Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
4100d1d8
Commit
4100d1d8
authored
Aug 23, 2023
by
Alan Turner
Browse files
Merge remote-tracking branch 'origin/develop' into migx-flash-attn
parents
48717006
c8a8385f
Changes
609
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
777 additions
and
116 deletions
+777
-116
example/20_grouped_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
...d_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
+18
-13
example/21_gemm_layernorm/CMakeLists.txt
example/21_gemm_layernorm/CMakeLists.txt
+2
-0
example/22_cgemm/CMakeLists.txt
example/22_cgemm/CMakeLists.txt
+15
-10
example/24_batched_gemm/CMakeLists.txt
example/24_batched_gemm/CMakeLists.txt
+16
-12
example/25_gemm_bias_e_permute/CMakeLists.txt
example/25_gemm_bias_e_permute/CMakeLists.txt
+4
-2
example/26_contraction/CMakeLists.txt
example/26_contraction/CMakeLists.txt
+8
-5
example/27_layernorm/CMakeLists.txt
example/27_layernorm/CMakeLists.txt
+4
-2
example/28_grouped_gemm_bias_e_permute/CMakeLists.txt
example/28_grouped_gemm_bias_e_permute/CMakeLists.txt
+3
-1
example/29_batched_gemm_bias_e_permute/CMakeLists.txt
example/29_batched_gemm_bias_e_permute/CMakeLists.txt
+5
-3
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
+25
-15
example/31_batched_gemm_gemm/CMakeLists.txt
example/31_batched_gemm_gemm/CMakeLists.txt
+14
-11
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
+22
-14
example/32_batched_gemm_scale_softmax_gemm/grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp
...mm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp
+1
-1
example/32_batched_gemm_scale_softmax_gemm/grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
...gemm/grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
+1
-1
example/34_batchnorm/CMakeLists.txt
example/34_batchnorm/CMakeLists.txt
+1
-0
example/34_batchnorm/batchnorm_forward_training_nhwc.cpp
example/34_batchnorm/batchnorm_forward_training_nhwc.cpp
+12
-5
example/34_batchnorm/batchnorm_forward_training_nhwc_obsolete.cpp
...34_batchnorm/batchnorm_forward_training_nhwc_obsolete.cpp
+598
-0
example/35_splitK_gemm/CMakeLists.txt
example/35_splitK_gemm/CMakeLists.txt
+16
-11
example/35_splitK_gemm/splitK_gemm_xdl_bfp16.cpp
example/35_splitK_gemm/splitK_gemm_xdl_bfp16.cpp
+6
-5
example/35_splitK_gemm/splitK_gemm_xdl_int8.cpp
example/35_splitK_gemm/splitK_gemm_xdl_int8.cpp
+6
-5
No files found.
example/20_grouped_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
View file @
4100d1d8
...
...
@@ -72,9 +72,12 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
// init to 0
wei_device_buf
.
SetZero
();
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
input_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
input_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
filter_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
weights_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
output_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
output_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
...
...
@@ -82,9 +85,12 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
auto
range_copy
=
[](
const
auto
&
from
,
auto
to
)
{
std
::
copy
(
begin
(
from
),
end
(
from
),
to
);
};
range_copy
(
conv_param
.
input_spatial_lengths_
,
begin
(
input_spatial_lengths
));
range_copy
(
conv_param
.
filter_spatial_lengths_
,
begin
(
filter_spatial_lengths
));
range_copy
(
conv_param
.
output_spatial_lengths_
,
begin
(
output_spatial_lengths
));
range_copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
begin
(
input_lengths
));
range_copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
begin
(
input_strides
));
range_copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
begin
(
filter_lengths
));
range_copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
begin
(
weights_strides
));
range_copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
begin
(
output_lengths
));
range_copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
begin
(
output_strides
));
range_copy
(
conv_param
.
conv_filter_strides_
,
begin
(
conv_filter_strides
));
range_copy
(
conv_param
.
conv_filter_dilations_
,
begin
(
conv_filter_dilations
));
range_copy
(
conv_param
.
input_left_pads_
,
begin
(
input_left_pads
));
...
...
@@ -96,13 +102,12 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
auto
argument
=
conv
.
MakeArgument
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
C_
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
input_lengths
,
input_strides
,
filter_lengths
,
weights_strides
,
output_lengths
,
output_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
...
...
example/21_gemm_layernorm/CMakeLists.txt
View file @
4100d1d8
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
...
...
@@ -9,3 +10,4 @@ foreach(gpu IN LISTS GPU_TARGETS)
set
(
target 1
)
endif
()
endforeach
()
endif
()
example/22_cgemm/CMakeLists.txt
View file @
4100d1d8
add_custom_target
(
example_cgemm_xdl
)
add_example_executable
(
example_cgemm_xdl_bf16 cgemm_xdl_bf16.cpp
)
add_example_executable
(
example_cgemm_xdl_fp16 cgemm_xdl_fp16.cpp
)
if
(
DTYPES MATCHES
"bf16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_cgemm_xdl_bf16 cgemm_xdl_bf16.cpp
)
add_dependencies
(
example_cgemm_xdl example_cgemm_xdl_bf16
)
endif
()
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_cgemm_xdl_fp16 cgemm_xdl_fp16.cpp
)
add_dependencies
(
example_cgemm_xdl example_cgemm_xdl_fp16
)
endif
()
if
(
DTYPES MATCHES
"fp32"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_cgemm_xdl_fp32 cgemm_xdl_fp32.cpp
)
add_example_executable
(
example_cgemm_xdl_int8 cgemm_xdl_int8.cpp
)
add_dependencies
(
example_cgemm_xdl
example_cgemm_xdl_bf16
example_cgemm_xdl_fp16
example_cgemm_xdl_fp32
example_cgemm_xdl_int8
)
add_dependencies
(
example_cgemm_xdl example_cgemm_xdl_fp32
)
endif
()
if
(
DTYPES MATCHES
"int8"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_cgemm_xdl_int8 cgemm_xdl_int8.cpp
)
add_dependencies
(
example_cgemm_xdl example_cgemm_xdl_int8
)
endif
()
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_cgemm_xdl_int4 cgemm_xdl_int4.cpp
)
add_dependencies
(
example_cgemm_xdl example_cgemm_xdl_int4
)
...
...
example/24_batched_gemm/CMakeLists.txt
View file @
4100d1d8
add_custom_target
(
example_batched_gemm_xdl
)
add_example_executable
(
example_batched_gemm_xdl_fp32 batched_gemm_xdl_fp32.cpp
)
add_example_executable
(
example_batched_gemm_xdl_fp16 batched_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_xdl_bfp16 batched_gemm_xdl_bfp16.cpp
)
add_example_executable
(
example_batched_gemm_xdl_int8 batched_gemm_xdl_int8.cpp
)
add_dependencies
(
example_batched_gemm_xdl
example_batched_gemm_xdl_fp32
example_batched_gemm_xdl_fp16
example_batched_gemm_xdl_bfp16
example_batched_gemm_xdl_int8
)
if
(
DTYPES MATCHES
"fp32"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_batched_gemm_xdl_fp32 batched_gemm_xdl_fp32.cpp
)
add_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_fp32
)
endif
()
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_batched_gemm_xdl_fp16 batched_gemm_xdl_fp16.cpp
)
add_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_fp16
)
endif
()
if
(
DTYPES MATCHES
"bf16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_batched_gemm_xdl_bfp16 batched_gemm_xdl_bfp16.cpp
)
add_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_bfp16
)
endif
()
if
(
DTYPES MATCHES
"int8"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_batched_gemm_xdl_int8 batched_gemm_xdl_int8.cpp
)
add_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_int8
)
endif
()
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_batched_gemm_xdl_int4 batched_gemm_xdl_int4.cpp
)
add_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_int4
)
...
...
example/25_gemm_bias_e_permute/CMakeLists.txt
View file @
4100d1d8
add_example_executable
(
example_gemm_bias_e_permute_g1m3n2k1_xdl_fp16 gemm_bias_e_permute_g1m3n2k1_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_bias_e_permute_g1m2n3k1_xdl_fp16 gemm_bias_e_permute_g1m2n3k1_xdl_fp16.cpp
)
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_gemm_bias_e_permute_g1m3n2k1_xdl_fp16 gemm_bias_e_permute_g1m3n2k1_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_bias_e_permute_g1m2n3k1_xdl_fp16 gemm_bias_e_permute_g1m2n3k1_xdl_fp16.cpp
)
endif
()
example/26_contraction/CMakeLists.txt
View file @
4100d1d8
add_example_executable
(
example_contraction_bilinear_xdl_fp32 contraction_bilinear_xdl_fp32.cpp
)
add_example_executable
(
example_contraction_scale_xdl_fp32 contraction_scale_xdl_fp32.cpp
)
add_example_executable
(
example_contraction_bilinear_xdl_fp64 contraction_bilinear_xdl_fp64.cpp
)
add_example_executable
(
example_contraction_scale_xdl_fp64 contraction_scale_xdl_fp64.cpp
)
if
(
DTYPES MATCHES
"fp32"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_contraction_bilinear_xdl_fp32 contraction_bilinear_xdl_fp32.cpp
)
add_example_executable
(
example_contraction_scale_xdl_fp32 contraction_scale_xdl_fp32.cpp
)
endif
()
if
(
DTYPES MATCHES
"fp64"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_contraction_bilinear_xdl_fp64 contraction_bilinear_xdl_fp64.cpp
)
add_example_executable
(
example_contraction_scale_xdl_fp64 contraction_scale_xdl_fp64.cpp
)
endif
()
example/27_layernorm/CMakeLists.txt
View file @
4100d1d8
add_example_executable
(
example_layernorm_fp16 layernorm_fp16.cpp
)
add_example_executable
(
example_layernorm_splitk_fp16 layernorm_splitk_fp16.cpp
)
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_layernorm_fp16 layernorm_fp16.cpp
)
add_example_executable
(
example_layernorm_splitk_fp16 layernorm_splitk_fp16.cpp
)
endif
()
example/28_grouped_gemm_bias_e_permute/CMakeLists.txt
View file @
4100d1d8
add_example_executable
(
example_grouped_gemm_bias_e_permute_xdl_fp16 grouped_gemm_bias_e_permute_xdl_fp16.cpp
)
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_grouped_gemm_bias_e_permute_xdl_fp16 grouped_gemm_bias_e_permute_xdl_fp16.cpp
)
endif
()
example/29_batched_gemm_bias_e_permute/CMakeLists.txt
View file @
4100d1d8
add_example_executable
(
example_batched_gemm_bias_e_permute_xdl_fp16 batched_gemm_bias_e_permute_xdl_fp16.cpp
)
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_batched_gemm_bias_e_permute_xdl_fp16 batched_gemm_bias_e_permute_xdl_fp16.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx1100"
OR GPU_TARGETS MATCHES
"gfx1101"
OR GPU_TARGETS MATCHES
"gfx1102"
)
add_example_executable
(
example_batched_gemm_bias_e_permute_wmma_fp16 batched_gemm_bias_e_permute_wmma_fp16.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx1100"
OR GPU_TARGETS MATCHES
"gfx1101"
OR GPU_TARGETS MATCHES
"gfx1102"
)
add_example_executable
(
example_batched_gemm_bias_e_permute_wmma_fp16 batched_gemm_bias_e_permute_wmma_fp16.cpp
)
endif
()
endif
()
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
View file @
4100d1d8
...
...
@@ -5,23 +5,29 @@ set(target 0)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list1 AND target EQUAL 0
)
add_custom_target
(
example_grouped_conv_fwd_multiple_d
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp16 grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp32 grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_bf16 grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_int8 grouped_conv_fwd_bias_relu_add_xdl_int8.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp16
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp32
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_bf16
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int8
)
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp16 grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp16
)
add_example_executable
(
example_grouped_conv_fwd_xdl_fp16 grouped_conv_fwd_xdl_fp16.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_xdl_fp16
)
endif
()
if
(
DTYPES MATCHES
"fp32"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp32 grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp32
)
endif
()
if
(
DTYPES MATCHES
"bf16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_bf16 grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_bf16
)
endif
()
if
(
DTYPES MATCHES
"int8"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_int8 grouped_conv_fwd_bias_relu_add_xdl_int8.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int8
)
endif
()
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_int4 grouped_conv_fwd_bias_relu_add_xdl_int4.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int4
)
endif
()
# USE_BITINT_EXTENSION_INT4
add_example_executable
(
example_grouped_conv_fwd_xdl_fp16 grouped_conv_fwd_xdl_fp16.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_xdl_fp16
)
set
(
target 1
)
endif
()
endforeach
()
...
...
@@ -29,8 +35,12 @@ endforeach()
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list2 AND target EQUAL 0
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_wmma_fp16 grouped_conv_fwd_bias_relu_add_wmma_fp16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_wmma_int8 grouped_conv_fwd_bias_relu_add_wmma_int8.cpp
)
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_wmma_fp16 grouped_conv_fwd_bias_relu_add_wmma_fp16.cpp
)
endif
()
if
(
DTYPES MATCHES
"int8"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_wmma_int8 grouped_conv_fwd_bias_relu_add_wmma_int8.cpp
)
endif
()
set
(
target 1
)
endif
()
endforeach
()
example/31_batched_gemm_gemm/CMakeLists.txt
View file @
4100d1d8
...
...
@@ -3,10 +3,15 @@ list(APPEND gpu_list2 gfx908 gfx90a)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list1 AND target EQUAL 0
)
add_example_executable
(
example_batched_gemm_gemm_xdl_fp32 batched_gemm_gemm_xdl_fp32.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_fp16 batched_gemm_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_bf16 batched_gemm_gemm_xdl_bf16.cpp
)
if
(
DTYPES MATCHES
"fp32"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_batched_gemm_gemm_xdl_fp32 batched_gemm_gemm_xdl_fp32.cpp
)
endif
()
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_batched_gemm_gemm_xdl_fp16 batched_gemm_gemm_xdl_fp16.cpp
)
endif
()
if
(
DTYPES MATCHES
"bf16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_batched_gemm_gemm_xdl_bf16 batched_gemm_gemm_xdl_bf16.cpp
)
endif
()
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_batched_gemm_gemm_xdl_int4 batched_gemm_gemm_xdl_int4.cpp
)
endif
(
USE_BITINT_EXTENSION_INT4
)
...
...
@@ -14,10 +19,8 @@ foreach(gpu IN LISTS GPU_TARGETS)
endif
()
endforeach
()
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list2 AND target EQUAL 0
)
add_example_executable
(
example_batched_gemm_gemm_xdl_int8 batched_gemm_gemm_xdl_int8.cpp
)
set
(
target 1
)
endif
()
endforeach
()
\ No newline at end of file
if
(
NOT GPU_TARGETS MATCHES
"gfx94"
AND NOT GPU_TARGETS MATCHES
"gfx1"
)
if
(
DTYPES MATCHES
"int8"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_batched_gemm_gemm_xdl_int8 batched_gemm_gemm_xdl_int8.cpp
)
endif
()
endif
()
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
View file @
4100d1d8
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_xdl_bf16 batched_gemm_scale_softmax_gemm_xdl_bf16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16 batched_gemm_scale_softmax_gemm_permute_xdl_bf16.cpp
)
add_example_executable
(
example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp
)
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp
)
endif
()
if
(
DTYPES MATCHES
"bf16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_xdl_bf16 batched_gemm_scale_softmax_gemm_xdl_bf16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16 batched_gemm_scale_softmax_gemm_permute_xdl_bf16.cpp
)
endif
()
add_custom_target
(
example_gemm_scale_softmax_gemm
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_bf16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16
)
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16
)
endif
()
if
(
DTYPES MATCHES
"bf16"
OR NOT DEFINED DTYPES
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_bf16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16
)
endif
()
example/32_batched_gemm_scale_softmax_gemm/grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp
View file @
4100d1d8
...
...
@@ -17,7 +17,7 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/
impl/
device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
...
...
example/32_batched_gemm_scale_softmax_gemm/grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
View file @
4100d1d8
...
...
@@ -17,7 +17,7 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/
impl/
device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
...
...
example/34_batchnorm/CMakeLists.txt
View file @
4100d1d8
add_example_executable
(
example_batchnorm_forward_training batchnorm_forward_training_nhwc.cpp
)
add_example_executable
(
example_batchnorm_forward_training_obsolete batchnorm_forward_training_nhwc_obsolete.cpp
)
add_example_executable
(
example_batchnorm_forward_inferring batchnorm_forward_inferring_nhwc.cpp
)
add_example_executable
(
example_batchnorm_backward batchnorm_backward_nhwc.cpp
)
example/34_batchnorm/batchnorm_forward_training_nhwc.cpp
View file @
4100d1d8
...
...
@@ -414,7 +414,7 @@ bool bnorm_fwd_nhwc_test(bool do_verification,
(
void
)
invoker_ptr_ref
->
Run
(
argument_ptr_ref
.
get
());
y_dev
.
FromDevice
(
y
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
y
,
y_ref
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
y
,
y_ref
,
"Incorrect normalized output values"
);
if
(
updateMovingAverage
)
{
...
...
@@ -424,8 +424,12 @@ bool bnorm_fwd_nhwc_test(bool do_verification,
resultRunningMean_dev
.
FromDevice
(
resultRunningMean
.
mData
.
data
());
resultRunningVariance_dev
.
FromDevice
(
resultRunningVariance
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultRunningMean
,
resultRunningMean_ref
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultRunningVariance
,
resultRunningVariance_ref
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultRunningMean
,
resultRunningMean_ref
,
"Incorrect running mean values"
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultRunningVariance
,
resultRunningVariance_ref
,
"Incorrect running variance values"
);
};
if
(
saveMeanAndInvVariance
)
...
...
@@ -438,8 +442,11 @@ bool bnorm_fwd_nhwc_test(bool do_verification,
resultSaveMean_dev
.
FromDevice
(
resultSaveMean
.
mData
.
data
());
resultSaveInvVariance_dev
.
FromDevice
(
resultSaveInvVariance
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultSaveMean
,
resultSaveMean_ref
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultSaveInvVariance
,
resultSaveInvVariance_ref
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultSaveMean
,
resultSaveMean_ref
,
"Incorrect saved mean values"
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultSaveInvVariance
,
resultSaveInvVariance_ref
,
"Incorrect saved invvariance values"
);
};
};
...
...
example/34_batchnorm/batchnorm_forward_training_nhwc_obsolete.cpp
0 → 100644
View file @
4100d1d8
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <limits>
#include <iostream>
#include <vector>
#include <array>
#include <algorithm>
#include <getopt.h>
#include "ck/ck.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batchnorm_forward.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batchnorm_forward_impl_obsolete.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
static
struct
option
long_options
[]
=
{{
"inOutLengths"
,
required_argument
,
nullptr
,
'D'
},
{
"verify"
,
required_argument
,
nullptr
,
'v'
},
{
"help"
,
no_argument
,
nullptr
,
'?'
},
{
nullptr
,
0
,
nullptr
,
0
}};
class
BatchNormFwdArg
{
private:
int
option_index
=
0
;
public:
std
::
vector
<
size_t
>
inOutLengths
;
bool
do_verification
=
false
;
bool
updateMovingAverage
;
bool
saveMeanAndInvVariance
;
int
data_type
=
0
;
int
init_method
=
2
;
bool
time_kernel
=
false
;
bool
use_multiblock_welford
=
false
;
public:
void
show_usage
(
const
char
*
cmd
)
{
std
::
cout
<<
"Usage of "
<<
cmd
<<
std
::
endl
;
std
::
cout
<<
"--inOutLengths or -D, comma separated list of input tensor dimension "
"lengths, must have 4 integers for nhwc"
<<
std
::
endl
;
std
::
cout
<<
"--verify or -v, 1/0 to indicate whether to verify the batch-normalization "
"result by "
"comparing with the host-based batch-normalization"
<<
std
::
endl
;
std
::
cout
<<
"Arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64)"
<<
std
::
endl
;
std
::
cout
<<
"Arg2: 1/0 to indicate whether to update the moving average and variance "
"(0=no, 1=yes)"
<<
std
::
endl
;
std
::
cout
<<
"Arg3: 1/0 to indicate whether to save the calculated mean and invVariance "
"(0=no, 1=yes)"
<<
std
::
endl
;
std
::
cout
<<
"Arg4: init method used for bnScale and bnBias (0=no init, 1=single integer "
"value, 2=scope integer "
"value, 3=decimal value)"
<<
std
::
endl
;
std
::
cout
<<
"Arg5: time kernel (0=no, 1=yes)"
<<
std
::
endl
;
std
::
cout
<<
"Arg6: use multi-block welford (0=n0, 1=yes)"
<<
std
::
endl
;
};
int
processArgs
(
int
argc
,
char
*
argv
[])
{
using
ck
::
host_common
::
getTypeValuesFromString
;
int
ch
;
while
(
1
)
{
ch
=
getopt_long
(
argc
,
argv
,
"D:v:"
,
long_options
,
&
option_index
);
if
(
ch
==
-
1
)
break
;
switch
(
ch
)
{
case
'D'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
inOutLengths
=
getTypeValuesFromString
<
size_t
>
(
optarg
);
if
(
inOutLengths
.
size
()
!=
4
)
throw
std
::
runtime_error
(
"NHWC tensor layout should have 4 length values specified!"
);
break
;
case
'v'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
do_verification
=
static_cast
<
bool
>
(
std
::
atoi
(
optarg
));
break
;
case
'?'
:
if
(
std
::
string
(
long_options
[
option_index
].
name
)
==
"help"
)
{
show_usage
(
argv
[
0
]);
return
(
-
1
);
};
break
;
default:
show_usage
(
argv
[
0
]);
return
(
-
1
);
};
};
if
(
optind
+
6
>
argc
)
throw
std
::
runtime_error
(
"Invalid cmd-line arguments, more argumetns are needed!"
);
data_type
=
std
::
atoi
(
argv
[
optind
++
]);
updateMovingAverage
=
std
::
atoi
(
argv
[
optind
++
]);
saveMeanAndInvVariance
=
std
::
atoi
(
argv
[
optind
++
]);
init_method
=
std
::
atoi
(
argv
[
optind
++
]);
time_kernel
=
static_cast
<
bool
>
(
std
::
atoi
(
argv
[
optind
++
]));
use_multiblock_welford
=
static_cast
<
bool
>
(
std
::
atoi
(
argv
[
optind
]));
if
(
data_type
!=
0
&&
data_type
!=
1
&&
data_type
!=
3
&&
data_type
!=
5
&&
data_type
!=
6
)
return
(
-
1
);
return
(
0
);
};
};
using
namespace
ck
;
template
<
typename
InOutDataType
,
typename
AccDataType
,
bool
UseMultiblockInK
>
bool
bnorm_fwd_nhwc_test
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
std
::
vector
<
size_t
>
inOutLengths
,
bool
updateMovingAverage
,
bool
saveMeanAndInvVariance
,
double
averageFactor
,
double
epsilon
)
{
// for NHWC BatchNorm calculation of mean and meansquare
constexpr
int
Rank
=
4
;
constexpr
int
NumReduceDim
=
3
;
// when using lengths[] to create a tensor, lengths[0] is the length of highest dimension
// eg. N of NHWC, so lengths[3] is the dimension C length of NHWC
const
std
::
vector
<
size_t
>
scaleBiasMeanVarLengths
=
{
inOutLengths
[
3
]};
// input data of the batchnorm forward algorithm
Tensor
<
InOutDataType
>
x
(
inOutLengths
);
Tensor
<
AccDataType
>
bnScale
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
bnBias
(
scaleBiasMeanVarLengths
);
// output data of the batchnorm forward algorithm
Tensor
<
InOutDataType
>
y_ref
(
inOutLengths
);
Tensor
<
InOutDataType
>
y
(
inOutLengths
);
Tensor
<
AccDataType
>
resultSaveMean_ref
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
resultSaveInvVariance_ref
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
resultRunningMean_ref
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
resultRunningVariance_ref
(
scaleBiasMeanVarLengths
);
auto
inOutStrides
=
x
.
mDesc
.
GetStrides
();
auto
scaleBiasMeanVarStrides
=
bnScale
.
mDesc
.
GetStrides
();
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
();
if
(
updateMovingAverage
)
{
if
constexpr
(
std
::
is_same
<
InOutDataType
,
int8_t
>::
value
)
{
x
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOutDataType
>
{
-
5
,
5
},
num_thread
);
const
float
x_mean
=
0.0
f
;
const
float
x_stddev
=
2.5
f
;
const
float
noise_stddev
=
0.04
f
;
resultRunningMean_ref
.
GenerateTensorValue
(
GeneratorTensor_4
<
AccDataType
>
{
x_mean
,
noise_stddev
},
num_thread
);
resultRunningVariance_ref
.
GenerateTensorValue
(
GeneratorTensor_4
<
AccDataType
>
{
x_stddev
*
x_stddev
,
noise_stddev
},
num_thread
);
}
else
{
const
float
x_mean
=
0.0
f
;
const
float
x_stddev
=
1.0
f
;
const
float
noise_stddev
=
0.04
f
;
// input data in normal distribution
x
.
GenerateTensorValue
(
GeneratorTensor_4
<
InOutDataType
>
{
x_mean
,
x_stddev
},
num_thread
);
// initialize the runningMean to be values with tiny variation to the mean of the x
// values
resultRunningMean_ref
.
GenerateTensorValue
(
GeneratorTensor_4
<
AccDataType
>
{
x_mean
,
noise_stddev
},
num_thread
);
// initialize the runningVariance to be values with tiny variation to the variance of
// the x values
resultRunningVariance_ref
.
GenerateTensorValue
(
GeneratorTensor_4
<
AccDataType
>
{
x_stddev
*
x_stddev
,
noise_stddev
},
num_thread
);
};
}
else
{
if
constexpr
(
std
::
is_same
<
InOutDataType
,
int8_t
>::
value
)
x
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOutDataType
>
{
-
5
,
5
},
num_thread
);
else
x
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOutDataType
>
{
-
5.0
f
,
5.0
f
},
num_thread
);
};
if
(
do_verification
)
{
switch
(
init_method
)
{
case
0
:
bnScale
.
GenerateTensorValue
(
GeneratorTensor_0
<
AccDataType
>
{},
num_thread
);
bnBias
.
GenerateTensorValue
(
GeneratorTensor_0
<
AccDataType
>
{},
num_thread
);
break
;
case
1
:
bnScale
.
GenerateTensorValue
(
GeneratorTensor_1
<
AccDataType
>
{
1
},
num_thread
);
bnBias
.
GenerateTensorValue
(
GeneratorTensor_1
<
AccDataType
>
{
0
},
num_thread
);
break
;
case
2
:
bnScale
.
GenerateTensorValue
(
GeneratorTensor_2
<
AccDataType
>
{
-
5
,
5
},
num_thread
);
bnBias
.
GenerateTensorValue
(
GeneratorTensor_2
<
AccDataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
bnScale
.
GenerateTensorValue
(
GeneratorTensor_3
<
AccDataType
>
{
-
5.0
f
,
5.0
f
},
num_thread
);
bnBias
.
GenerateTensorValue
(
GeneratorTensor_3
<
AccDataType
>
{
-
5.0
f
,
5.0
f
},
num_thread
);
}
};
// these buffers are usually provided by the user application
DeviceMem
x_dev
(
sizeof
(
InOutDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
y_dev
(
sizeof
(
InOutDataType
)
*
y
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bnScale_dev
(
sizeof
(
AccDataType
)
*
bnScale
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bnBias_dev
(
sizeof
(
AccDataType
)
*
bnBias
.
mDesc
.
GetElementSpaceSize
());
// mean_dev or resultSaveMean_dev
DeviceMem
resultSaveMean_dev
(
sizeof
(
AccDataType
)
*
resultSaveMean_ref
.
mDesc
.
GetElementSpaceSize
());
// meansquare_dev or resultSaveInvVariance_dev
DeviceMem
resultSaveInvVariance_dev
(
sizeof
(
AccDataType
)
*
resultSaveInvVariance_ref
.
mDesc
.
GetElementSpaceSize
());
// resultRunningMean_dev
DeviceMem
resultRunningMean_dev
(
sizeof
(
AccDataType
)
*
resultRunningMean_ref
.
mDesc
.
GetElementSpaceSize
());
// resultRunningVariance_dev
DeviceMem
resultRunningVariance_dev
(
sizeof
(
AccDataType
)
*
resultRunningVariance_ref
.
mDesc
.
GetElementSpaceSize
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
bnScale_dev
.
ToDevice
(
bnScale
.
mData
.
data
());
bnBias_dev
.
ToDevice
(
bnBias
.
mData
.
data
());
if
(
updateMovingAverage
)
{
resultRunningMean_dev
.
ToDevice
(
resultRunningMean_ref
.
mData
.
data
());
resultRunningVariance_dev
.
ToDevice
(
resultRunningVariance_ref
.
mData
.
data
());
};
std
::
array
<
index_t
,
Rank
>
i_inOutLengths
;
std
::
array
<
index_t
,
Rank
>
i_inOutStrides
;
std
::
array
<
index_t
,
Rank
-
NumReduceDim
>
i_scaleBiasMeanVarLengths
;
std
::
array
<
index_t
,
Rank
-
NumReduceDim
>
i_scaleBiasMeanVarStrides
;
ck
::
ranges
::
copy
(
inOutLengths
,
i_inOutLengths
.
begin
());
ck
::
ranges
::
copy
(
inOutStrides
,
i_inOutStrides
.
begin
());
ck
::
ranges
::
copy
(
scaleBiasMeanVarLengths
,
i_scaleBiasMeanVarLengths
.
begin
());
ck
::
ranges
::
copy
(
scaleBiasMeanVarStrides
,
i_scaleBiasMeanVarStrides
.
begin
());
using
PassThroughOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceBatchNormFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchNormFwdImpl
<
InOutDataType
,
InOutDataType
,
AccDataType
,
AccDataType
,
// ScaleDataType
AccDataType
,
// BiasDataType
AccDataType
,
// MeanVarDataType
PassThroughOp
,
// YElementwiseOp
Rank
,
NumReduceDim
,
UseMultiblockInK
,
256
,
16
,
16
,
1
,
2
,
0
,
1
,
1
,
1
,
1
,
1
>
;
auto
batchnorm_fwd
=
DeviceBatchNormFwdInstance
{};
auto
argument_ptr
=
batchnorm_fwd
.
MakeArgumentPointer
(
i_inOutLengths
,
i_inOutStrides
,
i_inOutStrides
,
{
0
,
1
,
2
},
// indicates physical indices of reduce dimensions in lengths[] and strides[]
i_scaleBiasMeanVarLengths
,
i_scaleBiasMeanVarStrides
,
i_scaleBiasMeanVarStrides
,
i_scaleBiasMeanVarStrides
,
x_dev
.
GetDeviceBuffer
(),
bnScale_dev
.
GetDeviceBuffer
(),
bnBias_dev
.
GetDeviceBuffer
(),
epsilon
,
PassThroughOp
{},
y_dev
.
GetDeviceBuffer
(),
saveMeanAndInvVariance
?
resultSaveMean_dev
.
GetDeviceBuffer
()
:
nullptr
,
saveMeanAndInvVariance
?
resultSaveInvVariance_dev
.
GetDeviceBuffer
()
:
nullptr
,
averageFactor
,
updateMovingAverage
?
resultRunningMean_dev
.
GetDeviceBuffer
()
:
nullptr
,
updateMovingAverage
?
resultRunningVariance_dev
.
GetDeviceBuffer
()
:
nullptr
);
if
(
!
batchnorm_fwd
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
cout
<<
"The runtime parameters seems not supported by the BatchNorm device instance, "
"exiting!"
<<
std
::
endl
;
return
(
false
);
};
size_t
workspace_sz
=
batchnorm_fwd
.
GetWorkSpaceSize
(
argument_ptr
.
get
());
DeviceMem
workspace_dev
(
workspace_sz
);
batchnorm_fwd
.
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace_dev
.
GetDeviceBuffer
());
auto
invoker_ptr
=
batchnorm_fwd
.
MakeInvokerPointer
();
if
(
time_kernel
)
{
float
avg_time
=
0.0
f
;
size_t
num_bytes
=
0
;
size_t
total_length
=
inOutLengths
[
0
]
*
inOutLengths
[
1
]
*
inOutLengths
[
2
]
*
inOutLengths
[
3
];
size_t
invariant_length
=
inOutLengths
[
3
];
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
// inputing of x, scale, bias, outputing of y
num_bytes
+=
total_length
*
sizeof
(
InOutDataType
)
*
2
+
invariant_length
*
sizeof
(
AccDataType
)
*
2
;
// outputing of mean, inv-variance
num_bytes
+=
saveMeanAndInvVariance
?
invariant_length
*
sizeof
(
AccDataType
)
*
2
:
0
;
// updating of moving mean, variance
num_bytes
+=
updateMovingAverage
?
invariant_length
*
sizeof
(
AccDataType
)
*
4
:
0
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
}
else
(
void
)
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
bool
pass
=
true
;
if
(
do_verification
)
{
using
ReferenceBatchNormFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchNormFwd
<
InOutDataType
,
InOutDataType
,
AccDataType
,
AccDataType
,
AccDataType
,
AccDataType
,
PassThroughOp
,
Rank
,
NumReduceDim
>
;
auto
batchNormFwd_ref
=
ReferenceBatchNormFwdInstance
{};
auto
argument_ptr_ref
=
batchNormFwd_ref
.
MakeArgumentPointer
(
i_inOutLengths
,
i_inOutStrides
,
i_inOutStrides
,
{
0
,
1
,
2
},
// indicates physical indices of reduce dimensions in lengths[] and strides[]
i_scaleBiasMeanVarLengths
,
i_scaleBiasMeanVarStrides
,
i_scaleBiasMeanVarStrides
,
i_scaleBiasMeanVarStrides
,
x
.
mData
.
data
(),
bnScale
.
mData
.
data
(),
bnBias
.
mData
.
data
(),
epsilon
,
PassThroughOp
{},
y_ref
.
mData
.
data
(),
saveMeanAndInvVariance
?
resultSaveMean_ref
.
mData
.
data
()
:
nullptr
,
saveMeanAndInvVariance
?
resultSaveInvVariance_ref
.
mData
.
data
()
:
nullptr
,
averageFactor
,
updateMovingAverage
?
resultRunningMean_ref
.
mData
.
data
()
:
nullptr
,
updateMovingAverage
?
resultRunningVariance_ref
.
mData
.
data
()
:
nullptr
);
if
(
!
batchNormFwd_ref
.
IsSupportedArgument
(
argument_ptr_ref
.
get
()))
{
std
::
cout
<<
"The runtime parameters seems not supported by the BatchNorm reference "
"instance, exiting!"
<<
std
::
endl
;
return
(
false
);
};
auto
invoker_ptr_ref
=
batchNormFwd_ref
.
MakeInvokerPointer
();
(
void
)
invoker_ptr_ref
->
Run
(
argument_ptr_ref
.
get
());
y_dev
.
FromDevice
(
y
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
y
,
y_ref
,
"Incorrect normalized output values"
);
if
(
updateMovingAverage
)
{
Tensor
<
AccDataType
>
resultRunningMean
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
resultRunningVariance
(
scaleBiasMeanVarLengths
);
resultRunningMean_dev
.
FromDevice
(
resultRunningMean
.
mData
.
data
());
resultRunningVariance_dev
.
FromDevice
(
resultRunningVariance
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultRunningMean
,
resultRunningMean_ref
,
"Incorrect running mean values"
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultRunningVariance
,
resultRunningVariance_ref
,
"Incorrect running variance values"
);
};
if
(
saveMeanAndInvVariance
)
{
using
ck
::
host_common
::
dumpBufferToFile
;
Tensor
<
AccDataType
>
resultSaveMean
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
resultSaveInvVariance
(
scaleBiasMeanVarLengths
);
resultSaveMean_dev
.
FromDevice
(
resultSaveMean
.
mData
.
data
());
resultSaveInvVariance_dev
.
FromDevice
(
resultSaveInvVariance
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultSaveMean
,
resultSaveMean_ref
,
"Incorrect saved mean values"
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultSaveInvVariance
,
resultSaveInvVariance_ref
,
"Incorrect saved invvariance values"
);
};
};
return
(
pass
);
};
const
double
epsilon
=
std
::
numeric_limits
<
float
>::
epsilon
();
static
const
double
averageFactor
=
0.1
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
pass
=
true
;
if
(
argc
>
1
)
{
BatchNormFwdArg
arg
;
if
(
arg
.
processArgs
(
argc
,
argv
)
<
0
)
return
(
-
1
);
if
(
arg
.
data_type
==
0
)
{
if
(
arg
.
use_multiblock_welford
)
pass
=
bnorm_fwd_nhwc_test
<
ck
::
half_t
,
float
,
true
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
updateMovingAverage
,
arg
.
saveMeanAndInvVariance
,
averageFactor
,
epsilon
);
else
pass
=
bnorm_fwd_nhwc_test
<
ck
::
half_t
,
float
,
false
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
updateMovingAverage
,
arg
.
saveMeanAndInvVariance
,
averageFactor
,
epsilon
);
}
else
if
(
arg
.
data_type
==
1
)
{
if
(
arg
.
use_multiblock_welford
)
pass
=
bnorm_fwd_nhwc_test
<
float
,
float
,
true
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
updateMovingAverage
,
arg
.
saveMeanAndInvVariance
,
averageFactor
,
epsilon
);
else
pass
=
bnorm_fwd_nhwc_test
<
float
,
float
,
false
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
updateMovingAverage
,
arg
.
saveMeanAndInvVariance
,
averageFactor
,
epsilon
);
}
else
if
(
arg
.
data_type
==
3
)
{
if
(
arg
.
use_multiblock_welford
)
pass
=
bnorm_fwd_nhwc_test
<
int8_t
,
float
,
true
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
updateMovingAverage
,
arg
.
saveMeanAndInvVariance
,
averageFactor
,
epsilon
);
else
pass
=
bnorm_fwd_nhwc_test
<
int8_t
,
float
,
false
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
updateMovingAverage
,
arg
.
saveMeanAndInvVariance
,
averageFactor
,
epsilon
);
}
else
if
(
arg
.
data_type
==
5
)
{
if
(
arg
.
use_multiblock_welford
)
pass
=
bnorm_fwd_nhwc_test
<
ck
::
bhalf_t
,
float
,
true
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
updateMovingAverage
,
arg
.
saveMeanAndInvVariance
,
averageFactor
,
epsilon
);
else
pass
=
bnorm_fwd_nhwc_test
<
ck
::
bhalf_t
,
float
,
false
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
updateMovingAverage
,
arg
.
saveMeanAndInvVariance
,
averageFactor
,
epsilon
);
}
else
if
(
arg
.
data_type
==
6
)
{
if
(
arg
.
use_multiblock_welford
)
pass
=
bnorm_fwd_nhwc_test
<
double
,
double
,
true
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
updateMovingAverage
,
arg
.
saveMeanAndInvVariance
,
averageFactor
,
epsilon
);
else
pass
=
bnorm_fwd_nhwc_test
<
double
,
double
,
false
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
updateMovingAverage
,
arg
.
saveMeanAndInvVariance
,
averageFactor
,
epsilon
);
}
}
else
{
pass
=
bnorm_fwd_nhwc_test
<
ck
::
half_t
,
float
,
true
>
(
true
,
2
,
false
,
// don't time kernel
{
128
,
16
,
6
,
512
},
true
,
true
,
averageFactor
,
epsilon
);
pass
=
pass
&&
bnorm_fwd_nhwc_test
<
ck
::
half_t
,
float
,
false
>
(
true
,
2
,
false
,
// don't time kernel
{
128
,
16
,
3
,
1024
},
true
,
true
,
averageFactor
,
epsilon
);
};
return
(
pass
?
0
:
1
);
}
example/35_splitK_gemm/CMakeLists.txt
View file @
4100d1d8
...
...
@@ -3,17 +3,22 @@ set(target 0)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_custom_target
(
example_splitK_gemm_xdl
)
add_example_executable
(
example_splitK_gemm_xdl_fp32 splitK_gemm_xdl_fp32.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_fp16 splitK_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_bfp16 splitK_gemm_xdl_bfp16.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_int8 splitK_gemm_xdl_int8.cpp
)
add_dependencies
(
example_splitK_gemm_xdl
example_splitK_gemm_xdl_fp32
example_splitK_gemm_xdl_fp16
example_splitK_gemm_xdl_bfp16
example_splitK_gemm_xdl_int8
)
if
(
DTYPES MATCHES
"fp32"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_splitK_gemm_xdl_fp32 splitK_gemm_xdl_fp32.cpp
)
add_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_fp32
)
endif
()
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_splitK_gemm_xdl_fp16 splitK_gemm_xdl_fp16.cpp
)
add_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_fp16
)
endif
()
if
(
DTYPES MATCHES
"bf16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_splitK_gemm_xdl_bfp16 splitK_gemm_xdl_bfp16.cpp
)
add_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_bfp16
)
endif
()
if
(
DTYPES MATCHES
"int8"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_splitK_gemm_xdl_int8 splitK_gemm_xdl_int8.cpp
)
add_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_int8
)
endif
()
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_splitK_gemm_xdl_int4 splitK_gemm_xdl_int4.cpp
)
add_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_int4
)
...
...
example/35_splitK_gemm/splitK_gemm_xdl_bfp16.cpp
View file @
4100d1d8
...
...
@@ -33,6 +33,7 @@ using ADataType = BF16;
using
BDataType
=
BF16
;
using
AccDataType
=
F32
;
using
CDataType
=
F32
;
using
ComputeType
=
BF16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
...
...
@@ -46,11 +47,11 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmXdlSplitKCShuffle
// clang-format off
//######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| KPer| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
true
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
3
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
;
//######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| KPer| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
Compute|
//######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
Type|
//######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
true
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
3
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
,
ComputeType
>
;
// clang-format on
#include "run_splitK_gemm_example.inc"
...
...
example/35_splitK_gemm/splitK_gemm_xdl_int8.cpp
View file @
4100d1d8
...
...
@@ -30,6 +30,7 @@ using ADataType = int8_t;
using
BDataType
=
int8_t
;
using
AccDataType
=
int32_t
;
using
CDataType
=
int32_t
;
using
ComputeType
=
int8_t
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
...
...
@@ -43,11 +44,11 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmXdlSplitKCShuffle
// clang-format off
//######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| KPer| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
256
,
256
,
128
,
4
,
16
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
16
,
16
,
true
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
3
,
16
,
16
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
;
//######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| KPer| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
Compute|
//######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
Type|
//######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
256
,
256
,
128
,
4
,
16
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
16
,
16
,
true
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
3
,
16
,
16
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
,
ComputeType
>
;
// clang-format on
#include "run_splitK_gemm_example.inc"
...
...
Prev
1
2
3
4
5
6
7
8
…
31
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment