KDataType>{-dtype_max, dtype_max, seed}(knew_host); ck_tile::FillUniformDistribution<KDataType>{-k_dtype_max, k_dtype_max, seed}(knew_host);
ck_tile::FillUniformDistribution<VDataType>{-dtype_max, dtype_max, seed}(v_host); ck_tile::FillUniformDistribution<VDataType>{-v_dtype_max, v_dtype_max, seed}(v_host);
ck_tile::FillUniformDistribution<VDataType>{-dtype_max, dtype_max, seed}(vnew_host); ck_tile::FillUniformDistribution<VDataType>{-v_dtype_max, v_dtype_max, seed}(vnew_host);
// bias_fp8 = qscale_bias * bias_fp32 // bias_fp8 = qscale_bias * bias_fp32
float qscale_bias = (dtype_max / range_q) * (dtype_max / range_k); float qscale_bias = (q_dtype_max / range_q) * (k_dtype_max / range_k);
// Assume bias is in [-1.f, 1.f] in original fp32 // Assume bias is in [-1.f, 1.f] in original fp32
ck_tile::FillUniformDistribution<BiasDataType>{-qscale_bias, qscale_bias, seed}(bias_host); ck_tile::FillUniformDistribution<BiasDataType>{-qscale_bias, qscale_bias, seed}(bias_host);
} }
...@@ -1061,9 +1051,7 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -1061,9 +1051,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
} }
else if constexpr(std::is_same_v<fmha_fwd_splitkv_args, std::decay_t<decltype(args)>>) else if constexpr(std::is_same_v<fmha_fwd_splitkv_args, std::decay_t<decltype(args)>>)
{ {
args.lse_acc_ptr = lse_acc_buf.GetDeviceBuffer(); // lse_acc_buf & o_acc_buf are only used when 1 < num_spilts
args.o_acc_ptr = o_acc_buf.GetDeviceBuffer();
args.block_table_ptr = args.block_table_ptr =
(0 < page_block_size ? block_table_buf.GetDeviceBuffer() : nullptr); (0 < page_block_size ? block_table_buf.GetDeviceBuffer() : nullptr);
args.batch_stride_block_table = batch_stride_block_table; args.batch_stride_block_table = batch_stride_block_table;
...@@ -1075,6 +1063,11 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -1075,6 +1063,11 @@ bool run(const ck_tile::ArgParser& arg_parser)
args.num_splits = num_splits; args.num_splits = num_splits;
if(1 < num_splits)
{
args.lse_acc_ptr = lse_acc_buf.GetDeviceBuffer();
args.o_acc_ptr = o_acc_buf.GetDeviceBuffer();
args.stride_o_acc = stride_o_acc; args.stride_o_acc = stride_o_acc;
args.nhead_stride_lse_acc = nhead_stride_lse_acc; args.nhead_stride_lse_acc = nhead_stride_lse_acc;
args.nhead_stride_o_acc = nhead_stride_o_acc; args.nhead_stride_o_acc = nhead_stride_o_acc;
...@@ -1083,6 +1076,21 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -1083,6 +1076,21 @@ bool run(const ck_tile::ArgParser& arg_parser)
args.split_stride_lse_acc = split_stride_lse_acc; args.split_stride_lse_acc = split_stride_lse_acc;
args.split_stride_o_acc = split_stride_o_acc; args.split_stride_o_acc = split_stride_o_acc;
} }
else
{
// following attribues are ignored by fmha_fwd_splitkv()
args.lse_acc_ptr = nullptr;
args.o_acc_ptr = nullptr;
args.stride_o_acc = 0;
args.nhead_stride_lse_acc = 0;
args.nhead_stride_o_acc = 0;
args.batch_stride_lse_acc = 0;
args.batch_stride_o_acc = 0;
args.split_stride_lse_acc = 0;
args.split_stride_o_acc = 0;
}
}
} }
}; };
...@@ -1140,25 +1148,75 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -1140,25 +1148,75 @@ bool run(const ck_tile::ArgParser& arg_parser)
<< std::setprecision(2) << tflops << " TFlops, " << std::setprecision(2) << gb_per_sec << std::setprecision(2) << tflops << " TFlops, " << std::setprecision(2) << gb_per_sec
<< " GB/s" << std::flush; << " GB/s" << std::flush;
if(!do_validation) if(do_validation == 0)
{ {
std::cout << std::flush << std::endl; std::cout << std::flush << std::endl;
return true; return true;
} }
if(do_validation == 2)
{
// NOTE: use gpu to do validation
ck_tile::naive_attention_fwd_traits naive_t;
naive_t.q_type = data_type;
naive_t.k_type = data_type;
naive_t.v_type = data_type;
naive_t.o_type = data_type;
naive_t.q_layout = i_perm == 1 ? "bhsd" : "bshd";
naive_t.k_layout = i_perm == 1 ? "bhsd" : "bshd";
naive_t.v_layout = i_perm == 1 ? "bhsd" : "bshd";
naive_t.o_layout = o_perm == 1 ? "bhsd" : "bshd";
naive_t.variation = 0; // TODO?
ck_tile::DeviceMem o_naive_buf(o_host.get_element_space_size_in_bytes());
ck_tile::naive_attention_fwd_args naive_a;
naive_a.q_ptr = q_buf.GetDeviceBuffer();
naive_a.k_ptr = k_buf.GetDeviceBuffer();
naive_a.v_ptr = v_buf.GetDeviceBuffer();
naive_a.o_ptr = o_naive_buf.GetDeviceBuffer();
naive_a.scale_s = scale_s;
naive_a.context_len_ptr = nullptr; // used when seqlen kv come from a pointer
naive_a.page_table_ptr =
nullptr; // [batch, num_blocks] seqlen_kv is in different block(paged attn)
naive_a.hdim = hdim_q;
naive_a.hdim_v = hdim_v; // could be cross-attn, where V and Q/K hdim are different
naive_a.batch_q = batch;
naive_a.batch_kv = batch;
naive_a.batch_ratio_kv = 1; // batch_q / batch_kv
naive_a.seqlen_q = seqlen_qs[0];
naive_a.seqlen_kv = seqlen_ks[0]; // if context_len_ptr is not nullptr, ignore this field
naive_a.nhead_q = nhead;
naive_a.nhead_kv = nhead_k;
naive_a.nhead_ratio_kv = naive_a.nhead_q / naive_a.nhead_kv; // nhead_q / nhead_kv
naive_a.page_size = 0; // if paged, the seqlen-kv for each block
ck_tile::stream_config naive_s{};
naive_attention_fwd(naive_t, naive_a, naive_s);
auto o_naive_ref = o_naive_buf.ToHost<ODataType>();
o_buf.FromDevice(o_host.data()); // TODO: ugly
auto [rtol_, atol_] = get_elimit<DataTypeConfig>(init_method);
bool pass_ = ck_tile::check_err(
o_host, o_naive_ref, std::string("OUT Error: Incorrect results!"), rtol_, atol_);
std::cout << ", valid:" << (pass_ ? "y" : "n") << std::flush << std::endl;
return pass_;
}
o_buf.FromDevice(o_host.data()); o_buf.FromDevice(o_host.data());
lse_buf.FromDevice(lse_host.data()); lse_buf.FromDevice(lse_host.data());
randval_buf.FromDevice(randval_host.data()); randval_buf.FromDevice(randval_host.data());
auto p_compute_element_func = [&]() { auto p_compute_element_func = [&]() {
if constexpr(std::is_same_v<DataType, ck_tile::fp8_t>) if constexpr(std::is_same_v<DataTypeConfig, ck_tile::fp8_t>)
return ck_tile::scales{scale_p}; return ck_tile::scales{scale_p};
else else
return ck_tile::identity{}; return ck_tile::identity{};
}(); }();
auto oacc_element_func = [&]() { auto oacc_element_func = [&]() {
if constexpr(std::is_same_v<DataType, ck_tile::fp8_t>) if constexpr(std::is_same_v<DataTypeConfig, ck_tile::fp8_t>)
return ck_tile::composes(ck_tile::saturates<ck_tile::fp8_t>{}, return ck_tile::composes(ck_tile::saturates<ck_tile::fp8_t>{},
ck_tile::scales{scale_o}); ck_tile::scales{scale_o});
else else
...@@ -1480,7 +1538,7 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -1480,7 +1538,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
else o_host_result.ForEach([&](auto& self, auto idx) { self(idx) = o_host(b_idx, idx[1] + query_offset, idx[0], idx[2]); }); else o_host_result.ForEach([&](auto& self, auto idx) { self(idx) = o_host(b_idx, idx[1] + query_offset, idx[0], idx[2]); });
// clang-format on // clang-format on
auto [rtol, atol] = get_elimit<DataType>(init_method); auto [rtol, atol] = get_elimit<DataTypeConfig>(init_method);
bool cur_pass = ck_tile::check_err( bool cur_pass = ck_tile::check_err(
o_host_result, o_host_ref, std::string("OUT Error: Incorrect results!"), rtol, atol); o_host_result, o_host_ref, std::string("OUT Error: Incorrect results!"), rtol, atol);
pass &= cur_pass; pass &= cur_pass;
...@@ -1537,15 +1595,15 @@ int main(int argc, char* argv[]) ...@@ -1537,15 +1595,15 @@ int main(int argc, char* argv[])
const std::string data_type = arg_parser.get_str("prec"); const std::string data_type = arg_parser.get_str("prec");
if(data_type == "fp16") if(data_type == "fp16")
{ {
return run<ck_tile::half_t>(arg_parser) ? 0 : -2; return run<FmhaFwdFp16>(arg_parser) ? 0 : -2;
} }
else if(data_type == "bf16") else if(data_type == "bf16")
{ {
return run<ck_tile::bf16_t>(arg_parser) ? 0 : -2; return run<FmhaFwdBf16>(arg_parser) ? 0 : -2;
} }
else if(data_type == "fp8") else if(data_type == "fp8")
{ {
return run<ck_tile::fp8_t>(arg_parser) ? 0 : -2; return run<FmhaFwdFp8>(arg_parser) ? 0 : -2;
} }
return -3; return -3;
......
...@@ -12,15 +12,40 @@ ...@@ -12,15 +12,40 @@
#include "mask.hpp" #include "mask.hpp"
#include "rotary.hpp" #include "rotary.hpp"
#include <array>
#include <type_traits> #include <type_traits>
#include <utility> #include <utility>
#include <variant> #include <variant>
struct FmhaFwdFp16
{
};
struct FmhaFwdBf16
{
};
struct FmhaFwdFp8
{
};
struct FmhaFwdBf8
{
};
struct FmhaFwdFp8Fp16
{
};
struct FmhaFwdFp8Bf16
{
};
template <typename DataType> template <typename DataType>
struct FmhaFwdTypeConfig; struct FmhaFwdTypeConfig;
template <> template <>
struct FmhaFwdTypeConfig<ck_tile::half_t> struct FmhaFwdTypeConfig<FmhaFwdFp16>
{ {
using QDataType = ck_tile::half_t; using QDataType = ck_tile::half_t;
using KDataType = ck_tile::half_t; using KDataType = ck_tile::half_t;
...@@ -36,7 +61,7 @@ struct FmhaFwdTypeConfig<ck_tile::half_t> ...@@ -36,7 +61,7 @@ struct FmhaFwdTypeConfig<ck_tile::half_t>
}; };
template <> template <>
struct FmhaFwdTypeConfig<ck_tile::bf16_t> struct FmhaFwdTypeConfig<FmhaFwdBf16>
{ {
using QDataType = ck_tile::bf16_t; using QDataType = ck_tile::bf16_t;
using KDataType = ck_tile::bf16_t; using KDataType = ck_tile::bf16_t;
...@@ -52,7 +77,7 @@ struct FmhaFwdTypeConfig<ck_tile::bf16_t> ...@@ -52,7 +77,7 @@ struct FmhaFwdTypeConfig<ck_tile::bf16_t>
}; };
template <> template <>
struct FmhaFwdTypeConfig<ck_tile::fp8_t> struct FmhaFwdTypeConfig<FmhaFwdFp8>
{ {
using QDataType = ck_tile::fp8_t; using QDataType = ck_tile::fp8_t;
using KDataType = ck_tile::fp8_t; using KDataType = ck_tile::fp8_t;
...@@ -68,7 +93,7 @@ struct FmhaFwdTypeConfig<ck_tile::fp8_t> ...@@ -68,7 +93,7 @@ struct FmhaFwdTypeConfig<ck_tile::fp8_t>
}; };
template <> template <>
struct FmhaFwdTypeConfig<ck_tile::bf8_t> struct FmhaFwdTypeConfig<FmhaFwdBf8>
{ {
using QDataType = ck_tile::bf8_t; using QDataType = ck_tile::bf8_t;
using KDataType = ck_tile::bf8_t; using KDataType = ck_tile::bf8_t;
...@@ -388,12 +413,13 @@ auto fmha_fwd_splitkv_create_kargs_and_grids(fmha_fwd_splitkv_args args) ...@@ -388,12 +413,13 @@ auto fmha_fwd_splitkv_create_kargs_and_grids(fmha_fwd_splitkv_args args)
// create group mode kernel arguments // create group mode kernel arguments
if constexpr(Kernel::kIsGroupMode) if constexpr(Kernel::kIsGroupMode)
{ {
return Kernel::MakeKargs(args.q_ptr, return Kernel::MakeKargs(
args.q_ptr,
args.k_ptr, args.k_ptr,
args.v_ptr, args.v_ptr,
args.bias_ptr, args.bias_ptr,
args.lse_acc_ptr, (1 < args.num_splits ? args.lse_acc_ptr : args.lse_ptr),
args.o_acc_ptr, (1 < args.num_splits ? args.o_acc_ptr : args.o_ptr),
args.batch, args.batch,
args.seqstart_q_ptr, args.seqstart_q_ptr,
args.seqstart_k_ptr, args.seqstart_k_ptr,
...@@ -413,29 +439,30 @@ auto fmha_fwd_splitkv_create_kargs_and_grids(fmha_fwd_splitkv_args args) ...@@ -413,29 +439,30 @@ auto fmha_fwd_splitkv_create_kargs_and_grids(fmha_fwd_splitkv_args args)
args.stride_k, args.stride_k,
args.stride_v, args.stride_v,
args.stride_bias, args.stride_bias,
args.stride_o_acc, (1 < args.num_splits ? args.stride_o_acc : args.stride_o),
args.nhead_stride_q, args.nhead_stride_q,
args.nhead_stride_k, args.nhead_stride_k,
args.nhead_stride_v, args.nhead_stride_v,
args.nhead_stride_bias, args.nhead_stride_bias,
args.nhead_stride_lse_acc, (1 < args.num_splits ? args.nhead_stride_lse_acc : args.nhead_stride_lse),
args.nhead_stride_o_acc, (1 < args.num_splits ? args.nhead_stride_o_acc : args.nhead_stride_o),
args.batch_stride_k, // only used for paged-kvcache args.batch_stride_k, // only used for paged-kvcache
args.batch_stride_v, // only used for paged-kvcache args.batch_stride_v, // only used for paged-kvcache
args.split_stride_lse_acc, (1 < args.num_splits ? args.split_stride_lse_acc : 0),
args.split_stride_o_acc, (1 < args.num_splits ? args.split_stride_o_acc : 0),
args.window_size_left, args.window_size_left,
args.window_size_right, args.window_size_right,
args.mask_type); args.mask_type);
} }
else else
{ // create batch mode kernel arguments { // create batch mode kernel arguments
return Kernel::MakeKargs(args.q_ptr, return Kernel::MakeKargs(
args.q_ptr,
args.k_ptr, args.k_ptr,
args.v_ptr, args.v_ptr,
args.bias_ptr, args.bias_ptr,
args.lse_acc_ptr, (1 < args.num_splits ? args.lse_acc_ptr : args.lse_ptr),
args.o_acc_ptr, (1 < args.num_splits ? args.o_acc_ptr : args.o_ptr),
args.batch, args.batch,
args.seqlen_q, args.seqlen_q,
args.seqlen_k, args.seqlen_k,
...@@ -455,21 +482,21 @@ auto fmha_fwd_splitkv_create_kargs_and_grids(fmha_fwd_splitkv_args args) ...@@ -455,21 +482,21 @@ auto fmha_fwd_splitkv_create_kargs_and_grids(fmha_fwd_splitkv_args args)
args.stride_k, args.stride_k,
args.stride_v, args.stride_v,
args.stride_bias, args.stride_bias,
args.stride_o_acc, (1 < args.num_splits ? args.stride_o_acc : args.stride_o),
args.nhead_stride_q, args.nhead_stride_q,
args.nhead_stride_k, args.nhead_stride_k,
args.nhead_stride_v, args.nhead_stride_v,
args.nhead_stride_bias, args.nhead_stride_bias,
args.nhead_stride_lse_acc, (1 < args.num_splits ? args.nhead_stride_lse_acc : args.nhead_stride_lse),
args.nhead_stride_o_acc, (1 < args.num_splits ? args.nhead_stride_o_acc : args.nhead_stride_o),
args.batch_stride_q, args.batch_stride_q,
args.batch_stride_k, args.batch_stride_k,
args.batch_stride_v, args.batch_stride_v,
args.batch_stride_bias, args.batch_stride_bias,
args.batch_stride_lse_acc, (1 < args.num_splits ? args.batch_stride_lse_acc : args.batch_stride_lse),
args.batch_stride_o_acc, (1 < args.num_splits ? args.batch_stride_o_acc : args.batch_stride_o),
args.split_stride_lse_acc, (1 < args.num_splits ? args.split_stride_lse_acc : 0),
args.split_stride_o_acc, (1 < args.num_splits ? args.split_stride_o_acc : 0),
args.window_size_left, args.window_size_left,
args.window_size_right, args.window_size_right,
args.mask_type); args.mask_type);
...@@ -789,3 +816,40 @@ struct fmha_fwd_appendkv_traits ...@@ -789,3 +816,40 @@ struct fmha_fwd_appendkv_traits
float fmha_fwd_appendkv(fmha_fwd_appendkv_traits, float fmha_fwd_appendkv(fmha_fwd_appendkv_traits,
fmha_fwd_appendkv_args, fmha_fwd_appendkv_args,
const ck_tile::stream_config&); const ck_tile::stream_config&);
template <typename Int = int>
Int num_splits_heuristic(Int batch_nhead_mblocks, Int num_SMs, Int max_splits)
{
// If we have enough to almost fill the SMs, then just use 1 split
if(batch_nhead_mblocks >= 0.8f * num_SMs)
{
return 1;
}
max_splits = std::min({max_splits, num_SMs});
constexpr std::array<Int, 5> num_splits_array = {1, 2, 4, 8, 16};
float max_efficiency = 0.f;
std::array<float, num_splits_array.size()> efficiency;
for(size_t idx = 0; idx < num_splits_array.size() && num_splits_array[idx] <= max_splits; ++idx)
{
float n_blocks = float(batch_nhead_mblocks * num_splits_array[idx]) / num_SMs;
float eff = n_blocks / std::ceil(n_blocks);
if(eff > max_efficiency)
{
max_efficiency = eff;
}
efficiency[idx] = eff;
}
for(size_t idx = 0; idx < num_splits_array.size() && num_splits_array[idx] <= max_splits; ++idx)
{
if(efficiency[idx] >= 0.85 * max_efficiency)
{
return num_splits_array[idx];
}
}
return 1;
}
...@@ -92,6 +92,11 @@ float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s) ...@@ -92,6 +92,11 @@ float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s)
const dim3 grids = Kernel::GridSize(args.M, args.N, args.kbatch); const dim3 grids = Kernel::GridSize(args.M, args.N, args.kbatch);
constexpr dim3 blocks = Kernel::BlockSize(); constexpr dim3 blocks = Kernel::BlockSize();
if(!Kernel::IsSupportedArgument(kargs))
{
throw std::runtime_error("Wrong! Arguments not supported! Skipping gemm!\n");
}
if(s.log_level_ > 0) if(s.log_level_ > 0)
{ {
std::cout << "Launching kernel with args:" std::cout << "Launching kernel with args:"
......
...@@ -119,6 +119,11 @@ float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s) ...@@ -119,6 +119,11 @@ float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s)
const dim3 grids = Kernel::GridSize(args.M, args.N, args.kbatch); const dim3 grids = Kernel::GridSize(args.M, args.N, args.kbatch);
constexpr dim3 blocks = Kernel::BlockSize(); constexpr dim3 blocks = Kernel::BlockSize();
if(!Kernel::IsSupportedArgument(kargs))
{
throw std::runtime_error("Wrong! Arguments not supported! Skipping gemm!\n");
}
if(s.log_level_ > 0) if(s.log_level_ > 0)
{ {
std::cout << "Launching kernel with args:" std::cout << "Launching kernel with args:"
......
...@@ -35,7 +35,8 @@ auto create_args(int argc, char* argv[]) ...@@ -35,7 +35,8 @@ auto create_args(int argc, char* argv[])
ck_tile::ArgParser arg_parser; ck_tile::ArgParser arg_parser;
arg_parser.insert("m", "3328", "m dimension") arg_parser.insert("m", "3328", "m dimension")
.insert("n", "4096", "n dimension") .insert("n", "4096", "n dimension")
.insert("stride", "-1", "stride per row, if -1 then equal to n") .insert("x_stride", "-1", "input stride per row, if -1 then equal to n")
.insert("y_stride", "-1", "output stride per row, if -1 then equal to n")
.insert("e", "1e-5", "epsilon") .insert("e", "1e-5", "epsilon")
.insert("v", "1", "cpu validation or not") .insert("v", "1", "cpu validation or not")
.insert("prec", "fp16", "precision") .insert("prec", "fp16", "precision")
...@@ -51,9 +52,12 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -51,9 +52,12 @@ bool run(const ck_tile::ArgParser& arg_parser)
{ {
ck_tile::index_t m = arg_parser.get_int("m"); ck_tile::index_t m = arg_parser.get_int("m");
ck_tile::index_t n = arg_parser.get_int("n"); ck_tile::index_t n = arg_parser.get_int("n");
ck_tile::index_t stride = arg_parser.get_int("stride"); ck_tile::index_t x_stride = arg_parser.get_int("x_stride");
if(stride < 0) if(x_stride < 0)
stride = n; x_stride = n;
ck_tile::index_t y_stride = arg_parser.get_int("y_stride");
if(y_stride < 0)
y_stride = n;
std::string data_type = arg_parser.get_str("prec"); std::string data_type = arg_parser.get_str("prec");
int do_validation = arg_parser.get_int("v"); int do_validation = arg_parser.get_int("v");
int warmup = arg_parser.get_int("warmup"); int warmup = arg_parser.get_int("warmup");
...@@ -68,14 +72,14 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -68,14 +72,14 @@ bool run(const ck_tile::ArgParser& arg_parser)
using ComputeDataType = float; using ComputeDataType = float;
// host verify // host verify
ck_tile::HostTensor<XDataType> x_host({m, n}, {stride, 1}); ck_tile::HostTensor<XDataType> x_host({m, n}, {x_stride, 1});
ck_tile::HostTensor<XScaleDataType> xscale_host({n}); ck_tile::HostTensor<XScaleDataType> xscale_host({n});
ck_tile::HostTensor<YScaleDataType> yscale_host_ref({m}, {1}); ck_tile::HostTensor<YScaleDataType> yscale_host_ref({m}, {1});
ck_tile::HostTensor<YScaleDataType> yscale_host_dev({m}, {1}); ck_tile::HostTensor<YScaleDataType> yscale_host_dev({m}, {1});
ck_tile::HostTensor<QYDataType> qy_host_ref({m, n}, {stride, 1}); ck_tile::HostTensor<QYDataType> qy_host_ref({m, n}, {y_stride, 1});
ck_tile::HostTensor<QYDataType> qy_host_dev({m, n}, {stride, 1}); ck_tile::HostTensor<QYDataType> qy_host_dev({m, n}, {y_stride, 1});
ck_tile::FillUniformDistribution<XDataType>{-.5f, .5f}(x_host); ck_tile::FillUniformDistribution<XDataType>{-.5f, .5f}(x_host);
ck_tile::FillUniformDistribution<XScaleDataType>{1e-3, .5f}(xscale_host); ck_tile::FillUniformDistribution<XScaleDataType>{1e-3, .5f}(xscale_host);
...@@ -116,7 +120,8 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -116,7 +120,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
qy_buf.GetDeviceBuffer(), qy_buf.GetDeviceBuffer(),
m, m,
n, n,
stride}; x_stride,
y_stride};
auto kargs = Kernel::MakeKargs(args); auto kargs = Kernel::MakeKargs(args);
...@@ -133,7 +138,7 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -133,7 +138,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
if(do_validation) if(do_validation)
{ {
using YDataType = ComputeDataType; using YDataType = ComputeDataType;
ck_tile::HostTensor<ComputeDataType> y_host({m, n}, {stride, 1}); ck_tile::HostTensor<ComputeDataType> y_host({m, n}, {y_stride, 1});
// smooth outlier // smooth outlier
{ {
auto f = [&](auto n_) { auto f = [&](auto n_) {
...@@ -183,7 +188,7 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -183,7 +188,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
qy_buf.FromDevice(qy_host_dev.data()); qy_buf.FromDevice(qy_host_dev.data());
auto [rtol, atol] = get_elimit<QYDataType>(); auto [rtol, atol] = get_elimit<QYDataType>();
if(stride == n) if(y_stride == n)
{ {
pass = ck_tile::check_err(qy_host_dev, pass = ck_tile::check_err(qy_host_dev,
qy_host_ref, qy_host_ref,
...@@ -195,10 +200,12 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -195,10 +200,12 @@ bool run(const ck_tile::ArgParser& arg_parser)
{ {
for(int i_r = 0; i_r < m; i_r++) for(int i_r = 0; i_r < m; i_r++)
{ {
std::vector<QYDataType> qy_host_dev_row(qy_host_dev.begin() + i_r * stride, std::vector<QYDataType> qy_host_dev_row(qy_host_dev.begin() + i_r * y_stride,
qy_host_dev.begin() + i_r * stride + n); qy_host_dev.begin() + i_r * y_stride +
std::vector<QYDataType> qy_host_ref_row(qy_host_ref.begin() + i_r * stride, n);
qy_host_ref.begin() + i_r * stride + n); std::vector<QYDataType> qy_host_ref_row(qy_host_ref.begin() + i_r * y_stride,
qy_host_ref.begin() + i_r * y_stride +
n);
pass &= ck_tile::check_err(qy_host_dev_row, pass &= ck_tile::check_err(qy_host_dev_row,
qy_host_ref_row, qy_host_ref_row,
std::string("qy[") + std::to_string(i_r) + std::string("qy[") + std::to_string(i_r) +
...@@ -210,8 +217,9 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -210,8 +217,9 @@ bool run(const ck_tile::ArgParser& arg_parser)
} }
std::cout << "[" << data_type << "]" std::cout << "[" << data_type << "]"
<< " m:" << m << ", n:" << n << ", stride:" << stride << " m:" << m << ", n:" << n << ", x_stride:" << x_stride
<< ", valid:" << (pass ? "y" : "n") << std::flush << std::endl; << ", y_stride:" << y_stride << ", valid:" << (pass ? "y" : "n") << std::flush
<< std::endl;
} }
return pass; return pass;
......
...@@ -33,7 +33,8 @@ auto create_args(int argc, char* argv[]) ...@@ -33,7 +33,8 @@ auto create_args(int argc, char* argv[])
ck_tile::ArgParser arg_parser; ck_tile::ArgParser arg_parser;
arg_parser.insert("m", "3328", "m dimension") arg_parser.insert("m", "3328", "m dimension")
.insert("n", "4096", "n dimension") .insert("n", "4096", "n dimension")
.insert("stride", "-1", "stride per row, if -1 then equal to n") .insert("x_stride", "-1", "input stride per row, if -1 then equal to n")
.insert("y_stride", "-1", "output stride per row, if -1 then equal to n")
.insert("v", "1", "cpu validation or not") .insert("v", "1", "cpu validation or not")
.insert("kname", "1", "print kernel name or not") .insert("kname", "1", "print kernel name or not")
.insert("prec", "fp16", "precision") .insert("prec", "fp16", "precision")
...@@ -49,16 +50,19 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -49,16 +50,19 @@ bool run(const ck_tile::ArgParser& arg_parser)
{ {
ck_tile::index_t m = arg_parser.get_int("m"); ck_tile::index_t m = arg_parser.get_int("m");
ck_tile::index_t n = arg_parser.get_int("n"); ck_tile::index_t n = arg_parser.get_int("n");
ck_tile::index_t stride = arg_parser.get_int("stride"); ck_tile::index_t x_stride = arg_parser.get_int("x_stride");
if(stride < 0) if(x_stride < 0)
stride = n; x_stride = n;
ck_tile::index_t y_stride = arg_parser.get_int("y_stride");
if(y_stride < 0)
y_stride = n;
std::string data_type = arg_parser.get_str("prec"); std::string data_type = arg_parser.get_str("prec");
int kname = arg_parser.get_int("kname"); int kname = arg_parser.get_int("kname");
int do_validation = arg_parser.get_int("v"); int do_validation = arg_parser.get_int("v");
int warmup = arg_parser.get_int("warmup"); int warmup = arg_parser.get_int("warmup");
int repeat = arg_parser.get_int("repeat"); int repeat = arg_parser.get_int("repeat");
assert(stride >= n); assert(x_stride >= n);
using TypeConfig = SmoothquantTypeConfig<DataType>; using TypeConfig = SmoothquantTypeConfig<DataType>;
...@@ -69,14 +73,14 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -69,14 +73,14 @@ bool run(const ck_tile::ArgParser& arg_parser)
using ComputeDataType = typename TypeConfig::ComputeDataType; using ComputeDataType = typename TypeConfig::ComputeDataType;
// host verify // host verify
ck_tile::HostTensor<XDataType> x_host({m, n}, {stride, 1}); ck_tile::HostTensor<XDataType> x_host({m, n}, {x_stride, 1});
ck_tile::HostTensor<XScaleDataType> xscale_host({n}); ck_tile::HostTensor<XScaleDataType> xscale_host({n});
ck_tile::HostTensor<YScaleDataType> yscale_host_ref({m}, {1}); ck_tile::HostTensor<YScaleDataType> yscale_host_ref({m}, {1});
ck_tile::HostTensor<YScaleDataType> yscale_host_dev({m}, {1}); ck_tile::HostTensor<YScaleDataType> yscale_host_dev({m}, {1});
ck_tile::HostTensor<QYDataType> qy_host_ref({m, n}, {stride, 1}); ck_tile::HostTensor<QYDataType> qy_host_ref({m, n}, {y_stride, 1});
ck_tile::HostTensor<QYDataType> qy_host_dev({m, n}, {stride, 1}); ck_tile::HostTensor<QYDataType> qy_host_dev({m, n}, {y_stride, 1});
ck_tile::FillUniformDistribution<XDataType>{-.5f, .5f}(x_host); ck_tile::FillUniformDistribution<XDataType>{-.5f, .5f}(x_host);
ck_tile::FillUniformDistribution<XScaleDataType>{1e-3, .5f}(xscale_host); ck_tile::FillUniformDistribution<XScaleDataType>{1e-3, .5f}(xscale_host);
...@@ -90,7 +94,8 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -90,7 +94,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
xscale_buf.ToDevice(xscale_host.data()); xscale_buf.ToDevice(xscale_host.data());
std::cout << "[" << data_type << "]" std::cout << "[" << data_type << "]"
<< " m:" << m << ", n:" << n << ", stride:" << stride << std::flush; << " m:" << m << ", n:" << n << ", x_stride:" << x_stride << ", y_stride:" << y_stride
<< std::flush;
smoothquant_traits traits{data_type}; smoothquant_traits traits{data_type};
...@@ -100,7 +105,8 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -100,7 +105,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
qy_buf.GetDeviceBuffer(), qy_buf.GetDeviceBuffer(),
m, m,
n, n,
stride}; x_stride,
y_stride};
float ave_time = smoothquant( float ave_time = smoothquant(
traits, args, ck_tile::stream_config{nullptr, true, kname ? 1 : 0, warmup, repeat}); traits, args, ck_tile::stream_config{nullptr, true, kname ? 1 : 0, warmup, repeat});
...@@ -116,7 +122,7 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -116,7 +122,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
if(do_validation) if(do_validation)
{ {
using YDataType = ComputeDataType; using YDataType = ComputeDataType;
ck_tile::HostTensor<ComputeDataType> y_host({m, n}, {stride, 1}); ck_tile::HostTensor<ComputeDataType> y_host({m, n}, {y_stride, 1});
// smooth outlier // smooth outlier
{ {
auto f = [&](auto n_) { auto f = [&](auto n_) {
...@@ -166,7 +172,7 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -166,7 +172,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
qy_buf.FromDevice(qy_host_dev.data()); qy_buf.FromDevice(qy_host_dev.data());
auto [rtol, atol] = get_elimit<QYDataType>(); auto [rtol, atol] = get_elimit<QYDataType>();
if(stride == n) if(y_stride == n)
{ {
pass = ck_tile::check_err(qy_host_dev, pass = ck_tile::check_err(qy_host_dev,
qy_host_ref, qy_host_ref,
...@@ -178,10 +184,12 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -178,10 +184,12 @@ bool run(const ck_tile::ArgParser& arg_parser)
{ {
for(int i_r = 0; i_r < m; i_r++) for(int i_r = 0; i_r < m; i_r++)
{ {
std::vector<QYDataType> qy_host_dev_row(qy_host_dev.begin() + i_r * stride, std::vector<QYDataType> qy_host_dev_row(qy_host_dev.begin() + i_r * y_stride,
qy_host_dev.begin() + i_r * stride + n); qy_host_dev.begin() + i_r * y_stride +
std::vector<QYDataType> qy_host_ref_row(qy_host_ref.begin() + i_r * stride, n);
qy_host_ref.begin() + i_r * stride + n); std::vector<QYDataType> qy_host_ref_row(qy_host_ref.begin() + i_r * y_stride,
qy_host_ref.begin() + i_r * y_stride +
n);
pass &= ck_tile::check_err(qy_host_dev_row, pass &= ck_tile::check_err(qy_host_dev_row,
qy_host_ref_row, qy_host_ref_row,
std::string("qy[") + std::to_string(i_r) + std::string("qy[") + std::to_string(i_r) +
......
add_executable(tile_example_grouped_gemm EXCLUDE_FROM_ALL grouped_gemm.cpp)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment