Commit 43596386 authored by Po Yen Chen's avatar Po Yen Chen
Browse files

Merge branch 'feature/add-splitkv-instance' into...

Merge branch 'feature/add-splitkv-instance' into feature/support-vllm-kcache-layout-add-splitkv-instance
parents 250399cd af07d650
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
......@@ -194,9 +194,9 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b1_tensors[i].GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
default:
a0_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b0_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b1_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
a0_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<A0DataType, 0>{});
b0_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<B0DataType, 1>{});
b1_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<B1DataType, 1>{});
}
d0_tensors[i].GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5});
......
......@@ -184,9 +184,9 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<B0DataType>{-0.5, 0.5});
break;
default:
a0_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
a1_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
a0_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<A0DataType, 0>{});
a1_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<A1DataType, 0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<B0DataType, 1>{});
}
d0_tensors[i].GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5});
......
......@@ -172,12 +172,13 @@ bool run_grouped_conv_fwd(bool do_verification,
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
// values generated: -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 6});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-1.0, 1.0});
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-1.0, 1.0});
}
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
......
......@@ -205,7 +205,6 @@ int main(int argc, char* argv[])
a1_device_buf.ToDevice(a1_m_k.mData.data());
b0_device_buf.ToDevice(b0_k_n.mData.data());
b1_device_buf.ToDevice(b1_k_n.mData.data());
e_device_buf.ToDevice(e_m_n_device_result.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
......@@ -253,8 +252,6 @@ int main(int argc, char* argv[])
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
if(do_verification)
{
Tensor<AccDataType> c_m_n({M, N});
......
......@@ -54,6 +54,13 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME)
list(REMOVE_ITEM FILE_NAME "${source}")
endif()
endforeach()
#Do not build any DPP examples if DL_KERNELS not set
foreach(source IN LISTS FILE_NAME)
if(NOT DEFINED DL_KERNELS AND source MATCHES "_dpp")
message("removing dpp example ${source} ")
list(REMOVE_ITEM FILE_NAME "${source}")
endif()
endforeach()
#Do not build any XDL examples if gfx9 targets are not on the list
foreach(source IN LISTS FILE_NAME)
if(NOT EX_TARGETS MATCHES "gfx9" AND source MATCHES "_xdl")
......
[Back to the main page](../README.md)
# Composable Kernel examples
\ No newline at end of file
......@@ -2,10 +2,17 @@
# Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
# generate kernel instances to speed up compilation
DTYPE_MAP = {
"fp16": "ck_tile::fp16_t",
"bf16": "ck_tile::bf16_t",
"fp8" : "ck_tile::fp8_t"
FWD_DTYPE_MAP = {
"fp16" : "FmhaFwdFp16",
"bf16" : "FmhaFwdBf16",
"fp8" : "FmhaFwdFp8",
"fp8fp16": "FmhaFwdFp8Fp16",
"fp8bf16": "FmhaFwdFp8Bf16"
}
BWD_DTYPE_MAP = {
"fp16": "FmhaBwdFp16",
"bf16": "FmhaBwdBf16"
}
MASK_IMPL = {
......
......@@ -283,7 +283,7 @@ class FmhaBwdApiPool:
inners = inners + FMHA_BWD_API_INNER_DISPATCH.format(F_if=if_k, F_mode=MODE_MAP[trait.mode], F_pipeline_enum=BWD_DQDKDV_PIPELINE_ENUM_MAP[trait.pipeline],
F_mask_check=get_mask_check_map(self.mask_impl)[trait.mask], F_mask=get_mask_map(self.mask_impl)[trait.mask], F_bias_check=BIAS_CHECK_MAP[trait.bias],
F_bias=BIAS_MAP[trait.bias], F_dbias=BOOL_MAP[trait.dbias], F_dropout_check=DROPOUT_CHECK_MAP[trait.dropout], F_dropout=DROPOUT_MAP[trait.dropout],
F_scheck=trait.scheck(spad1=spad1), F_skcheck=trait.skcheck, F_dcheck=trait.dcheck, F_dvcheck=trait.dvcheck, F_hdim=hdim, F_dtype=DTYPE_MAP[dtype],
F_scheck=trait.scheck(spad1=spad1), F_skcheck=trait.skcheck, F_dcheck=trait.dcheck, F_dvcheck=trait.dvcheck, F_hdim=hdim, F_dtype=BWD_DTYPE_MAP[dtype],
F_spad0=BOOL_MAP[trait.spad], F_spad1=BOOL_MAP[spad1], F_skpad=BOOL_MAP[trait.skpad], F_dpad=BOOL_MAP[trait.dpad], F_dvpad=BOOL_MAP[trait.dvpad],
F_deterministic=BOOL_MAP[trait.deterministic])
......@@ -360,7 +360,7 @@ class FmhaBwdDQDKDVKernel:
FMHA_BWD_DQ_DK_DV_KERNEL_BODY.format(
F_idx = self.F_idx,
F_hdim = self.F_hdim,
F_dtype = DTYPE_MAP[self.F_dtype],
F_dtype = BWD_DTYPE_MAP[self.F_dtype],
F_bm0 = self.F_tile.F_bm0,
F_bn0 = self.F_tile.F_bn0,
F_bk0 = self.F_tile.F_bk0,
......@@ -469,7 +469,7 @@ def get_bwd_dq_dk_dv_blobs(kernel_filter : Optional[str], receipt, mask_impl) ->
gen = list()
api_pool = FmhaBwdApiPool(mask_impl)
for dtype in DTYPE_MAP.keys():
for dtype in BWD_DTYPE_MAP.keys():
d = get_fmha_bwd_dq_dk_dv_tile_ppl_dict_from_dtype(dtype)
if d == None:
continue
......@@ -585,7 +585,7 @@ class FmhaBwdOGradDotOKernel:
FMHA_BWD_DOT_DO_O_KERNEL_BODY.format(
F_idx = self.F_idx,
F_hdim = self.F_hdim,
F_dtype = DTYPE_MAP[self.F_dtype],
F_dtype = BWD_DTYPE_MAP[self.F_dtype],
F_spad = BOOL_MAP[self.F_spad],
F_dvpad = BOOL_MAP[self.F_dvpad],
F_mode = MODE_MAP[self.F_mode],
......@@ -616,7 +616,7 @@ def get_bwd_dot_do_o_blobs() -> List[FmhaBwdOGradDotOKernel]:
gen = list()
for dtype in DTYPE_MAP.keys():
for dtype in BWD_DTYPE_MAP.keys():
d = get_fmha_bwd_dq_dk_dv_tile_ppl_dict_from_dtype(dtype)
if d == None:
continue
......@@ -716,7 +716,7 @@ class FmhaBwdConvertQGradKernel:
FMHA_BWD_CONVERT_DQ_KERNEL_BODY.format(
F_idx = self.F_idx,
F_hdim = self.F_hdim,
F_dtype = DTYPE_MAP[self.F_dtype],
F_dtype = BWD_DTYPE_MAP[self.F_dtype],
F_bm0 = self.F_bm0,
F_bn0 = self.F_bn0,
F_spad = BOOL_MAP[self.F_spad],
......@@ -751,7 +751,7 @@ def get_bwd_convert_dq_blobs() -> List[FmhaBwdConvertQGradKernel]:
gen = list()
for dtype in DTYPE_MAP.keys():
for dtype in BWD_DTYPE_MAP.keys():
d = get_fmha_bwd_dq_dk_dv_tile_ppl_dict_from_dtype(dtype)
if d == None:
continue
......
......@@ -282,7 +282,7 @@ class FmhaFwdApiPool:
F_squant=BOOL_MAP[trait.squant], F_scheck=trait.scheck, F_skcheck=trait.skcheck, F_dcheck=trait.dcheck, F_dvcheck=trait.dvcheck,
F_spad=BOOL_MAP[trait.spad], F_skpad=BOOL_MAP[trait.skpad], F_dpad=BOOL_MAP[trait.dpad], F_dvpad=BOOL_MAP[trait.dvpad],
F_bm0=trait.bm0, F_bn0=trait.bn0, F_bk0=trait.bk0, F_bn1=trait.bn1, F_bk1=trait.bk1, F_bk0max=trait.bk0max,
F_hdim=hdim, F_dtype=DTYPE_MAP[dtype])
F_hdim=hdim, F_dtype=FWD_DTYPE_MAP[dtype])
if_j = 'if' if j == 0 else 'else if'
per_hdim_case = per_hdim_case + FMHA_FWD_API_PER_HDIM_CASE.format(F_if=if_j, F_hdim=hdim, F_inner_dispatch=inners)
if_i = 'if' if i == 0 else 'else if'
......@@ -301,7 +301,7 @@ class FmhaFwdTileSize:
F_bk1 : int # tile size along kv gemm unroll
F_bk0max : int # total length of K0, used for pipeline that need load Q at once (or repeately load Q as a whole tile)
F_rm0 : int # number of warps for gemm0 along q seqlen
F_rn0 : int # number of warps for gemm0 along k seqlen
F_rn0 : int # number of warps for gemm0 along k seqlen
F_rk0 : int # number of warps for gemm0 along head dim q (not used)
F_rm1 : int # number of warps for gemm1 along q seqlen
F_rn1 : int # number of warps for gemm1 along head dim v
......@@ -339,7 +339,7 @@ class FmhaFwdKernel:
FMHA_FWD_KERNEL_BODY.format(
F_idx = self.F_idx,
F_hdim = self.F_hdim,
F_dtype = DTYPE_MAP[self.F_dtype],
F_dtype = FWD_DTYPE_MAP[self.F_dtype],
F_bm0 = self.F_tile.F_bm0,
F_bn0 = self.F_tile.F_bn0,
F_bk0 = self.F_tile.F_bk0,
......@@ -409,17 +409,17 @@ class FmhaFwdKernel:
def get_fmha_fwd_tile_dict_from_dtype(dtype : str) -> Optional[dict]:
if dtype == 'fp16' or dtype == 'bf16':
return {
'32' : FmhaFwdTileSize(128, 64, 16, 32, 32, 32, 2, 1, 1, 2, 1, 1, 32, 32, 16, -1),
'64' : FmhaFwdTileSize(128, 64, 32, 64, 32, 64, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1),
## '96' : FmhaFwdTileSize(128, 128, 32, 128, 32, 96, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1),
'128' : FmhaFwdTileSize(128, 128, 32, 128, 32, 128, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1),
'256' : FmhaFwdTileSize(128, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1),
'32' : FmhaFwdTileSize(128, 64, 16, 32, 32, 32, 2, 1, 1, 2, 1, 1, 32, 32, 16, -1),
'64' : FmhaFwdTileSize(128, 64, 32, 64, 32, 64, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1),
### '96' : FmhaFwdTileSize(128, 128, 32, 128, 32, 96, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1),
'128' : FmhaFwdTileSize(128, 128, 32, 128, 32, 128, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1),
'256' : FmhaFwdTileSize(128, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1),
}
elif dtype == 'fp8' or dtype == 'bf8':
return {
'64' : FmhaFwdTileSize(128, 64, 32, 64, 32, 64, 2, 1, 1, 2, 1, 1, 32, 32, 32, -1),
'128' : FmhaFwdTileSize(128, 128, 32, 128, 32, 128, 4, 1, 1, 4, 1, 1, 32, 32, 32, -1),
'256' : FmhaFwdTileSize(128, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 32, 32, 32, -1)
'64' : FmhaFwdTileSize(128, 64, 32, 64, 32, 64, 2, 1, 1, 2, 1, 1, 32, 32, 32, -1),
'128' : FmhaFwdTileSize(128, 128, 32, 128, 32, 128, 4, 1, 1, 4, 1, 1, 32, 32, 32, -1),
'256' : FmhaFwdTileSize(128, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 32, 32, 32, -1)
}
else:
return None
......@@ -462,6 +462,9 @@ def get_fwd_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> Tuple[Fm
# no need lse/dropout kernels
for mask, bias in itertools.product(get_mask_map(mask_impl).keys(), BIAS_MAP.keys()):
pipelines.append(FmhaFwdPipeline('qr', 'col', 'f', 'f', 'f', 'f', bias, 'f', 'f', squant, mask))
elif dtype in ['fp8fp16', 'fp8bf16']:
# TODO
None
else:
assert False
return pipelines
......@@ -469,7 +472,7 @@ def get_fwd_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> Tuple[Fm
gen = list()
api_pool = FmhaFwdApiPool(mask_impl)
for dtype in DTYPE_MAP.keys():
for dtype in FWD_DTYPE_MAP.keys():
d = get_fmha_fwd_tile_dict_from_dtype(dtype)
if d == None:
continue
......
......@@ -181,7 +181,7 @@ class FmhaFwdAppendKVApiPool:
inners = inners + FMHA_FWD_APPENDKV_API_INNER_DISPATCH.format(F_if=if_k, F_vlayout=LAYOUT_MAP[trait.vlayout],
F_scheck=trait.scheck, F_skcheck=trait.skcheck, F_dcheck=trait.dcheck, F_dvcheck=trait.dvcheck, F_rope_check=ROPE_CHECK_MAP[trait.rope],
F_pagedkv=BOOL_MAP[trait.pagedkv], F_spad=BOOL_MAP[trait.spad], F_skpad=BOOL_MAP[trait.skpad], F_dpad=BOOL_MAP[trait.dpad], F_dvpad=BOOL_MAP[trait.dvpad],
F_rope=ROPE_MAP[trait.rope], F_bs=trait.bs, F_bsk=trait.bsk, F_bd=trait.bd, F_bdv=trait.bdv, F_hdim=hdim, F_dtype=DTYPE_MAP[dtype])
F_rope=ROPE_MAP[trait.rope], F_bs=trait.bs, F_bsk=trait.bsk, F_bd=trait.bd, F_bdv=trait.bdv, F_hdim=hdim, F_dtype=FWD_DTYPE_MAP[dtype])
if_j = 'if' if j == 0 else 'else if'
per_hdim_case = per_hdim_case + FMHA_FWD_API_PER_HDIM_CASE.format(F_if=if_j, F_hdim=hdim, F_inner_dispatch=inners)
if_i = 'if' if i == 0 else 'else if'
......@@ -216,7 +216,7 @@ class FmhaFwdAppendKVKernel:
FMHA_FWD_APPENDKV_KERNEL_BODY.format(
F_idx = self.F_idx,
F_hdim = self.F_hdim,
F_dtype = DTYPE_MAP[self.F_dtype],
F_dtype = FWD_DTYPE_MAP[self.F_dtype],
F_bs = self.F_tile.F_bs,
F_bsk = self.F_tile.F_bsk,
F_bd = self.F_tile.F_bd,
......@@ -301,6 +301,9 @@ def get_fwd_appendkv_blobs(kernel_filter : Optional[str], receipt, mask_impl) ->
elif dtype in ['fp8', 'bf8']:
# rope/paged-kv is not supported
pipelines.append(FmhaFwdAppendKVPipeline('col', 't', 't', 't', 't', 'no', 'f'))
elif dtype in ['fp8fp16', 'fp8bf16']:
# TODO
None
else:
assert False
return pipelines
......@@ -308,7 +311,7 @@ def get_fwd_appendkv_blobs(kernel_filter : Optional[str], receipt, mask_impl) ->
gen = list()
api_pool = FmhaFwdAppendKVApiPool(mask_impl)
for dtype in DTYPE_MAP.keys():
for dtype in FWD_DTYPE_MAP.keys():
d = get_fmha_fwd_appendkv_tile_dict_from_dtype(dtype)
if d == None:
continue
......
......@@ -12,9 +12,9 @@ from typing import List, Optional, Tuple, Union
from codegen.cmake_config import *
from codegen.cpp_symbol_map import *
import codegen.ops.fmha_fwd
from codegen.ops.fmha_fwd import (
FmhaFwdTileSize,
FmhaFwdApiTrait,
FMHA_FWD_KERNEL_HEADER,
FMHA_FWD_API_PER_DTYPE,
FMHA_FWD_API_PER_HDIM_CASE,
......@@ -47,7 +47,7 @@ using fmha_dtype_{F_idx} = {F_dtype};
using fmha_mask_{F_idx} = {F_mask};
namespace {{
template <bool kHasUnevenSplits>
template <bool kHasUnevenSplits, bool kIsMultipleSplits>
struct kernel_runner {{
using fmha_block_tile = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}>;
using fmha_warp_tile = ck_tile::sequence<{F_wm}, {F_wn}, {F_wk}>;
......@@ -81,7 +81,11 @@ using fmha_pipeline_problem = ck_tile::BlockFmhaFwdSplitKVPipelineProblem<
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::LSEDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::PDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::OaccDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::OaccDataType,
std::conditional_t<
kIsMultipleSplits,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::OaccDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::ODataType
>,
fmha_shape,
{F_mode},
fmha_mask_{F_idx},
......@@ -90,10 +94,17 @@ using fmha_pipeline_problem = ck_tile::BlockFmhaFwdSplitKVPipelineProblem<
using fmha_pipeline = {F_pipeline}<
fmha_pipeline_problem>;
/// FIXME: use {F_spad}/{F_dvpad} as kPadM/kPadN parameters after solving
/// store_tile_raw() data corruption issue
using fmha_epilogue =
ck_tile::Default2DEpilogue<ck_tile::Default2DEpilogueProblem<typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType,
typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType,
{F_spad}, {F_dvpad}>>;
ck_tile::Default2DEpilogue<ck_tile::Default2DEpilogueProblem<
typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType,
std::conditional_t<
kIsMultipleSplits,
typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType,
typename FmhaFwdTypeConfig<{F_dtype}>::ODataType
>,
false, false>>;
using fmha_kernel =
ck_tile::FmhaFwdSplitKVKernel<ck_tile::FmhaFwdSplitKVTilePartitioner<fmha_shape>,
......@@ -112,7 +123,7 @@ static void run(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a)
}}
using trait_{F_idx} = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}, {F_vlayout},
{F_pipeline_enum}, fmha_mask_{F_idx}, {F_bias}, {F_lse}, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad},
{F_pipeline_enum}, fmha_mask_{F_idx}, {F_bias}, {F_lse}, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad},
{F_dvpad}>;
#include <iostream>
......@@ -120,25 +131,19 @@ using trait_{F_idx} = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F
template<>
void fmha_fwd_splitkv_oneshot_<trait_{F_idx}>(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a)
{{
if constexpr({F_mode} == false) {{ // batch mode
// we don't check every seqlen_k values for kvcache
if (a.seqlen_k_ptr != nullptr) {{
kernel_runner<true>::run(s, a);
// make sure F_bn0 is divisible by F_bk1
}} else if (a.seqlen_k % (a.num_splits * {F_bn0}) == 0) {{
kernel_runner<false>::run(s, a);
}} else {{
kernel_runner<true>::run(s, a);
}}
/// NOTICE: kHasUnevenSplits=false may be able to speed-up the batch mode kernel,
/// but we use kHasUnevenSplits=true here to reduce compilation time
if (1 < a.num_splits) {{
kernel_runner</*kHasUnevenSplits=*/true, /*kIsMultipleSplits=*/true>::run(s, a);
}} else {{
kernel_runner<true>::run(s, a);
kernel_runner</*kHasUnevenSplits=*/true, /*kIsMultipleSplits=*/false>::run(s, a);
}}
}}
template<>
std::string fmha_fwd_splitkv_get_name_<trait_{F_idx}>()
{{
using k_ = kernel_runner<true>::fmha_kernel; /// FIXME: choose real kernel type
using k_ = kernel_runner<true, true>::fmha_kernel; /// FIXME: choose real kernel type
return k_::GetName();
}}
"""
......@@ -161,7 +166,7 @@ using fmha_pipeline_problem = ck_tile::BlockFmhaSplitKVCombinePipelineProblem<
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::OaccDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::ODataType,
{F_hdim},
{F_bm0},
{F_bm0},
{F_bn1},
{F_mode},
fmha_trait>;
......@@ -225,19 +230,32 @@ FMHA_FWD_SPLITKV_API_FILENAME="fmha_fwd_splitkv_api.cpp"
FMHA_FWD_SPLITKV_API="""
#include <iostream>
template<typename fmha_fwd_splitkv_traits_, typename fmha_fwd_splitkv_combine_traits_>
template<typename fmha_fwd_splitkv_traits_, typename fmha_fwd_splitkv_combine_traits_ = void>
float fmha_fwd_splitkv_(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a)
{{
if(s.log_level_ > 0)
std::cout
<< ", " << fmha_fwd_splitkv_get_name_<fmha_fwd_splitkv_traits_>()
<< ", " << fmha_fwd_splitkv_combine_get_name_<fmha_fwd_splitkv_combine_traits_>()
<< std::flush;
return ck_tile::launch_kernel(s,
[=](const ck_tile::stream_config& s_){{ fmha_fwd_splitkv_oneshot_<fmha_fwd_splitkv_traits_>(s_, a); }},
[=](const ck_tile::stream_config& s_){{ fmha_fwd_splitkv_combine_oneshot_<fmha_fwd_splitkv_combine_traits_>(s_, a); }}
);
// fmha_fwd_splitkv_combine_traits_=void, launch splitkv kernel only
if constexpr (std::is_same_v<fmha_fwd_splitkv_combine_traits_, void>) {{
if(s.log_level_ > 0)
std::cout
<< ", " << fmha_fwd_splitkv_get_name_<fmha_fwd_splitkv_traits_>()
<< std::flush;
return ck_tile::launch_kernel(s,
[=](const ck_tile::stream_config& s_){{ fmha_fwd_splitkv_oneshot_<fmha_fwd_splitkv_traits_>(s_, a); }}
);
// launch both splitkv & combine kernels
}} else {{
if(s.log_level_ > 0)
std::cout
<< ", " << fmha_fwd_splitkv_get_name_<fmha_fwd_splitkv_traits_>()
<< ", " << fmha_fwd_splitkv_combine_get_name_<fmha_fwd_splitkv_combine_traits_>()
<< std::flush;
return ck_tile::launch_kernel(s,
[=](const ck_tile::stream_config& s_){{ fmha_fwd_splitkv_oneshot_<fmha_fwd_splitkv_traits_>(s_, a); }},
[=](const ck_tile::stream_config& s_){{ fmha_fwd_splitkv_combine_oneshot_<fmha_fwd_splitkv_combine_traits_>(s_, a); }}
);
}}
}}
float fmha_fwd_splitkv(fmha_fwd_splitkv_traits t, fmha_fwd_splitkv_args a, const ck_tile::stream_config& s){{
......@@ -249,19 +267,32 @@ float fmha_fwd_splitkv(fmha_fwd_splitkv_traits t, fmha_fwd_splitkv_args a, const
FMHA_FWD_SPLITKV_API_INNER_DISPATCH=""" {F_if}((t.is_group_mode == {F_mode}) && (t.is_v_rowmajor == {F_vlayout}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.do_fp8_static_quant == {F_squant}) &&
((a.block_table_ptr != nullptr) == {F_pagedkv}) && ({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck})) {{
using traits_ = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, true, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
if (t.has_lse) {{
if constexpr (std::is_same_v<{F_dtype}, ck_tile::fp8_t>) {{
return -1;
if (1 < a.num_splits) {{
using traits_ = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, true, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
if (t.has_lse) {{
if constexpr (std::is_same_v<{F_dtype}, ck_tile::fp8_t>) {{
return -1;
}} else {{
using traits2_ = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}/2, {F_bn1}/2, true, {F_squant}, {F_spad}, {F_dvpad}>;
return fmha_fwd_splitkv_<traits_, traits2_>(s, a);
}}
}} else {{
using traits2_ = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}/2, {F_bn1}/2, true, {F_squant}, {F_spad}, {F_dvpad}>;
using traits2_ = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}/2, {F_bn1}/2, false, {F_squant}, {F_spad}, {F_dvpad}>;
return fmha_fwd_splitkv_<traits_, traits2_>(s, a);
}}
}} else {{
using traits2_ = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}/2, {F_bn1}/2, false, {F_squant}, {F_spad}, {F_dvpad}>;
if (t.has_lse) {{
using traits_ = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, true, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
return fmha_fwd_splitkv_<traits_>(s, a);
}} else {{
using traits_ = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, false, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
return fmha_fwd_splitkv_<traits_, traits2_>(s, a);
return fmha_fwd_splitkv_<traits_>(s, a);
}}
}}
}}
"""
......@@ -431,11 +462,11 @@ class FmhaFwdSplitKVApiPool:
inners = inners + FMHA_FWD_SPLITKV_API_INNER_DISPATCH.format(F_if=if_k, F_mode=MODE_MAP[trait.mode], F_vlayout=LAYOUT_MAP[trait.vlayout],
F_pipeline_enum=PIPELINE_ENUM_MAP[trait.pipeline_tag], F_mask=get_mask_map(self.mask_impl)[trait.mask],
F_mask_check=get_mask_check_map(self.mask_impl)[trait.mask], F_bias_check=BIAS_CHECK_MAP[trait.bias], F_bias=BIAS_MAP[trait.bias],
F_lse=BOOL_MAP[trait.lse], F_squant=BOOL_MAP[trait.squant], F_pagedkv=BOOL_MAP[trait.pagedkv],
F_lse=BOOL_MAP[trait.lse], F_squant=BOOL_MAP[trait.squant], F_pagedkv=BOOL_MAP[trait.pagedkv],
F_scheck=trait.scheck, F_skcheck=trait.skcheck, F_dcheck=trait.dcheck, F_dvcheck=trait.dvcheck,
F_spad=BOOL_MAP[trait.spad], F_skpad=BOOL_MAP[trait.skpad], F_dpad=BOOL_MAP[trait.dpad], F_dvpad=BOOL_MAP[trait.dvpad],
F_bm0=trait.bm0, F_bn0=trait.bn0, F_bk0=trait.bk0, F_bn1=trait.bn1, F_bk1=trait.bk1, F_bk0max=trait.bk0max,
F_hdim=hdim, F_dtype=DTYPE_MAP[dtype])
F_hdim=hdim, F_dtype=FWD_DTYPE_MAP[dtype])
if_j = 'if' if j == 0 else 'else if'
per_hdim_case = per_hdim_case + FMHA_FWD_API_PER_HDIM_CASE.format(F_if=if_j, F_hdim=hdim, F_inner_dispatch=inners)
if_i = 'if' if i == 0 else 'else if'
......@@ -472,7 +503,7 @@ class FmhaFwdSplitKVKernel:
FMHA_FWD_SPLITKV_KERNEL_BODY.format(
F_idx = self.F_idx,
F_hdim = self.F_hdim,
F_dtype = DTYPE_MAP[self.F_dtype],
F_dtype = FWD_DTYPE_MAP[self.F_dtype],
F_bm0 = self.F_tile.F_bm0,
F_bn0 = self.F_tile.F_bn0,
F_bk0 = self.F_tile.F_bk0,
......@@ -492,7 +523,7 @@ class FmhaFwdSplitKVKernel:
F_spad = BOOL_MAP[self.F_pipeline.F_spad],
F_skpad = BOOL_MAP[self.F_pipeline.F_skpad],
F_dpad = BOOL_MAP[self.F_pipeline.F_dpad],
F_dvpad = BOOL_MAP[self.F_pipeline.F_dvpad],
F_dvpad = BOOL_MAP[self.F_pipeline.F_dvpad],
F_bias = BIAS_MAP[self.F_pipeline.F_bias],
F_lse = BOOL_MAP[self.F_pipeline.F_lse],
F_squant = BOOL_MAP[self.F_pipeline.F_squant],
......@@ -552,7 +583,7 @@ class FmhaFwdSplitKVCombineKernel:
FMHA_FWD_SPLITKV_COMBINE_KERNEL_BODY.format(
F_idx = self.F_idx,
F_hdim = self.F_hdim,
F_dtype = DTYPE_MAP[self.F_dtype],
F_dtype = FWD_DTYPE_MAP[self.F_dtype],
F_bm0 = self.F_tile.F_bm0,
F_bn1 = self.F_tile.F_bn1,
F_spad = BOOL_MAP[self.F_pipeline.F_spad],
......@@ -579,9 +610,9 @@ def get_fmha_fwd_tile_dict_from_dtype(dtype : str) -> Optional[dict]:
return {
'32' : FmhaFwdTileSize(32, 64, 16, 32, 32, 32, 2, 1, 1, 2, 1, 1, 16, 16, 16, -1),
'64' : FmhaFwdTileSize(64, 64, 32, 64, 32, 64, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1),
## '96' : FmhaFwdTileSize(64, 128, 32, 128, 32, 96, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1),
### '96' : FmhaFwdTileSize(64, 128, 32, 128, 32, 96, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1),
'128' : FmhaFwdTileSize(64, 128, 32, 128, 32, 128, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1),
'256' : FmhaFwdTileSize(64, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1),
'256' : FmhaFwdTileSize(64, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 16, 16, 16, 1),
}
elif dtype == 'fp8' or dtype == 'bf8':
return {
......@@ -595,17 +626,18 @@ def get_fmha_fwd_tile_dict_from_dtype(dtype : str) -> Optional[dict]:
def get_fmha_fwd_splitkv_combine_tile_dict_from_dtype(dtype : str) -> Optional[dict]:
if dtype == 'fp16' or dtype == 'bf16':
return {
'32' : FmhaFwdSplitKVCombineTileSize(16, 16, -1),
'64' : FmhaFwdSplitKVCombineTileSize(32, 32, -1),
## '96' : FmhaFwdSplitKVCombineTileSize(32, 64, -1),
'128' : FmhaFwdSplitKVCombineTileSize(32, 64, -1),
'256' : FmhaFwdSplitKVCombineTileSize(32, 128, -1),
# tile size for decode tile size for prefill
'32' : [FmhaFwdSplitKVCombineTileSize(16, 16, -1), FmhaFwdSplitKVCombineTileSize(64, 16, -1)],
'64' : [FmhaFwdSplitKVCombineTileSize(32, 32, -1), FmhaFwdSplitKVCombineTileSize(64, 32, -1)],
### '96' : [FmhaFwdSplitKVCombineTileSize(32, 64, -1), FmhaFwdSplitKVCombineTileSize(64, 64, -1)],
'128' : [FmhaFwdSplitKVCombineTileSize(32, 64, -1), FmhaFwdSplitKVCombineTileSize(64, 64, -1)],
'256' : [FmhaFwdSplitKVCombineTileSize(32, 128, -1), FmhaFwdSplitKVCombineTileSize(64, 128, -1)],
}
elif dtype == 'fp8' or dtype == 'bf8':
return {
'64' : FmhaFwdSplitKVCombineTileSize(64, 32, -1),
'128' : FmhaFwdSplitKVCombineTileSize(64, 64, -1),
'256' : FmhaFwdSplitKVCombineTileSize(64, 128, -1),
'64' : [FmhaFwdSplitKVCombineTileSize(64, 32, -1)],
'128' : [FmhaFwdSplitKVCombineTileSize(64, 64, -1)],
'256' : [FmhaFwdSplitKVCombineTileSize(64, 128, -1)],
}
else:
return None
......@@ -624,26 +656,32 @@ def get_fwd_splitkv_blobs(kernel_filter : Optional[str], receipt, mask_impl) ->
squant = 't' if dtype == 'fp8' else 'f'
pipelines = []
if dtype in ['fp16', 'bf16']:
for mask, bias, pagedkv in itertools.product(get_mask_map(mask_impl).keys(), BIAS_MAP.keys(), ["t", "f"]):
# TODO: use async pipeline when compiler is more stable
for mask, bias, lse, pagedkv in itertools.product(get_mask_map(mask_impl).keys(), BIAS_MAP.keys(), ["t", "f"], ["t", "f"]):
# TODO: use async pipeline when compiler is more stable
if hdim == 256 or hdim in [32, 64, 128]: ### [32, 64, 96, 128]:
# if True:
pipelines.append(Pipeline('qr', 'row', 'f', 't', 'f', 'f', bias, 't', squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'col', 'f', 't', 'f', 'f', bias, 't', squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'row', 'f', 't', 'f', 'f', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'col', 'f', 't', 'f', 'f', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'row', 't', 't', 't', 't', bias, 't', squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'col', 't', 't', 't', 't', bias, 't', squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'row', 't', 't', 'f', 'f', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'col', 't', 't', 'f', 'f', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'row', 't', 't', 't', 't', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'col', 't', 't', 't', 't', bias, lse, squant, pagedkv, mask))
else:
pipelines.append(Pipeline('qr_async', 'row', 't', 'f', 't', 't', bias, 't', squant, pagedkv, mask))
pipelines.append(Pipeline('qr_async', 'row', 't', 't', 't', 't', bias, 't', squant, pagedkv, mask))
pipelines.append(Pipeline('qr_async', 'col', 't', 'f', 't', 't', bias, 't', squant, pagedkv, mask))
pipelines.append(Pipeline('qr_async', 'col', 't', 't', 't', 't', bias, 't', squant, pagedkv, mask))
pipelines.append(Pipeline('qr_async', 'row', 't', 'f', 't', 't', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr_async', 'row', 't', 't', 't', 't', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr_async', 'col', 't', 'f', 't', 't', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr_async', 'col', 't', 't', 't', 't', bias, lse, squant, pagedkv, mask))
if receipt == 1:
pipelines.append(Pipeline('qr', 'row', 't', 't', 't', 't', bias, 't', squant, pagedkv, mask)) # TODO: cover arbitraty hdim
pipelines.append(Pipeline('qr', 'col', 't', 'f', 't', 't', bias, 't', squant, pagedkv, mask)) # TODO: cover arbitraty hdim
pipelines.append(Pipeline('qr', 'row', 't', 't', 't', 't', bias, lse, squant, pagedkv, mask)) # TODO: cover arbitraty hdim
pipelines.append(Pipeline('qr', 'col', 't', 'f', 't', 't', bias, lse, squant, pagedkv, mask)) # TODO: cover arbitraty hdim
elif dtype in ['fp8', 'bf8']:
for mask, bias in itertools.product(get_mask_map(mask_impl).keys(), BIAS_MAP.keys()):
pipelines.append(Pipeline('qr', 'col', 'f', 'f', 'f', 'f', bias, 't', squant, 'f', mask))
elif dtype in ['fp8fp16', 'fp8bf16']:
# TODO
None
else:
assert False
return pipelines
......@@ -651,19 +689,29 @@ def get_fwd_splitkv_blobs(kernel_filter : Optional[str], receipt, mask_impl) ->
gen = list()
api_pool = FmhaFwdSplitKVApiPool(mask_impl)
for dtype in DTYPE_MAP.keys():
d = get_fmha_fwd_tile_dict_from_dtype(dtype)
if d == None:
for dtype in FWD_DTYPE_MAP.keys():
prefill_tiles = codegen.ops.fmha_fwd.get_fmha_fwd_tile_dict_from_dtype(dtype)
decode_tiles = get_fmha_fwd_tile_dict_from_dtype(dtype)
if decode_tiles == None:
continue
# make sure if all the hdim str keys in decode_tiles are also available in prefill_tiles
assert all(tile in prefill_tiles.keys() for tile in decode_tiles.keys())
#for hdim_str, mode, mask, bias, lse in itertools.product(d.keys(), MODE_MAP.keys(), MASK_MAP.keys(), ["t", "f"], ["t", "f"]):
for hdim_str, mode in itertools.product(d.keys(), MODE_MAP.keys()):
tile = d[hdim_str]
for hdim_str, mode in itertools.product(decode_tiles.keys(), MODE_MAP.keys()):
prefill_tile = prefill_tiles[hdim_str]
decode_tile = decode_tiles[hdim_str]
hdim = int(hdim_str)
for pipeline in get_pipelines(dtype, hdim):
if mode == "group":
if pipeline.F_spad != 't' or pipeline.F_skpad != 't':
# in group mode, spad/skpad must be true, since we can't predict if seqlen of current batch need pad or not
continue
is_prefill = (mode == "group" and pipeline.F_pagedkv == 't')
tile = prefill_tile if is_prefill else decode_tile
k = Kernel(F_idx=0,
F_hdim=hdim,
F_dtype=dtype,
......@@ -710,16 +758,17 @@ def get_fwd_splitkv_combine_blobs(kernel_filter : Optional[str], receipt) -> Lis
gen = list()
for dtype in DTYPE_MAP.keys():
for dtype in FWD_DTYPE_MAP.keys():
d = get_fmha_fwd_splitkv_combine_tile_dict_from_dtype(dtype)
if d == None:
continue
#for hdim_str, mode, mask, bias, lse in itertools.product(d.keys(), MODE_MAP.keys(), MASK_MAP.keys(), ["t", "f"], ["t", "f"]):
for hdim_str, mode in itertools.product(d.keys(), MODE_MAP.keys()):
tile = d[hdim_str]
# include prefill tile size if in group mode
tiles = d[hdim_str][0 : 2 if mode == 'group' else 1]
hdim = int(hdim_str)
for pipeline in get_pipelines(dtype, hdim):
if mode == "group":
for tile, pipeline in itertools.product(tiles, get_pipelines(dtype, hdim)):
if mode == 'group':
if pipeline.F_spad != 't':
# in group mode, spad/skpad must be true, since we can't predict if seqlen of current batch need pad or not
continue
......
......@@ -101,7 +101,7 @@ auto create_args(int argc, char* argv[])
}
// different threshold for different dtype
template <typename DataType>
template <typename DataTypeConfig>
auto get_elimit(ck_tile::index_t /*hdim_q*/, ck_tile::index_t /*hdim_v*/)
{
double rtol = 1e-2;
......@@ -110,7 +110,7 @@ auto get_elimit(ck_tile::index_t /*hdim_q*/, ck_tile::index_t /*hdim_v*/)
}
template <>
auto get_elimit<ck_tile::bf16_t>(ck_tile::index_t hdim_q, ck_tile::index_t hdim_v)
auto get_elimit<FmhaBwdBf16>(ck_tile::index_t hdim_q, ck_tile::index_t hdim_v)
{
double rtol = 1e-2;
double atol = 1e-2;
......@@ -122,7 +122,7 @@ auto get_elimit<ck_tile::bf16_t>(ck_tile::index_t hdim_q, ck_tile::index_t hdim_
return ck_tile::make_tuple(rtol, atol);
}
template <typename DataType>
template <typename DataTypeConfig>
bool run(const ck_tile::ArgParser& arg_parser)
{
std::string data_type = arg_parser.get_str("prec");
......@@ -209,7 +209,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
const auto seqstart_q_host = generate_seqstarts(mode, batch, seqlen_q);
const auto seqstart_k_host = generate_seqstarts(mode, batch, seqlen_k);
using TypeConfig = FmhaBwdTypeConfig<DataType>;
using TypeConfig = FmhaBwdTypeConfig<DataTypeConfig>;
using QDataType = typename TypeConfig::QDataType;
using KDataType = typename TypeConfig::KDataType;
......@@ -933,7 +933,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
}
// clang-format on
auto [rtol, atol] = get_elimit<DataType>(hdim_q, hdim_v);
auto [rtol, atol] = get_elimit<DataTypeConfig>(hdim_q, hdim_v);
bool dq_cur_pass = ck_tile::check_err(dq_host_result,
dq_host_ref,
std::string("Error: QGrad Incorrect results!"),
......@@ -986,11 +986,11 @@ int main(int argc, char* argv[])
const std::string data_type = arg_parser.get_str("prec");
if(data_type == "fp16")
{
return run<ck_tile::half_t>(arg_parser) ? 0 : -2;
return run<FmhaBwdFp16>(arg_parser) ? 0 : -2;
}
else if(data_type == "bf16")
{
return run<ck_tile::bf16_t>(arg_parser) ? 0 : -2;
return run<FmhaBwdBf16>(arg_parser) ? 0 : -2;
}
return -3;
......
......@@ -14,11 +14,19 @@
#include <utility>
#include <variant>
struct FmhaBwdFp16
{
};
struct FmhaBwdBf16
{
};
template <typename DataType>
struct FmhaBwdTypeConfig;
template <>
struct FmhaBwdTypeConfig<ck_tile::half_t>
struct FmhaBwdTypeConfig<FmhaBwdFp16>
{
using QDataType = ck_tile::half_t;
using KDataType = ck_tile::half_t;
......@@ -38,7 +46,7 @@ struct FmhaBwdTypeConfig<ck_tile::half_t>
};
template <>
struct FmhaBwdTypeConfig<ck_tile::bf16_t>
struct FmhaBwdTypeConfig<FmhaBwdBf16>
{
using QDataType = ck_tile::bf16_t;
using KDataType = ck_tile::bf16_t;
......
......@@ -3,6 +3,7 @@
#include "fmha_fwd.hpp"
#include "ck_tile/host.hpp"
#include "ck_tile/ref/naive_attention.hpp"
#include "mask.hpp"
#include "rotary.hpp"
#include "utils.hpp"
......@@ -10,6 +11,7 @@
#include <array>
#include <cstring>
#include <functional>
#include <map>
#include <numeric>
#include <ostream>
#include <string>
......@@ -41,7 +43,7 @@ std::ostream& operator<<(std::ostream& os, const std::vector<T>& v)
auto create_args(int argc, char* argv[])
{
ck_tile::ArgParser arg_parser;
arg_parser.insert("v", "1", "weather do CPU validation or not")
arg_parser.insert("v", "1", "0:no validation, 2:cpu validation, 2:gpu validation(experimental)")
.insert("mode", "0", "kernel mode. 0:batch, 1:group")
.insert("b", "2", "batch size")
.insert("h", "8", "num of head, for q")
......@@ -142,7 +144,7 @@ auto create_args(int argc, char* argv[])
}
// different threshold for different dtype
template <typename DataType>
template <typename DataTypeConfig>
auto get_elimit(std::string /*init_method*/)
{
double rtol = 1e-3;
......@@ -151,7 +153,7 @@ auto get_elimit(std::string /*init_method*/)
}
template <>
auto get_elimit<ck_tile::bf16_t>(std::string /*init_method*/)
auto get_elimit<FmhaFwdBf16>(std::string /*init_method*/)
{
double rtol = 1e-2;
double atol = 1e-2;
......@@ -159,7 +161,7 @@ auto get_elimit<ck_tile::bf16_t>(std::string /*init_method*/)
}
template <>
auto get_elimit<ck_tile::fp8_t>(std::string init_method)
auto get_elimit<FmhaFwdFp8>(std::string init_method)
{
if(init_method == "ui" || init_method == "ni")
{
......@@ -175,61 +177,14 @@ auto get_elimit<ck_tile::fp8_t>(std::string init_method)
}
}
int num_splits_heuristic(int batch_nhead_mblocks, int num_SMs, int num_n_blocks, int max_splits)
{
// If we have enough to almost fill the SMs, then just use 1 split
if(batch_nhead_mblocks >= 0.8f * num_SMs)
{
return 1;
}
max_splits = std::min({max_splits, num_SMs, num_n_blocks});
float max_efficiency = 0.f;
std::vector<float> efficiency;
efficiency.reserve(max_splits);
auto ceildiv = [](int a, int b) { return (a + b - 1) / b; };
// Some splits are not eligible. For example, if we have 64 blocks and choose 11 splits,
// we'll have 6 * 10 + 4 blocks. If we choose 12 splits, we'll have 6 * 11 + (-2) blocks
// (i.e. it's 11 splits anyway).
// So we check if the number of blocks per split is the same as the previous num_splits.
auto is_split_eligible = [&ceildiv, &num_n_blocks](int num_splits) {
return num_splits == 1 ||
ceildiv(num_n_blocks, num_splits) != ceildiv(num_n_blocks, num_splits - 1);
};
for(int num_splits = 1; num_splits <= max_splits; num_splits++)
{
if(!is_split_eligible(num_splits))
{
efficiency.push_back(0.f);
}
else
{
float n_waves = float(batch_nhead_mblocks * num_splits) / num_SMs;
float eff = n_waves / ceil(n_waves);
// printf("num_splits = %d, eff = %f\n", num_splits, eff);
if(eff > max_efficiency)
{
max_efficiency = eff;
}
efficiency.push_back(eff);
}
}
for(int num_splits = 1; num_splits <= max_splits; num_splits++)
{
if(!is_split_eligible(num_splits))
{
continue;
}
if(efficiency[num_splits - 1] >= 0.85 * max_efficiency)
{
// printf("num_splits chosen = %d\n", num_splits);
return num_splits;
}
}
return 1;
}
int override_num_splits_if_necessary(
int batch, int nhead, int max_seqlen_q, int hdim_v, float p_drop, int num_splits)
int override_num_splits_if_necessary(int batch,
int nhead,
int max_seqlen_q,
int hdim_q,
int hdim_v,
float p_drop,
bool is_prefill,
int num_splits)
{
int device;
auto status = hipGetDevice(&device);
......@@ -245,23 +200,47 @@ int override_num_splits_if_necessary(
return num_splits;
}
// tile size should match the generate.py
const int kM0 = 64;
const int kN1 = hdim_v;
const int kM0 = [&] {
// get kM0 for prefill phase
if(is_prefill)
{
return 128;
}
// get kM0 for decode phase
/// TODO: take dtype=fp8/bf8 into consideration
const std::map<int, int> hdim_to_m0 = {
{32, 32},
{64, 64},
// {96, 64},
{128, 64},
{256, 64},
};
for(auto [hdim, m0] : hdim_to_m0)
{
if(hdim_q <= hdim && hdim_v <= hdim)
{
return m0;
}
}
return 64; // meet unsupported hdim_q/hdim_v
}();
// const int kN1 = hdim_v;
const int num_m_blocks = ck_tile::integer_divide_ceil(max_seqlen_q, kM0);
const int num_n_blocks = ck_tile::integer_divide_ceil(hdim_v, kN1);
// const int num_n_blocks = ck_tile::integer_divide_ceil(hdim_v, kN1); // always 1
if(num_splits < 1 && p_drop == 0.0f)
{
return num_splits_heuristic(
batch * nhead * num_m_blocks, props.multiProcessorCount * 2, num_n_blocks, 128);
return num_splits_heuristic(batch * nhead * num_m_blocks, props.multiProcessorCount * 2, 8);
}
return num_splits;
}
template <typename DataType>
template <typename DataTypeConfig>
bool run(const ck_tile::ArgParser& arg_parser)
{
std::string data_type = arg_parser.get_str("prec");
......@@ -305,8 +284,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
}
ck_tile::index_t rotary_dim = arg_parser.get_int("rotary_dim");
if constexpr(!(std::is_same_v<DataType, ck_tile::fp16_t> ||
std::is_same_v<DataType, ck_tile::bf16_t>))
if constexpr(!(std::is_same_v<DataTypeConfig, FmhaFwdFp16> ||
std::is_same_v<DataTypeConfig, FmhaFwdBf16>))
{
if(0 < rotary_dim)
{
......@@ -428,25 +407,6 @@ bool run(const ck_tile::ArgParser& arg_parser)
return atoi(squant_str.c_str()) != 0 ? true : false;
}();
float range_q = arg_parser.get_float("range_q");
float range_k = arg_parser.get_float("range_k");
float range_v = arg_parser.get_float("range_v");
float range_p = arg_parser.get_float("range_p");
float range_o = arg_parser.get_float("range_o");
float dtype_max = ck_tile::type_convert<float>(ck_tile::numeric<DataType>::max());
float scale_p = 1.f;
float scale_o = 1.f;
if(squant)
{
scale_s = scale_s * (range_q / dtype_max) * (range_k / dtype_max);
scale_p = dtype_max / range_p;
// scale_p = [max(fp8_t)/range_o] * [range_p/max(fp8_t)] * [range_v/max(fp8_t)]
scale_o = range_p * range_v / range_o / dtype_max;
}
std::string vlayout = arg_parser.get_str("vlayout");
bool lse = arg_parser.get_bool("lse");
......@@ -466,7 +426,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
}
bool s_randval = false;
if(p_drop > 0.0f && do_validation)
if(p_drop > 0.0f && do_validation != 0)
{
s_randval = true;
}
......@@ -499,7 +459,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
const auto seqstart_k_host = to_seqstarts(seqlen_ks);
const auto seqstart_k_with_padding_host = to_seqstarts(seqlen_kpads);
using TypeConfig = FmhaFwdTypeConfig<DataType>;
using TypeConfig = FmhaFwdTypeConfig<DataTypeConfig>;
using QDataType = typename TypeConfig::QDataType;
using KDataType = typename TypeConfig::KDataType;
......@@ -513,6 +473,28 @@ bool run(const ck_tile::ArgParser& arg_parser)
using OaccDataType = typename TypeConfig::OaccDataType;
using ODataType = typename TypeConfig::ODataType;
float range_q = arg_parser.get_float("range_q");
float range_k = arg_parser.get_float("range_k");
float range_v = arg_parser.get_float("range_v");
float range_p = arg_parser.get_float("range_p");
float range_o = arg_parser.get_float("range_o");
float q_dtype_max = ck_tile::type_convert<float>(ck_tile::numeric<QDataType>::max());
float k_dtype_max = ck_tile::type_convert<float>(ck_tile::numeric<KDataType>::max());
float v_dtype_max = ck_tile::type_convert<float>(ck_tile::numeric<VDataType>::max());
float p_dtype_max = v_dtype_max; // assume p and v is the same type
float o_dtype_max = ck_tile::type_convert<float>(ck_tile::numeric<ODataType>::max());
float scale_p = 1.f;
float scale_o = 1.f;
if(squant)
{
scale_s = scale_s * (range_q / q_dtype_max) * (range_k / k_dtype_max);
scale_p = p_dtype_max / range_p;
scale_o = (o_dtype_max / range_o) * (range_p / p_dtype_max) * (range_v / v_dtype_max);
}
// accumulation numbers for performance evaluation
std::size_t flop = 0, num_byte = 0;
auto max_seqlen_q =
......@@ -552,8 +534,15 @@ bool run(const ck_tile::ArgParser& arg_parser)
// legalize num_splits according to other options
if(num_splits < 1)
{
num_splits = override_num_splits_if_necessary(
batch, nhead, max_seqlen_q, hdim_v, p_drop, num_splits);
num_splits = override_num_splits_if_necessary(batch,
nhead,
max_seqlen_q,
hdim_q,
hdim_v,
p_drop,
/*is_prefill=*/mode == mode_enum::group &&
0 < page_block_size,
num_splits);
}
if(128 < num_splits)
{
......@@ -628,17 +617,18 @@ bool run(const ck_tile::ArgParser& arg_parser)
auto [rotary_cos_host, rotary_sin_host] = generate_rotary_cos_sin<KDataType>(
std::max(shape_seqlen_q, shape_seqlen_k), rotary_dim, seed);
// lse_acc_host & o_acc_host are only used when 1 < num_spilts
ck_tile::HostTensor<LSEDataType> lse_acc_host(
1 < num_splits || use_kvcache
1 < num_splits
? std::array<ck_tile::index_t, 4>{shape_batch, nhead, num_splits, shape_seqlen_q}
: std::array<ck_tile::index_t, 4>{1, 1, 1, 1});
ck_tile::HostTensor<OaccDataType> o_acc_host(
1 < num_splits || use_kvcache ? std::array<ck_tile::index_t, 5>{shape_batch,
nhead,
num_splits,
shape_seqlen_q,
hdim_v}
: std::array<ck_tile::index_t, 5>{1, 1, 1, 1, 1});
1 < num_splits ? std::array<ck_tile::index_t, 5>{shape_batch,
nhead,
num_splits,
shape_seqlen_q,
hdim_v}
: std::array<ck_tile::index_t, 5>{1, 1, 1, 1, 1});
// batch mode of lse data layout is [batch, nhead, seqlen_q]
// group mode of lse data layout is [nhead, total_seqlen_q]
......@@ -709,14 +699,14 @@ bool run(const ck_tile::ArgParser& arg_parser)
else if(init_method == "ufq" || init_method == "uf:q" ||
init_method == "3") // suitable for fp8 quantization
{
ck_tile::FillUniformDistribution<QDataType>{-dtype_max, dtype_max, seed}(q_host);
ck_tile::FillUniformDistribution<KDataType>{-dtype_max, dtype_max, seed}(k_host);
ck_tile::FillUniformDistribution<KDataType>{-dtype_max, dtype_max, seed}(knew_host);
ck_tile::FillUniformDistribution<VDataType>{-dtype_max, dtype_max, seed}(v_host);
ck_tile::FillUniformDistribution<VDataType>{-dtype_max, dtype_max, seed}(vnew_host);
ck_tile::FillUniformDistribution<QDataType>{-q_dtype_max, q_dtype_max, seed}(q_host);
ck_tile::FillUniformDistribution<KDataType>{-k_dtype_max, k_dtype_max, seed}(k_host);
ck_tile::FillUniformDistribution<KDataType>{-k_dtype_max, k_dtype_max, seed}(knew_host);
ck_tile::FillUniformDistribution<VDataType>{-v_dtype_max, v_dtype_max, seed}(v_host);
ck_tile::FillUniformDistribution<VDataType>{-v_dtype_max, v_dtype_max, seed}(vnew_host);
// bias_fp8 = qscale_bias * bias_fp32
float qscale_bias = (dtype_max / range_q) * (dtype_max / range_k);
float qscale_bias = (q_dtype_max / range_q) * (k_dtype_max / range_k);
// Assume bias is in [-1.f, 1.f] in original fp32
ck_tile::FillUniformDistribution<BiasDataType>{-qscale_bias, qscale_bias, seed}(bias_host);
}
......@@ -1061,9 +1051,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
}
else if constexpr(std::is_same_v<fmha_fwd_splitkv_args, std::decay_t<decltype(args)>>)
{
args.lse_acc_ptr = lse_acc_buf.GetDeviceBuffer();
args.o_acc_ptr = o_acc_buf.GetDeviceBuffer();
// lse_acc_buf & o_acc_buf are only used when 1 < num_spilts
args.block_table_ptr =
(0 < page_block_size ? block_table_buf.GetDeviceBuffer() : nullptr);
args.batch_stride_block_table = batch_stride_block_table;
......@@ -1075,13 +1063,33 @@ bool run(const ck_tile::ArgParser& arg_parser)
args.num_splits = num_splits;
args.stride_o_acc = stride_o_acc;
args.nhead_stride_lse_acc = nhead_stride_lse_acc;
args.nhead_stride_o_acc = nhead_stride_o_acc;
args.batch_stride_lse_acc = batch_stride_lse_acc;
args.batch_stride_o_acc = batch_stride_o_acc;
args.split_stride_lse_acc = split_stride_lse_acc;
args.split_stride_o_acc = split_stride_o_acc;
if(1 < num_splits)
{
args.lse_acc_ptr = lse_acc_buf.GetDeviceBuffer();
args.o_acc_ptr = o_acc_buf.GetDeviceBuffer();
args.stride_o_acc = stride_o_acc;
args.nhead_stride_lse_acc = nhead_stride_lse_acc;
args.nhead_stride_o_acc = nhead_stride_o_acc;
args.batch_stride_lse_acc = batch_stride_lse_acc;
args.batch_stride_o_acc = batch_stride_o_acc;
args.split_stride_lse_acc = split_stride_lse_acc;
args.split_stride_o_acc = split_stride_o_acc;
}
else
{
// following attribues are ignored by fmha_fwd_splitkv()
args.lse_acc_ptr = nullptr;
args.o_acc_ptr = nullptr;
args.stride_o_acc = 0;
args.nhead_stride_lse_acc = 0;
args.nhead_stride_o_acc = 0;
args.batch_stride_lse_acc = 0;
args.batch_stride_o_acc = 0;
args.split_stride_lse_acc = 0;
args.split_stride_o_acc = 0;
}
}
}
};
......@@ -1140,25 +1148,75 @@ bool run(const ck_tile::ArgParser& arg_parser)
<< std::setprecision(2) << tflops << " TFlops, " << std::setprecision(2) << gb_per_sec
<< " GB/s" << std::flush;
if(!do_validation)
if(do_validation == 0)
{
std::cout << std::flush << std::endl;
return true;
}
if(do_validation == 2)
{
// NOTE: use gpu to do validation
ck_tile::naive_attention_fwd_traits naive_t;
naive_t.q_type = data_type;
naive_t.k_type = data_type;
naive_t.v_type = data_type;
naive_t.o_type = data_type;
naive_t.q_layout = i_perm == 1 ? "bhsd" : "bshd";
naive_t.k_layout = i_perm == 1 ? "bhsd" : "bshd";
naive_t.v_layout = i_perm == 1 ? "bhsd" : "bshd";
naive_t.o_layout = o_perm == 1 ? "bhsd" : "bshd";
naive_t.variation = 0; // TODO?
ck_tile::DeviceMem o_naive_buf(o_host.get_element_space_size_in_bytes());
ck_tile::naive_attention_fwd_args naive_a;
naive_a.q_ptr = q_buf.GetDeviceBuffer();
naive_a.k_ptr = k_buf.GetDeviceBuffer();
naive_a.v_ptr = v_buf.GetDeviceBuffer();
naive_a.o_ptr = o_naive_buf.GetDeviceBuffer();
naive_a.scale_s = scale_s;
naive_a.context_len_ptr = nullptr; // used when seqlen kv come from a pointer
naive_a.page_table_ptr =
nullptr; // [batch, num_blocks] seqlen_kv is in different block(paged attn)
naive_a.hdim = hdim_q;
naive_a.hdim_v = hdim_v; // could be cross-attn, where V and Q/K hdim are different
naive_a.batch_q = batch;
naive_a.batch_kv = batch;
naive_a.batch_ratio_kv = 1; // batch_q / batch_kv
naive_a.seqlen_q = seqlen_qs[0];
naive_a.seqlen_kv = seqlen_ks[0]; // if context_len_ptr is not nullptr, ignore this field
naive_a.nhead_q = nhead;
naive_a.nhead_kv = nhead_k;
naive_a.nhead_ratio_kv = naive_a.nhead_q / naive_a.nhead_kv; // nhead_q / nhead_kv
naive_a.page_size = 0; // if paged, the seqlen-kv for each block
ck_tile::stream_config naive_s{};
naive_attention_fwd(naive_t, naive_a, naive_s);
auto o_naive_ref = o_naive_buf.ToHost<ODataType>();
o_buf.FromDevice(o_host.data()); // TODO: ugly
auto [rtol_, atol_] = get_elimit<DataTypeConfig>(init_method);
bool pass_ = ck_tile::check_err(
o_host, o_naive_ref, std::string("OUT Error: Incorrect results!"), rtol_, atol_);
std::cout << ", valid:" << (pass_ ? "y" : "n") << std::flush << std::endl;
return pass_;
}
o_buf.FromDevice(o_host.data());
lse_buf.FromDevice(lse_host.data());
randval_buf.FromDevice(randval_host.data());
auto p_compute_element_func = [&]() {
if constexpr(std::is_same_v<DataType, ck_tile::fp8_t>)
if constexpr(std::is_same_v<DataTypeConfig, ck_tile::fp8_t>)
return ck_tile::scales{scale_p};
else
return ck_tile::identity{};
}();
auto oacc_element_func = [&]() {
if constexpr(std::is_same_v<DataType, ck_tile::fp8_t>)
if constexpr(std::is_same_v<DataTypeConfig, ck_tile::fp8_t>)
return ck_tile::composes(ck_tile::saturates<ck_tile::fp8_t>{},
ck_tile::scales{scale_o});
else
......@@ -1208,7 +1266,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
{
decltype(q_host_ref) q_host_ref_ro(q_host_ref.get_lengths());
auto [rotary_cos_slice, rotary_sin_slice] =
auto [rotary_cos_slice, rotary_sin_slice] =
slice_rotary_cos_sin(rotary_cos_host, rotary_sin_host, cache_seqlen_ks[wb], real_seqlen_q);
ck_tile::reference_batched_rotary_position_embedding(
......@@ -1224,13 +1282,13 @@ bool run(const ck_tile::ArgParser& arg_parser)
k_host_ref.ForEach([&](auto& self, auto i) {
self(i) = k_host(block_table_host(wb, i[1] / page_block_size), i[0] / nr, i[1] % page_block_size, i[2]);
});
} else {
} else {
k_host_ref.ForEach([&](auto& self, auto i) {
self(i) = k_host(block_table_host(wb, i[1] / page_block_size), i[1] % page_block_size, i[0] / nr, i[2]);
});
}
} else
#endif
#endif
{
if(i_perm) k_host_ref.ForEach([&](auto& self, auto i) { self(i) = k_host(cache_b_idx, i[0] / nr, i[1] + key_offset, i[2]); });
else k_host_ref.ForEach([&](auto& self, auto i) { self(i) = k_host(cache_b_idx, i[1] + key_offset, i[0] / nr, i[2]); });
......@@ -1251,7 +1309,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
{
knew_host_ref_ro.emplace(knew_host_ref.get_lengths());
auto [rotary_cos_slice, rotary_sin_slice] =
auto [rotary_cos_slice, rotary_sin_slice] =
slice_rotary_cos_sin(rotary_cos_host, rotary_sin_host, cache_seqlen_ks[wb], seqlen_knew);
ck_tile::reference_batched_rotary_position_embedding(
......@@ -1273,19 +1331,19 @@ bool run(const ck_tile::ArgParser& arg_parser)
if(0 < page_block_size) {
if(is_v_rowmajor) {
if(i_perm) {
v_host_ref.ForEach([&](auto& self, auto i) {
self(i) = v_host(block_table_host(wb, i[2] / page_block_size), i[0] / nr, i[2] % page_block_size, i[1]);
v_host_ref.ForEach([&](auto& self, auto i) {
self(i) = v_host(block_table_host(wb, i[2] / page_block_size), i[0] / nr, i[2] % page_block_size, i[1]);
});
} else {
v_host_ref.ForEach([&](auto& self, auto i) {
v_host_ref.ForEach([&](auto& self, auto i) {
self(i) = v_host(block_table_host(wb, i[2] / page_block_size), i[2] % page_block_size, i[0] / nr, i[1]);
});
}
}
else
else
{
if(i_perm) {
v_host_ref.ForEach([&](auto& self, auto i) {
if(i_perm) {
v_host_ref.ForEach([&](auto& self, auto i) {
self(i) = v_host(block_table_host(wb, i[2] / page_block_size), i[0] / nr, i[1], i[2] % page_block_size);
});
} else {
......@@ -1480,7 +1538,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
else o_host_result.ForEach([&](auto& self, auto idx) { self(idx) = o_host(b_idx, idx[1] + query_offset, idx[0], idx[2]); });
// clang-format on
auto [rtol, atol] = get_elimit<DataType>(init_method);
auto [rtol, atol] = get_elimit<DataTypeConfig>(init_method);
bool cur_pass = ck_tile::check_err(
o_host_result, o_host_ref, std::string("OUT Error: Incorrect results!"), rtol, atol);
pass &= cur_pass;
......@@ -1537,15 +1595,15 @@ int main(int argc, char* argv[])
const std::string data_type = arg_parser.get_str("prec");
if(data_type == "fp16")
{
return run<ck_tile::half_t>(arg_parser) ? 0 : -2;
return run<FmhaFwdFp16>(arg_parser) ? 0 : -2;
}
else if(data_type == "bf16")
{
return run<ck_tile::bf16_t>(arg_parser) ? 0 : -2;
return run<FmhaFwdBf16>(arg_parser) ? 0 : -2;
}
else if(data_type == "fp8")
{
return run<ck_tile::fp8_t>(arg_parser) ? 0 : -2;
return run<FmhaFwdFp8>(arg_parser) ? 0 : -2;
}
return -3;
......
......@@ -12,15 +12,40 @@
#include "mask.hpp"
#include "rotary.hpp"
#include <array>
#include <type_traits>
#include <utility>
#include <variant>
struct FmhaFwdFp16
{
};
struct FmhaFwdBf16
{
};
struct FmhaFwdFp8
{
};
struct FmhaFwdBf8
{
};
struct FmhaFwdFp8Fp16
{
};
struct FmhaFwdFp8Bf16
{
};
template <typename DataType>
struct FmhaFwdTypeConfig;
template <>
struct FmhaFwdTypeConfig<ck_tile::half_t>
struct FmhaFwdTypeConfig<FmhaFwdFp16>
{
using QDataType = ck_tile::half_t;
using KDataType = ck_tile::half_t;
......@@ -36,7 +61,7 @@ struct FmhaFwdTypeConfig<ck_tile::half_t>
};
template <>
struct FmhaFwdTypeConfig<ck_tile::bf16_t>
struct FmhaFwdTypeConfig<FmhaFwdBf16>
{
using QDataType = ck_tile::bf16_t;
using KDataType = ck_tile::bf16_t;
......@@ -52,7 +77,7 @@ struct FmhaFwdTypeConfig<ck_tile::bf16_t>
};
template <>
struct FmhaFwdTypeConfig<ck_tile::fp8_t>
struct FmhaFwdTypeConfig<FmhaFwdFp8>
{
using QDataType = ck_tile::fp8_t;
using KDataType = ck_tile::fp8_t;
......@@ -68,7 +93,7 @@ struct FmhaFwdTypeConfig<ck_tile::fp8_t>
};
template <>
struct FmhaFwdTypeConfig<ck_tile::bf8_t>
struct FmhaFwdTypeConfig<FmhaFwdBf8>
{
using QDataType = ck_tile::bf8_t;
using KDataType = ck_tile::bf8_t;
......@@ -388,91 +413,93 @@ auto fmha_fwd_splitkv_create_kargs_and_grids(fmha_fwd_splitkv_args args)
// create group mode kernel arguments
if constexpr(Kernel::kIsGroupMode)
{
return Kernel::MakeKargs(args.q_ptr,
args.k_ptr,
args.v_ptr,
args.bias_ptr,
args.lse_acc_ptr,
args.o_acc_ptr,
args.batch,
args.seqstart_q_ptr,
args.seqstart_k_ptr,
args.seqlen_k_ptr,
args.hdim_q,
args.hdim_v,
args.nhead_q,
args.nhead_q / args.nhead_k,
args.num_splits,
args.block_table_ptr,
args.batch_stride_block_table,
args.page_block_size,
args.is_gappy,
args.scale_s,
args.scale_p,
args.stride_q,
args.stride_k,
args.stride_v,
args.stride_bias,
args.stride_o_acc,
args.nhead_stride_q,
args.nhead_stride_k,
args.nhead_stride_v,
args.nhead_stride_bias,
args.nhead_stride_lse_acc,
args.nhead_stride_o_acc,
args.batch_stride_k, // only used for paged-kvcache
args.batch_stride_v, // only used for paged-kvcache
args.split_stride_lse_acc,
args.split_stride_o_acc,
args.window_size_left,
args.window_size_right,
args.mask_type);
return Kernel::MakeKargs(
args.q_ptr,
args.k_ptr,
args.v_ptr,
args.bias_ptr,
(1 < args.num_splits ? args.lse_acc_ptr : args.lse_ptr),
(1 < args.num_splits ? args.o_acc_ptr : args.o_ptr),
args.batch,
args.seqstart_q_ptr,
args.seqstart_k_ptr,
args.seqlen_k_ptr,
args.hdim_q,
args.hdim_v,
args.nhead_q,
args.nhead_q / args.nhead_k,
args.num_splits,
args.block_table_ptr,
args.batch_stride_block_table,
args.page_block_size,
args.is_gappy,
args.scale_s,
args.scale_p,
args.stride_q,
args.stride_k,
args.stride_v,
args.stride_bias,
(1 < args.num_splits ? args.stride_o_acc : args.stride_o),
args.nhead_stride_q,
args.nhead_stride_k,
args.nhead_stride_v,
args.nhead_stride_bias,
(1 < args.num_splits ? args.nhead_stride_lse_acc : args.nhead_stride_lse),
(1 < args.num_splits ? args.nhead_stride_o_acc : args.nhead_stride_o),
args.batch_stride_k, // only used for paged-kvcache
args.batch_stride_v, // only used for paged-kvcache
(1 < args.num_splits ? args.split_stride_lse_acc : 0),
(1 < args.num_splits ? args.split_stride_o_acc : 0),
args.window_size_left,
args.window_size_right,
args.mask_type);
}
else
{ // create batch mode kernel arguments
return Kernel::MakeKargs(args.q_ptr,
args.k_ptr,
args.v_ptr,
args.bias_ptr,
args.lse_acc_ptr,
args.o_acc_ptr,
args.batch,
args.seqlen_q,
args.seqlen_k,
args.seqlen_k_ptr,
args.hdim_q,
args.hdim_v,
args.nhead_q,
args.nhead_q / args.nhead_k,
args.num_splits,
args.block_table_ptr,
args.batch_stride_block_table,
args.page_block_size,
args.cache_batch_idx,
args.scale_s,
args.scale_p,
args.stride_q,
args.stride_k,
args.stride_v,
args.stride_bias,
args.stride_o_acc,
args.nhead_stride_q,
args.nhead_stride_k,
args.nhead_stride_v,
args.nhead_stride_bias,
args.nhead_stride_lse_acc,
args.nhead_stride_o_acc,
args.batch_stride_q,
args.batch_stride_k,
args.batch_stride_v,
args.batch_stride_bias,
args.batch_stride_lse_acc,
args.batch_stride_o_acc,
args.split_stride_lse_acc,
args.split_stride_o_acc,
args.window_size_left,
args.window_size_right,
args.mask_type);
return Kernel::MakeKargs(
args.q_ptr,
args.k_ptr,
args.v_ptr,
args.bias_ptr,
(1 < args.num_splits ? args.lse_acc_ptr : args.lse_ptr),
(1 < args.num_splits ? args.o_acc_ptr : args.o_ptr),
args.batch,
args.seqlen_q,
args.seqlen_k,
args.seqlen_k_ptr,
args.hdim_q,
args.hdim_v,
args.nhead_q,
args.nhead_q / args.nhead_k,
args.num_splits,
args.block_table_ptr,
args.batch_stride_block_table,
args.page_block_size,
args.cache_batch_idx,
args.scale_s,
args.scale_p,
args.stride_q,
args.stride_k,
args.stride_v,
args.stride_bias,
(1 < args.num_splits ? args.stride_o_acc : args.stride_o),
args.nhead_stride_q,
args.nhead_stride_k,
args.nhead_stride_v,
args.nhead_stride_bias,
(1 < args.num_splits ? args.nhead_stride_lse_acc : args.nhead_stride_lse),
(1 < args.num_splits ? args.nhead_stride_o_acc : args.nhead_stride_o),
args.batch_stride_q,
args.batch_stride_k,
args.batch_stride_v,
args.batch_stride_bias,
(1 < args.num_splits ? args.batch_stride_lse_acc : args.batch_stride_lse),
(1 < args.num_splits ? args.batch_stride_o_acc : args.batch_stride_o),
(1 < args.num_splits ? args.split_stride_lse_acc : 0),
(1 < args.num_splits ? args.split_stride_o_acc : 0),
args.window_size_left,
args.window_size_right,
args.mask_type);
}
}();
......@@ -789,3 +816,40 @@ struct fmha_fwd_appendkv_traits
float fmha_fwd_appendkv(fmha_fwd_appendkv_traits,
fmha_fwd_appendkv_args,
const ck_tile::stream_config&);
template <typename Int = int>
Int num_splits_heuristic(Int batch_nhead_mblocks, Int num_SMs, Int max_splits)
{
// If we have enough to almost fill the SMs, then just use 1 split
if(batch_nhead_mblocks >= 0.8f * num_SMs)
{
return 1;
}
max_splits = std::min({max_splits, num_SMs});
constexpr std::array<Int, 5> num_splits_array = {1, 2, 4, 8, 16};
float max_efficiency = 0.f;
std::array<float, num_splits_array.size()> efficiency;
for(size_t idx = 0; idx < num_splits_array.size() && num_splits_array[idx] <= max_splits; ++idx)
{
float n_blocks = float(batch_nhead_mblocks * num_splits_array[idx]) / num_SMs;
float eff = n_blocks / std::ceil(n_blocks);
if(eff > max_efficiency)
{
max_efficiency = eff;
}
efficiency[idx] = eff;
}
for(size_t idx = 0; idx < num_splits_array.size() && num_splits_array[idx] <= max_splits; ++idx)
{
if(efficiency[idx] >= 0.85 * max_efficiency)
{
return num_splits_array[idx];
}
}
return 1;
}
......@@ -92,6 +92,11 @@ float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s)
const dim3 grids = Kernel::GridSize(args.M, args.N, args.kbatch);
constexpr dim3 blocks = Kernel::BlockSize();
if(!Kernel::IsSupportedArgument(kargs))
{
throw std::runtime_error("Wrong! Arguments not supported! Skipping gemm!\n");
}
if(s.log_level_ > 0)
{
std::cout << "Launching kernel with args:"
......
......@@ -119,6 +119,11 @@ float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s)
const dim3 grids = Kernel::GridSize(args.M, args.N, args.kbatch);
constexpr dim3 blocks = Kernel::BlockSize();
if(!Kernel::IsSupportedArgument(kargs))
{
throw std::runtime_error("Wrong! Arguments not supported! Skipping gemm!\n");
}
if(s.log_level_ > 0)
{
std::cout << "Launching kernel with args:"
......
......@@ -35,7 +35,8 @@ auto create_args(int argc, char* argv[])
ck_tile::ArgParser arg_parser;
arg_parser.insert("m", "3328", "m dimension")
.insert("n", "4096", "n dimension")
.insert("stride", "-1", "stride per row, if -1 then equal to n")
.insert("x_stride", "-1", "input stride per row, if -1 then equal to n")
.insert("y_stride", "-1", "output stride per row, if -1 then equal to n")
.insert("e", "1e-5", "epsilon")
.insert("v", "1", "cpu validation or not")
.insert("prec", "fp16", "precision")
......@@ -49,11 +50,14 @@ auto create_args(int argc, char* argv[])
template <typename DataType>
bool run(const ck_tile::ArgParser& arg_parser)
{
ck_tile::index_t m = arg_parser.get_int("m");
ck_tile::index_t n = arg_parser.get_int("n");
ck_tile::index_t stride = arg_parser.get_int("stride");
if(stride < 0)
stride = n;
ck_tile::index_t m = arg_parser.get_int("m");
ck_tile::index_t n = arg_parser.get_int("n");
ck_tile::index_t x_stride = arg_parser.get_int("x_stride");
if(x_stride < 0)
x_stride = n;
ck_tile::index_t y_stride = arg_parser.get_int("y_stride");
if(y_stride < 0)
y_stride = n;
std::string data_type = arg_parser.get_str("prec");
int do_validation = arg_parser.get_int("v");
int warmup = arg_parser.get_int("warmup");
......@@ -68,14 +72,14 @@ bool run(const ck_tile::ArgParser& arg_parser)
using ComputeDataType = float;
// host verify
ck_tile::HostTensor<XDataType> x_host({m, n}, {stride, 1});
ck_tile::HostTensor<XDataType> x_host({m, n}, {x_stride, 1});
ck_tile::HostTensor<XScaleDataType> xscale_host({n});
ck_tile::HostTensor<YScaleDataType> yscale_host_ref({m}, {1});
ck_tile::HostTensor<YScaleDataType> yscale_host_dev({m}, {1});
ck_tile::HostTensor<QYDataType> qy_host_ref({m, n}, {stride, 1});
ck_tile::HostTensor<QYDataType> qy_host_dev({m, n}, {stride, 1});
ck_tile::HostTensor<QYDataType> qy_host_ref({m, n}, {y_stride, 1});
ck_tile::HostTensor<QYDataType> qy_host_dev({m, n}, {y_stride, 1});
ck_tile::FillUniformDistribution<XDataType>{-.5f, .5f}(x_host);
ck_tile::FillUniformDistribution<XScaleDataType>{1e-3, .5f}(xscale_host);
......@@ -116,7 +120,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
qy_buf.GetDeviceBuffer(),
m,
n,
stride};
x_stride,
y_stride};
auto kargs = Kernel::MakeKargs(args);
......@@ -133,7 +138,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
if(do_validation)
{
using YDataType = ComputeDataType;
ck_tile::HostTensor<ComputeDataType> y_host({m, n}, {stride, 1});
ck_tile::HostTensor<ComputeDataType> y_host({m, n}, {y_stride, 1});
// smooth outlier
{
auto f = [&](auto n_) {
......@@ -183,7 +188,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
qy_buf.FromDevice(qy_host_dev.data());
auto [rtol, atol] = get_elimit<QYDataType>();
if(stride == n)
if(y_stride == n)
{
pass = ck_tile::check_err(qy_host_dev,
qy_host_ref,
......@@ -195,10 +200,12 @@ bool run(const ck_tile::ArgParser& arg_parser)
{
for(int i_r = 0; i_r < m; i_r++)
{
std::vector<QYDataType> qy_host_dev_row(qy_host_dev.begin() + i_r * stride,
qy_host_dev.begin() + i_r * stride + n);
std::vector<QYDataType> qy_host_ref_row(qy_host_ref.begin() + i_r * stride,
qy_host_ref.begin() + i_r * stride + n);
std::vector<QYDataType> qy_host_dev_row(qy_host_dev.begin() + i_r * y_stride,
qy_host_dev.begin() + i_r * y_stride +
n);
std::vector<QYDataType> qy_host_ref_row(qy_host_ref.begin() + i_r * y_stride,
qy_host_ref.begin() + i_r * y_stride +
n);
pass &= ck_tile::check_err(qy_host_dev_row,
qy_host_ref_row,
std::string("qy[") + std::to_string(i_r) +
......@@ -210,8 +217,9 @@ bool run(const ck_tile::ArgParser& arg_parser)
}
std::cout << "[" << data_type << "]"
<< " m:" << m << ", n:" << n << ", stride:" << stride
<< ", valid:" << (pass ? "y" : "n") << std::flush << std::endl;
<< " m:" << m << ", n:" << n << ", x_stride:" << x_stride
<< ", y_stride:" << y_stride << ", valid:" << (pass ? "y" : "n") << std::flush
<< std::endl;
}
return pass;
......
......@@ -33,7 +33,8 @@ auto create_args(int argc, char* argv[])
ck_tile::ArgParser arg_parser;
arg_parser.insert("m", "3328", "m dimension")
.insert("n", "4096", "n dimension")
.insert("stride", "-1", "stride per row, if -1 then equal to n")
.insert("x_stride", "-1", "input stride per row, if -1 then equal to n")
.insert("y_stride", "-1", "output stride per row, if -1 then equal to n")
.insert("v", "1", "cpu validation or not")
.insert("kname", "1", "print kernel name or not")
.insert("prec", "fp16", "precision")
......@@ -47,18 +48,21 @@ auto create_args(int argc, char* argv[])
template <typename DataType>
bool run(const ck_tile::ArgParser& arg_parser)
{
ck_tile::index_t m = arg_parser.get_int("m");
ck_tile::index_t n = arg_parser.get_int("n");
ck_tile::index_t stride = arg_parser.get_int("stride");
if(stride < 0)
stride = n;
ck_tile::index_t m = arg_parser.get_int("m");
ck_tile::index_t n = arg_parser.get_int("n");
ck_tile::index_t x_stride = arg_parser.get_int("x_stride");
if(x_stride < 0)
x_stride = n;
ck_tile::index_t y_stride = arg_parser.get_int("y_stride");
if(y_stride < 0)
y_stride = n;
std::string data_type = arg_parser.get_str("prec");
int kname = arg_parser.get_int("kname");
int do_validation = arg_parser.get_int("v");
int warmup = arg_parser.get_int("warmup");
int repeat = arg_parser.get_int("repeat");
assert(stride >= n);
assert(x_stride >= n);
using TypeConfig = SmoothquantTypeConfig<DataType>;
......@@ -69,14 +73,14 @@ bool run(const ck_tile::ArgParser& arg_parser)
using ComputeDataType = typename TypeConfig::ComputeDataType;
// host verify
ck_tile::HostTensor<XDataType> x_host({m, n}, {stride, 1});
ck_tile::HostTensor<XDataType> x_host({m, n}, {x_stride, 1});
ck_tile::HostTensor<XScaleDataType> xscale_host({n});
ck_tile::HostTensor<YScaleDataType> yscale_host_ref({m}, {1});
ck_tile::HostTensor<YScaleDataType> yscale_host_dev({m}, {1});
ck_tile::HostTensor<QYDataType> qy_host_ref({m, n}, {stride, 1});
ck_tile::HostTensor<QYDataType> qy_host_dev({m, n}, {stride, 1});
ck_tile::HostTensor<QYDataType> qy_host_ref({m, n}, {y_stride, 1});
ck_tile::HostTensor<QYDataType> qy_host_dev({m, n}, {y_stride, 1});
ck_tile::FillUniformDistribution<XDataType>{-.5f, .5f}(x_host);
ck_tile::FillUniformDistribution<XScaleDataType>{1e-3, .5f}(xscale_host);
......@@ -90,7 +94,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
xscale_buf.ToDevice(xscale_host.data());
std::cout << "[" << data_type << "]"
<< " m:" << m << ", n:" << n << ", stride:" << stride << std::flush;
<< " m:" << m << ", n:" << n << ", x_stride:" << x_stride << ", y_stride:" << y_stride
<< std::flush;
smoothquant_traits traits{data_type};
......@@ -100,7 +105,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
qy_buf.GetDeviceBuffer(),
m,
n,
stride};
x_stride,
y_stride};
float ave_time = smoothquant(
traits, args, ck_tile::stream_config{nullptr, true, kname ? 1 : 0, warmup, repeat});
......@@ -116,7 +122,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
if(do_validation)
{
using YDataType = ComputeDataType;
ck_tile::HostTensor<ComputeDataType> y_host({m, n}, {stride, 1});
ck_tile::HostTensor<ComputeDataType> y_host({m, n}, {y_stride, 1});
// smooth outlier
{
auto f = [&](auto n_) {
......@@ -166,7 +172,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
qy_buf.FromDevice(qy_host_dev.data());
auto [rtol, atol] = get_elimit<QYDataType>();
if(stride == n)
if(y_stride == n)
{
pass = ck_tile::check_err(qy_host_dev,
qy_host_ref,
......@@ -178,10 +184,12 @@ bool run(const ck_tile::ArgParser& arg_parser)
{
for(int i_r = 0; i_r < m; i_r++)
{
std::vector<QYDataType> qy_host_dev_row(qy_host_dev.begin() + i_r * stride,
qy_host_dev.begin() + i_r * stride + n);
std::vector<QYDataType> qy_host_ref_row(qy_host_ref.begin() + i_r * stride,
qy_host_ref.begin() + i_r * stride + n);
std::vector<QYDataType> qy_host_dev_row(qy_host_dev.begin() + i_r * y_stride,
qy_host_dev.begin() + i_r * y_stride +
n);
std::vector<QYDataType> qy_host_ref_row(qy_host_ref.begin() + i_r * y_stride,
qy_host_ref.begin() + i_r * y_stride +
n);
pass &= ck_tile::check_err(qy_host_dev_row,
qy_host_ref_row,
std::string("qy[") + std::to_string(i_r) +
......
add_executable(tile_example_grouped_gemm EXCLUDE_FROM_ALL grouped_gemm.cpp)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment