Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
41b920e2
Commit
41b920e2
authored
Mar 12, 2024
by
Jun Liu
Browse files
Merge branch 'amd-develop' into amd-master
parents
874a78f9
5d718e6b
Changes
357
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1907 additions
and
161 deletions
+1907
-161
include/ck/wrapper/utils/layout_utils.hpp
include/ck/wrapper/utils/layout_utils.hpp
+97
-8
include/ck/wrapper/utils/tensor_partition.hpp
include/ck/wrapper/utils/tensor_partition.hpp
+324
-55
include/ck/wrapper/utils/tensor_utils.hpp
include/ck/wrapper/utils/tensor_utils.hpp
+25
-10
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp
...eference_tensor_operation/cpu/reference_conv_bwd_data.hpp
+186
-69
library/include/ck/library/tensor_operation_instance/device_operation_instance_factory.hpp
..._operation_instance/device_operation_instance_factory.hpp
+3
-1
library/include/ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_instance.hpp
...e_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_instance.hpp
+59
-0
library/include/ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_interwave_instance.hpp
..._c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_interwave_instance.hpp
+59
-0
library/include/ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_instance.hpp
...e_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_instance.hpp
+59
-0
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
...include/ck/library/tensor_operation_instance/gpu/gemm.hpp
+26
-4
library/include/ck/library/tensor_operation_instance/gpu/gemm_add.hpp
...ude/ck/library/tensor_operation_instance/gpu/gemm_add.hpp
+114
-0
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_fastgelu.hpp
...brary/tensor_operation_instance/gpu/gemm_add_fastgelu.hpp
+53
-1
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_relu.hpp
...k/library/tensor_operation_instance/gpu/gemm_add_relu.hpp
+116
-0
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_silu.hpp
...k/library/tensor_operation_instance/gpu/gemm_add_silu.hpp
+116
-0
library/include/ck/library/tensor_operation_instance/gpu/gemm_splitk.hpp
.../ck/library/tensor_operation_instance/gpu/gemm_splitk.hpp
+127
-11
library/include/ck/library/tensor_operation_instance/gpu/gemm_streamk.hpp
...ck/library/tensor_operation_instance/gpu/gemm_streamk.hpp
+12
-2
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_data/device_grouped_conv_bwd_data_wmma_f16_instance.hpp
...d_data/device_grouped_conv_bwd_data_wmma_f16_instance.hpp
+0
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_data/device_grouped_conv_bwd_data_wmma_i8_instance.hpp
...wd_data/device_grouped_conv_bwd_data_wmma_i8_instance.hpp
+118
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_data/device_grouped_conv_bwd_data_xdl_bilinear_instance.hpp
...ta/device_grouped_conv_bwd_data_xdl_bilinear_instance.hpp
+132
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_bilinear_instance.hpp
...onv_fwd/device_grouped_conv_fwd_xdl_bilinear_instance.hpp
+131
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data_bilinear.hpp
...stance/gpu/grouped_convolution_backward_data_bilinear.hpp
+150
-0
No files found.
include/ck/wrapper/utils/layout_utils.hpp
View file @
41b920e2
...
...
@@ -15,6 +15,7 @@
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
namespace
ck
{
namespace
wrapper
{
...
...
@@ -29,6 +30,7 @@ template <typename T>
using
is_tuple
=
decltype
(
std
::
declval
<
T
&>
().
IsTuple
());
namespace
{
namespace
detail
{
/**
* \brief Generate packed (column-major) strides if not passed
*
...
...
@@ -83,6 +85,7 @@ __host__ __device__ constexpr auto MakeUnrolledDescriptor(const LayoutShape& sha
return
make_naive_tensor_descriptor
(
unrolled_shape
,
unrolled_strides
);
}
}
}
// namespace detail
}
// namespace
/// @endcond
...
...
@@ -98,8 +101,9 @@ __host__ __device__ constexpr auto MakeUnrolledDescriptor(const LayoutShape& sha
template
<
typename
Shape
,
typename
Strides
>
__host__
__device__
constexpr
auto
make_layout
(
const
Shape
&
shape
,
const
Strides
&
strides
)
{
using
UnrolledDescriptorType
=
decltype
(
MakeUnrolledDescriptor
(
Shape
{},
Strides
{}));
return
Layout
<
Shape
,
UnrolledDescriptorType
>
(
shape
,
MakeUnrolledDescriptor
(
shape
,
strides
));
using
UnrolledDescriptorType
=
decltype
(
detail
::
MakeUnrolledDescriptor
(
Shape
{},
Strides
{}));
return
Layout
<
Shape
,
UnrolledDescriptorType
>
(
shape
,
detail
::
MakeUnrolledDescriptor
(
shape
,
strides
));
}
/**
...
...
@@ -112,13 +116,12 @@ __host__ __device__ constexpr auto make_layout(const Shape& shape, const Strides
template
<
typename
Shape
>
__host__
__device__
constexpr
auto
make_layout
(
const
Shape
&
shape
)
{
using
UnrolledDescriptorType
=
decltype
(
MakeUnrolledDescriptor
(
Shape
{},
Tuple
<>
{}));
return
Layout
<
Shape
,
UnrolledDescriptorType
>
(
shape
,
MakeUnrolledDescriptor
(
shape
,
Tuple
<>
{}));
using
UnrolledDescriptorType
=
decltype
(
detail
::
MakeUnrolledDescriptor
(
Shape
{},
Tuple
<>
{}));
return
Layout
<
Shape
,
UnrolledDescriptorType
>
(
shape
,
detail
::
MakeUnrolledDescriptor
(
shape
,
Tuple
<>
{}));
}
// Layout helpers
// get
/**
* \private
* \brief Get dim.
...
...
@@ -152,8 +155,8 @@ __host__ __device__ constexpr auto get(const Tuple<Dims...>& tuple)
* \param layout Layout to create sub layout.
* \return Requsted sub layout.
*/
template
<
index_t
idx
,
typename
Shape
,
typename
Flatten
Desc
>
__host__
__device__
constexpr
auto
get
(
const
Layout
<
Shape
,
Flatten
Desc
>&
layout
)
template
<
index_t
idx
,
typename
Shape
,
typename
Unrolled
Desc
>
__host__
__device__
constexpr
auto
get
(
const
Layout
<
Shape
,
Unrolled
Desc
>&
layout
)
{
const
auto
&
shape
=
layout
.
GetShape
();
const
auto
new_shape
=
get
<
idx
>
(
shape
);
...
...
@@ -427,5 +430,91 @@ __host__ __device__ constexpr const auto& shape(const LayoutType& layout)
return
layout
.
GetShape
();
}
// pad
/**
* \brief Pad layout shapes to be adjusted to tile lengths.
*
*
* \param layout Layout to pad.
* \param tile_lengths Tile lengths to align layout shape.
* \return Padded layout.
*/
template
<
typename
Shape
,
typename
UnrolledDesc
,
typename
TileLengths
>
__host__
__device__
constexpr
auto
pad
(
const
Layout
<
Shape
,
UnrolledDesc
>&
layout
,
const
TileLengths
&
tile_lengths
)
{
auto
&
unrolled_desc
=
layout
.
GetUnrolledDescriptor
();
// Generate sequence with ones to mark that all dims will be padded
constexpr
auto
do_pads_seq
=
generate_sequence_v2
([](
auto
)
{
return
Number
<
1
>
{};
},
Number
<
Shape
::
Size
()
>
{});
// Create descriptor with padding
auto
padded_desc
=
tensor_operation
::
device
::
PadTensorDescriptor
(
unrolled_desc
,
tile_lengths
,
do_pads_seq
);
// Generate padded shape
const
auto
padded_shape
=
generate_tuple
(
[
&
](
auto
i
)
{
return
padded_desc
.
GetLength
(
Number
<
i
>
{});
},
Number
<
TileLengths
::
Size
()
>
{});
// Create layout
return
Layout
<
decltype
(
padded_shape
),
decltype
(
padded_desc
)
>
(
padded_shape
,
padded_desc
);
}
// unmerge
/**
* \brief Unmerge selected dim in layout.
*
* \tparam Idx Index to dimension being unmerged.
* \param layout Layout to pad.
* \param new_lengths Dimensions into which the indicated dimension will be divided.
* \param new_indexes Indexes to shuffle dims. Dims for unmerged dim should be nested.
* \return Unmerged layout.
*/
template
<
index_t
Idx
,
typename
Shape
,
typename
UnrolledDesc
,
typename
NewLengths
,
typename
NewIdxs
>
__host__
__device__
constexpr
auto
unmerge
(
const
Layout
<
Shape
,
UnrolledDesc
>&
layout
,
const
NewLengths
&
new_lengths
,
[[
maybe_unused
]]
const
NewIdxs
&
new_indexes
)
{
const
auto
&
layout_shape
=
shape
(
layout
);
auto
&
unrolled_desc
=
layout
.
GetUnrolledDescriptor
();
constexpr
auto
dims
=
Shape
::
Size
();
// Generate transforms
const
auto
transforms
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
Idx
)
{
return
make_unmerge_transform
(
new_lengths
);
}
else
{
return
make_pass_through_transform
(
layout_shape
.
At
(
i
));
}
},
Number
<
dims
>
{});
constexpr
auto
lower_dims
=
generate_tuple
([
&
](
auto
i
)
{
return
Sequence
<
i
.
value
>
{};
},
Number
<
dims
>
{});
constexpr
auto
upper_dims
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
is_detected
<
is_tuple
,
tuple_element_t
<
i
.
value
,
NewIdxs
>>::
value
)
{
constexpr
auto
idxs_tuple
=
tuple_element_t
<
i
.
value
,
NewIdxs
>
{};
return
to_sequence
(
idxs_tuple
);
}
else
{
constexpr
index_t
index
=
tuple_element_t
<
i
.
value
,
NewIdxs
>
{};
return
Sequence
<
index
>
{};
}
},
Number
<
dims
>
{});
const
auto
unmerged_desc
=
transform_tensor_descriptor
(
unrolled_desc
,
transforms
,
lower_dims
,
upper_dims
);
const
auto
unmerged_shape
=
generate_tuple
([
&
](
auto
i
)
{
return
unmerged_desc
.
GetLength
(
Number
<
i
>
{});
},
Number
<
decltype
(
unmerged_desc
)
::
GetNumOfVisibleDimension
()
>
{});
// Create layout
return
Layout
<
decltype
(
unmerged_shape
),
decltype
(
unmerged_desc
)
>
(
unmerged_shape
,
unmerged_desc
);
}
}
// namespace wrapper
}
// namespace ck
include/ck/wrapper/utils/tensor_partition.hpp
View file @
41b920e2
...
...
@@ -14,6 +14,8 @@ namespace wrapper {
namespace
{
namespace
detail
{
/**
* \brief Calculate shape for partition based on number of threads per each dim and
* previous shape
...
...
@@ -30,12 +32,89 @@ __host__ __device__ constexpr auto CalculateLocalPartitionShape(const Tuple<Ts..
return
generate_tuple
(
[
&
](
auto
i
)
{
constexpr
auto
num_i
=
Number
<
i
>
{};
const
auto
slice_len
=
size
<
num_i
>
(
shape
)
/
thread_lengths
.
At
(
num_i
);
const
auto
slice_len
=
ck
::
math
::
integer_divide_ceil
(
size
<
num_i
>
(
shape
),
thread_lengths
.
At
(
num_i
));
return
slice_len
;
},
Number
<
Tuple
<
Ls
...
>::
Size
()
>
{});
}
/**
* \brief Apply projection.
*
* \param base_tuple Tuple to apply projection.
* \param projection Projection is used to remove selected dim from
* partitioning. Use `slice(X)` to remove dimension, where X is dim
* size. Use `Number<1>{}` to keep it.
* \return Multi index after projection.
*/
template
<
typename
MultiIndex
,
typename
ProjectionTuple
>
__host__
__device__
constexpr
auto
ApplyProjection
([[
maybe_unused
]]
const
MultiIndex
&
base_tuple
,
[[
maybe_unused
]]
const
ProjectionTuple
&
projection
)
{
if
constexpr
(
is_same_v
<
ProjectionTuple
,
Tuple
<>>
)
{
return
Tuple
<>
{};
}
else
{
auto
base_tuple_after_projection
=
generate_tuple
(
[
&
](
auto
i
)
{
const
auto
i_num
=
Number
<
i
.
value
>
{};
static_assert
(
is_detected
<
is_slice
,
tuple_element_t
<
i_num
,
ProjectionTuple
>>::
value
||
is_same_v
<
tuple_element_t
<
i_num
,
ProjectionTuple
>
,
Number
<
1
>>
);
if
constexpr
(
is_detected
<
is_slice
,
tuple_element_t
<
i_num
,
ProjectionTuple
>>::
value
)
{
// When slice (to remove), then insert empty tuple (will be removed in next
// step).
return
Tuple
<>
{};
}
else
{
return
make_tuple
(
base_tuple
.
At
(
i_num
));
}
},
Number
<
MultiIndex
::
Size
()
>
{});
// Remove empty tuples
return
UnrollNestedTuple
<
0
,
1
>
(
base_tuple_after_projection
);
}
}
/**
* \brief Calculate shape with dims from projection.
*
* \param shape Base tensor shape.
* \param projection Projection is used to remove selected dim from
* partitioning. Use `slice(X)` to remove dimension, where X is dim
* size. Use `Number<1>{}` to keep it.
* \return Shape with dims from projection
*/
template
<
typename
...
Ts
,
typename
...
Ps
>
__host__
__device__
constexpr
auto
CalculateShapeWithProjection
(
const
Tuple
<
Ts
...
>&
shape
,
const
Tuple
<
Ps
...
>&
projection
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
is_detected
<
is_slice
,
tuple_element_t
<
i
,
Tuple
<
Ps
...
>>>::
value
)
{
return
size
<
i
>
(
projection
).
to_
;
}
else
{
// number of shape element in actual fragment of shape and projection (method to
// calculate shape idx)
constexpr
index_t
shape_i
=
detail
::
ApplyProjection
(
TupleSlice
<
0
,
i
>
(
Tuple
<
Ts
...
>
{}),
TupleSlice
<
0
,
i
>
(
Tuple
<
Ps
...
>
{}))
.
Size
();
return
size
<
shape_i
>
(
shape
);
}
},
Number
<
Tuple
<
Ps
...
>::
Size
()
>
{});
}
/**
* \brief Calculate total number of blocks.
*
...
...
@@ -43,13 +122,13 @@ __host__ __device__ constexpr auto CalculateLocalPartitionShape(const Tuple<Ts..
* \param tile_shape Tile shape.
* \return Tuple with blocks number.
*/
template
<
typename
...
Ts
,
typename
...
Ls
>
template
<
typename
...
Ts
,
typename
...
Ls
,
typename
...
Ps
>
__host__
__device__
constexpr
auto
CalculateGridSize
(
const
Tuple
<
Ts
...
>&
shape
,
const
Tuple
<
Ls
...
>&
tile_shape
)
{
static_assert
(
Tuple
<
Ts
...
>::
Size
()
==
Tuple
<
Ls
...
>::
Size
(),
"Wrong thread_lengths shape."
);
return
generate_tuple
([
&
](
auto
i
)
{
return
size
<
i
>
(
shape
)
/
size
<
i
>
(
tile_shape
);
},
Number
<
Tuple
<
Ls
...
>::
Size
()
>
{});
return
generate_tuple
(
[
&
](
auto
i
)
{
return
ck
::
math
::
integer_divide_ceil
(
size
<
i
>
(
shape
)
,
size
<
i
>
(
tile_shape
)
)
;
},
Number
<
Tuple
<
Ls
...
>::
Size
()
>
{});
}
/**
...
...
@@ -69,6 +148,93 @@ CalculateOffsetMultiIdxs(const ThreadIdxs& thread_idxs,
return
thread_idxs
*
partition_lengths_seq
+
old_offset_idxs
;
}
/**
* \brief Select dims to partition (skip if slice).
*
* \param block_idxs Input block indexes.
* \return Partitioned dims.
*/
template
<
typename
BlockIdxs
>
__host__
__device__
constexpr
auto
GetDimsToPartition
([[
maybe_unused
]]
const
BlockIdxs
&
block_idxs
)
{
const
auto
dims_to_partition
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
!
is_detected
<
is_slice
,
tuple_element_t
<
i
,
BlockIdxs
>>::
value
)
{
return
Number
<
i
>
{};
}
else
{
return
Tuple
<>
{};
}
},
Number
<
BlockIdxs
::
Size
()
>
{});
// Remove empty tuples
return
UnrollNestedTuple
<
0
,
1
>
(
dims_to_partition
);
}
/**
* \brief Replace slices with zeros (Slice dims are not partitioned).
*
* \param block_idxs Input block indexes.
* \return Parsed dims.
*/
template
<
typename
BlockIdxs
>
__host__
__device__
constexpr
auto
ReplaceSlicesWithZeros
(
const
BlockIdxs
&
block_idxs
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
!
is_detected
<
is_slice
,
tuple_element_t
<
i
,
BlockIdxs
>>::
value
)
{
return
block_idxs
.
At
(
i
);
}
else
{
return
Number
<
0
>
{};
}
},
Number
<
BlockIdxs
::
Size
()
>
{});
}
/**
* \brief Calculate default projection.
*
* \param tile_shape Tile shape.
* \return Default projection (filled with Number<1>{}).
*/
template
<
typename
TileShape
>
__host__
__device__
constexpr
auto
GenerateDefaultProjection
([[
maybe_unused
]]
const
TileShape
tile_shape
)
{
return
generate_tuple
([
&
](
auto
)
{
return
Number
<
1
>
{};
},
Number
<
TileShape
::
Size
()
>
{});
}
/**
* \brief Calculate thread multi index from 1d thread index.
*
* \param thread_layout Layout of threads (could not be nested).
* \param thread_id Thread index represented as integer.
* \return Multi index.
*/
template
<
typename
ThreadShape
,
typename
ThreadUnrolledDesc
>
__host__
__device__
constexpr
auto
CalculateThreadMultiIdx
(
[[
maybe_unused
]]
const
Layout
<
ThreadShape
,
ThreadUnrolledDesc
>&
thread_layout
,
const
index_t
thread_id
)
{
static_assert
(
ThreadUnrolledDesc
::
GetNumOfTransform
()
==
1
,
"Thread layout should not be transformed."
);
constexpr
auto
embed_transform
=
ThreadUnrolledDesc
{}.
GetTransforms
().
At
(
Number
<
0
>
{});
constexpr
auto
shape
=
ThreadShape
{};
constexpr
auto
strides
=
embed_transform
.
coefficients_
;
return
generate_tuple
(
[
&
](
auto
i
)
{
constexpr
auto
num_i
=
Number
<
i
>
{};
return
(
thread_id
/
strides
.
At
(
num_i
))
%
shape
.
At
(
num_i
);
},
Number
<
ThreadShape
::
Size
()
>
{});
}
}
// namespace detail
}
// namespace
/**
...
...
@@ -76,44 +242,84 @@ CalculateOffsetMultiIdxs(const ThreadIdxs& thread_idxs,
* is supported).
*
* \param tensor Tensor for partition.
* \param thread_l
engths
Layout of threads (could not be
nest
ed).
* \param thread_l
ayout
Layout of threads (could not be
transform
ed).
* \param thread_id Thread index represented as integer.
* \param projection Projection is used to remove selected dim from
* partitioning. Use `slice(X)` to remove dimension, where X is dim
* size. Use `Number<1>{}` to keep it.
* \return Partition tensor.
*/
template
<
typename
TensorType
,
typename
ThreadLengthsTuple
>
template
<
typename
TensorType
,
typename
ThreadShape
,
typename
ThreadUnrolledDesc
,
typename
ProjectionTuple
>
__host__
__device__
constexpr
auto
make_local_partition
(
TensorType
&
tensor
,
[[
maybe_unused
]]
const
ThreadLengthsTuple
&
thread_lengths
,
const
index_t
thread_id
)
[[
maybe_unused
]]
const
Layout
<
ThreadShape
,
ThreadUnrolledDesc
>&
thread_layout
,
const
index_t
thread_id
,
const
ProjectionTuple
&
projection
)
{
static_assert
(
!
IsNestedTuple
(
Thread
LengthsTupl
e
{}));
static_assert
(
!
IsNestedTuple
(
Thread
Shap
e
{}));
// Calculate new partition shape
const
auto
&
tensor_shape
=
shape
(
tensor
);
// Calculate projected thread lengths
constexpr
auto
projected_thread_lengths
=
detail
::
ApplyProjection
(
ThreadShape
{},
ProjectionTuple
{});
constexpr
auto
partition_shape
=
CalculateLocalPartitionShape
(
decltype
(
tensor_shape
){},
ThreadLengthsTuple
{});
// Create Thread Cluster Descriptor
constexpr
auto
partition_lengths_seq
=
generate_sequence_v2
(
[
&
](
auto
I
)
{
return
size
<
I
>
(
partition_shape
);
},
Number
<
ThreadLengthsTuple
::
Size
()
>
{});
constexpr
auto
thread_lengths_seq
=
generate_sequence_v2
([
&
](
auto
I
)
{
return
size
<
I
>
(
ThreadLengthsTuple
{});
},
Number
<
ThreadLengthsTuple
::
Size
()
>
{});
constexpr
auto
thread_cluster_desc_
=
make_cluster_descriptor
(
thread_lengths_seq
);
detail
::
CalculateLocalPartitionShape
(
decltype
(
tensor_shape
){},
projected_thread_lengths
);
constexpr
auto
partition_shape_seq
=
generate_sequence_v2
([
&
](
auto
I
)
{
return
size
<
I
>
(
partition_shape
);
},
Number
<
decltype
(
partition_shape
)
::
Size
()
>
{});
// Calculate thread idxs and offsets
const
auto
thread_idxs
=
thread_cluster_desc_
.
CalculateBottomIndex
(
make_multi_index
(
thread_id
));
const
auto
offset_multi_idxs
=
CalculateOffsetMultiIdxs
(
thread_idxs
,
partition_lengths_seq
,
tensor
.
GetMultiIdxOffsets
());
const
auto
thread_idxs
=
detail
::
CalculateThreadMultiIdx
(
thread_layout
,
thread_id
);
// Apply projection on thread idxs to remove not needed idxs
const
auto
projected_thread_idxs
=
detail
::
ApplyProjection
(
thread_idxs
,
projection
);
const
auto
offset_multi_idxs
=
detail
::
CalculateOffsetMultiIdxs
(
projected_thread_idxs
,
partition_shape_seq
,
tensor
.
GetMultiIdxOffsets
());
// Create new layout and tensor
auto
&
flatten_desc
=
layout
(
tensor
).
GetUnrolledDescriptor
();
auto
&
unrolled_desc
=
layout
(
tensor
).
GetUnrolledDescriptor
();
// Slice descriptor
const
auto
transforms
=
generate_tuple
(
[
&
](
auto
i
)
{
return
make_slice_transform
(
partition_shape
.
At
(
i
),
offset_multi_idxs
.
At
(
i
),
partition_shape
.
At
(
i
)
+
offset_multi_idxs
.
At
(
i
));
},
Number
<
remove_reference_t
<
decltype
(
tensor_shape
)
>::
Size
()
>
{});
const
auto
lower_upper_dims
=
generate_tuple
([
&
](
auto
i
)
{
return
Sequence
<
i
.
value
>
{};
},
Number
<
remove_reference_t
<
decltype
(
tensor_shape
)
>::
Size
()
>
{});
auto
sliced_desc
=
transform_tensor_descriptor
(
unrolled_desc
,
transforms
,
lower_upper_dims
,
lower_upper_dims
);
// Create layout
const
auto
partition_layout
=
Layout
<
remove_reference_t
<
decltype
(
partition_shape
)
>
,
decltype
(
flatten
_desc
)
>
(
partition_shape
,
flatten
_desc
);
Layout
<
remove_reference_t
<
decltype
(
partition_shape
)
>
,
decltype
(
sliced
_desc
)
>
(
partition_shape
,
sliced
_desc
);
auto
partition_tensor
=
make_tensor
<
TensorType
::
TensorBufferAddressSpace
>
(
tensor
.
GetPointer
(),
partition_layout
);
// Apply offsets
partition_tensor
.
SetMultiIdxOffset
(
to_multi_index
(
offset_multi_idxs
));
return
partition_tensor
;
}
/**
* \brief Create local partition for thread (At now only packed partition
* is supported).
*
* \param tensor Tensor for partition.
* \param thread_lengths Layout of threads (could not be nested).
* \param thread_id Thread index represented as integer.
* \return Partition tensor.
*/
template
<
typename
TensorType
,
typename
ThreadShape
,
typename
ThreadUnrolledDesc
>
__host__
__device__
constexpr
auto
make_local_partition
(
TensorType
&
tensor
,
const
Layout
<
ThreadShape
,
ThreadUnrolledDesc
>&
thread_lengths
,
const
index_t
thread_id
)
{
const
auto
projection
=
detail
::
GenerateDefaultProjection
(
ThreadShape
{});
return
make_local_partition
(
tensor
,
thread_lengths
,
thread_id
,
projection
);
}
/**
* \brief Create local tile for thread block. (At now only packed tile
* is supported).
...
...
@@ -124,15 +330,24 @@ make_local_partition(TensorType& tensor,
*
* \param tensor Tensor for partition.
* \param tile_shape Shapes of requested tile.
* \param block_id Block index represented as integer.
* \param block_idxs Tuple of block indexes represented as integer. If slice,
* then get whole dim.
* \param projection Projection is used to remove selected dim from
* partitioning. Use `slice(X)` to remove dimension, where X is dim
* size. Use `Number<1>{}` to keep it.
* \return Tile tensor.
*/
template
<
typename
TensorType
,
typename
BlockShapeTuple
>
__host__
__device__
constexpr
auto
make_local_tile
(
const
TensorType
&
tensor
,
const
BlockShapeTuple
&
tile_shape
,
const
index_t
block_id
)
template
<
typename
TensorType
,
typename
BlockShapeTuple
,
typename
BlockIdxs
,
typename
ProjectionTuple
>
__host__
__device__
constexpr
auto
make_local_tile
(
const
TensorType
&
tensor
,
const
BlockShapeTuple
&
tile_shape
,
const
BlockIdxs
&
block_idxs
,
const
ProjectionTuple
&
projection
)
{
static_assert
(
!
IsNestedTuple
(
BlockShapeTuple
{}));
static_assert
(
!
IsNestedTuple
(
BlockIdxs
{}));
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
...
...
@@ -140,49 +355,82 @@ make_local_tile(const TensorType& tensor, const BlockShapeTuple& tile_shape, con
auto
&
aligned_desc
=
layout
(
tensor
).
GetMergedNestingDescriptor
();
if
constexpr
(
BlockShapeTuple
::
Size
()
==
I2
)
constexpr
auto
projected_tile_shape
=
detail
::
ApplyProjection
(
BlockShapeTuple
{},
ProjectionTuple
{});
// Number of dims which are partitioned
constexpr
auto
dims_to_partition
=
detail
::
GetDimsToPartition
(
BlockIdxs
{});
const
auto
parsed_block_idxs
=
detail
::
ReplaceSlicesWithZeros
(
block_idxs
);
if
constexpr
(
decltype
(
dims_to_partition
)
::
Size
()
==
I2
)
{
// Optimized version for 2d tile shape [MxK]
const
auto
shape_with_projection_dims
=
detail
::
CalculateShapeWithProjection
(
shape
(
tensor
),
projection
);
// Set Value for M, N partition
const
auto
M
=
shape_with_projection_dims
.
At
(
dims_to_partition
.
At
(
I0
));
const
auto
N
=
shape_with_projection_dims
.
At
(
dims_to_partition
.
At
(
I1
));
constexpr
auto
MPerBlock
=
BlockShapeTuple
{}.
At
(
dims_to_partition
.
At
(
I0
));
constexpr
auto
NPerBlock
=
BlockShapeTuple
{}.
At
(
dims_to_partition
.
At
(
I1
));
auto
m_n_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
M
,
N
));
// Get 1D block id
const
auto
grid_size
=
detail
::
CalculateGridSize
(
shape_with_projection_dims
,
tile_shape
);
const
auto
block_lengths_desc
=
make_naive_tensor_descriptor_packed
(
grid_size
);
const
index_t
block_id_1d
=
block_lengths_desc
.
CalculateOffset
(
parsed_block_idxs
);
// Optimized version for 2d tile shape [MxN]
const
auto
block_2_tile_map
=
BlockToCTileMap_M00_N0_M01Adapt
<
Block
ShapeTuple
{}.
At
(
I0
)
,
Block
ShapeTuple
{}.
At
(
I1
)
,
remove_cvref_t
<
decltype
(
aligned
_desc
)
>>
(
aligned
_desc
);
BlockToCTileMap_M00_N0_M01Adapt
<
MPer
Block
,
NPer
Block
,
remove_cvref_t
<
decltype
(
m_n
_desc
)
>>
(
m_n
_desc
);
const
auto
block_work_idx
=
block_2_tile_map
.
CalculateBottomIndex
(
make_multi_index
(
block_id
));
block_2_tile_map
.
CalculateBottomIndex
(
make_multi_index
(
block_id
_1d
));
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]
*
size
<
0
>
(
tile_shape
));
const
index_t
k_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I1
]
*
size
<
1
>
(
tile_shape
));
const
auto
offset_multi_idxs
=
make_tuple
(
m_block_data_idx_on_grid
,
k_block_data_idx_on_grid
);
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]
*
MPerBlock
);
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I1
]
*
NPerBlock
);
// Apply 0 for non partitioned dims
const
auto
offset_multi_idxs
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
dims_to_partition
.
At
(
I0
))
{
return
m_block_data_idx_on_grid
;
}
else
if
constexpr
(
i
==
dims_to_partition
.
At
(
I1
))
{
return
n_block_data_idx_on_grid
;
}
else
{
return
Number
<
0
>
{};
}
},
Number
<
BlockShapeTuple
::
Size
()
>
{});
const
auto
projected_offset_multi_idxs
=
detail
::
ApplyProjection
(
offset_multi_idxs
,
projection
);
// Create new layout and tensor
const
auto
tile_layout
=
Layout
<
remove_reference_t
<
decltype
(
tile_shape
)
>
,
decltype
(
aligned_desc
)
>
(
tile_shape
,
aligned_desc
);
Layout
<
remove_reference_t
<
decltype
(
projected_
tile_shape
)
>
,
decltype
(
aligned_desc
)
>
(
projected_tile_shape
,
aligned_desc
);
auto
tile_tensor
=
make_tensor
<
TensorType
::
TensorBufferAddressSpace
>
(
tensor
.
GetPointer
(),
tile_layout
);
// Apply offsets
tile_tensor
.
SetMultiIdxOffset
(
to_multi_index
(
offset_multi_idxs
));
tile_tensor
.
SetMultiIdxOffset
(
to_multi_index
(
projected_
offset_multi_idxs
));
return
tile_tensor
;
}
else
{
// Calculate offsets
// Sequence with data to process per block
constexpr
auto
tile_shape_seq
=
generate_sequence_v2
([](
auto
I
)
{
return
size
(
BlockShapeTuple
{}.
At
(
I
));
},
Number
<
BlockShapeTuple
::
Size
()
>
{});
using
ProjectedTileShapeTuple
=
decltype
(
projected_tile_shape
);
constexpr
auto
projected_tile_shape_seq
=
generate_sequence_v2
([](
auto
I
)
{
return
ProjectedTileShapeTuple
{}.
At
(
I
);
},
Number
<
ProjectedTileShapeTuple
::
Size
()
>
{});
// Tuple with number of blocks
const
auto
block_lengths
=
CalculateGridSize
(
shape
(
tensor
),
tile_shape
);
constexpr
auto
block_cluster_desc_
=
make_cluster_descriptor
(
block_lengths
);
const
auto
block_idxs
=
block_cluster_desc_
.
CalculateBottomIndex
(
make_multi_index
(
block_id
));
const
auto
offset_multi_idxs
=
CalculateOffsetMultiIdxs
(
block_idxs
,
tile_shape_seq
,
tensor
.
GetMultiIdxOffsets
());
const
auto
projected_block_idxs
=
to_multi_index
(
detail
::
ApplyProjection
(
parsed_block_idxs
,
projection
));
const
auto
offset_multi_idxs
=
detail
::
CalculateOffsetMultiIdxs
(
projected_block_idxs
,
projected_tile_shape_seq
,
tensor
.
GetMultiIdxOffsets
());
// Create new layout and tensor
const
auto
tile_layout
=
Layout
<
remove_reference_t
<
decltype
(
t
ile
_s
hape
)
>
,
decltype
(
aligned_desc
)
>
(
tile_shape
,
aligned_desc
);
Layout
<
remove_reference_t
<
ProjectedT
ile
S
hape
Tuple
>
,
decltype
(
aligned_desc
)
>
(
projected_tile_shape
,
aligned_desc
);
auto
tile_tensor
=
make_tensor
<
TensorType
::
TensorBufferAddressSpace
>
(
tensor
.
GetPointer
(),
tile_layout
);
// Apply offsets
...
...
@@ -191,5 +439,26 @@ make_local_tile(const TensorType& tensor, const BlockShapeTuple& tile_shape, con
}
}
/**
* \brief Create local tile for thread block. (At now only packed tile
* is supported).
*
* \note Currently to get the best performance please use 2d shape.
*
* \param tensor Tensor for partition.
* \param tile_shape Shapes of requested tile.
* \param block_idxs Tuple of block indexes represented as integer. If slice,
* then get whole dim.
* \return Tile tensor.
*/
template
<
typename
TensorType
,
typename
BlockShapeTuple
,
typename
BlockIdxs
>
__host__
__device__
constexpr
auto
make_local_tile
(
const
TensorType
&
tensor
,
const
BlockShapeTuple
&
tile_shape
,
const
BlockIdxs
&
block_idxs
)
{
const
auto
projection
=
detail
::
GenerateDefaultProjection
(
BlockShapeTuple
{});
return
make_local_tile
(
tensor
,
tile_shape
,
block_idxs
,
projection
);
}
}
// namespace wrapper
}
// namespace ck
include/ck/wrapper/utils/tensor_utils.hpp
View file @
41b920e2
...
...
@@ -5,6 +5,7 @@
#include "ck/ck.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/number.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/utility/tuple_helper.hpp"
...
...
@@ -19,9 +20,9 @@ namespace wrapper {
* \brief Memory type, allowed members:
* - Generic,
* - Global,
* - L
DS
,
* - S
GPR
,
* - V
GPR
,
* - L
ds
,
* - S
gpr
,
* - V
gpr
,
*/
using
MemoryTypeEnum
=
AddressSpaceEnum
;
...
...
@@ -52,12 +53,8 @@ struct Slice
__host__
__device__
constexpr
auto
range
(
const
T
&
dim
)
const
{
if
constexpr
(
is_same_v
<
FromType
,
index_t
>
||
is_same_v
<
ToType
,
index_t
>
||
is_same_v
<
T
,
index_t
>
)
is_same_v
<
std
::
remove_const_t
<
T
>
,
index_t
>
)
{
if
(
!
(
dim
>=
to_
&&
from_
>=
0
&&
(
to_
<
0
||
to_
>
from_
)))
{
throw
std
::
runtime_error
(
"Invalid range"
);
}
if
(
to_
<
0
)
{
return
dim
-
from_
+
to_
+
1
;
...
...
@@ -70,9 +67,10 @@ struct Slice
}
else
{
static_assert
(
dim
>=
to_
&&
from_
>=
Number
<
0
>
{}
&&
(
to_
<
0
||
to_
>
from_
),
static_assert
(
T
{}
>=
ToType
{}
&&
FromType
{}
>=
Number
<
0
>
{}
&&
(
ToType
{}
<
0
||
ToType
{}
>
FromType
{}),
"Invalid range"
);
if
constexpr
(
to_
<
0
)
if
constexpr
(
ToType
{}
<
0
)
{
return
dim
-
from_
+
to_
+
Number
<
1
>
{};
}
...
...
@@ -130,6 +128,23 @@ constexpr auto make_register_tensor(const Layout<Shape, UnrolledDescriptorType>&
return
Tensor
<
MemoryType
,
ElementType
,
Shape
,
UnrolledDescriptorType
>
(
layout
);
}
/**
* \brief Clear tensor. (Only for Vpgr/Sgpr)
*
* \param tensor Tensor to be cleared.
*/
template
<
MemoryTypeEnum
BufferAddressSpace
,
typename
ElementType
,
typename
Shape
,
typename
UnrolledDescriptorType
>
__host__
__device__
void
clear
(
Tensor
<
BufferAddressSpace
,
ElementType
,
Shape
,
UnrolledDescriptorType
>&
tensor
)
{
static_assert
(
!
Tensor
<
BufferAddressSpace
,
ElementType
,
Shape
,
UnrolledDescriptorType
>::
IsDynamicBuffer
);
return
tensor
.
GetBuffer
().
Clear
();
}
/**
* \brief Get Tensor Layout.
*
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp
View file @
41b920e2
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -25,25 +25,35 @@ template <ck::index_t NDimSpatial,
typename
InElementwiseOperation
,
typename
WeiElementwiseOperation
,
typename
OutElementwiseOperation
,
ck
::
index_t
NumAElementwiseTensor
=
0
,
ck
::
index_t
NumBElementwiseTensor
=
0
,
ck
::
index_t
NumDElementwiseTensor
=
0
,
typename
std
::
enable_if
<
NDimSpatial
>
=
1
&&
NDimSpatial
<=
3
,
bool
>::
type
=
false
>
struct
ReferenceConvBwdData
:
public
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
Tensor
<
InDataType
>&
input
,
const
Tensor
<
WeiDataType
>&
weight
,
const
Tensor
<
OutDataType
>&
output
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
)
Argument
(
Tensor
<
InDataType
>&
input
,
const
Tensor
<
WeiDataType
>&
weight
,
const
Tensor
<
OutDataType
>&
output
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
,
const
std
::
array
<
Tensor
<
InDataType
>
,
NumAElementwiseTensor
>&
elementwise_a_tensors
,
const
std
::
array
<
Tensor
<
WeiDataType
>
,
NumBElementwiseTensor
>&
elementwise_b_tensors
,
const
std
::
array
<
Tensor
<
OutDataType
>
,
NumDElementwiseTensor
>&
elementwise_d_tensors
)
:
input_
{
input
},
weight_
{
weight
},
output_
{
output
},
elementwise_a_tensors_
{
elementwise_a_tensors
},
elementwise_b_tensors_
{
elementwise_b_tensors
},
elementwise_d_tensors_
{
elementwise_d_tensors
},
conv_strides_
{
conv_filter_strides
},
conv_dilations_
{
conv_filter_dilations
},
in_left_pads_
{
input_left_pads
},
...
...
@@ -58,6 +68,10 @@ struct ReferenceConvBwdData : public device::BaseOperator
const
Tensor
<
WeiDataType
>&
weight_
;
const
Tensor
<
OutDataType
>&
output_
;
const
std
::
array
<
Tensor
<
InDataType
>
,
NumAElementwiseTensor
>&
elementwise_a_tensors_
;
const
std
::
array
<
Tensor
<
WeiDataType
>
,
NumBElementwiseTensor
>&
elementwise_b_tensors_
;
const
std
::
array
<
Tensor
<
OutDataType
>
,
NumDElementwiseTensor
>&
elementwise_d_tensors_
;
std
::
vector
<
index_t
>
conv_strides_
;
std
::
vector
<
index_t
>
conv_dilations_
;
std
::
vector
<
index_t
>
in_left_pads_
;
...
...
@@ -106,26 +120,46 @@ struct ReferenceConvBwdData : public device::BaseOperator
{
for
(
std
::
size_t
k
=
0
;
k
<
K
;
++
k
)
{
float
v_out
=
0
;
float
v_wei
=
0
;
arg
.
out_element_op_
(
v_out
,
ck
::
type_convert
<
float
>
(
arg
.
output_
(
g
,
n
,
k
,
wo
)));
arg
.
wei_element_op_
(
v_wei
,
ck
::
type_convert
<
float
>
(
arg
.
weight_
(
g
,
k
,
c
,
x
)));
v_acc
+=
v_out
*
v_wei
;
OutDataType
v_out
;
WeiDataType
v_wei
;
ExecuteElementwiseOp
(
arg
.
out_element_op_
,
arg
.
elementwise_a_tensors_
,
Number
<
NumAElementwiseTensor
>
{},
v_out
,
arg
.
output_
(
g
,
n
,
k
,
wo
),
g
,
n
,
k
,
wo
);
ExecuteElementwiseOp
(
arg
.
wei_element_op_
,
arg
.
elementwise_b_tensors_
,
Number
<
NumBElementwiseTensor
>
{},
v_wei
,
arg
.
weight_
(
g
,
k
,
c
,
x
),
g
,
k
,
c
,
x
);
v_acc
+=
ck
::
type_convert
<
float
>
(
v_out
)
*
ck
::
type_convert
<
float
>
(
v_wei
);
}
}
}
}
float
v_in
;
arg
.
in_element_op_
(
v_in
,
v_acc
);
arg
.
input_
(
g
,
n
,
c
,
wi
)
=
ck
::
type_convert
<
InDataType
>
(
v_in
);
InDataType
v_acc_converted
=
ck
::
type_convert
<
InDataType
>
(
v_acc
);
InDataType
&
v_in
=
arg
.
input_
(
g
,
n
,
c
,
wi
);
ExecuteElementwiseOp
(
arg
.
in_element_op_
,
arg
.
elementwise_d_tensors_
,
Number
<
NumDElementwiseTensor
>
{},
v_in
,
v_acc_converted
,
g
,
n
,
c
,
wi
);
};
make_ParallelTensorFunctor
(
f_ncw
,
...
...
@@ -175,20 +209,34 @@ struct ReferenceConvBwdData : public device::BaseOperator
{
for
(
std
::
size_t
k
=
0
;
k
<
K
;
++
k
)
{
float
v_out
=
0
;
float
v_wei
=
0
;
OutDataType
v_out
;
WeiDataType
v_wei
;
arg
.
out_element_op_
(
ExecuteElementwiseOp
(
arg
.
out_element_op_
,
arg
.
elementwise_a_tensors_
,
Number
<
NumAElementwiseTensor
>
{},
v_out
,
ck
::
type_convert
<
float
>
(
arg
.
output_
(
g
,
n
,
k
,
ho
,
wo
)));
arg
.
wei_element_op_
(
arg
.
output_
(
g
,
n
,
k
,
ho
,
wo
),
g
,
n
,
k
,
ho
,
wo
);
ExecuteElementwiseOp
(
arg
.
wei_element_op_
,
arg
.
elementwise_b_tensors_
,
Number
<
NumBElementwiseTensor
>
{},
v_wei
,
ck
::
type_convert
<
float
>
(
arg
.
weight_
(
g
,
k
,
c
,
y
,
x
)));
v_acc
+=
v_out
*
v_wei
;
arg
.
weight_
(
g
,
k
,
c
,
y
,
x
),
g
,
k
,
c
,
y
,
x
);
v_acc
+=
ck
::
type_convert
<
float
>
(
v_out
)
*
ck
::
type_convert
<
float
>
(
v_wei
);
}
}
}
...
...
@@ -197,11 +245,18 @@ struct ReferenceConvBwdData : public device::BaseOperator
}
}
float
v_in
;
arg
.
in_element_op_
(
v_in
,
v_acc
);
arg
.
input_
(
g
,
n
,
c
,
hi
,
wi
)
=
ck
::
type_convert
<
InDataType
>
(
v_in
);
InDataType
v_acc_converted
=
ck
::
type_convert
<
InDataType
>
(
v_acc
);
InDataType
&
v_in
=
arg
.
input_
(
g
,
n
,
c
,
hi
,
wi
);
ExecuteElementwiseOp
(
arg
.
in_element_op_
,
arg
.
elementwise_d_tensors_
,
Number
<
NumDElementwiseTensor
>
{},
v_in
,
v_acc_converted
,
g
,
n
,
c
,
hi
,
wi
);
};
make_ParallelTensorFunctor
(
f_nchw
,
...
...
@@ -270,20 +325,37 @@ struct ReferenceConvBwdData : public device::BaseOperator
{
for
(
std
::
size_t
k
=
0
;
k
<
K
;
++
k
)
{
float
v_out
=
0
;
float
v_wei
=
0
;
OutDataType
v_out
;
WeiDataType
v_wei
;
arg
.
out_element_op_
(
ExecuteElementwiseOp
(
arg
.
out_element_op_
,
arg
.
elementwise_a_tensors_
,
Number
<
NumAElementwiseTensor
>
{},
v_out
,
ck
::
type_convert
<
float
>
(
arg
.
output_
(
g
,
n
,
k
,
do_
,
ho
,
wo
)));
arg
.
wei_element_op_
(
arg
.
output_
(
g
,
n
,
k
,
do_
,
ho
,
wo
),
g
,
n
,
k
,
do_
,
ho
,
wo
);
ExecuteElementwiseOp
(
arg
.
wei_element_op_
,
arg
.
elementwise_b_tensors_
,
Number
<
NumBElementwiseTensor
>
{},
v_wei
,
ck
::
type_convert
<
float
>
(
arg
.
weight_
(
g
,
k
,
c
,
z
,
y
,
x
)));
v_acc
+=
v_out
*
v_wei
;
arg
.
weight_
(
g
,
k
,
c
,
z
,
y
,
x
),
g
,
k
,
c
,
z
,
y
,
x
);
v_acc
+=
ck
::
type_convert
<
float
>
(
v_out
)
*
ck
::
type_convert
<
float
>
(
v_wei
);
}
}
}
...
...
@@ -295,11 +367,19 @@ struct ReferenceConvBwdData : public device::BaseOperator
}
}
float
v_in
;
arg
.
in_element_op_
(
v_in
,
v_acc
);
arg
.
input_
(
g
,
n
,
c
,
di
,
hi
,
wi
)
=
ck
::
type_convert
<
InDataType
>
(
v_in
);
InDataType
v_acc_converted
=
ck
::
type_convert
<
InDataType
>
(
v_acc
);
InDataType
&
v_in
=
arg
.
input_
(
g
,
n
,
c
,
di
,
hi
,
wi
);
ExecuteElementwiseOp
(
arg
.
in_element_op_
,
arg
.
elementwise_d_tensors_
,
Number
<
NumDElementwiseTensor
>
{},
v_in
,
v_acc_converted
,
g
,
n
,
c
,
di
,
hi
,
wi
);
};
make_ParallelTensorFunctor
(
f_ncdhw
,
...
...
@@ -325,6 +405,36 @@ struct ReferenceConvBwdData : public device::BaseOperator
}
};
template
<
typename
...
Args
,
typename
ElementwiseOp
,
typename
ElementwiseTensor
,
typename
NumTensor
,
typename
T
>
static
void
ExecuteElementwiseOp
(
ElementwiseOp
&
elementwise_op
,
ElementwiseTensor
&
elementwise_tensors
,
NumTensor
,
T
&
y
,
const
T
&
x
,
Args
...
dims
)
{
if
constexpr
(
NumTensor
::
value
==
0
)
{
elementwise_op
(
y
,
x
);
}
else
if
constexpr
(
NumTensor
::
value
==
1
)
{
elementwise_op
(
y
,
x
,
elementwise_tensors
[
0
](
dims
...));
}
else
if
constexpr
(
NumTensor
::
value
==
2
)
{
elementwise_op
(
y
,
x
,
elementwise_tensors
[
0
](
dims
...),
elementwise_tensors
[
1
](
dims
...));
}
else
{
throw
std
::
runtime_error
(
"ElementOp not supported in reference."
);
}
}
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
...
...
@@ -333,16 +443,20 @@ struct ReferenceConvBwdData : public device::BaseOperator
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
Tensor
<
InDataType
>&
input
,
const
Tensor
<
WeiDataType
>&
weight
,
const
Tensor
<
OutDataType
>&
output
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
)
static
auto
MakeArgument
(
Tensor
<
InDataType
>&
input
,
const
Tensor
<
WeiDataType
>&
weight
,
const
Tensor
<
OutDataType
>&
output
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
,
const
std
::
array
<
Tensor
<
InDataType
>
,
NumAElementwiseTensor
>&
elementwise_a_tensors
=
{},
const
std
::
array
<
Tensor
<
WeiDataType
>
,
NumBElementwiseTensor
>&
elementwise_b_tensors
=
{},
const
std
::
array
<
Tensor
<
OutDataType
>
,
NumDElementwiseTensor
>&
elementwise_d_tensors
=
{})
{
return
Argument
{
input
,
weight
,
...
...
@@ -353,7 +467,10 @@ struct ReferenceConvBwdData : public device::BaseOperator
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
};
out_element_op
,
elementwise_a_tensors
,
elementwise_b_tensors
,
elementwise_d_tensors
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
...
...
library/include/ck/library/tensor_operation_instance/device_operation_instance_factory.hpp
View file @
41b920e2
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -98,6 +98,8 @@ using Scale = ck::tensor_operation::element_wise::Scale;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
using
AddAddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
AddAddFastGelu
;
using
AddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
AddFastGelu
;
using
AddRelu
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
using
AddSilu
=
ck
::
tensor_operation
::
element_wise
::
AddSilu
;
using
AddReluAdd
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
using
FastGelu
=
ck
::
tensor_operation
::
element_wise
::
FastGelu
;
using
AddMultiply
=
ck
::
tensor_operation
::
element_wise
::
AddMultiply
;
...
...
library/include/ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_instance.hpp
0 → 100644
View file @
41b920e2
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#ifdef CK_ENABLE_FP8
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F32
=
float
;
using
F8
=
f8_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
template
<
ck
::
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
>
using
device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_instances
=
std
::
tuple
<
// clang-format off
//#####################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//#####################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//#####################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//#####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
4
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
16
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
64
,
16
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
64
,
64
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
64
,
128
,
64
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
// clang-format on
>
;
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
library/include/ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_instance.hpp
→
library/include/ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_
v1_interwave_
instance.hpp
View file @
41b920e2
...
...
@@ -27,32 +27,13 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
template
<
ck
::
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
>
using
device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_instances
=
std
::
tuple
<
using
device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_
v1_interwave_
instances
=
std
::
tuple
<
// clang-format off
//#####################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//#####################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//#####################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//#####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
4
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
16
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
64
,
16
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
64
,
64
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
64
,
128
,
64
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
#if CK_EXPERIMENTAL_INTER_WAVE_INSTANCES
// pipeline v1, 2 waves
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
4
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
...
...
@@ -69,32 +50,8 @@ using device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_instances = std::tuple<
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
#endif
#if 0
//CK_EXPERIMENTAL_PIPELINE_V2_INSTANCES
// pipeline v2, 1 wave
,
DeviceGemm_Xdl_CShuffle< Row, Row, Row, F8, F8, F8, F32, F8, PassThrough, PassThrough, PassThrough, GemmSpec, 1, 256, 256, 128, 64, 16, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 64, 1, 4>, 16, LoopScheduler::Default, PipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle< Row, Row, Row, F8, F8, F8, F32, F8, PassThrough, PassThrough, PassThrough, GemmSpec, 1, 256, 256, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 1, S<1, 64, 1, 4>, 16, LoopScheduler::Default, PipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle< Row, Row, Row, F8, F8, F8, F32, F8, PassThrough, PassThrough, PassThrough, GemmSpec, 1, 256, 128, 256, 64, 16, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 64, 1, 4>, 16, LoopScheduler::Default, PipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle< Row, Row, Row, F8, F8, F8, F32, F8, PassThrough, PassThrough, PassThrough, GemmSpec, 1, 256, 128, 256, 64, 16, 16, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 16, 1, 1, 1, S<1, 64, 1, 4>, 16, LoopScheduler::Default, PipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle< Row, Row, Row, F8, F8, F8, F32, F8, PassThrough, PassThrough, PassThrough, GemmSpec, 1, 128, 128, 128, 64, 16, 4, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 32, 1, 4>, 16, LoopScheduler::Default, PipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle< Row, Row, Row, F8, F8, F8, F32, F8, PassThrough, PassThrough, PassThrough, GemmSpec, 1, 128, 128, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 16, 1, 1, 1, S<1, 32, 1, 4>, 16, LoopScheduler::Default, PipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle< Row, Row, Row, F8, F8, F8, F32, F8, PassThrough, PassThrough, PassThrough, GemmSpec, 1, 256, 128, 128, 64, 16, 4, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 64, 1, 4>, 16, LoopScheduler::Default, PipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle< Row, Row, Row, F8, F8, F8, F32, F8, PassThrough, PassThrough, PassThrough, GemmSpec, 1, 256, 128, 128, 64, 16, 16, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 1, S<1, 64, 1, 4>, 16, LoopScheduler::Default, PipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle< Row, Row, Row, F8, F8, F8, F32, F8, PassThrough, PassThrough, PassThrough, GemmSpec, 1, 128, 128, 64, 64, 16, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 64, 1, 2>, 16, LoopScheduler::Default, PipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle< Row, Row, Row, F8, F8, F8, F32, F8, PassThrough, PassThrough, PassThrough, GemmSpec, 1, 128, 128, 64, 64, 16, 16, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 1, S<1, 64, 1, 2>, 16, LoopScheduler::Default, PipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle< Row, Row, Row, F8, F8, F8, F32, F8, PassThrough, PassThrough, PassThrough, GemmSpec, 1, 128, 64, 128, 64, 16, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 32, 1, 4>, 16, LoopScheduler::Default, PipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle< Row, Row, Row, F8, F8, F8, F32, F8, PassThrough, PassThrough, PassThrough, GemmSpec, 1, 128, 64, 128, 64, 16, 16, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 16, 1, 1, 1, S<1, 32, 1, 4>, 16, LoopScheduler::Default, PipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle< Row, Row, Row, F8, F8, F8, F32, F8, PassThrough, PassThrough, PassThrough, GemmSpec, 1, 256, 128, 64, 64, 16, 4, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 64, 1, 4>, 16, LoopScheduler::Default, PipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle< Row, Row, Row, F8, F8, F8, F32, F8, PassThrough, PassThrough, PassThrough, GemmSpec, 1, 256, 128, 64, 64, 16, 16, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 16, 1, 1, 1, S<1, 64, 1, 4>, 16, LoopScheduler::Default, PipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle< Row, Row, Row, F8, F8, F8, F32, F8, PassThrough, PassThrough, PassThrough, GemmSpec, 1, 256, 64, 128, 64, 16, 4, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 64, 1, 4>, 16, LoopScheduler::Default, PipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle< Row, Row, Row, F8, F8, F8, F32, F8, PassThrough, PassThrough, PassThrough, GemmSpec, 1, 256, 64, 128, 64, 16, 16, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 1, S<1, 64, 1, 4>, 16, LoopScheduler::Default, PipelineVersion::v2>
#endif
// clang-format on
>
;
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
...
...
library/include/ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_instance.hpp
0 → 100644
View file @
41b920e2
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#ifdef CK_ENABLE_FP8
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F32
=
float
;
using
F8
=
f8_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
template
<
ck
::
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
>
using
device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v2_instances
=
std
::
tuple
<
// clang-format off
//#####################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//#####################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//#####################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//#####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v2, 1 wave
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
4
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
16
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
64
,
16
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
64
,
64
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
64
,
128
,
64
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
// clang-format on
>
;
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
View file @
41b920e2
...
...
@@ -345,11 +345,27 @@ void add_device_gemm_xdl_c_shuffle_f8_f8_f8_km_nk_mn_instances(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Col
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_default_instances
(
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_
v1_
default_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_padded_instances
(
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_interwave_default_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v2_default_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_padded_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_interwave_padded_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v2_padded_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
...
...
@@ -579,8 +595,14 @@ struct DeviceOperationInstanceFactory<
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_padded_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_default_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_padded_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_interwave_padded_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v2_padded_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_default_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_interwave_default_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v2_default_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
...
...
library/include/ck/library/tensor_operation_instance/gpu/gemm_add.hpp
0 → 100644
View file @
41b920e2
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
Add
>>>&
);
void
add_device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
Add
>>>&
);
// GEMM + Add +
template
<
typename
ALayout
,
typename
BLayout
,
typename
D0Layout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
D0DataType
,
typename
EDataType
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
>
,
EDataType
,
PassThrough
,
PassThrough
,
Add
>>
{
using
DeviceOp
=
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
>
,
EDataType
,
PassThrough
,
PassThrough
,
Add
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#if defined(CK_ENABLE_INT8) && defined(CK_ENABLE_FP16)
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
#if defined(CK_ENABLE_INT8) && defined(CK_ENABLE_BF16)
if
constexpr
(
is_same_v
<
ADataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
EDataType
,
ck
::
bhalf_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_fastgelu.hpp
View file @
41b920e2
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -68,6 +68,32 @@ void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_inst
PassThrough
,
AddFastGelu
>>>&
);
void
add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
AddFastGelu
>>>&
);
void
add_device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
AddFastGelu
>>>&
);
// GEMM + Add + FastGelu
template
<
typename
ALayout
,
typename
BLayout
,
...
...
@@ -106,6 +132,32 @@ struct DeviceOperationInstanceFactory<
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#if defined(CK_ENABLE_INT8) && defined(CK_ENABLE_FP16)
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
#if defined(CK_ENABLE_BF16) && defined(CK_ENABLE_INT8)
if
constexpr
(
is_same_v
<
ADataType
,
bhalf_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
bhalf_t
>
&&
is_same_v
<
EDataType
,
bhalf_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
half_t
>
&&
is_same_v
<
D0DataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
...
...
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_relu.hpp
0 → 100644
View file @
41b920e2
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
AddRelu
>>>&
);
void
add_device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
AddRelu
>>>&
);
// GEMM + Add + Relu
template
<
typename
ALayout
,
typename
BLayout
,
typename
D0Layout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
D0DataType
,
typename
EDataType
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
>
,
EDataType
,
PassThrough
,
PassThrough
,
AddRelu
>>
{
using
DeviceOp
=
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
>
,
EDataType
,
PassThrough
,
PassThrough
,
AddRelu
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#if defined(CK_ENABLE_INT8) && defined(CK_ENABLE_FP16)
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
#if defined(CK_ENABLE_INT8) && defined(CK_ENABLE_BF16)
if
constexpr
(
is_same_v
<
ADataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
EDataType
,
ck
::
bhalf_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_silu.hpp
0 → 100644
View file @
41b920e2
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_gemm_add_silu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
AddSilu
>>>&
);
void
add_device_gemm_add_silu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
AddSilu
>>>&
);
// GEMM + Add + Silu
template
<
typename
ALayout
,
typename
BLayout
,
typename
D0Layout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
D0DataType
,
typename
EDataType
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
>
,
EDataType
,
PassThrough
,
PassThrough
,
AddSilu
>>
{
using
DeviceOp
=
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
>
,
EDataType
,
PassThrough
,
PassThrough
,
AddSilu
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#if defined(CK_ENABLE_INT8) && defined(CK_ENABLE_FP16)
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_silu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
#if defined(CK_ENABLE_INT8) && defined(CK_ENABLE_BF16)
if
constexpr
(
is_same_v
<
ADataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
EDataType
,
ck
::
bhalf_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_silu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/gemm_splitk.hpp
View file @
41b920e2
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -27,12 +27,67 @@ void add_device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instances(
DeviceGemmSplitK
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances
(
void
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_
v1_
instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances
(
void
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v1_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v1_interwave_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v1_interwave_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v2_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v2_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v1_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v1_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v1_interwave_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v1_interwave_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v2_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v2_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_lds_direct_load_f16_f16_f16_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
...
...
@@ -69,7 +124,17 @@ void add_device_gemm_xdl_splitk_f8_f16_f16_km_nk_mn_instances(
DeviceGemmSplitK
<
Col
,
Col
,
Row
,
F8
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_instances
(
void
add_device_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_v1_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Row
,
Row
,
F8
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_v1_interwave_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Row
,
Row
,
F8
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_v2_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Row
,
Row
,
F8
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
...
...
@@ -89,12 +154,42 @@ void add_device_gemm_xdl_splitk_f16_f8_f16_km_nk_mn_instances(
DeviceGemmSplitK
<
Col
,
Col
,
Row
,
F16
,
F8
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_instances
(
void
add_device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_v1_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Row
,
Row
,
F16
,
F8
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_v1_interwave_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Row
,
Row
,
F16
,
F8
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_v2_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Row
,
Row
,
F16
,
F8
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Row
,
Row
,
F16
,
F8
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_instances
(
void
add_device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_v1_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Col
,
Row
,
F16
,
F8
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_v1_interwave_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Col
,
Row
,
F16
,
F8
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_v2_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Col
,
Row
,
F16
,
F8
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_kpb128_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Col
,
Row
,
F16
,
F8
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
...
...
@@ -186,12 +281,25 @@ struct DeviceOperationInstanceFactory<
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v1_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v1_irregular_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v1_interwave_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v1_interwave_irregular_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v2_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v2_irregular_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v1_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v1_irregular_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v1_interwave_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v1_interwave_irregular_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v2_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v2_irregular_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_lds_direct_load_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
...
...
@@ -212,7 +320,9 @@ struct DeviceOperationInstanceFactory<
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_v1_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_v1_interwave_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_v2_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
...
...
@@ -236,12 +346,18 @@ struct DeviceOperationInstanceFactory<
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_v1_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_v1_interwave_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_v2_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_irregular_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_v1_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_v1_interwave_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_v2_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_kpb128_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
...
...
library/include/ck/library/tensor_operation_instance/gpu/gemm_streamk.hpp
View file @
41b920e2
...
...
@@ -83,12 +83,22 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmSt
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v1_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v1_irregular_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v1_interwave_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v1_interwave_irregular_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v2_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v2_irregular_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v1_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v1_irregular__instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v1_interwave_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v1_interwave_irregular_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v2_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v2_irregular_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_data/device_grouped_conv_bwd_data_wmma_instance.hpp
→
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_data/device_grouped_conv_bwd_data_wmma_
f16_
instance.hpp
View file @
41b920e2
File moved
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_data/device_grouped_conv_bwd_data_wmma_i8_instance.hpp
0 → 100644
View file @
41b920e2
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_data_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_wmma_cshuffle.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
I8
=
int8_t
;
using
I32
=
int32_t
;
using
Empty_Tuple
=
ck
::
Tuple
<>
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
namespace
ck
::
tensor_layout
::
convolution
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvBwdDataDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
::
Default
;
static
constexpr
auto
ConvBwdData1x1S1P0
=
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
::
Filter1x1Stride1Pad0
;
template
<
index_t
NDSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
DsDatatype
,
typename
CDEElementOp
,
ConvolutionBackwardDataSpecialization
ConvSpec
>
using
device_grouped_conv_bwd_data_wmma_f16_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| ConvForward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
64
,
64
,
4
,
8
,
16
,
16
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
1
>
,
// blocksize=256
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
256
,
128
,
256
,
8
,
8
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
256
,
64
,
256
,
8
,
8
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
256
,
128
,
256
,
8
,
8
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
256
,
128
,
64
,
8
,
8
,
16
,
16
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
// blocksize=128
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
64
,
128
,
8
,
8
,
16
,
16
,
2
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
64
,
128
,
8
,
8
,
16
,
16
,
2
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
128
,
64
,
8
,
8
,
16
,
16
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
128
,
128
,
8
,
8
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
32
,
256
,
8
,
8
,
16
,
16
,
1
,
8
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
// blocksize=64
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
64
,
32
,
64
,
8
,
8
,
16
,
16
,
1
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
64
,
64
,
64
,
8
,
8
,
16
,
16
,
2
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
64
,
32
,
64
,
8
,
8
,
16
,
16
,
1
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
64
,
32
,
128
,
8
,
8
,
16
,
16
,
1
,
8
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
,
// blocksize=32
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
32
,
16
,
64
,
8
,
8
,
16
,
16
,
1
,
4
,
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
32
,
64
,
32
,
8
,
8
,
16
,
16
,
4
,
2
,
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
32
,
32
,
32
,
8
,
8
,
16
,
16
,
2
,
2
,
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
32
,
16
,
32
,
8
,
8
,
16
,
16
,
1
,
2
,
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
>
// clang-format on
>
;
template
<
index_t
NDSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
DsDatatype
,
typename
CDEElementOp
,
ConvolutionBackwardDataSpecialization
ConvSpec
>
using
device_grouped_conv_bwd_data_wmma_i8_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| ConvForward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
64
,
64
,
4
,
16
,
16
,
16
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
1
>
,
// blocksize=256
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
256
,
64
,
256
,
8
,
16
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
// blocksize=128
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
64
,
256
,
8
,
16
,
16
,
16
,
2
,
8
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
64
,
128
,
8
,
16
,
16
,
16
,
2
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
128
,
256
,
8
,
16
,
16
,
16
,
4
,
8
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
32
,
256
,
8
,
16
,
16
,
16
,
1
,
8
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
256
,
128
,
8
,
16
,
16
,
16
,
8
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
// blocksize=64
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
64
,
32
,
128
,
8
,
16
,
16
,
16
,
1
,
8
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
64
,
64
,
128
,
8
,
16
,
16
,
16
,
2
,
8
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
64
,
32
,
128
,
8
,
16
,
16
,
16
,
1
,
8
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
64
,
32
,
64
,
8
,
16
,
16
,
16
,
1
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
,
// blocksize=32
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
32
,
16
,
64
,
8
,
16
,
16
,
16
,
1
,
4
,
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
32
,
64
,
64
,
8
,
16
,
16
,
16
,
4
,
4
,
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
32
,
32
,
32
,
8
,
16
,
16
,
16
,
2
,
2
,
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
16
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
32
,
16
,
64
,
8
,
16
,
16
,
16
,
1
,
4
,
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
>
// clang-format on
>
;
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_data/device_grouped_conv_bwd_data_xdl_bilinear_instance.hpp
0 → 100644
View file @
41b920e2
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
BF16
=
ck
::
bhalf_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
BF8
=
ck
::
bf8_t
;
using
F8
=
ck
::
f8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
namespace
ck
::
tensor_layout
::
convolution
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
static
constexpr
auto
ConvBwdDataDefault
=
ConvolutionBackwardDataSpecialization
::
Default
;
static
constexpr
auto
ConvBwdDataFilter1x1Stride1Pad0
=
ConvolutionBackwardDataSpecialization
::
Filter1x1Stride1Pad0
;
// f16_f16_f32_f16
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionBackwardDataSpecialization
ConvSpec
>
using
device_grouped_conv_bwd_data_xdl_bilinear_f16_instances
=
std
::
tuple
<
// clang-format off
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
1
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
// bf16_bf16_f32_bf16
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionBackwardDataSpecialization
ConvSpec
>
using
device_grouped_conv_bwd_data_xdl_bilinear_bf16_instances
=
std
::
tuple
<
// clang-format off
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
1
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
// f32_f32_f32_f32
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionBackwardDataSpecialization
ConvSpec
>
using
device_grouped_conv_bwd_data_xdl_bilinear_f32_instances
=
std
::
tuple
<
// clang-format off
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
1
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
// clang-format on
>
;
// f16_f16_f16_comp_f8
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionBackwardDataSpecialization
ConvSpec
>
using
device_grouped_conv_bwd_data_xdl_bilinear_input_fp16_comp_bf8f8_instances
=
std
::
tuple
<
// clang-format off
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F32
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
BF8
,
F8
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F32
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
,
LoopScheduler
::
Default
,
BF8
,
F8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F32
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
BF8
,
F8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F32
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
,
LoopScheduler
::
Default
,
BF8
,
F8
>
// clang-format on
>
;
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_bilinear_instance.hpp
0 → 100644
View file @
41b920e2
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
BF16
=
ck
::
bhalf_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
namespace
ck
::
tensor_layout
::
convolution
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
ConvFwd1x1P0
=
ConvolutionForwardSpecialization
::
Filter1x1Pad0
;
static
constexpr
auto
ConvFwd1x1S1P0
=
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
;
static
constexpr
auto
ConvFwdOddC
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
OddC
;
static
constexpr
auto
GemmMNKPadding
=
GemmSpecialization
::
MNKPadding
;
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionForwardSpecialization
ConvSpec
>
using
device_grouped_conv_fwd_xdl_bilinear_bf16_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
ck
::
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
ck
::
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
ck
::
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
ck
::
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionForwardSpecialization
ConvSpec
>
using
device_grouped_conv_fwd_xdl_bilinear_f16_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionForwardSpecialization
ConvSpec
>
using
device_grouped_conv_fwd_xdl_bilinear_f32_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
ck
::
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
ck
::
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
ck
::
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
ck
::
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
// clang-format on
>
;
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionForwardSpecialization
ConvSpec
>
using
device_grouped_conv_fwd_xdl_bilinear_int8_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int8_t
,
ck
::
Tuple
<
int8_t
>
,
int8_t
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int8_t
,
ck
::
Tuple
<
int8_t
>
,
int8_t
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int8_t
,
ck
::
Tuple
<
int8_t
>
,
int8_t
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int8_t
,
ck
::
Tuple
<
int8_t
>
,
int8_t
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data_bilinear.hpp
0 → 100644
View file @
41b920e2
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
#ifdef CK_ENABLE_FP16
void
add_device_grouped_conv3d_bwd_data_xdl_bilinear_ndhwgk_gkzyxc_ndhwgc_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
3
,
NDHWGK
,
GKZYXC
,
Tuple
<
NDHWGC
>
,
NDHWGC
,
F16
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
);
#endif
#ifdef CK_ENABLE_FP32
void
add_device_grouped_conv3d_bwd_data_xdl_bilinear_ndhwgk_gkzyxc_ndhwgc_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
3
,
NDHWGK
,
GKZYXC
,
Tuple
<
NDHWGC
>
,
NDHWGC
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
);
#endif
#ifdef CK_ENABLE_BF16
void
add_device_grouped_conv3d_bwd_data_xdl_bilinear_ndhwgk_gkzyxc_ndhwgc_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
3
,
NDHWGK
,
GKZYXC
,
Tuple
<
NDHWGC
>
,
NDHWGC
,
BF16
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
);
#endif
template
<
ck
::
index_t
NumDimSpatial
,
typename
OutLayout
,
typename
WeiLayout
,
typename
InLayout
,
typename
OutDataType
,
typename
WeiDataType
,
typename
InDataType
,
typename
ComputeTypeA
,
typename
ComputeTypeB
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdDataMultipleD
<
NumDimSpatial
,
OutLayout
,
WeiLayout
,
Tuple
<
InLayout
>
,
InLayout
,
OutDataType
,
WeiDataType
,
Tuple
<
InDataType
>
,
InDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
Bilinear
,
ComputeTypeA
,
ComputeTypeB
>>
{
using
DeviceOp
=
DeviceGroupedConvBwdDataMultipleD
<
NumDimSpatial
,
OutLayout
,
WeiLayout
,
Tuple
<
InLayout
>
,
InLayout
,
OutDataType
,
WeiDataType
,
Tuple
<
InDataType
>
,
InDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
Bilinear
,
ComputeTypeA
,
ComputeTypeB
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
if
constexpr
(
NumDimSpatial
==
3
)
{
if
constexpr
(
is_same_v
<
InLayout
,
NDHWGC
>
&&
is_same_v
<
WeiLayout
,
GKZYXC
>
&&
is_same_v
<
OutLayout
,
NDHWGK
>
)
{
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataType
,
F16
>
&&
is_same_v
<
WeiDataType
,
F16
>
&&
is_same_v
<
OutDataType
,
F16
>
&&
is_same_v
<
ComputeTypeA
,
F16
>
&&
is_same_v
<
ComputeTypeB
,
F16
>
)
{
add_device_grouped_conv3d_bwd_data_xdl_bilinear_ndhwgk_gkzyxc_ndhwgc_f16_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_FP32
else
if
constexpr
(
is_same_v
<
InDataType
,
F32
>
&&
is_same_v
<
WeiDataType
,
F32
>
&&
is_same_v
<
OutDataType
,
F32
>
&&
is_same_v
<
ComputeTypeA
,
F32
>
&&
is_same_v
<
ComputeTypeB
,
F32
>
)
{
add_device_grouped_conv3d_bwd_data_xdl_bilinear_ndhwgk_gkzyxc_ndhwgc_f32_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_BF16
else
if
constexpr
(
is_same_v
<
InDataType
,
BF16
>
&&
is_same_v
<
WeiDataType
,
BF16
>
&&
is_same_v
<
OutDataType
,
BF16
>
&&
is_same_v
<
ComputeTypeA
,
BF16
>
&&
is_same_v
<
ComputeTypeB
,
BF16
>
)
{
add_device_grouped_conv3d_bwd_data_xdl_bilinear_ndhwgk_gkzyxc_ndhwgc_bf16_instances
(
op_ptrs
);
}
#endif
}
}
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Prev
1
…
8
9
10
11
12
13
14
15
16
…
18
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment