Commit 43596386 authored by Po Yen Chen's avatar Po Yen Chen
Browse files

Merge branch 'feature/add-splitkv-instance' into...

Merge branch 'feature/add-splitkv-instance' into feature/support-vllm-kcache-layout-add-splitkv-instance
parents 250399cd af07d650
......@@ -623,14 +623,14 @@ struct FmhaFwdSplitKVKernel
return pad_tensor_view(
q_dram_naive,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kSubQKHeaddim>{}),
sequence<kPadSeqLenQ, kPadHeadDimQ>{});
sequence<false, kPadHeadDimQ>{});
}
else
{
return pad_tensor_view(
q_dram_naive,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kK0>{}),
sequence<kPadSeqLenQ, kPadHeadDimQ>{});
sequence<false, kPadHeadDimQ>{});
}
}();
......@@ -673,7 +673,7 @@ struct FmhaFwdSplitKVKernel
return pad_tensor_view(
k_dram_naive,
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK0>{}),
sequence<kPadSeqLenK, kPadHeadDimQ>{});
sequence<false, kPadHeadDimQ>{});
};
const auto k_dram = [&]() {
if constexpr(kIsPagedKV)
......@@ -706,7 +706,7 @@ struct FmhaFwdSplitKVKernel
return pad_tensor_view(
v_dram_transposed,
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kK1>{}),
sequence<kPadHeadDimV, kPadSeqLenK>{});
sequence<kPadHeadDimV, false>{});
}
else
{
......@@ -720,7 +720,7 @@ struct FmhaFwdSplitKVKernel
return pad_tensor_view(
v_dram_naive,
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kK1>{}),
sequence<kPadHeadDimV, kPadSeqLenK>{});
sequence<false, kPadSeqLenK>{});
}
};
const auto v_dram = [&]() {
......@@ -832,9 +832,8 @@ struct FmhaFwdSplitKVKernel
number<FmhaPipeline::kAlignmentBias>{},
number<1>{});
return pad_tensor_view(bias_dram_naive,
bias_dram_window_lengths,
sequence<kPadSeqLenQ, kPadSeqLenK>{});
return pad_tensor_view(
bias_dram_naive, bias_dram_window_lengths, sequence<false, kPadSeqLenK>{});
}();
return make_tile_window(bias_dram, bias_dram_window_lengths, {i_m0, 0});
......
......@@ -810,21 +810,46 @@ struct FusedMoeGemmPipelineFlatmmPolicy
CK_TILE_HOST_DEVICE static constexpr auto GetUK_1()
{
using S_ = typename Problem::BlockShape;
using T_ = typename Problem::Traits;
if constexpr(std::is_same_v<typename Problem::YDataType, ck_tile::bf16_t> &&
std::is_same_v<typename Problem::DDataType, ck_tile::bf16_t> &&
std::is_same_v<typename Problem::TopkWeightDataType, float> &&
S_::Block_M1 == 32 && S_::Block_N1 == 128 && S_::Block_K1 == 512 &&
S_::Warp_M0 == 16 && S_::Warp_N0 == 16 && S_::Warp_K0 == 32)
S_::Warp_M0 == 16 && S_::Warp_N0 == 16 && S_::Warp_K0 == 32 &&
T_::PipeInterleave == false)
{
return FlatmmSn_32x128x512_1x4x1_16x16x32_BF16{};
// return FlatmmSn_32x128x512_1x4x1_16x16x32_BF16_itl{};
}
else if constexpr(std::is_same_v<typename Problem::YDataType, ck_tile::fp16_t> &&
std::is_same_v<typename Problem::DDataType, ck_tile::fp16_t> &&
std::is_same_v<typename Problem::TopkWeightDataType, float> &&
S_::Block_M1 == 32 && S_::Block_N1 == 128 && S_::Block_K1 == 512 &&
S_::Warp_M0 == 16 && S_::Warp_N0 == 16 && S_::Warp_K0 == 32)
S_::Warp_M0 == 16 && S_::Warp_N0 == 16 && S_::Warp_K0 == 32 &&
T_::PipeInterleave == false)
{
return FlatmmSn_32x128x512_1x4x1_16x16x32_FP16{};
// return FlatmmSn_32x128x512_1x4x1_16x16x32_FP16_itl{};
}
else if constexpr(std::is_same_v<typename Problem::YDataType, ck_tile::bf16_t> &&
std::is_same_v<typename Problem::DDataType, ck_tile::bf16_t> &&
std::is_same_v<typename Problem::TopkWeightDataType, float> &&
S_::Block_M1 == 32 && S_::Block_N1 == 128 && S_::Block_K1 == 512 &&
S_::Warp_M0 == 16 && S_::Warp_N0 == 16 && S_::Warp_K0 == 32 &&
T_::PipeInterleave == true)
{
// return FlatmmSn_32x128x512_1x4x1_16x16x32_FP16{};
return FlatmmSn_32x128x512_1x4x1_16x16x32_BF16_itl{};
}
else if constexpr(std::is_same_v<typename Problem::YDataType, ck_tile::fp16_t> &&
std::is_same_v<typename Problem::DDataType, ck_tile::fp16_t> &&
std::is_same_v<typename Problem::TopkWeightDataType, float> &&
S_::Block_M1 == 32 && S_::Block_N1 == 128 && S_::Block_K1 == 512 &&
S_::Warp_M0 == 16 && S_::Warp_N0 == 16 && S_::Warp_K0 == 32 &&
T_::PipeInterleave == true)
{
// return FlatmmSn_32x128x512_1x4x1_16x16x32_FP16{};
return FlatmmSn_32x128x512_1x4x1_16x16x32_FP16_itl{};
}
}
};
......
......@@ -22,7 +22,8 @@ template <bool IsGateOnly_,
FusedMoeGemmWeightPermuteEnum PermuteEnum_ =
FusedMoeGemmWeightPermuteEnum::b_nr_kr_waveflatten,
bool PadHiddenSize_ = false,
bool PadIntermediateSize_ = false>
bool PadIntermediateSize_ = false,
bool PipeInterleave_ = true>
struct FusedMoeGemmTraits
{
// Gate+Up or Gate only
......@@ -32,6 +33,7 @@ struct FusedMoeGemmTraits
static constexpr FusedMoeGemmWeightPermuteEnum PermuteEnum = PermuteEnum_;
static constexpr bool PadHiddenSize = PadHiddenSize_;
static constexpr bool PadIntermediateSize = PadIntermediateSize_;
static constexpr bool PipeInterleave = PipeInterleave_;
};
// Note: this need to be a bit mask
......
......@@ -26,6 +26,7 @@
#include "ck_tile/ops/gemm/kernel/batched_gemm_kernel.hpp"
#include "ck_tile/ops/gemm/kernel/gemm_kernel.hpp"
#include "ck_tile/ops/gemm/kernel/gemm_tile_partitioner.hpp"
#include "ck_tile/ops/gemm/kernel/grouped_gemm_kernel.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_base.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_comp_v3.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_mem.hpp"
......
......@@ -66,6 +66,79 @@ struct GemmKernel
return max(GemmPipeline::GetSmemSize(), EpiloguePipeline::GetSmemSize());
}
CK_TILE_HOST static bool IsSupportedArgument(const GemmCommonKargs& kargs)
{
if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>)
{
if(kargs.K % TilePartitioner::kK != 0 && GemmPipeline::kPadK == false)
{
return false;
}
if(kargs.K % GemmPipeline::VectorSizeA != 0)
{
return false;
}
}
else
{
if(kargs.M % TilePartitioner::kM != 0 && GemmPipeline::kPadM == false)
{
return false;
}
if(kargs.M % GemmPipeline::VectorSizeA != 0)
{
return false;
}
}
if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::RowMajor>)
{
if(kargs.N % TilePartitioner::kN != 0 && GemmPipeline::kPadN == false)
{
return false;
}
if(kargs.N % GemmPipeline::VectorSizeB != 0)
{
return false;
}
}
else
{
if(kargs.K % TilePartitioner::kK != 0 && GemmPipeline::kPadK == false)
{
return false;
}
if(kargs.K % GemmPipeline::VectorSizeB != 0)
{
return false;
}
}
if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
{
if(kargs.N % TilePartitioner::kN != 0 && GemmPipeline::kPadN == false)
{
return false;
}
if(kargs.N % GemmPipeline::VectorSizeC != 0)
{
return false;
}
}
else
{
if(kargs.M % TilePartitioner::kM != 0 && GemmPipeline::kPadM == false)
{
return false;
}
if(kargs.M % GemmPipeline::VectorSizeC != 0)
{
return false;
}
}
return true;
}
CK_TILE_DEVICE void operator()(GemmCommonKargs kargs) const
{
const auto [i_m, i_n] = TilePartitioner{}();
......
......@@ -35,4 +35,40 @@ struct GemmTilePartitioner
return make_tuple(iM, iN);
}
};
template <typename BlockGemmShape_>
struct GemmTile1DPartitioner
{
using BlockGemmShape = remove_cvref_t<BlockGemmShape_>;
static constexpr index_t MPerBlock = BlockGemmShape::kM;
static constexpr index_t NPerBlock = BlockGemmShape::kN;
static constexpr index_t KPerBlock = BlockGemmShape::kK;
CK_TILE_HOST static constexpr auto GridSize(index_t M, index_t N)
{
index_t GridDimX = (M + MPerBlock - 1) / MPerBlock;
index_t GridDimY = (N + NPerBlock - 1) / NPerBlock;
return dim3(GridDimX * GridDimY, 1, 1);
}
CK_TILE_HOST_DEVICE static constexpr auto GetNBlock(index_t N)
{
return integer_divide_ceil(N, NPerBlock);
}
CK_TILE_HOST_DEVICE static constexpr auto GetLoopNum(index_t K)
{
return integer_divide_ceil(K, KPerBlock);
}
CK_TILE_DEVICE auto operator()(index_t blockOffset, index_t NBlockSize)
{
index_t iM = __builtin_amdgcn_readfirstlane((blockIdx.x - blockOffset) /
GetNBlock(NBlockSize) * MPerBlock);
index_t iN = __builtin_amdgcn_readfirstlane((blockIdx.x - blockOffset) %
GetNBlock(NBlockSize) * NPerBlock);
return make_tuple(iM, iN);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <string>
#include "ck_tile/core/numeric/math.hpp"
#include "ck_tile/core/utility/literals.hpp"
#include "ck_tile/core/utility/amd_address_space.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_scheduler.hpp"
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
#include "ck_tile/host.hpp"
namespace ck_tile {
struct GroupedGemmHostArgs
{
const void* a_ptr;
const void* b_ptr;
void* c_ptr;
index_t M;
index_t N;
index_t K;
index_t stride_A;
index_t stride_B;
index_t stride_C;
};
template <typename TilePartitioner_, typename GemmPipeline_, typename EpiloguePipeline_>
struct GroupedGemmKernel
{
using TilePartitioner = remove_cvref_t<TilePartitioner_>;
using GemmPipeline = remove_cvref_t<GemmPipeline_>;
using EpiloguePipeline = remove_cvref_t<EpiloguePipeline_>;
using ALayout = remove_cvref_t<typename GemmPipeline::ALayout>;
using BLayout = remove_cvref_t<typename GemmPipeline::BLayout>;
using CLayout = remove_cvref_t<typename GemmPipeline::CLayout>;
static constexpr index_t KernelBlockSize = GemmPipeline::BlockSize;
using ADataType = remove_cvref_t<typename GemmPipeline::ADataType>;
using BDataType = remove_cvref_t<typename GemmPipeline::BDataType>;
using CDataType = remove_cvref_t<typename EpiloguePipeline::ODataType>;
struct GemmTransKernelArg
{
GroupedGemmHostArgs group_karg;
ck_tile::index_t block_start;
ck_tile::index_t block_end;
GemmTransKernelArg() = default;
GemmTransKernelArg(GroupedGemmHostArgs&& karg, index_t bl_start, index_t bl_end)
: group_karg{karg}, block_start{bl_start}, block_end{bl_end}
{
}
};
__host__ static size_t GetWorkSpaceSize(const std::vector<GroupedGemmHostArgs>& gemm_descs)
{
return gemm_descs.size() * sizeof(GemmTransKernelArg);
}
__host__ static constexpr auto BlockSize() { return dim3(KernelBlockSize); }
using Hargs = GroupedGemmHostArgs;
__host__ static constexpr auto GridSize(const std::vector<Hargs>& gemm_descs)
{
index_t grid_size = 0;
for(const auto& it_desc : gemm_descs)
{
const auto dim3 = TilePartitioner::GridSize(it_desc.M, it_desc.N);
grid_size += dim3.x * dim3.y * 1;
}
return dim3(grid_size, 1, 1);
}
CK_TILE_HOST static auto MakeKargs(const std::vector<Hargs>& gemm_descs)
{
std::vector<GemmTransKernelArg> gemm_kernel_args_;
index_t group_count = ck_tile::type_convert<ck_tile::index_t>(gemm_descs.size());
index_t grid_size = 0;
gemm_kernel_args_.reserve(group_count);
for(std::size_t i = 0; i < gemm_descs.size(); ++i)
{
const index_t M = gemm_descs[i].M;
const index_t N = gemm_descs[i].N;
const index_t K = gemm_descs[i].K;
if(M == 0 || N == 0 || K == 0)
{
continue;
}
const index_t stride_a = gemm_descs[i].stride_A;
const index_t stride_b = gemm_descs[i].stride_B;
const index_t stride_c = gemm_descs[i].stride_C;
const auto dim3 = TilePartitioner::GridSize(M, N);
const index_t grid_size_grp = dim3.x * 1 * 1;
const index_t block_start = grid_size;
const index_t block_end = grid_size + grid_size_grp;
grid_size += grid_size_grp;
auto karg = GroupedGemmHostArgs{type_convert<const ADataType*>(gemm_descs[i].a_ptr),
type_convert<const BDataType*>(gemm_descs[i].b_ptr),
type_convert<CDataType*>(gemm_descs[i].c_ptr),
M,
N,
K,
stride_a,
stride_b,
stride_c};
gemm_kernel_args_.emplace_back(std::move(karg), block_start, block_end);
}
return gemm_kernel_args_;
}
CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSize()
{
return max(GemmPipeline::GetSmemSize(), EpiloguePipeline::GetSmemSize());
}
CK_TILE_DEVICE void Run(const Hargs& kargs, const index_t block_start) const
{
const auto [i_m, i_n] = TilePartitioner{}(block_start, kargs.N);
// options
const ADataType* a_start = static_cast<const ADataType*>(kargs.a_ptr);
const BDataType* b_start = static_cast<const BDataType*>(kargs.b_ptr);
// Convert pointers to tensor views
auto a_tensor_view = [&]() {
if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>)
{
return make_naive_tensor_view<address_space_enum::global>(
a_start,
make_tuple(kargs.M, kargs.K),
make_tuple(kargs.stride_A, 1),
number<GemmPipeline::VectorSizeA>{},
number<1>{});
}
else
{
return make_naive_tensor_view<address_space_enum::global>(
a_start,
make_tuple(kargs.M, kargs.K),
make_tuple(1, kargs.stride_A),
number<1>{},
number<1>{});
}
}();
auto b_tensor_view = [&]() {
if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::RowMajor>)
{
return make_naive_tensor_view<address_space_enum::global>(
b_start,
make_tuple(kargs.N, kargs.K),
make_tuple(1, kargs.stride_B),
number<1>{},
number<1>{});
}
else
{
return make_naive_tensor_view<address_space_enum::global>(
b_start,
make_tuple(kargs.N, kargs.K),
make_tuple(kargs.stride_B, 1),
number<GemmPipeline::VectorSizeB>{},
number<1>{});
}
}();
auto a_pad_view = [&]() {
if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>)
{
return pad_tensor_view(a_tensor_view,
make_tuple(number<TilePartitioner::MPerBlock>{},
number<TilePartitioner::KPerBlock>{}),
sequence<false, GemmPipeline::kPadK>{});
}
else
{
return pad_tensor_view(a_tensor_view,
make_tuple(number<TilePartitioner::MPerBlock>{},
number<TilePartitioner::KPerBlock>{}),
sequence<GemmPipeline::kPadM, false>{});
}
}();
// clang-format on
auto a_block_window = make_tile_window(
a_pad_view,
make_tuple(number<TilePartitioner::MPerBlock>{}, number<TilePartitioner::KPerBlock>{}),
{i_m, 0});
auto b_pad_view = [&]() {
if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::ColumnMajor>)
{
return pad_tensor_view(b_tensor_view,
make_tuple(number<TilePartitioner::NPerBlock>{},
number<TilePartitioner::KPerBlock>{}),
sequence<false, GemmPipeline::kPadK>{});
}
else
{
return pad_tensor_view(b_tensor_view,
make_tuple(number<TilePartitioner::NPerBlock>{},
number<TilePartitioner::KPerBlock>{}),
sequence<GemmPipeline::kPadN, false>{});
}
}();
auto b_block_window = make_tile_window(
b_pad_view,
make_tuple(number<TilePartitioner::NPerBlock>{}, number<TilePartitioner::KPerBlock>{}),
{i_n, 0});
// allocate LDS
__shared__ char smem_ptr[GetSmemSize()];
const index_t num_loop = TilePartitioner::GetLoopNum(kargs.K);
// Run GEMM cooperatively by whole wokrgroup.
auto c_block_tile =
GemmPipeline{}.template operator()(a_block_window, b_block_window, num_loop, smem_ptr);
CDataType* c_start = static_cast<CDataType*>(kargs.c_ptr);
auto c_tensor_view = [&]() {
if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
{
return make_naive_tensor_view<address_space_enum::global>(
c_start,
make_tuple(kargs.M, kargs.N),
make_tuple(kargs.stride_C, 1),
number<GemmPipeline::VectorSizeC>{},
number<1>{});
}
else
{
return make_naive_tensor_view<address_space_enum::global>(
c_start,
make_tuple(kargs.M, kargs.N),
make_tuple(1, kargs.stride_C),
number<1>{},
number<1>{});
}
}();
auto c_pad_view = [&]() {
if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
{
return pad_tensor_view(c_tensor_view,
make_tuple(number<TilePartitioner::MPerBlock>{},
number<TilePartitioner::NPerBlock>{}),
sequence<false, GemmPipeline::kPadN>{});
}
else
{
return pad_tensor_view(c_tensor_view,
make_tuple(number<TilePartitioner::MPerBlock>{},
number<TilePartitioner::NPerBlock>{}),
sequence<GemmPipeline::kPadM, false>{});
}
}();
auto CBlockWindow_pad = make_tile_window(
c_pad_view,
make_tuple(number<TilePartitioner::MPerBlock>{}, number<TilePartitioner::NPerBlock>{}),
{i_m, i_n});
EpiloguePipeline{}(CBlockWindow_pad, c_block_tile);
}
CK_TILE_DEVICE void operator()(const void CK_CONSTANT_ADDRESS_SPACE* gemm_descs_const,
int group_count) const
{
const index_t block_id = ck_tile::get_block_1d_id();
const auto gemm_desc_ptr = reinterpret_cast<const GemmTransKernelArg*>(
cast_pointer_to_generic_address_space(gemm_descs_const));
index_t left = 0;
index_t right = group_count;
index_t group_id = index_t((left + right) / 2);
while((!(block_id >= gemm_desc_ptr[group_id].block_start &&
block_id < gemm_desc_ptr[group_id].block_end)) &&
left <= right)
{
if(block_id < gemm_desc_ptr[group_id].block_start)
{
right = group_id;
}
else
{
left = group_id;
}
group_id = index_t((left + right) / 2);
}
Run(gemm_desc_ptr[group_id].group_karg, gemm_desc_ptr[group_id].block_start);
}
};
} // namespace ck_tile
......@@ -19,7 +19,8 @@ struct SmoothquantHostArgs
index_t m;
index_t n;
index_t stride; // row_stride
index_t x_stride; // input row_stride
index_t y_stride; // output row_stride
};
// TODO: Extract some type to wrapper class
......@@ -58,14 +59,21 @@ struct Smoothquant
index_t m;
index_t n;
index_t stride; // row_stride
index_t x_stride; // input row_stride
index_t y_stride; // out row_stride
};
using Hargs = SmoothquantHostArgs;
CK_TILE_HOST static constexpr Kargs MakeKargs(const Hargs& hargs)
{
return Kargs{
hargs.p_x, hargs.p_xscale, hargs.p_yscale, hargs.p_qy, hargs.m, hargs.n, hargs.stride};
return Kargs{hargs.p_x,
hargs.p_xscale,
hargs.p_yscale,
hargs.p_qy,
hargs.m,
hargs.n,
hargs.x_stride,
hargs.y_stride};
}
CK_TILE_HOST static constexpr auto GridSize(const Hargs& hargs)
......@@ -116,7 +124,7 @@ struct Smoothquant
const auto tmp_ = make_naive_tensor_view<address_space_enum::global>(
static_cast<const XDataType*>(kargs.p_x),
make_tuple(kargs.m, kargs.n),
make_tuple(kargs.stride, 1),
make_tuple(kargs.x_stride, 1),
number<Vector_N>{},
number<1>{});
......@@ -157,7 +165,7 @@ struct Smoothquant
auto tmp_ = make_naive_tensor_view<address_space_enum::global>(
static_cast<QYDataType*>(kargs.p_qy),
make_tuple(kargs.m, kargs.n),
make_tuple(kargs.stride, 1),
make_tuple(kargs.y_stride, 1),
number<Vector_N>{},
number<1>{});
......
# reference
this folder contains reference implementation of a specific op. Note by including a specific header, you are including the implementation(expecially the gpu implementation) into your source code, and compile that kernel into the fatbin, hence may increase your kernel obj code length. Usually the header starts with `reference_` is a cpu reference implementation. The header starts with `naive_` contains a gpu implementation with a small launcher.
TODO: move `host/reference` under this folder
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host/host_tensor.hpp"
#include "ck_tile/host/kernel_launch.hpp"
#include <thread>
#include <string>
namespace ck_tile {
enum class naive_attention_layout_enum
{
BSHD, // [batch, seqlen, nhead, hdim]
BHSD, // [batch, nhead, seqlen, hdim]
BS3HD, // [batch, nhead, 3, seqlen, hdim], used when qkv are packed
PHSD, // [pages, nhead, page_size, hdim]
// PHSDX, // [pages, nhead, page_size/x, hdim, x], where <# used pages>*page_size = seqlen
PHDSX, // [pages, nhead, hdim/x, page_size, x], where <# used pages>*page_size = seqlen
PHDS, // [pages, nhead, hdim, page_size], where <# used pages>*page_size = seqlen
};
// will used to specialize kernel variation
enum class naive_attention_variation_enum
{
FLASH_BATCHED = 0, // standard flash attention, or xformer/sdpa, used for training
FLASH_GROUPED,
DECODE_PAGED, // decode attn, where kv token from another buffer called kvcache
};
// TODO: for simplicity, this will be used as host/device arg
struct naive_attention_fwd_args
{
void* q_ptr;
void* k_ptr;
void* v_ptr;
void* o_ptr;
void* context_len_ptr; // [batch] used when seqlen kv come from a pointer(each element is a
// number, not cumsum)
void* page_table_ptr; // [batch, max_pages_per_seq] seqlen_kv is in different block(paged attn)
void* kvscale_ptr; // [nhead, 2(kv), hdim] used for kvcache dequant
float scale_s;
int hdim;
int hdim_v; // could be cross-attn, where V and Q/K hdim are different
int batch_q;
int batch_kv;
int batch_ratio_kv; // batch_q / batch_kv
int seqlen_q; // in decode case, this should be 1
int seqlen_kv; // if context_len_ptr is not nullptr, ignore this field
int nhead_q;
int nhead_kv;
int nhead_ratio_kv; // nhead_q / nhead_kv
int page_size; // if paged, the seqlen-kv per each block
int max_pages_per_seq;
};
// this is trait for host API
struct naive_attention_fwd_traits
{
std::string q_type;
std::string k_type;
std::string v_type;
std::string o_type;
std::string q_layout;
std::string k_layout;
std::string v_layout;
std::string o_layout;
int variation; // sync with naive_attention_variation_enum
};
// this is trait for kernel template
template <naive_attention_variation_enum variation_>
struct naive_attention_fwd_kernel_traits
{
static constexpr naive_attention_variation_enum variation = variation_;
};
// for simplicity, please do not use const-reference type for the template type
template <typename QType,
typename KType,
typename VType,
typename OType,
typename AccType,
naive_attention_layout_enum QLayout,
naive_attention_layout_enum KLayout,
naive_attention_layout_enum VLayout,
naive_attention_layout_enum OLayout,
typename Traits>
struct naive_attention_fwd_kernel
{
static constexpr bool is_kvcache_i8 =
std::is_same_v<KType, int8_t> && std::is_same_v<VType, int8_t> && sizeof(QType) != 1;
// kvcache-i8 will have per head scale, we apply this scale to Q/P matrix instead of original
// K/V matrix. This can speed up conversion since Q/P usually is fp16/bf16/fp32
static constexpr bool is_kvcache_i8_forward_quant = is_kvcache_i8;
// TODO: hardcode
using KVScaleType = float;
using SoftmaxType = float;
using PType = VType; // src A of gemm2, same type as V
using p_vec_type = ext_vector_t<PType, 16 / sizeof(PType)>;
static constexpr int p_vec_elem = vector_traits<p_vec_type>::vector_size;
__host__ __device__ naive_attention_fwd_kernel() {}
template <typename T, naive_attention_layout_enum Layout>
struct addresser
{
int b, s, h, d; // batch, seqlen, nhead, hdim
T* base_ptr;
__device__ addresser(int b_, int s_, int h_, int d_, void* base_ptr_)
: b(b_), s(s_), h(h_), d(d_), base_ptr(reinterpret_cast<T*>(base_ptr_))
{
}
// TODO: all the batch/nhead offset will accumulate to the base pointer
__device__ T* get_base(int i_b, int i_h)
{
if constexpr(Layout == naive_attention_layout_enum::BSHD)
return base_ptr + i_b * s * h * d + i_h * d;
else if constexpr(Layout == naive_attention_layout_enum::BHSD)
return base_ptr + i_b * s * h * d + i_h * s * d;
}
__device__ int get_offset(int i_s, int i_d)
{
if constexpr(Layout == naive_attention_layout_enum::BSHD)
return i_s * h * d + i_d;
else if constexpr(Layout == naive_attention_layout_enum::BHSD)
return i_s * d + i_d;
}
// below set of API will directly use pointer inside this struct
__device__ void init(int i_b, int i_h) { base_ptr = get_base(i_b, i_h); }
__device__ T load(int i_s, int i_d) { return base_ptr[get_offset(i_s, i_d)]; }
__device__ void store(T value, int i_s, int i_d) { base_ptr[get_offset(i_s, i_d)] = value; }
};
template <typename T, naive_attention_layout_enum Layout>
struct page_addresser
{
int s, h, d; // page_size, nhead, hdim
static constexpr int x = 16 / sizeof(T); // pack 4 dword
T* base_ptr;
int* page_table_ptr; // TODO: page table always int
int i_h; // store current head
__device__ page_addresser(int s_, int h_, int d_, void* base_ptr_, void* pptr_)
: s(s_),
h(h_),
d(d_),
base_ptr(reinterpret_cast<T*>(base_ptr_)),
page_table_ptr(reinterpret_cast<int*>(pptr_))
{
}
__device__ int64_t get_phy_page_idx(int i_s)
{
// dynamic compute page idx is simple but slow
int page_idx = i_s / s;
int phy = page_table_ptr[page_idx];
return static_cast<int64_t>(phy);
}
__device__ int get_phy_page_offset(int i_s)
{
// dynamic compute page idx is simple but slow
return i_s % s;
}
__device__ int64_t get_offset(int i_s, int i_d)
{
int page_offset = get_phy_page_offset(i_s);
int64_t page_idx = get_phy_page_idx(i_s);
int64_t base_ = page_idx * h * s * d;
if constexpr(Layout == naive_attention_layout_enum::PHSD)
return static_cast<int64_t>(i_h * s * d + page_offset * d + i_d) + base_;
else if constexpr(Layout == naive_attention_layout_enum::PHDSX)
{
int d_r = i_d / x;
int d_x = i_d % x;
return static_cast<int64_t>(i_h * d * s + d_r * s * x + page_offset * x + d_x) +
base_;
}
else if constexpr(Layout == naive_attention_layout_enum::PHDS)
{
return static_cast<int64_t>(i_h * d * s + i_d * s + page_offset) + base_;
}
}
// below set of API will directly use pointer inside this struct
__device__ void init(int /*i_b*/, int i_h_) { i_h = i_h_; }
__device__ T load(int i_s, int i_d) { return base_ptr[get_offset(i_s, i_d)]; }
__device__ void store(T /*value*/, int /*i_s*/, int /*i_d*/) {}
};
template <typename T>
struct kvscale_addresser
{
int h, d; // nhead, hdim
T* base_ptr;
__device__ kvscale_addresser(int h_, int d_, void* p_)
: h(h_), d(d_), base_ptr(reinterpret_cast<T*>(p_))
{
}
__device__ int get_offset(int i_h, int i_d, int i_kv /*0 or 1*/)
{
// [h, 2, d]
return i_h * 2 * d + i_kv * d + i_d;
}
__device__ T load(int i_h, int i_d, int i_kv)
{
return base_ptr[get_offset(i_h, i_d, i_kv)];
}
};
__device__ __host__ static constexpr int get_block_size() { return 256; }
// for simpliciy, 1 WG always compute 1 token along q, compute all token along kv
// compute all hdim from q, compute WG_SIZE hdim from v
// 1) in prefill case, seqlen_q >= 1, seqlen_kv >= 1, batch_q=batch_kv
// 2) in decode case, seqlen_q = 1, batch_q is input num-tokens, batch_kv is 1
// 3) in paged-attn case, we still use 1 WG compute all the seqlen-kv for simplicity
// TODO: could support split-kv to validate intermediate logsum
__host__ static dim3 get_grid_size(naive_attention_fwd_args args)
{
constexpr int wg_size = get_block_size();
auto g =
dim3((args.hdim_v + wg_size - 1) / wg_size, args.seqlen_q, args.batch_q * args.nhead_q);
return g;
}
// reduce single pixel within a wave
template <typename T, typename F>
__device__ constexpr T wave_reduce(T local, F reduce_f)
{
// constexpr int wave_size = 64;
constexpr int reduce_stage = 6; // 1<<6=64
T v_local = local;
#pragma unroll
for(int i_stage = 0; i_stage < reduce_stage; i_stage++)
{
int src_lane = __lane_id() ^ (1 << i_stage);
int32_t v_remote_tmp =
__builtin_amdgcn_ds_bpermute(src_lane << 2, bit_cast<int32_t>(v_local));
T v_remote = bit_cast<T>(v_remote_tmp);
v_local = reduce_f(v_local, v_remote);
}
return v_local;
}
// Note: this function must be called after wave_reduce
// Note: better not use this under if...else... with thread divergence (syncthreads)
template <typename T, typename F>
__device__ constexpr T cross_wave_reduce(T local, F reduce_f, T* smem)
{
constexpr int waves = 4;
constexpr int wave_size = 64;
int lane_id = threadIdx.x % wave_size;
__syncthreads();
smem[threadIdx.x] = local;
__syncthreads();
// the data within single wave is the same
// but for simplicity, we still use data from each lane.
T v_local = smem[lane_id];
#pragma unroll
for(int i_stage = 1; i_stage < waves; i_stage++)
{
T v_remote = smem[i_stage * wave_size + lane_id];
v_local = reduce_f(v_local, v_remote);
}
return v_local;
}
// kernel entry point
__device__ void operator()(naive_attention_fwd_args args)
{
constexpr int wg_size = get_block_size();
__shared__ char smem[wg_size * 4 * sizeof(float)]; // should enough
int i_dv = blockIdx.x * wg_size + threadIdx.x; // index of hdim_v
int i_sq = blockIdx.y; // index of seqlen_q
int i_batch = blockIdx.z; // index of batch_q * nhead_q
int i_bq = i_batch / args.nhead_q; // index of batch_q
int i_hq = i_batch % args.nhead_q; // index of nhead_q
int i_bk = i_bq / args.batch_ratio_kv;
int i_hk = i_hq / args.nhead_ratio_kv;
void* page_table_ptr = [&]() {
if constexpr(Traits::variation == naive_attention_variation_enum::DECODE_PAGED)
{
return reinterpret_cast<int*>(args.page_table_ptr) + i_bq * args.max_pages_per_seq;
}
else
{
return nullptr;
}
}();
auto q_addr = [&]() {
if constexpr(Traits::variation == naive_attention_variation_enum::FLASH_BATCHED)
{
return addresser<QType, QLayout>{
args.batch_q, args.seqlen_q, args.nhead_q, args.hdim, args.q_ptr};
}
else if constexpr(Traits::variation == naive_attention_variation_enum::DECODE_PAGED)
{
return addresser<QType, QLayout>{
args.batch_q, args.seqlen_q, args.nhead_q, args.hdim, args.q_ptr};
}
}();
auto k_addr = [&]() {
if constexpr(Traits::variation == naive_attention_variation_enum::FLASH_BATCHED)
{
return addresser<KType, KLayout>{
args.batch_kv, args.seqlen_kv, args.nhead_kv, args.hdim, args.k_ptr};
}
else if constexpr(Traits::variation == naive_attention_variation_enum::DECODE_PAGED)
{
return page_addresser<KType, KLayout>{
args.page_size, args.nhead_kv, args.hdim, args.k_ptr, page_table_ptr};
}
}();
auto v_addr = [&]() {
if constexpr(Traits::variation == naive_attention_variation_enum::FLASH_BATCHED)
{
return addresser<VType, VLayout>{
args.batch_kv, args.seqlen_kv, args.nhead_kv, args.hdim_v, args.v_ptr};
}
else if constexpr(Traits::variation == naive_attention_variation_enum::DECODE_PAGED)
{
return page_addresser<VType, VLayout>{
args.page_size, args.nhead_kv, args.hdim_v, args.v_ptr, page_table_ptr};
}
}();
auto o_addr = [&]() {
if constexpr(Traits::variation == naive_attention_variation_enum::FLASH_BATCHED)
{
return addresser<OType, OLayout>{
args.batch_q, args.seqlen_q, args.nhead_q, args.hdim_v, args.o_ptr};
}
else if constexpr(Traits::variation == naive_attention_variation_enum::DECODE_PAGED)
{
return addresser<OType, OLayout>{
args.batch_q, args.seqlen_q, args.nhead_q, args.hdim_v, args.o_ptr};
}
}();
q_addr.init(i_bq, i_hq);
k_addr.init(i_bk, i_hk);
v_addr.init(i_bk, i_hk);
o_addr.init(i_bq, i_hq);
auto f_max = [](auto x_, auto y_) { return max(x_, y_); };
auto f_sum = [](auto x_, auto y_) { return x_ + y_; };
auto f_absmax_f32 = [](float v_0_, float v_1_) {
float rtn;
asm volatile("v_max_f32 %0, abs(%1), abs(%2)" : "=v"(rtn) : "v"(v_0_), "v"(v_1_));
return rtn;
};
int seqlen_kv = [&]() {
if constexpr(Traits::variation == naive_attention_variation_enum::FLASH_BATCHED)
{
return args.seqlen_kv;
}
else if constexpr(Traits::variation == naive_attention_variation_enum::DECODE_PAGED)
{
return reinterpret_cast<int*>(args.context_len_ptr)[i_bq];
}
}();
SoftmaxType row_max = -numeric<SoftmaxType>::infinity();
SoftmaxType l{0};
AccType o_acc = {0};
int sk_loops = (seqlen_kv + wg_size - 1) / wg_size;
float qf_scale = .0f;
kvscale_addresser<KVScaleType> kvscale_addr{args.nhead_kv, args.hdim, args.kvscale_ptr};
if constexpr(is_kvcache_i8_forward_quant)
{
// AccType is i32 now, seqlen_q = 1, hdim up to 256
float q = 0;
float k_s = 0;
if(static_cast<int>(threadIdx.x) < args.hdim)
{
q = type_convert<float>(q_addr.load(0, threadIdx.x));
k_s = type_convert<float>(kvscale_addr.load(i_hk, threadIdx.x, 0));
}
// 1) we apply the k scale to q
float q_forwarded = q * k_s;
// 2) apply smooth-quant
// find absmax
float qf_max = wave_reduce(q_forwarded, f_absmax_f32);
qf_max = cross_wave_reduce(qf_max, f_absmax_f32, reinterpret_cast<float*>(smem));
// per-token scale
qf_scale = qf_max / 127.0;
// devide by scale
q = q / qf_scale;
// fp32->i8
int8_t quantized_q = static_cast<int8_t>(q);
__syncthreads();
reinterpret_cast<int8_t*>(smem)[threadIdx.x] = quantized_q;
__syncthreads();
// after above process, we have 2 data
// 1) int8 q data stored in smem(no need to reload)
// 2) per-token scale qf_scale, to be mul after 1st gemm
}
for(int i_loop1 = 0; i_loop1 < sk_loops; i_loop1++)
{
int i_sk = i_loop1 * wg_size + threadIdx.x;
// gemm-1
SoftmaxType s_softmax = -numeric<SoftmaxType>::infinity();
if(i_sk < seqlen_kv)
{
AccType s_acc{0}; // clear for every loop
for(auto i_dq = 0; i_dq < args.hdim; i_dq++)
{
if constexpr(is_kvcache_i8_forward_quant)
{
int8_t q = reinterpret_cast<int8_t*>(smem)[i_dq];
auto k = k_addr.load(i_sk, i_dq);
s_acc += type_convert<AccType>(q) * type_convert<AccType>(k);
}
else
{
auto q = q_addr.load(i_sq, i_dq); // q will have duplicate load
auto k = k_addr.load(i_sk, i_dq);
s_acc += type_convert<AccType>(q) * type_convert<AccType>(k);
}
}
// scale
s_softmax = type_convert<SoftmaxType>(s_acc);
s_softmax *=
type_convert<SoftmaxType>(args.scale_s * ck_tile::log2e_v<SoftmaxType>);
if constexpr(is_kvcache_i8_forward_quant)
{
s_softmax *= qf_scale; // post scale the per-token factor
}
}
// s->p
float pf_scale = 0.; // used for i8 quant
{
// softmax, find max
SoftmaxType old_max = row_max;
SoftmaxType cur_max = wave_reduce(s_softmax, f_max);
cur_max = cross_wave_reduce(cur_max, f_max, reinterpret_cast<SoftmaxType*>(smem));
row_max = max(old_max, cur_max); // update row_max
// softmax, exp(i_elem - max)
SoftmaxType p_compute = __builtin_amdgcn_exp2f(s_softmax - row_max);
// compute exp_sum
SoftmaxType row_sum = wave_reduce(p_compute, f_sum);
row_sum = cross_wave_reduce(row_sum, f_sum, reinterpret_cast<SoftmaxType*>(smem));
// l, pre-scall o_acc
SoftmaxType tmp = __builtin_amdgcn_exp2f(old_max - row_max);
l = tmp * l + row_sum;
o_acc = type_convert<AccType>(type_convert<SoftmaxType>(o_acc) * tmp);
// prepare the p_compute into smem, to let every thread read same p_compute and do
// 2nd gemm
if constexpr(is_kvcache_i8_forward_quant)
{
float v_s = 0;
if(static_cast<int>(threadIdx.x) < args.hdim_v)
{
v_s = type_convert<float>(kvscale_addr.load(i_hk, threadIdx.x, 1));
}
// 1) we apply the v scale to p
float p_forwarded = p_compute * v_s;
// 2) apply smooth-quant
// find absmax
float pf_max = wave_reduce(p_forwarded, f_absmax_f32);
pf_max =
cross_wave_reduce(pf_max, f_absmax_f32, reinterpret_cast<float*>(smem));
// per-token scale
pf_scale = pf_max / 127.0;
// devide by scale
p_compute = p_compute / pf_scale;
// fp32->i8
int8_t quantized_p = static_cast<int8_t>(p_compute);
__syncthreads();
reinterpret_cast<int8_t*>(smem)[threadIdx.x] = quantized_p;
__syncthreads();
// after above process, we have 2 data
// 1) int8 p data stored in smem(no need to reload)
// 2) per-token scale pf_scale, to be mul after 2nd gemm
}
else
{
__syncthreads();
reinterpret_cast<PType*>(smem)[threadIdx.x] = type_convert<PType>(p_compute);
__syncthreads();
}
}
// gemm-2, simple loop over vector by vector
constexpr int gemm_2_loop = wg_size / p_vec_elem;
{
AccType o_acc_local = {0};
int sk_start = i_loop1 * wg_size; // we start from the first seqlen_kv element
for(int i_loop2 = 0; i_loop2 < gemm_2_loop; i_loop2++)
{
p_vec_type p_vec = reinterpret_cast<p_vec_type*>(smem)[i_loop2];
#pragma unroll
for(int i_j = 0; i_j < p_vec_elem; i_j++)
{
int sv_offset = i_loop2 * p_vec_elem + i_j;
int i_sv = sk_start + sv_offset;
VType v = 0.f;
if(i_dv < args.hdim_v && i_sv < seqlen_kv)
{
v = v_addr.load(i_sv, i_dv);
}
o_acc_local += type_convert<AccType>(p_vec[i_j]) * type_convert<AccType>(v);
}
}
if constexpr(is_kvcache_i8_forward_quant)
{
// apply pr scale to local acc
o_acc_local =
type_convert<AccType>(type_convert<float>(o_acc_local) * pf_scale);
}
o_acc += o_acc_local;
}
}
// post scale o_acc
{
SoftmaxType tmp = l == 0.f ? 0.f : 1.f / l; // in case masking
o_acc = type_convert<AccType>(type_convert<SoftmaxType>(o_acc) * tmp);
}
// store O
if(i_dv < args.hdim_v)
o_addr.store(type_convert<OType>(o_acc), i_sq, i_dv);
}
};
#define CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_INTERNAL_() \
{ \
using ktraits_ = \
naive_attention_fwd_kernel_traits<static_cast<naive_attention_variation_enum>( \
variation_)>; \
using k_ = naive_attention_fwd_kernel<q_type_, \
k_type_, \
v_type_, \
o_type_, \
acc_type_, \
q_layout_, \
k_layout_, \
v_layout_, \
o_layout_, \
ktraits_>; \
dim3 grids = k_::get_grid_size(a); \
r = ck_tile::launch_kernel(s, \
ck_tile::make_kernel(k_{}, grids, k_::get_block_size(), 0, a)); \
}
#define CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_LAOYUT_() \
if(t.variation == 0 && t.q_layout == "bshd" && t.k_layout == "bshd" && t.v_layout == "bshd" && \
t.o_layout == "bshd") \
{ \
constexpr auto q_layout_ = naive_attention_layout_enum::BSHD; \
constexpr auto k_layout_ = naive_attention_layout_enum::BSHD; \
constexpr auto v_layout_ = naive_attention_layout_enum::BSHD; \
constexpr auto o_layout_ = naive_attention_layout_enum::BSHD; \
constexpr int variation_ = 0; \
CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_INTERNAL_(); \
} \
else if(t.variation == 0 && t.q_layout == "bhsd" && t.k_layout == "bhsd" && \
t.v_layout == "bhsd" && t.o_layout == "bhsd") \
{ \
constexpr auto q_layout_ = naive_attention_layout_enum::BHSD; \
constexpr auto k_layout_ = naive_attention_layout_enum::BHSD; \
constexpr auto v_layout_ = naive_attention_layout_enum::BHSD; \
constexpr auto o_layout_ = naive_attention_layout_enum::BHSD; \
constexpr int variation_ = 0; \
CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_INTERNAL_(); \
} \
else if(t.variation == 2 && t.q_layout == "bhsd" && t.k_layout == "phdsx" && \
t.v_layout == "phds" && t.o_layout == "bhsd") \
{ \
constexpr auto q_layout_ = naive_attention_layout_enum::BHSD; \
constexpr auto k_layout_ = naive_attention_layout_enum::PHDSX; \
constexpr auto v_layout_ = naive_attention_layout_enum::PHDS; \
constexpr auto o_layout_ = naive_attention_layout_enum::BHSD; \
constexpr int variation_ = 2; \
CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_INTERNAL_(); \
}
//
CK_TILE_HOST float naive_attention_fwd(naive_attention_fwd_traits t,
naive_attention_fwd_args a,
ck_tile::stream_config s)
{
float r = -1;
// TODO: do not explicitly create too much instance!
if(t.q_type == "fp16" && t.k_type == "fp16" && t.v_type == "fp16" && t.o_type == "fp16")
{
using q_type_ = fp16_t;
using k_type_ = fp16_t;
using v_type_ = fp16_t;
using o_type_ = fp16_t;
using acc_type_ = float;
CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_LAOYUT_();
}
else if(t.q_type == "bf16" && t.k_type == "bf16" && t.v_type == "bf16" && t.o_type == "bf16")
{
using q_type_ = bf16_t;
using k_type_ = bf16_t;
using v_type_ = bf16_t;
using o_type_ = bf16_t;
using acc_type_ = float;
CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_LAOYUT_();
}
else if(t.q_type == "bf16" && t.k_type == "int8" && t.v_type == "int8" && t.o_type == "bf16")
{
using q_type_ = bf16_t;
using k_type_ = int8_t;
using v_type_ = int8_t;
using o_type_ = bf16_t;
using acc_type_ = int32_t; // NOTE!
CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_LAOYUT_();
}
else if(t.q_type == "fp16" && t.k_type == "int8" && t.v_type == "int8" && t.o_type == "fp16")
{
using q_type_ = fp16_t;
using k_type_ = int8_t;
using v_type_ = int8_t;
using o_type_ = fp16_t;
using acc_type_ = int32_t; // NOTE!
CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_LAOYUT_();
}
return r;
}
#undef CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_LAOYUT_
#undef CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_INTERNAL_
} // namespace ck_tile
......@@ -7,6 +7,7 @@ import copy
NS = 'ck_tile'
OPS = 'ops'
REF = 'ref'
OPS_COMMON = 'common' # common header will be duplicated into ops/* other module
HEADER_COMMON = f"""// SPDX-License-Identifier: MIT
......@@ -29,6 +30,9 @@ class submodule_t:
def push(self, f):
if len(f.parents) != 1: # ignore ./xxx.hpp
mod = get_module(f)
# ref is supposed to include one header on demand
if mod == REF:
return
if mod == OPS:
if mod not in self.m.keys():
self.m[mod] = dict()
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -62,9 +62,9 @@ struct ReferenceGemm : public device::BaseOperator
auto f_mk_kn_mn = [&](auto m, auto n) {
const int K = arg.a_m_k_.mDesc.GetLengths()[1];
AccDataType v_acc = 0;
ComputeTypeA v_a = 0;
ComputeTypeB v_b = 0;
AccDataType v_acc{0};
ComputeTypeA v_a{0};
ComputeTypeB v_b{0};
for(int k = 0; k < K; ++k)
{
......@@ -93,7 +93,7 @@ struct ReferenceGemm : public device::BaseOperator
ck::type_convert<AccDataType>(v_a) * ck::type_convert<AccDataType>(v_b);
}
CDataType v_c = 0;
CDataType v_c{0};
arg.c_element_op_(v_c, v_acc);
......
......@@ -62,7 +62,7 @@ function(add_instance_library INSTANCE_NAME)
endforeach()
# Do not build mha instances if gfx94 or gfx90a targets are not on the target list
foreach(source IN LISTS ARGN)
if(NOT INST_TARGETS MATCHES "gfx94" AND NOT INST_TARGETS MATCHES "gfx90a" AND source MATCHES "mha")
if(NOT INST_TARGETS MATCHES "gfx94" AND NOT INST_TARGETS MATCHES "gfx90a" AND source MATCHES "mha")
message("removing mha instance ${source} ")
list(REMOVE_ITEM ARGN "${source}")
endif()
......@@ -346,7 +346,7 @@ if(CK_DEVICE_CONV_INSTANCES)
endif()
if(CK_DEVICE_MHA_INSTANCES)
set(gpu_list ${INST_TARGETS})
if(gpu_list MATCHES "gfx94" OR gpu_list MATCHES "gfx90a")
if(gpu_list MATCHES "gfx94" OR gpu_list MATCHES "gfx90a")
add_library(device_mha_operations STATIC ${CK_DEVICE_MHA_INSTANCES})
add_library(composablekernels::device_mha_operations ALIAS device_mha_operations)
target_compile_features(device_mha_operations PUBLIC)
......
......@@ -52,6 +52,9 @@ using device_batched_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_instances =
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 8, 8, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, S<4>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 224, 256, 64, 8, 8, 16, 16, 7, 8, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 2, S<1, 16, 1, 16>, S<4>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 224, 64, 8, 8, 16, 16, 8, 7, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 2, 1, S<1, 32, 1, 8>, S<4>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 160, 64, 8, 8, 16, 16, 8, 5, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 2, 1, S<1, 32, 1, 8>, S<4>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 160, 64, 8, 8, 32, 32, 1, 5, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 64, 1, 4>, S<8>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 160, 128, 64, 8, 8, 32, 32, 5, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, S<4>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 8, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, S<4>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 8, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, S<4>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 8, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, S<4>, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>
......
......@@ -42,6 +42,7 @@ using device_batched_gemm_xdl_universal_f8_f8_bf16_mk_nk_mn_comp_instances = std
//##################################| | | | | Type| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//##################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#ifdef __gfx94__
// Compute friendly
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, F8, F8, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 64, 16, 16, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4, F8>,
......@@ -72,6 +73,7 @@ using device_batched_gemm_xdl_universal_f8_f8_bf16_mk_nk_mn_mem_instances = std:
//##################################| | | | | Type| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//##################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if defined(__gfx94__) || defined(CK_USE_FP8_ON_UNSUPPORTED_ARCH)
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, F8, F8, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 32, 16, 128, 16, 16, 16, 16, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 8>, S<2>, BlkGemmPipeSched, BlockGemmPipelineVersion::v1, F8>,
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, F8, F8, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 16, 16, 128, 16, 16, 16, 16, 1, 1, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 4>, S<4>, BlkGemmPipeSched, BlockGemmPipelineVersion::v1, F8>,
......
......@@ -6,7 +6,7 @@ set(CK_TILE_SRC_FOLDER ${CMAKE_SOURCE_DIR}/include/ck_tile/)
# CK Codegen requires dataclass which is added in Python 3.7
# Python version 3.8 is required for general good practice as it is default for Ubuntu 20.04
if(NOT CK_USE_ALTERNATIVE_PYTHON)
find_package(PythonInterp 3 REQUIRED)
find_package(Python3 COMPONENTS Interpreter Development)
else()
message("Using alternative python version")
set(EXTRA_PYTHON_PATH)
......@@ -33,7 +33,7 @@ set(FMHA_KNOWN_APIS "fwd,fwd_splitkv,fwd_appendkv,bwd")
# Note: The receipt 3 arg filters the generated backwards instances to reduce compilation time.
# With receipt 3 set, we are generating instances for datatype == {fp16 || bfp16}, bias == {no || alibi}, deterministic == off, and dpad == dvpad.
execute_process(
COMMAND ${PYTHON_EXECUTABLE} ${FMHA_SRC_FOLDER}/generate.py
COMMAND ${Python3_EXECUTABLE} ${FMHA_SRC_FOLDER}/generate.py
--list_blobs ${FMHA_CPP_FOLDER}/blob_list.txt
--api ${FMHA_KNOWN_APIS}
--receipt 3
......@@ -50,7 +50,7 @@ endif()
# With receipt 3 set, we are generating instances for datatype == {fp16 || bfp16}, bias == {no || alibi}, deterministic == off, and dpad == dvpad.
add_custom_command(
OUTPUT ${FMHA_GEN_BLOBS}
COMMAND ${PYTHON_EXECUTABLE} ${FMHA_SRC_FOLDER}/generate.py
COMMAND ${Python3_EXECUTABLE} ${FMHA_SRC_FOLDER}/generate.py
--output_dir ${FMHA_CPP_FOLDER}
--api ${FMHA_KNOWN_APIS}
--receipt 3
......
......@@ -15,7 +15,7 @@ void add_device_pool3d_fwd_ndhwc_f8_instances(
instances)
{
add_device_operation_instances(
instances, device_pool3d_fwd_ndhwc_instances<F8, F8, I32, F8, ReduceOpId, false>{});
instances, device_pool3d_fwd_ndhwc_instances<F8, F8, I32, F32, ReduceOpId, false>{});
}
void add_device_pool3d_fwd_ndhwc_index_f8_instances(
......@@ -23,7 +23,7 @@ void add_device_pool3d_fwd_ndhwc_index_f8_instances(
instances)
{
add_device_operation_instances(
instances, device_pool3d_fwd_ndhwc_instances<F8, F8, I32, F8, ReduceOpId, true>{});
instances, device_pool3d_fwd_ndhwc_instances<F8, F8, I32, F32, ReduceOpId, true>{});
}
} // namespace instance
......
example/01_gemm/gemm_xdl_fp8_streamk_v3.cpp
example/01_gemm/run_gemm_example_streamk_v2.inc
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_streamk_v3.hpp
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f8_f16/device_gemm_xdl_universal_streamk_f16_f8_f16_mk_kn_mn_mem_v2_mnkpadding_instance.cpp
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f8_f16/device_gemm_xdl_universal_streamk_f16_f8_f16_mk_nk_mn_comp_mnpadding_instance.cpp
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f8_f16_f16/device_gemm_xdl_universal_streamk_f8_f16_f16_mk_kn_mn_mem_v2_mnkpadding_instance.cpp
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f8_f16_f16/device_gemm_xdl_universal_streamk_f8_f16_f16_mk_nk_mn_comp_mnpadding_instance.cpp
profiler/src/profile_gemm_universal_streamk.cpp
modified_files.txt
[Back to the main page](../README.md)
# Composable Kernel profiler
## Profile GEMM kernels
```bash
#arg1: tensor operation (gemm=GEMM)
......@@ -180,3 +182,13 @@ Note: Column to image kernel adds to the output memory, this will cause output b
################ op datatype verify init log time dim0 dim1 dim2 in_stride0 in_stride1 in_stride2 out_stride0 out_stride1 out_stride2
./bin/ckProfiler permute_scale 0 1 1 0 1 64 64 64 4096 64 1 1 64 4096
```
## Convert MIOpen driver command to CKProfiler
```bash
python3 ../script/convert_miopen_driver_to_profiler.py
/opt/rocm/bin/MIOpenDriver conv -n 32 -c 64 -H 28 -W 28 -k 64 -y 3 -x 3
-p 1 -q 1 -u 2 -v 2 -l 1 -j 1 -m conv -g 32 -F 1 -t 1
```
Only convolution driver is supported.
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -150,7 +150,7 @@ bool profile_batched_gemm_bias_softmax_gemm_permute_impl(bool do_verification,
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Sequential<B0DataType, 1>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
d0_gs_ms_ns.GenerateTensorValue(GeneratorTensor_1<D0DataType>{1});
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment