Commit 3f9dbcac authored by coderfeli's avatar coderfeli
Browse files

use new pipeline for b preshuffle, run ok; revert olds to fix ckprofiler

parent 54f44e62
......@@ -8,7 +8,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3_b_preshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
......@@ -27,8 +27,6 @@ using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
// using I8 = int8_t;
// using I32 = int;
using F16 = ck::half_t;
using FP8 = ck::f8_t;
using F32 = float;
......@@ -79,109 +77,6 @@ struct MultiplyMultiply
};
// struct MultiplyMultiply
// {
// template <typename E, typename C, typename D0, typename D1>
// __host__ __device__ constexpr void
// operator()(E& e, const C& c, const D0& d0, const D1& d1) const;
// template <>
// __host__ __device__ constexpr void operator()<ck::half_t, float, float, float>(
// ck::half_t& e, const float& c, const float& d0, const float& d1) const
// {
// const float x0_f = c * d0 * d1;
// e = ck::type_convert<ck::half_t>(x0_f);
// }
// template <>
// __host__ __device__ constexpr void operator()<ck::half_t, int, float, float>(
// ck::half_t& e, const int& c, const float& d0, const float& d1) const
// {
// const float x0_f =
// ck::type_convert<float>(c) * ck::type_convert<float>(d0) * ck::type_convert<float>(d1);
// e = ck::type_convert<ck::half_t>(x0_f);
// }
// template <>
// __host__ __device__ constexpr void operator()<ck::bhalf_t, int, float, float>(
// ck::bhalf_t& e, const int& c, const float& d0, const float& d1) const
// {
// const float x0_f =
// ck::type_convert<float>(c) * ck::type_convert<float>(d0) * ck::type_convert<float>(d1);
// e = ck::type_convert<ck::bhalf_t>(x0_f);
// }
// };
// void reinit2(FP8* dst, int N, int K) {
// for (int n = 0; n < N; ++n) {
// int kinit = 0;
// for (int k = 0; k < K; k+=1) {
// // dst[n * K + k] = n;
// if(k>0 && k%128==0){
// kinit += 1;
// }
// dst[n * K + k] = k % 128 + kinit;//rand() % 5 - 2;
// }
// }
// }
// void reinit(FP8* dst, int N, int K) {
// for (int n = 0; n < N; ++n) {
// for (int k = 0; k < K; k+=1) {
// dst[n * K + k] = ck::type_convert<FP8>(float(1));
// }
// }
// }
void dump(FP8* dst, int N, int K) {
for (int n = 0; n < N; ++n) {
for (int k = 0; k < K; ++k) {
printf("%.1f,", ck::type_convert<float>(dst[n * K + k]));
}
printf("\n");
}
}
// void preShuffleBuffer(const FP8* src, int N, int K, FP8* dst) {
// const int NRepeat = 1;
// const int KRepeat = 8;
// const int NWave = 4;
// const int KLane = 2;
// const int NLane = 32;
// const int KPack = 16;
// int K0 = K / (KRepeat * KLane * KPack);
// int tempn, tempk;
// for (int n = 0; n < N; ++n) {
// for (int k = 0; k < K; ++k) {
// int n0 = n / (NRepeat * NLane * NWave);
// int k0 = k / (KRepeat * KLane * KPack);
// tempn = n % (NRepeat * NLane * NWave);
// tempk = k % (KRepeat * KLane * KPack);
// int n1 = tempn / (NLane * NWave);
// int k1 = tempk / (KLane * KPack);
// tempn = tempn % (NLane * NWave);
// tempk = tempk % (KLane * KPack);
// int n2 = tempn / NLane;
// int k2 = tempk / KPack;
// int n3 = tempn % NLane;
// int k3 = tempk % KPack;
// int outputIndex = n0 * KPack * NLane * KLane * NWave * KRepeat * NRepeat * K0
// + k0 * KPack * NLane * KLane * NWave * KRepeat * NRepeat
// + n1 * KPack * NLane * KLane * NWave * KRepeat
// + k1 * KPack * NLane * KLane * NWave
// + n2 * KPack * NLane * KLane
// + k2 * KPack * NLane
// + n3 * KPack
// + k3;
// dst[outputIndex] = src[n * K + k];
// }
// }
// }
void preShuffleBuffer(const FP8* src, int N, int K, FP8* dst) {
const int NRepeat = 1;
const int KRepeat = 8;
......@@ -230,7 +125,8 @@ using CDEElementOp = MultiplyMultiply;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNPadding;
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShuffle_V3
// using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShuffle_V3
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
......@@ -349,10 +245,7 @@ int main(int argc, char* argv[])
DeviceMem d0_device_buf(sizeof(D0DataType) * d0_m_n.mDesc.GetElementSpaceSize());
DeviceMem d1_device_buf(sizeof(D1DataType) * d1_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
// reinit2(a0_m_k.mData.data(), M, K);
// reinit2(b0_k_n.mData.data(), N, K);
preShuffleBuffer(b0_k_n.mData.data(), N, K, b0_preshuffled.mData.data());
// dump(b0_preshuffled.mData.data(), N, K);
a0_device_buf.ToDevice(a0_m_k.mData.data());
// b0_device_buf.ToDevice(b0_preshuffled.mData.data());
b0_device_buf.ToDevice(b0_preshuffled.mData.data());
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_base.hpp"
namespace ck {
// Compute optimized pipeline
// GlobalPrefetchStages: 2
// LocalPreFillStages: 2
// LocalPreFetchStages: 2
// LocalSharedMemoryBuffer: 2
template <BlockGemmPipelineScheduler BlkGemmPipelineVer,
index_t BlockSize,
typename ADataType,
typename BDataType,
typename ComputeDataType,
typename AccDataType,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t ABlockTransferSrcScalarPerVector,
index_t BBlockTransferSrcScalarPerVector,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPacks>
struct BlockwiseGemmXdlops_pipeline_bpreshuffle
{
};
template <index_t BlockSize,
typename ADataType,
typename BDataType,
typename ComputeDataType,
typename AccDataType,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t ABlockTransferSrcScalarPerVector,
index_t BBlockTransferSrcScalarPerVector,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPack
// ,bool TransposeC //disable transposec right now...
>
struct BlockwiseGemmXdlops_pipeline_bpreshuffle<BlockGemmPipelineScheduler::Intrawave,
BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>
: BlockwiseGemmXdlops_pipeline_base<BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>
{
using Base = BlockwiseGemmXdlops_pipeline_base<BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>;
using Base::I0;
using Base::I1;
using Base::KRepeat;
using Base::xdlops_gemm;
using typename Base::HotLoopInstList;
using Base::CalculateCThreadOriginDataIndex;
using Base::CalculateCThreadOriginDataIndex8D;
using Base::GetCBlockDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4;
using Base::GetCThreadBuffer;
using Base::GetCThreadDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4;
using Base::MakeCGridDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::a_block_desc_m0_m1_m2_k;
using Base::b_block_desc_n0_n1_n2_k;
using Base::AMmaKStride;
using Base::BMmaKStride;
static constexpr index_t PrefetchStages = 2;
static constexpr index_t PrefillStages = 1;
static constexpr index_t GlobalBufferNum = 1;
__host__ __device__ static constexpr bool BlockHasHotloop(index_t num_loop)
{
return num_loop > PrefetchStages;
}
__host__ __device__ static constexpr TailNumber BlockLoopTailNum(index_t num_loop)
{
ignore = num_loop;
return TailNumber::Full;
}
__device__ static constexpr auto HotLoopScheduler()
{
// A/B split schedule
// compiler is likely to use ds_read2 when instruction width smaller than 16bytes
constexpr auto num_ds_read_inst_a =
HotLoopInstList::A_LDS_Read_Width * sizeof(ADataType) == 16
? HotLoopInstList::A_LDS_Read_Inst_Num
: HotLoopInstList::A_LDS_Read_Inst_Num / 2;
constexpr auto num_ds_read_inst_b =
HotLoopInstList::B_LDS_Read_Width * sizeof(BDataType) == 16
? HotLoopInstList::B_LDS_Read_Inst_Num
: HotLoopInstList::B_LDS_Read_Inst_Num / 2;
constexpr auto num_ds_write_inst_a = HotLoopInstList::A_LDS_Write_Inst_Num;
constexpr auto num_ds_write_inst_b = HotLoopInstList::B_LDS_Write_Inst_Num;
constexpr auto num_buffer_load_inst_a = HotLoopInstList::A_Buffer_Load_Inst_Num;
constexpr auto num_buffer_load_inst_b = HotLoopInstList::B_Buffer_Load_Inst_Num;
constexpr auto num_mfma_inst = HotLoopInstList::C_MFMA_Inst_Num;
constexpr auto mfma_cycle = NPerXDL == 16 ? 16 : 32;
constexpr auto ds_read_a_issue_cycle =
HotLoopInstList::A_LDS_Read_Width * sizeof(ADataType) == 16 ? 8 : 4;
constexpr auto ds_read_b_issue_cycle =
HotLoopInstList::B_LDS_Read_Width * sizeof(BDataType) == 16 ? 8 : 4;
constexpr auto ds_read_a_mfma_rate =
(mfma_cycle - 4 + 2 * ds_read_a_issue_cycle - 1) / (2 * ds_read_a_issue_cycle);
constexpr auto ds_read_b_mfma_rate =
(mfma_cycle - 4 + 2 * ds_read_b_issue_cycle - 1) / (2 * ds_read_b_issue_cycle);
constexpr auto num_dsread_a_mfma =
(num_ds_read_inst_a + ds_read_a_mfma_rate - 1) / ds_read_a_mfma_rate;
constexpr auto num_dsread_b_mfma =
(num_ds_read_inst_b + ds_read_b_mfma_rate - 1) / ds_read_b_mfma_rate;
// stage 1
// Separate this part?
// constexpr auto num_mfma_per_ds_read = sizeof(ComputeDataType) / sizeof(ADataType) >
// sizeof(ComputeDataType) / sizeof(BDataType)
// ? sizeof(ComputeDataType) / sizeof(ADataType)
// : sizeof(ComputeDataType) / sizeof(BDataType);
constexpr auto num_mfma_stage1 = num_mfma_inst - (num_dsread_a_mfma + num_dsread_b_mfma);
constexpr auto num_mfma_per_issue =
num_mfma_stage1 / (num_buffer_load_inst_a + num_buffer_load_inst_b);
constexpr auto num_dswrite_per_issue_a = num_ds_write_inst_a / num_buffer_load_inst_a;
constexpr auto num_dswrite_per_issue_b = num_ds_write_inst_b / num_buffer_load_inst_b;
static_for<0, num_buffer_load_inst_a, 1>{}([&](auto i) {
ignore = i;
static_for<0, num_dswrite_per_issue_a, 1>{}([&](auto idswrite) {
ignore = idswrite;
__builtin_amdgcn_sched_group_barrier(0x200, 1, 0); // DS write
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
});
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
__builtin_amdgcn_sched_group_barrier(
0x008, num_mfma_per_issue - num_dswrite_per_issue_a, 0); // MFMA
});
static_for<0, num_buffer_load_inst_b, 1>{}([&](auto i) {
ignore = i;
static_for<0, num_dswrite_per_issue_b, 1>{}([&](auto idswrite) {
ignore = idswrite;
__builtin_amdgcn_sched_group_barrier(0x200, 1, 0); // DS write
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
});
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
__builtin_amdgcn_sched_group_barrier(
0x008, num_mfma_per_issue - num_dswrite_per_issue_b, 0); // MFMA
});
// stage 2
static_for<0, num_dsread_a_mfma, 1>{}([&](auto i) {
if constexpr((num_ds_read_inst_a - (i + 1) * ds_read_a_mfma_rate) >=
ds_read_a_mfma_rate)
{
__builtin_amdgcn_sched_group_barrier(0x100, ds_read_a_mfma_rate, 0); // DS read
}
else
{
__builtin_amdgcn_sched_group_barrier(0x100,
num_ds_read_inst_a - (num_dsread_a_mfma - 1) *
ds_read_a_mfma_rate,
0); // DS read
}
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
});
static_for<0, num_dsread_b_mfma, 1>{}([&](auto i) {
if constexpr((num_ds_read_inst_b - (i + 1) * ds_read_b_mfma_rate) >=
ds_read_b_mfma_rate)
{
__builtin_amdgcn_sched_group_barrier(0x100, ds_read_b_mfma_rate, 0); // DS read
}
else
{
__builtin_amdgcn_sched_group_barrier(0x100,
num_ds_read_inst_b - (num_dsread_b_mfma - 1) *
ds_read_b_mfma_rate,
0); // DS read
}
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
});
}
template <bool HasMainLoop,
TailNumber TailNum,
typename AGridDesc,
typename ABlockDesc,
typename ABlockTransfer,
typename AGridBuffer,
typename ABlockBuffer,
typename ABlockTransferStep,
typename BGridDesc,
typename BBlockDesc,
typename BBlockTransfer,
typename BGridBuffer,
typename BBlockBuffer,
typename BBlockTransferStep,
typename CThreadBuffer>
__device__ void Run(const AGridDesc& a_grid_desc,
const ABlockDesc& a_block_desc,
ABlockTransfer& a_blockwise_copy,
const AGridBuffer& a_grid_buf,
ABlockBuffer& a_block_buf0,
ABlockBuffer& a_block_buf1,
const ABlockTransferStep& a_block_copy_step,
const BGridDesc& b_grid_desc,
const BBlockDesc& b_block_desc,
BBlockTransfer& b_blockwise_copy,
const BGridBuffer& b_grid_buf,
BBlockBuffer& b_block_buf,
const BBlockTransferStep& b_block_copy_step,
CThreadBuffer& c_thread_buf,
index_t num_loop) const
{
__builtin_amdgcn_sched_barrier(0);
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
b_thread_desc_.GetElementSpaceSize());
// Global prefetch 1
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf, Number<0>{});
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
// // Local prefill 1
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf0);
// // Global prefetch 2
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
// Initialize C
c_thread_buf.Clear();
// Local prefetch 1
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k0 * AMmaKStride>{}),
a_block_buf0,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
});
});
__builtin_amdgcn_sched_barrier(0);
// main body
if constexpr(HasMainLoop)
{
index_t i = 0;
do
{
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf1);
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf, Number<1>{});
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec =
b_blockwise_copy.template GetSrcThreadScratchIdx<Sequence<0, k0, 0>, Number<0>{}>();
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k0 * AMmaKStride>{}),
a_block_buf1,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
});
});
HotLoopScheduler();
__builtin_amdgcn_sched_barrier(0);
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf0);
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf, Number<0>{});
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec =
b_blockwise_copy.template GetSrcThreadScratchIdx<Sequence<0, k0, 0>, Number<1>{}>();
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k0 * AMmaKStride>{}),
a_block_buf0,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
});
});
HotLoopScheduler();
__builtin_amdgcn_sched_barrier(0);
i += 2;
} while(i < (num_loop - 2));
}
// tail
if constexpr(TailNum == TailNumber::Full)
{
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf1);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf, Number<1>{});
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec =
b_blockwise_copy.template GetSrcThreadScratchIdx<Sequence<0, k0, 0>, Number<0>{}>();
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k0 * AMmaKStride>{}),
a_block_buf1,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
});
});
__builtin_amdgcn_sched_barrier(0);
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec =
b_blockwise_copy.template GetSrcThreadScratchIdx<Sequence<0, k0, 0>, Number<1>{}>();
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
// Let's leak last MFMA block to epilogue region, cover the potential lds-shuffle
// latency
// __builtin_amdgcn_sched_barrier(0);
}
}
protected:
using Base::a_thread_copy_;
using Base::a_thread_desc_;
using Base::b_thread_desc_;
using Base::c_thread_desc_;
};
} // namespace ck
......@@ -281,8 +281,7 @@ struct BlockwiseGemmXdlops_pipeline_v3<BlockGemmPipelineScheduler::Intrawave,
const ABlockDesc& a_block_desc,
ABlockTransfer& a_blockwise_copy,
const AGridBuffer& a_grid_buf,
ABlockBuffer& a_block_buf0,
ABlockBuffer& a_block_buf1,
ABlockBuffer& a_block_buf,
const ABlockTransferStep& a_block_copy_step,
const BGridDesc& b_grid_desc,
const BBlockDesc& b_block_desc,
......@@ -301,17 +300,21 @@ struct BlockwiseGemmXdlops_pipeline_v3<BlockGemmPipelineScheduler::Intrawave,
// Global prefetch 1
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf, Number<0>{});
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
// // Local prefill 1
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf0);
// Local prefill 1
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf);
// // Global prefetch 2
// Global prefetch 2
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
// Initialize C
c_thread_buf.Clear();
......@@ -322,12 +325,21 @@ struct BlockwiseGemmXdlops_pipeline_v3<BlockGemmPipelineScheduler::Intrawave,
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k0 * AMmaKStride>{}),
a_block_buf0,
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
});
__builtin_amdgcn_sched_barrier(0);
// main body
......@@ -336,61 +348,13 @@ struct BlockwiseGemmXdlops_pipeline_v3<BlockGemmPipelineScheduler::Intrawave,
index_t i = 0;
do
{
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf1);
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf, Number<1>{});
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec =
b_blockwise_copy.template GetSrcThreadScratchIdx<Sequence<0, k0, 0>, Number<0>{}>();
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k0 * AMmaKStride>{}),
a_block_buf1,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
});
});
HotLoopScheduler();
__builtin_amdgcn_sched_barrier(0);
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf0);
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf);
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf, Number<0>{});
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
......@@ -399,12 +363,15 @@ struct BlockwiseGemmXdlops_pipeline_v3<BlockGemmPipelineScheduler::Intrawave,
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec =
b_blockwise_copy.template GetSrcThreadScratchIdx<Sequence<0, k0, 0>, Number<1>{}>();
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
......@@ -428,75 +395,43 @@ struct BlockwiseGemmXdlops_pipeline_v3<BlockGemmPipelineScheduler::Intrawave,
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k0 * AMmaKStride>{}),
a_block_buf0,
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
});
HotLoopScheduler();
__builtin_amdgcn_sched_barrier(0);
i += 2;
} while(i < (num_loop - 2));
i += 1;
} while(i < (num_loop - 1));
}
// tail
if constexpr(TailNum == TailNumber::Full)
{
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf1);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf, Number<1>{});
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec =
b_blockwise_copy.template GetSrcThreadScratchIdx<Sequence<0, k0, 0>, Number<0>{}>();
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
vector_type<ComputeDataType, KPack> b_thread_vec;
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k0 * AMmaKStride>{}),
a_block_buf1,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
});
});
__builtin_amdgcn_sched_barrier(0);
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec =
b_blockwise_copy.template GetSrcThreadScratchIdx<Sequence<0, k0, 0>, Number<1>{}>();
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
......@@ -520,7 +455,7 @@ struct BlockwiseGemmXdlops_pipeline_v3<BlockGemmPipelineScheduler::Intrawave,
protected:
using Base::a_thread_copy_;
using Base::a_thread_desc_;
// using Base::b_thread_copy_;
using Base::b_thread_copy_;
using Base::b_thread_desc_;
using Base::c_thread_desc_;
};
......
......@@ -486,52 +486,52 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3 : public DeviceGemmMultipleDSplitK<ALayo
// Tail number could be Odd or Even
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v4)
{
// if(arg.KBatch > 1)
// {
// if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
// {
// const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_2lds<
// GridwiseGemm,
// true,
// InMemoryDataOperationEnum::AtomicAdd,
// minimum_occupancy,
// TailNumber::Odd>;
// Run(kernel);
// }
// else
// {
// const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_2lds<
// GridwiseGemm,
// true,
// InMemoryDataOperationEnum::AtomicAdd,
// minimum_occupancy,
// TailNumber::Even>;
// Run(kernel);
// }
// }
// else
// {
// if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
// {
// const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_2lds<
// GridwiseGemm,
// true,
// InMemoryDataOperationEnum::Set,
// minimum_occupancy,
// TailNumber::Odd>;
// Run(kernel);
// }
// else
// {
// const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_2lds<
// GridwiseGemm,
// true,
// InMemoryDataOperationEnum::Set,
// minimum_occupancy,
// TailNumber::Even>;
// Run(kernel);
// }
// }
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
else
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
else
{
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/flush_cache.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename DsDataType,
typename CDataType,
typename GemmAccDataType,
typename CShuffleDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
GemmSpecialization GemmSpec,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1,
index_t BK1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
typename CDEShuffleBlockTransferScalarPerVectors,
BlockGemmPipelineScheduler BlkGemmPipeSched = BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion BlkGemmPipelineVer = BlockGemmPipelineVersion::v1,
typename ComputeTypeA = CDataType,
typename ComputeTypeB = ComputeTypeA,
typename LDSTypeA = ComputeTypeA,
typename LDSTypeB = ComputeTypeB>
struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle : public DeviceGemmMultiD_Xdl_CShuffle_V3<ALayout,
BLayout,
DsLayout,
CLayout,
ADataType,
BDataType,
DsDataType,
CDataType,
GemmAccDataType,
CShuffleDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
GemmSpec,
BlockSize,
MPerBlock,
NPerBlock,
KPerBlock,
AK1,
BK1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CDEShuffleBlockTransferScalarPerVectors,
BlkGemmPipeSched,
BlkGemmPipelineVer,
ComputeTypeA,
ComputeTypeB,
LDSTypeA,
LDSTypeB>
{
static constexpr index_t NumDTensor = DsDataType::Size();
// GridwiseGemm
using GridwiseGemm = GridwiseGemmMultiD_xdl_cshuffle_v3_b_preshuffle<
ALayout,
BLayout,
DsLayout,
CLayout,
ADataType,
BDataType,
GemmAccDataType,
CShuffleDataType,
DsDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
GemmSpec,
BlockSize,
MPerBlock,
NPerBlock,
KPerBlock,
AK1,
BK1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
false,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
false,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CDEShuffleBlockTransferScalarPerVectors,
BlkGemmPipeSched,
BlkGemmPipelineVer,
ComputeTypeA,
ComputeTypeB,
LDSTypeA,
LDSTypeB>;
using Argument = typename GridwiseGemm::Argument;
// Invoker
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(stream_config.log_level_ > 0)
{
arg.Print();
}
if(!GridwiseGemm::CheckValidity(arg))
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
index_t gdx, gdy, gdz;
std::tie(gdx, gdy, gdz) = GridwiseGemm::CalculateGridSize(arg.M, arg.N, arg.KBatch);
float ave_time = 0;
index_t k_grain = arg.KBatch * KPerBlock;
index_t K_split = (arg.K + k_grain - 1) / k_grain * KPerBlock;
const bool has_main_k_block_loop = GridwiseGemm::CalculateHasMainKBlockLoop(K_split);
const auto Run = [&](const auto& kernel) {
if(stream_config.flush_cache)
{
std::array<std::size_t, NumDTensor> DsSize;
Argument arg_ = arg;
const auto a_grid_desc_ak0_m_ak1 = GridwiseGemm::MakeAGridDescriptor_AK0_M_AK1(
arg_.M, arg_.MPadded, arg_.K, arg_.KPadded, arg_.StrideA, arg_.AK0);
const auto b_grid_desc_bk0_n_bk1 = GridwiseGemm::MakeBGridDescriptor_BK0_N_BK1(
arg_.K, arg_.KPadded, arg_.N, arg_.NPadded, arg_.StrideB, arg_.BK0);
auto size_a_buffer =
a_grid_desc_ak0_m_ak1.GetElementSpaceSize() * sizeof(ADataType);
auto size_b_buffer =
b_grid_desc_bk0_n_bk1.GetElementSpaceSize() * sizeof(BDataType);
const auto ds_grid_desc_m_n = GridwiseGemm::MakeDsGridDescriptor_M_N(
arg_.M, arg_.MPadded, arg_.N, arg_.NPadded, arg_.StrideDs);
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
DsSize[i] = ds_grid_desc_m_n[i].GetElementSpaceSize() * sizeof(DDataType);
});
ck::utility::RotatingMemWrapperMultiD<Argument, DsDataType> rotating_mem(
arg_, stream_config.rotating_count, size_a_buffer, size_b_buffer, DsSize);
rotating_mem.Print();
auto run_flush_cache = [&]() {
// flush icache
ck::utility::flush_icache();
// rotating mem
rotating_mem.Next();
// clear c mem
if(arg_.KBatch > 1)
hipGetErrorString(hipMemsetAsync(arg_.p_c_grid,
0,
arg_.M * arg_.N * sizeof(CDataType),
stream_config.stream_id_));
};
ave_time = ck::utility::launch_and_time_kernel_with_preprocess<false>(
stream_config,
run_flush_cache,
kernel,
dim3(gdx, gdy, gdz),
dim3(BlockSize),
0,
arg_);
}
else
{
if(arg.KBatch > 1)
hipGetErrorString(hipMemsetAsync(arg.p_c_grid,
0,
arg.M * arg.N * sizeof(CDataType),
stream_config.stream_id_));
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(gdx, gdy, gdz), dim3(BlockSize), 0, arg);
}
};
constexpr index_t minimum_occupancy =
BlkGemmPipeSched == BlockGemmPipelineScheduler::Intrawave ? 1 : 2;
// static_assert(BlkGemmPipelineVer == BlockGemmPipelineVersion::v3 && has_main_k_block_loop, "only impl BlockGemmPipelineVersion::v3 and has mainloop right now");
if(has_main_k_block_loop)
{
// Tail number always full
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v3)
{
if(arg.KBatch > 1)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
}
else
{
throw std::runtime_error("todo: only v3 support now");
}
}
else
{
if(arg.KBatch > 1)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle<
GridwiseGemm,
false,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle<GridwiseGemm,
false,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
if(!ck::is_xdl_supported())
{
return false;
}
if(!is_bf16_atomic_supported() && std::is_same_v<CDataType, ck::bhalf_t> && arg.KBatch > 1)
{
return false;
}
if((arg.K % AK1 != 0 || arg.K % BK1 != 0) && !(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding ||
GemmSpec == GemmSpecialization::KPadding))
{
return false;
}
return GridwiseGemm::CheckValidity(arg);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
std::array<index_t, NumDTensor> StrideDs,
index_t StrideC,
index_t KBatch,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
return Argument{static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
p_ds,
static_cast<CDataType*>(p_c),
M,
N,
K,
StrideA,
StrideB,
StrideDs,
StrideC,
KBatch,
a_element_op,
b_element_op,
c_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
std::array<ck::index_t, NumDTensor> StrideDs,
index_t StrideC,
index_t KBatch,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
p_ds,
static_cast<CDataType*>(p_c),
M,
N,
K,
StrideA,
StrideB,
StrideDs,
StrideC,
KBatch,
a_element_op,
b_element_op,
c_element_op);
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
\ No newline at end of file
......@@ -40,7 +40,6 @@ __global__ void
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
__shared__ char p_shared1[GridwiseGemm::GetSharedMemoryNumberOfByte()];
auto splitk_batch_offset = typename GridwiseGemm::SplitKBatchOffset(karg, blockIdx.z);
......@@ -50,7 +49,42 @@ __global__ void
karg.p_ds_grid,
karg.p_c_grid,
p_shared,
p_shared1,
karg,
karg.a_element_op,
karg.b_element_op,
karg.c_element_op);
#else
ignore = karg;
#endif // end of if (defined(__gfx9__))
}
template <typename GridwiseGemm,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
index_t MinimumOccupancy = 1,
TailNumber TailNum = TailNumber::Full>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, MinimumOccupancy)
#endif
// __attribute__((amdgpu_waves_per_eu(1, 1)))
kernel_gemm_xdl_cshuffle_v3_multi_d_2lds(typename GridwiseGemm::Argument karg)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
// Pass two lds pointer is the key to tell compiler that ds_read/write
// operate on different lds chunk at same time without order dependecy
__shared__ char p_shared_0[GridwiseGemm::GetSharedMemoryNumberOfByte()];
__shared__ char p_shared_1[GridwiseGemm::GetSharedMemoryNumberOfByte()];
auto splitk_batch_offset = typename GridwiseGemm::SplitKBatchOffset(karg, blockIdx.z);
GridwiseGemm::template Run_2Lds<HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
karg.p_a_grid + splitk_batch_offset.a_k_split_offset,
karg.p_b_grid + splitk_batch_offset.b_k_split_offset,
karg.p_ds_grid,
karg.p_c_grid,
p_shared_0,
p_shared_1,
karg,
karg.a_element_op,
karg.b_element_op,
......@@ -129,12 +163,6 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
static constexpr auto BK0Number = Number<KPerBlock / BK1Value>{};
static constexpr auto AK1Number = Number<AK1Value>{};
static constexpr auto BK1Number = Number<BK1Value>{};
static constexpr auto BlockSizeNumber = Number<BlockSize>{};
static constexpr index_t NLane = 32;
static constexpr index_t NWave = 4;
static constexpr index_t KLane = 2;
static constexpr index_t KRepeat = 8;
static_assert(NLane * NWave * KLane == BlockSize);
static constexpr index_t NumDTensor = DsDataType::Size();
......@@ -172,15 +200,6 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
return math::integer_least_multiple(N, NPerBlock);
}
__host__ __device__ static auto CalculateBN0Shuffled(index_t N)
{
return math::integer_divide_ceil(N, NLane * NWave);
}
__host__ __device__ static auto CalculateBK0Shuffled(index_t K, index_t KBatch)
{
return math::integer_divide_ceil(K, KLane * KPack * KBatch);
}
__host__ __device__ static auto CalculateKPadded(index_t K)
{
return math::integer_divide_ceil(K, KPerBlock) * KPerBlock;
......@@ -318,16 +337,6 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
}
}
__host__ __device__ static auto MakeBGridDescriptor_Preshuffled(index_t N0, index_t K0)
{
constexpr index_t NKSWIZZLE_V = BlockSize * KPack;
constexpr index_t NKSWIZZLE_N = Number<NKSWIZZLE_V>{};
return make_naive_tensor_descriptor(
make_tuple(N0, K0, NKSWIZZLE_N),
make_tuple(K0 * NKSWIZZLE_V, NKSWIZZLE_N, I1)
);
}
__host__ __device__ static auto MakeBGridDescriptor_BK0_N_BK1(
index_t K, index_t KPad, index_t N, index_t NPad, index_t StrideB, index_t BK0)
{
......@@ -540,9 +549,7 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
AK0{CalculateAK0Padded(K_, KBatch_)},
BK0{CalculateBK0Padded(K_, KBatch_)},
MBlock{CalculateMBlock(M_)},
NBlock{CalculateNBlock(N_)},
BN0Shuffled{CalculateBN0Shuffled(N_)},
BK0Shuffled{CalculateBK0Shuffled(K_, KBatch_)}
NBlock{CalculateNBlock(N_)}
{
}
......@@ -581,9 +588,6 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
index_t BK0;
index_t MBlock;
index_t NBlock;
// FOR PRESHUFFLE ONLY
index_t BN0Shuffled;
index_t BK0Shuffled;
};
// Argument
......@@ -985,7 +989,7 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
{
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
// constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1Number, BK1Number);
......@@ -993,8 +997,8 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
// constexpr auto b_block_space_size_aligned = math::integer_least_multiple(
// b_block_desc_bk0_n_bk1.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size_aligned = math::integer_least_multiple(
b_block_desc_bk0_n_bk1.GetElementSpaceSize(), max_lds_align);
// LDS allocation for C shuffle in LDS
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
......@@ -1003,7 +1007,8 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
constexpr auto c_block_size =
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
return math::max(a_block_space_size_aligned * sizeof(LDSTypeA),
return math::max((a_block_space_size_aligned * sizeof(LDSTypeA) +
b_block_space_size_aligned * sizeof(LDSTypeB)),
c_block_size * sizeof(CShuffleDataType));
}
......@@ -1223,7 +1228,6 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
DsGridPointer& p_ds_grid,
CDataType* p_c_grid,
void* p_shared,
void* p_shared1,
const Problem& problem,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
......@@ -1236,7 +1240,6 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
p_ds_grid,
p_c_grid,
p_shared,
p_shared1,
problem,
a_element_op,
b_element_op,
......@@ -1253,7 +1256,6 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
DsGridPointer& p_ds_grid,
CDataType* p_c_grid,
void* p_shared,
void* p_shared1,
const Problem& problem,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
......@@ -1262,8 +1264,8 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
{
const auto a_grid_desc_ak0_m_ak1 = MakeAGridDescriptor_AK0_M_AK1(
problem.M, problem.MPadded, problem.K, problem.KPadded, problem.StrideA, problem.AK0);
const auto b_grid_desc_bpreshuffled = MakeBGridDescriptor_Preshuffled(
problem.BN0Shuffled, problem.BK0Shuffled);
const auto b_grid_desc_bk0_n_bk1 = MakeBGridDescriptor_BK0_N_BK1(
problem.K, problem.KPadded, problem.N, problem.NPadded, problem.StrideB, problem.BK0);
const auto c_grid_desc_m_n = MakeCGridDescriptor_M_N<CLayout>(
problem.M, problem.MPadded, problem.N, problem.NPadded, problem.StrideC);
......@@ -1274,7 +1276,7 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_bpreshuffled.GetElementSpaceSize());
p_b_grid, b_grid_desc_bk0_n_bk1.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_grid, c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
......@@ -1297,8 +1299,8 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
__builtin_amdgcn_readfirstlane(block_m_id * MPerBlock);
const index_t n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_n_id * (NPerBlock / NLane / NWave)) ;
__builtin_amdgcn_readfirstlane(block_n_id * NPerBlock);
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1Number, BK1Number);
......@@ -1339,22 +1341,20 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// using BThreadClusterLengths = Sequence<1, 1, BlockSize>;
// using BBlockTransferClusterArrangeOrder = Sequence<0, 1, 2>;
// B matrix blockwise copy
auto b_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<1, KRepeat, KPack * BlockSize>,
Sequence<1, 1, BlockSize>, //BThreadClusterLengths,
Sequence<0, 1, 2>, //BBlockTransferClusterArrangeOrder,
Sequence<BK0Number, NPerBlock, BK1Number>,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BDataType,
LDSTypeB,
decltype(b_grid_desc_bpreshuffled),
decltype(b_grid_desc_bk0_n_bk1),
decltype(b_block_desc_bk0_n_bk1),
Sequence<0, 1, 2>,//BBlockTransferSrcAccessOrder,
BBlockTransferSrcAccessOrder,
Sequence<0, 1, 2>,
BBlockTransferSrcVectorDim,
2,
......@@ -1364,9 +1364,9 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
1,
BThreadTransferSrcResetCoordinateAfterRun,
true,
2>(
b_grid_desc_bpreshuffled,
make_multi_index(n_block_data_idx_on_grid, 0, 0),
BlockwiseGemmPipe::GlobalBufferNum>(
b_grid_desc_bk0_n_bk1,
make_multi_index(0, n_block_data_idx_on_grid, 0),
b_element_op,
b_block_desc_bk0_n_bk1,
make_multi_index(0, 0, 0),
......@@ -1379,8 +1379,6 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
// Cast after lds
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<LDSTypeA*>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto a_block_buf1 = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<LDSTypeA*>(p_shared1), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<LDSTypeB*>(p_shared) +
......@@ -1388,7 +1386,7 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock / AK1Number, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(0, KRepeat, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(KPerBlock / BK1Number, 0, 0);
// Blockwise GEMM pipeline
static_assert(std::is_default_constructible_v<BlockwiseGemmPipe>);
......@@ -1404,9 +1402,8 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
a_blockwise_copy,
a_grid_buf,
a_block_buf,
a_block_buf1,
a_block_slice_copy_step,
b_grid_desc_bpreshuffled,
b_grid_desc_bk0_n_bk1,
b_block_desc_bk0_n_bk1,
b_blockwise_copy,
b_grid_buf,
......@@ -1676,6 +1673,472 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
}
}
template <bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
TailNumber TailNum = TailNumber::Odd>
__device__ static void Run_2Lds(const ADataType* p_a_grid,
const BDataType* p_b_grid,
DsGridPointer& p_ds_grid,
CDataType* p_c_grid,
void* p_shared_0,
void* p_shared_1,
const Problem& problem,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
// divide block work by [M, N]
const auto block_2_ctile_map = Block2CTileMapDefault{problem.M, problem.N, 4};
Run_2Lds<Block2CTileMapDefault, HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
p_a_grid,
p_b_grid,
p_ds_grid,
p_c_grid,
p_shared_0,
p_shared_1,
problem,
a_element_op,
b_element_op,
c_element_op,
block_2_ctile_map);
}
template <typename Block2CTileMap,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
TailNumber TailNum = TailNumber::Odd>
__device__ static void Run_2Lds(const ADataType* p_a_grid,
const BDataType* p_b_grid,
DsGridPointer& p_ds_grid,
CDataType* p_c_grid,
void* p_shared_0,
void* p_shared_1,
const Problem& problem,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
const Block2CTileMap& block_2_ctile_map)
{
const auto a_grid_desc_ak0_m_ak1 = MakeAGridDescriptor_AK0_M_AK1(
problem.M, problem.MPadded, problem.K, problem.KPadded, problem.StrideA, problem.AK0);
const auto b_grid_desc_bk0_n_bk1 = MakeBGridDescriptor_BK0_N_BK1(
problem.K, problem.KPadded, problem.N, problem.NPadded, problem.StrideB, problem.BK0);
const auto c_grid_desc_m_n = MakeCGridDescriptor_M_N<CLayout>(
problem.M, problem.MPadded, problem.N, problem.NPadded, problem.StrideC);
const auto c_grid_desc_mblock_mperblock_nblock_nperblock =
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n, problem.MBlock, problem.NBlock);
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_bk0_n_bk1.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_grid, c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
make_tuple(c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I0),
c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I2))))
{
return;
}
const index_t block_m_id = __builtin_amdgcn_readfirstlane(block_work_idx[I0]);
const index_t block_n_id = __builtin_amdgcn_readfirstlane(block_work_idx[I1]);
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_m_id * MPerBlock);
const index_t n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_n_id * NPerBlock);
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1Number, BK1Number);
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// A matrix blockwise copy
auto a_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
AElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<AK0Number, MPerBlock, AK1Number>,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ADataType,
LDSTypeA,
decltype(a_grid_desc_ak0_m_ak1),
decltype(a_block_desc_ak0_m_ak1),
ABlockTransferSrcAccessOrder,
Sequence<0, 1, 2>,
ABlockTransferSrcVectorDim,
2,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
1,
1,
AThreadTransferSrcResetCoordinateAfterRun,
true,
BlockwiseGemmPipe::GlobalBufferNum>(
a_grid_desc_ak0_m_ak1,
make_multi_index(0, m_block_data_idx_on_grid, 0),
a_element_op,
a_block_desc_ak0_m_ak1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// B matrix blockwise copy
auto b_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<BK0Number, NPerBlock, BK1Number>,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BDataType,
LDSTypeB,
decltype(b_grid_desc_bk0_n_bk1),
decltype(b_block_desc_bk0_n_bk1),
BBlockTransferSrcAccessOrder,
Sequence<0, 1, 2>,
BBlockTransferSrcVectorDim,
2,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true,
BlockwiseGemmPipe::GlobalBufferNum>(
b_grid_desc_bk0_n_bk1,
make_multi_index(0, n_block_data_idx_on_grid, 0),
b_element_op,
b_block_desc_bk0_n_bk1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
auto a_block_buf_ping = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<LDSTypeA*>(p_shared_0), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf_ping = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<LDSTypeB*>(p_shared_0) +
a_block_space_size_aligned * sizeof(LDSTypeA) / sizeof(LDSTypeB),
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
auto a_block_buf_pong = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<LDSTypeA*>(p_shared_1), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf_pong = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<LDSTypeB*>(p_shared_1) +
a_block_space_size_aligned * sizeof(LDSTypeA) / sizeof(LDSTypeB),
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
auto a_block_bufs = make_tuple(a_block_buf_ping, a_block_buf_pong);
auto b_block_bufs = make_tuple(b_block_buf_ping, b_block_buf_pong);
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock / AK1Number, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(KPerBlock / BK1Number, 0, 0);
// Blockwise GEMM pipeline
static_assert(std::is_default_constructible_v<BlockwiseGemmPipe>);
auto blockwise_gemm_pipeline = BlockwiseGemmPipe{};
auto c_thread_buf = blockwise_gemm_pipeline.GetCThreadBuffer();
const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane(
(a_grid_desc_ak0_m_ak1.GetLength(I0) * a_grid_desc_ak0_m_ak1.GetLength(I2)) /
KPerBlock);
blockwise_gemm_pipeline.template Run<HasMainKBlockLoop, TailNum>(a_grid_desc_ak0_m_ak1,
a_block_desc_ak0_m_ak1,
a_blockwise_copy,
a_grid_buf,
a_block_bufs,
a_block_slice_copy_step,
b_grid_desc_bk0_n_bk1,
b_block_desc_bk0_n_bk1,
b_blockwise_copy,
b_grid_buf,
b_block_bufs,
b_block_slice_copy_step,
c_thread_buf,
num_k_block_main_loop);
// shuffle C and write out
{
static_assert(MXdlPerWave % CShuffleMXdlPerWavePerShuffle == 0 &&
NXdlPerWave % CShuffleNXdlPerWavePerShuffle == 0,
"wrong!");
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
// TODO: hacky, fix it!
constexpr auto c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2 =
blockwise_gemm_pipeline.GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp =
blockwise_gemm_pipeline.GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
constexpr auto M0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I0);
constexpr auto N0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I1);
constexpr auto M1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I2);
constexpr auto N1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I3);
constexpr auto M2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I4);
constexpr auto M3 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I5);
constexpr auto M4 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I6);
constexpr auto N2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I7);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
auto c_shuffle_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<CShuffleDataType*>(p_shared_0),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2 = transform_tensor_descriptor(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
make_tuple(
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleMXdlPerWavePerShuffle>{}, // M0 (MXdlPerWave) per shuffle
M1, // M1 = MWave
M2, // M2 * M3 * M4 = MPerXdl
M3,
M4)),
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleNXdlPerWavePerShuffle>{}, // N0 (NXdlPerWave) per shuffle
N1, // N1 = NWave
N2))), // N2 = NPerXdl
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(
Sequence<>{}, Sequence<0, 2, 4, 5, 6>{}, Sequence<>{}, Sequence<1, 3, 7>{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm_pipeline.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const index_t m_thread_data_on_block = c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_block = c_thread_mtx_on_block[I1];
const auto m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M0, M1, M2, M3, M4))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto m_thread_data_on_block_idx =
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor.CalculateBottomIndex(
make_multi_index(m_thread_data_on_block));
const auto n_thread_data_on_block_to_n0_n1_n2_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(N0, N1, N2))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
const auto n_thread_data_on_block_idx =
n_thread_data_on_block_to_n0_n1_n2_adaptor.CalculateBottomIndex(
make_multi_index(n_thread_data_on_block));
// shuffle: threadwise copy C from VGPR to LDS
auto c_thread_copy_vgpr_to_lds =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
CShuffleDataType,
decltype(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2),
decltype(c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2),
ck::tensor_operation::element_wise::PassThrough,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
I1,
I1,
M2,
I1,
M4,
I1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
7,
1,
InMemoryDataOperationEnum::Set,
1,
true>{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
make_multi_index(0,
0,
m_thread_data_on_block_idx[I1],
n_thread_data_on_block_idx[I1],
m_thread_data_on_block_idx[I2],
m_thread_data_on_block_idx[I3],
m_thread_data_on_block_idx[I4],
n_thread_data_on_block_idx[I2]),
ck::tensor_operation::element_wise::PassThrough{}};
using EDataType = CDataType;
const auto ds_grid_desc_m_n = MakeDsGridDescriptor_M_N(
problem.M, problem.MPadded, problem.N, problem.NPadded, problem.StrideDs);
const auto ds_grid_desc_mblock_mperblock_nblock_nperblock =
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
ds_grid_desc_m_n, problem.MBlock, problem.NBlock);
const auto ds_grid_buf = generate_tuple(
[&](auto i) {
return make_dynamic_buffer<AddressSpaceEnum::Global>(
p_ds_grid[i], ds_grid_desc_m_n[i].GetElementSpaceSize());
},
Number<NumDTensor>{});
// tuple of reference to C/Ds tensor descriptors
const auto c_ds_desc_refs = concat_tuple_of_reference(
tie(c_shuffle_block_desc_mblock_mperblock_nblock_nperblock),
generate_tie(
[&](auto i) -> const auto& // return type should be reference
{ return ds_grid_desc_mblock_mperblock_nblock_nperblock[i]; },
Number<NumDTensor>{}));
// tuple of reference to C/Ds tensor descriptors
const auto c_ds_buf_refs = concat_tuple_of_reference(
tie(c_shuffle_block_buf),
generate_tie(
[&](auto i) -> const auto& // return type should be reference
{ return ds_grid_buf[i]; },
Number<NumDTensor>{}));
// tuple of starting index of C/Ds blockwise copy
const auto idx_c_ds_block_begin = container_concat(
make_tuple(make_multi_index(0, 0, 0, 0)),
generate_tuple(
[&](auto) {
return make_multi_index(block_work_idx[I0], 0, block_work_idx[I1], 0);
},
Number<NumDTensor>{}));
const auto e_grid_desc_mblock_mperblock_nblock_nperblock =
c_grid_desc_mblock_mperblock_nblock_nperblock;
using CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock =
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock;
const auto EGlobalMemoryDataOperation = CGlobalMemoryDataOperation;
auto cde_block_copy_lds_and_global = ThreadGroupTensorSliceTransfer_v7r3<
ThisThreadBlock,
decltype(container_concat(make_tuple(CShuffleDataType{}), DsDataType{})),
Tuple<EDataType>,
decltype(c_ds_desc_refs),
decltype(tie(e_grid_desc_mblock_mperblock_nblock_nperblock)),
CElementwiseOperation,
Sequence<static_cast<index_t>(EGlobalMemoryDataOperation)>, // FIXME: make Sequence
// support arbitray type
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>, // BlockSliceLengths,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
Sequence<0, 1, 2, 3>, // typename ThreadClusterArrangeOrder,
Sequence<0, 1, 2, 3>, // typename SrcDimAccessOrder,
Sequence<0, 1, 2, 3>, // typename DstDimAccessOrder,
3, // index_t SrcVectorDim,
3, // index_t DstVectorDim,
CDEShuffleBlockTransferScalarPerVectors,
CShuffleBlockTransferScalarPerVector_NPerBlock,
sequence_merge_t<
Sequence<true>,
uniform_sequence_gen_t<NumDTensor,
false>>, // ThreadTransferSrcResetCoordinateAfterRunFlags
Sequence<false>> // ThreadTransferDstResetCoordinateAfterRunFlags
{c_ds_desc_refs,
idx_c_ds_block_begin,
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
make_tuple(make_multi_index(block_m_id, 0, block_n_id, 0)),
c_element_op};
// space filling curve for threadwise C in VGPR
constexpr auto sfc_c_vgpr =
SpaceFillingCurve<Sequence<MXdlPerWave, NXdlPerWave, 1, 1, M2, 1, M4, 1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
1,
1,
M2,
1,
M4,
1>>{};
constexpr index_t num_access = sfc_c_vgpr.GetNumOfAccess();
// space filling curve for shuffled blockwise C/D/E
constexpr auto sfc_cde_block =
SpaceFillingCurve<Sequence<1, MPerBlock, 1, NPerBlock>,
Sequence<0, 2, 1, 3>,
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>>{};
static_assert(num_access == sfc_cde_block.GetNumOfAccess(), "wrong!");
static_for<0, num_access, 1>{}([&](auto access_id) {
// make sure it's safe to write to LDS
block_sync_lds();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2,
sfc_c_vgpr.GetIndexTupleOfNumber(access_id),
c_thread_buf,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
c_shuffle_block_buf);
// make sure it's safe to read from LDS
block_sync_lds();
// each block copy its data from LDS to global
cde_block_copy_lds_and_global.Run(
c_ds_desc_refs,
c_ds_buf_refs,
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
tie(c_grid_buf));
if constexpr(access_id < num_access - 1)
{
constexpr auto cde_lds_and_global_step =
sfc_cde_block.GetForwardStep(access_id);
// move on Ds
static_for<0, NumDTensor, 1>{}([&](auto i) {
cde_block_copy_lds_and_global.MoveSrcSliceWindow(
c_ds_desc_refs, i + I1, cde_lds_and_global_step);
});
// move on E
cde_block_copy_lds_and_global.MoveDstSliceWindow(
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
I0,
cde_lds_and_global_step);
}
});
}
}
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle.hpp"
// #include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_selector.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7r3.hpp"
#define DEBUG_LOG 0
namespace ck {
// Currently we do not have a elegant way to put single lds buffer & double lds buffer pipe in same
// kernel function Blockers:
// 1. Two separted declaration of __shared__ pointer is the key to make sure data access operate on
// two lds chunks.
// 2. Occupied __shared__ won't release until whole shader end, a.k.a AB and C may not use same lds
// buffer when we declare __shared__ inside blkgemmpipe
template <typename GridwiseGemm,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
index_t MinimumOccupancy = 1,
TailNumber TailNum = TailNumber::Full>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, MinimumOccupancy)
#endif
// __attribute__((amdgpu_waves_per_eu(1, 1)))
kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle(typename GridwiseGemm::Argument karg)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
__shared__ char p_shared1[GridwiseGemm::GetSharedMemoryNumberOfByte()];
auto splitk_batch_offset = typename GridwiseGemm::SplitKBatchOffset(karg, blockIdx.z);
GridwiseGemm::template Run<HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
karg.p_a_grid + splitk_batch_offset.a_k_split_offset,
karg.p_b_grid + splitk_batch_offset.b_k_split_offset,
karg.p_ds_grid,
karg.p_c_grid,
p_shared,
p_shared1,
karg,
karg.a_element_op,
karg.b_element_op,
karg.c_element_op);
#else
ignore = karg;
#endif // end of if (defined(__gfx9__))
}
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename CDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
tensor_operation::device::GemmSpecialization GemmSpec,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1Value,
index_t BK1Value,
index_t MPerXdl,
index_t NPerXdl,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool AThreadTransferSrcResetCoordinateAfterRun,
index_t ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BThreadTransferSrcResetCoordinateAfterRun,
index_t BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
typename CDEShuffleBlockTransferScalarPerVectors,
BlockGemmPipelineScheduler BlkGemmPipeSched = BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion BlkGemmPipelineVer = BlockGemmPipelineVersion::v4,
typename ComputeTypeA = CDataType,
typename ComputeTypeB = ComputeTypeA,
typename LDSTypeA = ADataType,
typename LDSTypeB = BDataType>
struct GridwiseGemmMultiD_xdl_cshuffle_v3_b_preshuffle
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
static constexpr auto I7 = Number<7>{};
static constexpr auto CShuffleBlockTransferScalarPerVector_NPerBlock =
CDEShuffleBlockTransferScalarPerVectors{}[I0];
// K1 should be Number<...>
static constexpr auto AK0Number = Number<KPerBlock / AK1Value>{};
static constexpr auto BK0Number = Number<KPerBlock / BK1Value>{};
static constexpr auto AK1Number = Number<AK1Value>{};
static constexpr auto BK1Number = Number<BK1Value>{};
static constexpr auto BlockSizeNumber = Number<BlockSize>{};
static constexpr index_t NLane = 32;
static constexpr index_t NWave = 4;
static constexpr index_t KLane = 2;
static constexpr index_t KRepeat = 8;
static_assert(NLane * NWave * KLane == BlockSize);
static constexpr index_t NumDTensor = DsDataType::Size();
static constexpr auto MakeDsGridPointer()
{
return generate_tuple(
[&](auto i) {
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
return static_cast<const DDataType*>(nullptr);
},
Number<NumDTensor>{});
}
using DsGridPointer = decltype(MakeDsGridPointer());
static constexpr index_t KPack = math::max(
math::lcm(AK1Number, BK1Number),
MfmaSelector<ComputeTypeA, MPerXdl, NPerXdl, ComputeTypeB>::selected_mfma.k_per_blk);
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
__host__ static auto CalculateGridSize(index_t M, index_t N, index_t KBatch)
{
return std::make_tuple(Block2CTileMapDefault::CalculateGridSize(M, N), 1, KBatch);
}
__host__ __device__ static auto CalculateMPadded(index_t M)
{
return math::integer_least_multiple(M, MPerBlock);
}
__host__ __device__ static auto CalculateNPadded(index_t N)
{
return math::integer_least_multiple(N, NPerBlock);
}
__host__ __device__ static auto CalculateBN0Shuffled(index_t N)
{
return math::integer_divide_ceil(N, NLane * NWave);
}
__host__ __device__ static auto CalculateBK0Shuffled(index_t K, index_t KBatch)
{
return math::integer_divide_ceil(K, KLane * KPack * KBatch);
}
__host__ __device__ static auto CalculateKPadded(index_t K)
{
return math::integer_divide_ceil(K, KPerBlock) * KPerBlock;
}
__host__ __device__ static auto CalculateAK0Padded(index_t K, index_t K_Batch = 1)
{
auto K_t = K_Batch * KPerBlock;
return (K + K_t - 1) / K_t * (KPerBlock / AK1Value);
}
__host__ __device__ static auto CalculateBK0Padded(index_t K, index_t K_Batch = 1)
{
auto K_t = K_Batch * KPerBlock;
return (K + K_t - 1) / K_t * (KPerBlock / BK1Value);
}
__host__ __device__ static auto CalculateKPadded(index_t K, index_t K_Batch = 1)
{
auto K_t = K_Batch * KPerBlock;
return (K + K_t - 1) / K_t * KPerBlock;
}
__host__ __device__ static auto CalculateKRead(index_t K, index_t K_Batch = 1)
{
constexpr auto KReadVec = math::lcm(AK1Number, BK1Number);
auto K_t = K_Batch * KReadVec;
return (K + K_t - 1) / K_t * KReadVec;
}
__host__ __device__ static auto CalculateMBlock(index_t M)
{
return math::integer_divide_ceil(M, MPerBlock);
}
__host__ __device__ static auto CalculateNBlock(index_t N)
{
return math::integer_divide_ceil(N, NPerBlock);
}
template <index_t MNXdlPerWave, index_t MNWaves, index_t MNPerXdl, typename TileDesc_K0_MN_K1>
__host__ __device__ static constexpr auto MakeGemmMmaTileDescriptor(const TileDesc_K0_MN_K1&)
{
constexpr index_t K0 = TileDesc_K0_MN_K1{}.GetLength(Number<0>{});
constexpr index_t K1 = TileDesc_K0_MN_K1{}.GetLength(Number<2>{});
return transform_tensor_descriptor(
TileDesc_K0_MN_K1{},
make_tuple(make_merge_transform_v3_division_mod(make_tuple(Number<K0>{}, Number<K1>{})),
make_unmerge_transform(make_tuple(
Number<MNXdlPerWave>{}, Number<MNWaves>{}, Number<MNPerXdl>{}))),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}),
make_tuple(Sequence<3>{}, Sequence<0, 1, 2>{}));
}
__host__ __device__ static auto MakeAGridDescriptor_AK0_M_AK1(
index_t M, index_t MPad, index_t K, index_t KPad, index_t StrideA, index_t AK0)
{
const auto a_grid_desc_mraw_kraw = [&]() {
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
}
}();
using GemmSpecialization = tensor_operation::device::GemmSpecialization;
if constexpr(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both M and K
const auto a_grid_desc_m_k =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_right_pad_transform(M, MPad - M),
make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 = transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1Value)),
make_pass_through_transform(MPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad M, but not K
const auto a_grid_desc_ak0_m_ak1 = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1Value)),
make_right_pad_transform(M, MPad - M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad K, but not M
const auto a_grid_desc_m_k = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_pass_through_transform(M), make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 = transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1Value)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else
{
// not pad M or K
const auto a_grid_desc_ak0_m_ak1 = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1Value)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
}
__host__ __device__ static auto MakeBGridDescriptor_Preshuffled(index_t N0, index_t K0)
{
constexpr index_t NKSWIZZLE_V = BlockSize * KPack;
constexpr index_t NKSWIZZLE_N = Number<NKSWIZZLE_V>{};
return make_naive_tensor_descriptor(
make_tuple(N0, K0, NKSWIZZLE_N),
make_tuple(K0 * NKSWIZZLE_V, NKSWIZZLE_N, I1)
);
}
__host__ __device__ static auto MakeBGridDescriptor_BK0_N_BK1(
index_t K, index_t KPad, index_t N, index_t NPad, index_t StrideB, index_t BK0)
{
const auto b_grid_desc_nraw_kraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(N, K), make_tuple(I1, StrideB));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(N, K), make_tuple(StrideB, I1));
}
}();
using GemmSpecialization = tensor_operation::device::GemmSpecialization;
if constexpr(GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both N and K
const auto b_grid_desc_n_k =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_right_pad_transform(N, NPad - N),
make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 = transform_tensor_descriptor(
b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1Value)),
make_pass_through_transform(NPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad N, but not K
const auto b_grid_desc_bk0_n_bk1 = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1Value)),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad K, but not N
const auto b_grid_desc_n_k = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_pass_through_transform(N), make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 = transform_tensor_descriptor(
b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1Value)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else
{
// not pad N or K
const auto b_grid_desc_bk0_n_bk1 = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1Value)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
}
template <typename ABlockDesc_AK0_M_AK1>
__host__ __device__ static constexpr auto
MakeAMmaTileDescriptor_M0_M1_M2_K(const ABlockDesc_AK0_M_AK1&)
{
constexpr index_t MWaves = MPerBlock / (MXdlPerWave * MPerXdl);
return MakeGemmMmaTileDescriptor<MXdlPerWave, MWaves, MPerXdl>(ABlockDesc_AK0_M_AK1{});
}
template <typename BBlockDesc_BK0_N_BK1>
__host__ __device__ static constexpr auto
MakeBMmaTileDescriptor_N0_N1_N2_K(const BBlockDesc_BK0_N_BK1&)
{
constexpr index_t NWaves = NPerBlock / (NXdlPerWave * NPerXdl);
return MakeGemmMmaTileDescriptor<NXdlPerWave, NWaves, NPerXdl>(BBlockDesc_BK0_N_BK1{});
}
template <typename ELayout>
__host__ __device__ static auto
MakeCGridDescriptor_M_N(index_t M, index_t MPad, index_t N, index_t NPad, index_t StrideC)
{
const auto c_grid_desc_mraw_nraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ELayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ELayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC));
}
}();
// pad M and N
return transform_tensor_descriptor(c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(M, MPad - M),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
#if 0
using GemmSpecialization = tensor_operation::device::GemmSpecialization;
if constexpr(GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad M and N
return transform_tensor_descriptor(c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(M, MPad - M),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad M, but not N
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(M, MPad - M), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad N, but not M
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_pass_through_transform(M), make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
// not pad M or N
return c_grid_desc_mraw_nraw;
}
#endif
}
__host__ __device__ static auto MakeDsGridDescriptor_M_N(
index_t M, index_t MPad, index_t N, index_t NPad, std::array<index_t, NumDTensor> StrideDs)
{
return generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return MakeCGridDescriptor_M_N<DLayout>(M, MPad, N, NPad, StrideDs[i]);
},
Number<NumDTensor>{});
}
template <typename DsGridDesc>
__device__ static constexpr auto MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
const DsGridDesc& ds_grid_desc_m_n, index_t MBlock, index_t NBlock)
{
return generate_tuple(
[&](auto i) {
return MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
ds_grid_desc_m_n[i], MBlock, NBlock);
},
Number<NumDTensor>{});
}
using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N(0, 0, 0, 0, {}))>;
struct Problem
{
__host__ __device__ Problem(index_t M_,
index_t N_,
index_t K_,
index_t StrideA_,
index_t StrideB_,
std::array<index_t, NumDTensor> StrideDs_,
index_t StrideC_,
index_t KBatch_)
: M{M_},
N{N_},
K{K_},
StrideA{StrideA_},
StrideB{StrideB_},
StrideDs{StrideDs_},
StrideC{StrideC_},
KBatch{KBatch_},
MPadded{CalculateMPadded(M_)},
NPadded{CalculateNPadded(N_)},
KRead{CalculateKRead(K_, KBatch_)},
KPadded{CalculateKPadded(K_, KBatch_)},
AK0{CalculateAK0Padded(K_, KBatch_)},
BK0{CalculateBK0Padded(K_, KBatch_)},
MBlock{CalculateMBlock(M_)},
NBlock{CalculateNBlock(N_)},
BN0Shuffled{CalculateBN0Shuffled(N_)},
BK0Shuffled{CalculateBK0Shuffled(K_, KBatch_)}
{
}
__host__ void Print() const
{
std::cout << "problem {"
<< "M:" << M << ", "
<< "N:" << N << ", "
<< "K:" << K << ", "
<< "SA:" << StrideA << ", "
<< "SB:" << StrideB << ", "
<< "SC:" << StrideC << ", "
<< "MP:" << MPadded << ", "
<< "NP:" << NPadded << ", "
<< "KRead:" << KRead << ", "
<< "KP:" << KPadded << ", "
<< "AK0:" << AK0 << ", "
<< "BK0:" << BK0 << ", "
<< "MBlock: " << MBlock << ", "
<< "NBlock: " << NBlock << "}" << std::endl;
}
index_t M;
index_t N;
index_t K;
index_t StrideA;
index_t StrideB;
std::array<index_t, NumDTensor> StrideDs;
index_t StrideC;
index_t KBatch;
index_t MPadded;
index_t NPadded;
index_t KRead;
index_t KPadded;
index_t AK0;
index_t BK0;
index_t MBlock;
index_t NBlock;
// FOR PRESHUFFLE ONLY
index_t BN0Shuffled;
index_t BK0Shuffled;
};
// Argument
struct Argument : public tensor_operation::device::BaseArgument, public Problem
{
__host__ Argument(const ADataType* p_a_grid_,
const BDataType* p_b_grid_,
std::array<const void*, NumDTensor> p_ds_grid_,
CDataType* p_c_grid_,
index_t M_,
index_t N_,
index_t K_,
index_t StrideA_,
index_t StrideB_,
std::array<index_t, NumDTensor> StrideDs_,
index_t StrideC_,
index_t k_batch_,
AElementwiseOperation a_element_op_,
BElementwiseOperation b_element_op_,
CElementwiseOperation c_element_op_)
: Problem{M_, N_, K_, StrideA_, StrideB_, StrideDs_, StrideC_, k_batch_},
p_a_grid{p_a_grid_},
p_b_grid{p_b_grid_},
p_ds_grid{},
p_c_grid{p_c_grid_},
a_element_op{a_element_op_},
b_element_op{b_element_op_},
c_element_op{c_element_op_}
{
// populate pointer, desc for Ds
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DDataType_ = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
// D pointer
p_ds_grid(i) = static_cast<const DDataType_*>(p_ds_grid_[i]);
});
}
const ADataType* p_a_grid;
const BDataType* p_b_grid;
DsGridPointer p_ds_grid;
CDataType* p_c_grid;
const AElementwiseOperation a_element_op;
const BElementwiseOperation b_element_op;
const CElementwiseOperation c_element_op;
};
struct SplitKBatchOffset
{
__device__ SplitKBatchOffset(Argument& karg, index_t k_id)
{
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{
a_k_split_offset = k_id * karg.KRead;
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
a_k_split_offset = k_id * karg.KRead * karg.StrideA;
}
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, BLayout>)
{
b_k_split_offset = k_id * karg.KRead * karg.StrideB;
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, BLayout>)
{
b_k_split_offset = k_id * karg.KRead;
}
if(k_id < karg.KBatch - 1)
{
karg.K = karg.KRead;
}
else
{
karg.K = karg.K - karg.KRead * (karg.KBatch - 1);
}
}
index_t a_k_split_offset;
index_t b_k_split_offset;
};
__device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()
{
// A matrix in LDS memory, dst of blockwise copy
if constexpr(ABlockLdsExtraM)
{
return make_naive_tensor_descriptor(
make_tuple(AK0Number, Number<MPerBlock>{}, AK1Number),
make_tuple(AK1Number, Number<KPerBlock + ABlockLdsExtraM>{}, I1));
}
// xor tensor transformation request more unnecessary vgpr usage, would cause register spill
// in some cases.
else if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
constexpr auto MLdsLayer = 32 * 4 / KPerBlock / sizeof(LDSTypeA) < 1
? 1
: 32 * 4 / KPerBlock / sizeof(LDSTypeA);
constexpr auto a_lds_block_desc = make_naive_tensor_descriptor(
make_tuple(
AK0Number * Number<MLdsLayer>{}, Number<MPerBlock / MLdsLayer>{}, AK1Number),
make_tuple(AK1Number, Number<KPerBlock * MLdsLayer>{}, I1));
constexpr auto a_lds_block_desc_permuted = transform_tensor_descriptor(
a_lds_block_desc,
make_tuple(make_xor_with_modulo_transform(make_tuple(
Number<MPerBlock / MLdsLayer>{}, Number<AK0Number * MLdsLayer>{})),
make_pass_through_transform(AK1Number)),
make_tuple(Sequence<1, 0>{}, Sequence<2>{}),
make_tuple(Sequence<1, 0>{}, Sequence<2>{}));
constexpr auto a_lds_block_desc_ak0_mldslayer_m_ak1 = transform_tensor_descriptor(
a_lds_block_desc_permuted,
make_tuple(make_unmerge_transform(make_tuple(AK0Number, Number<MLdsLayer>{})),
make_pass_through_transform(Number<MPerBlock / MLdsLayer>{}),
make_pass_through_transform(AK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}, Sequence<3>{}));
constexpr auto a_lds_block_desc_ak0_m_ak1 = transform_tensor_descriptor(
a_lds_block_desc_ak0_mldslayer_m_ak1,
make_tuple(make_pass_through_transform(AK0Number),
make_merge_transform_v3_division_mod(
make_tuple(Number<MPerBlock / MLdsLayer>{}, Number<MLdsLayer>{})),
make_pass_through_transform(AK1Number)),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
return a_lds_block_desc_ak0_m_ak1;
}
else // ColumnMajor A
{
// kfold and mpair dimension is not always required.
// more dimension in merge_transform increase the difficulty of generating immarg offset
// for compiler.
constexpr auto M0 = ABlockTransferThreadClusterLengths_AK0_M_AK1{}.At(I1);
constexpr auto M1 = MPerBlock / M0;
constexpr auto KThreadWrite = ABlockTransferThreadClusterLengths_AK0_M_AK1{}.At(I0);
constexpr auto K0PerThreadWrite = AK0Number / KThreadWrite;
constexpr auto KThreadRead = 64 / MPerXdl;
constexpr auto K0PerThreadRead = AK0Number / KThreadRead;
constexpr auto kfold = (AK1Number * M0 * sizeof(LDSTypeA) > 128)
? 1
: 128 / (AK1Number * M0 * sizeof(LDSTypeA));
constexpr auto KThreadReadPerm =
(kfold * K0PerThreadWrite / K0PerThreadRead) > 1
? KThreadRead / (kfold * K0PerThreadWrite / K0PerThreadRead)
: KThreadRead;
// 1<=mpair<=n0
constexpr auto mpair = (AK1Number * MPerXdl * sizeof(LDSTypeA) > 128)
? 1
: ((128 / (AK1Number * MPerXdl * sizeof(LDSTypeA))) > M0
? M0
: 128 / (AK1Number * MPerXdl * sizeof(LDSTypeA)));
constexpr auto a_lds_block_desc = make_naive_tensor_descriptor_packed(
make_tuple(Number<KThreadWrite / kfold / KThreadReadPerm>{},
Number<K0PerThreadWrite>{},
Number<KThreadReadPerm * M1>{},
Number<kfold * M0 / mpair>{},
Number<mpair>{},
AK1Number));
constexpr auto a_lds_block_desc_permuted = transform_tensor_descriptor(
a_lds_block_desc,
make_tuple(
make_pass_through_transform(Number<KThreadWrite / kfold / KThreadReadPerm>{}),
make_pass_through_transform(Number<K0PerThreadWrite>{}),
make_xor_with_modulo_transform(
make_tuple(Number<KThreadReadPerm * M1>{}, Number<kfold * M0 / mpair>{})),
make_pass_through_transform(Number<mpair>{}),
make_pass_through_transform(AK1Number)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{}, Sequence<5>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{}, Sequence<5>{}));
constexpr auto a_lds_block_desc_unmerged = transform_tensor_descriptor(
a_lds_block_desc_permuted,
make_tuple(
make_pass_through_transform(Number<KThreadWrite / kfold / KThreadReadPerm>{}),
make_pass_through_transform(Number<K0PerThreadWrite>{}),
make_unmerge_transform(make_tuple(Number<KThreadReadPerm>{}, Number<M1>{})),
make_unmerge_transform(make_tuple(Number<kfold>{}, Number<M0 / mpair>{})),
make_pass_through_transform(Number<mpair>{}),
make_pass_through_transform(AK1Number)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{}),
make_tuple(Sequence<1>{},
Sequence<2>{},
Sequence<0, 3>{},
Sequence<4, 5>{},
Sequence<6>{},
Sequence<7>{}));
constexpr auto a_lds_block_desc_ak0_m_ak1 = transform_tensor_descriptor(
a_lds_block_desc_unmerged,
make_tuple(make_merge_transform_v3_division_mod(
make_tuple(Number<KThreadReadPerm>{},
Number<KThreadWrite / kfold / KThreadReadPerm>{},
Number<kfold>{},
Number<K0PerThreadWrite>{})),
make_merge_transform_v3_division_mod(
make_tuple(Number<M0 / mpair>{}, Number<mpair>{}, Number<M1>{})),
make_pass_through_transform(AK1Number)),
make_tuple(Sequence<0, 1, 4, 2>{}, Sequence<5, 6, 3>{}, Sequence<7>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
return a_lds_block_desc_ak0_m_ak1;
}
}
__device__ static constexpr auto GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1()
{
// B matrix in LDS memory, dst of blockwise copy
if constexpr(BBlockLdsExtraN)
{
return make_naive_tensor_descriptor(
make_tuple(BK0Number, Number<NPerBlock>{}, BK1Number),
make_tuple(BK1Number, Number<KPerBlock + BBlockLdsExtraN>{}, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
// NLdsLayer * K0 as logical Bank
constexpr auto NLdsLayer = 32 * 4 / KPerBlock / sizeof(LDSTypeB) < 1
? 1
: 32 * 4 / KPerBlock / sizeof(LDSTypeB);
;
constexpr auto b_lds_block_desc = make_naive_tensor_descriptor(
make_tuple(
BK0Number * Number<NLdsLayer>{}, Number<NPerBlock / NLdsLayer>{}, BK1Number),
make_tuple(BK1Number, Number<KPerBlock * NLdsLayer>{}, I1));
constexpr auto b_lds_block_desc_permuted = transform_tensor_descriptor(
b_lds_block_desc,
make_tuple(make_xor_with_modulo_transform(make_tuple(
Number<NPerBlock / NLdsLayer>{}, Number<BK0Number * NLdsLayer>{})),
make_pass_through_transform(BK1Number)),
make_tuple(Sequence<1, 0>{}, Sequence<2>{}),
make_tuple(Sequence<1, 0>{}, Sequence<2>{}));
constexpr auto b_lds_block_desc_bk0_nldslayer_n_bk1 = transform_tensor_descriptor(
b_lds_block_desc_permuted,
make_tuple(make_unmerge_transform(make_tuple(BK0Number, Number<NLdsLayer>{})),
make_pass_through_transform(Number<NPerBlock / NLdsLayer>{}),
make_pass_through_transform(BK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}, Sequence<3>{}));
constexpr auto b_lds_block_desc_bk0_n_bk1 = transform_tensor_descriptor(
b_lds_block_desc_bk0_nldslayer_n_bk1,
make_tuple(make_pass_through_transform(BK0Number),
make_merge_transform_v3_division_mod(
make_tuple(Number<NPerBlock / NLdsLayer>{}, Number<NLdsLayer>{})),
make_pass_through_transform(BK1Number)),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
return b_lds_block_desc_bk0_n_bk1;
}
else // RowMajor B
{
constexpr auto N0 = BBlockTransferThreadClusterLengths_BK0_N_BK1{}.At(I1);
constexpr auto N1 = NPerBlock / N0;
constexpr auto KThreadWrite = BBlockTransferThreadClusterLengths_BK0_N_BK1{}.At(I0);
constexpr auto K0PerThreadWrite = BK0Number / KThreadWrite;
constexpr auto KThreadRead = 64 / NPerXdl;
constexpr auto K0PerThreadRead = BK0Number / KThreadRead;
constexpr auto kfold = (BK1Number * N0 * sizeof(LDSTypeB) > 128)
? 1
: 128 / (BK1Number * N0 * sizeof(LDSTypeB));
constexpr auto KThreadReadPerm =
(kfold * K0PerThreadWrite / K0PerThreadRead) > 1
? KThreadRead / (kfold * K0PerThreadWrite / K0PerThreadRead)
: KThreadRead;
// 1<=npair<=n0
constexpr auto npair = (BK1Number * NPerXdl * sizeof(LDSTypeB) > 128)
? 1
: ((128 / (BK1Number * NPerXdl * sizeof(LDSTypeB))) > N0
? N0
: 128 / (BK1Number * NPerXdl * sizeof(LDSTypeB)));
constexpr auto b_lds_block_desc = make_naive_tensor_descriptor_packed(
make_tuple(Number<KThreadWrite / kfold / KThreadReadPerm>{},
Number<K0PerThreadWrite>{},
Number<KThreadReadPerm * N1>{},
Number<kfold * N0 / npair>{},
Number<npair>{},
BK1Number));
constexpr auto b_lds_block_desc_permuted = transform_tensor_descriptor(
b_lds_block_desc,
make_tuple(
make_pass_through_transform(Number<KThreadWrite / kfold / KThreadReadPerm>{}),
make_pass_through_transform(Number<K0PerThreadWrite>{}),
make_xor_with_modulo_transform(
make_tuple(Number<KThreadReadPerm * N1>{}, Number<kfold * N0 / npair>{})),
make_pass_through_transform(Number<npair>{}),
make_pass_through_transform(BK1Number)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{}, Sequence<5>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{}, Sequence<5>{}));
constexpr auto b_lds_block_desc_unmerged = transform_tensor_descriptor(
b_lds_block_desc_permuted,
make_tuple(
make_pass_through_transform(Number<KThreadWrite / kfold / KThreadReadPerm>{}),
make_pass_through_transform(Number<K0PerThreadWrite>{}),
make_unmerge_transform(make_tuple(Number<KThreadReadPerm>{}, Number<N1>{})),
make_unmerge_transform(make_tuple(Number<kfold>{}, Number<N0 / npair>{})),
make_pass_through_transform(Number<npair>{}),
make_pass_through_transform(BK1Number)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{}),
make_tuple(Sequence<1>{},
Sequence<2>{},
Sequence<0, 3>{},
Sequence<4, 5>{},
Sequence<6>{},
Sequence<7>{}));
constexpr auto b_lds_block_desc_bk0_n_bk1 = transform_tensor_descriptor(
b_lds_block_desc_unmerged,
make_tuple(make_merge_transform_v3_division_mod(
make_tuple(Number<KThreadReadPerm>{},
Number<KThreadWrite / kfold / KThreadReadPerm>{},
Number<kfold>{},
Number<K0PerThreadWrite>{})),
make_merge_transform_v3_division_mod(
make_tuple(Number<N0 / npair>{}, Number<npair>{}, Number<N1>{})),
make_pass_through_transform(BK1Number)),
make_tuple(Sequence<0, 1, 4, 2>{}, Sequence<5, 6, 3>{}, Sequence<7>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
return b_lds_block_desc_bk0_n_bk1;
}
}
__device__ static constexpr auto GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock()
{
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl>{},
I1,
Number<CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>{}));
return c_shuffle_block_desc_mblock_mperblock_nblock_nperblock;
}
using BlockwiseGemmPipe =
remove_cvref_t<decltype(BlockwiseGemmXdlops_pipeline_bpreshuffle<BlkGemmPipeSched,
BlockSize,
LDSTypeA,
LDSTypeB,
ComputeTypeA,
AccDataType,
decltype(GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()),
decltype(GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1()),
decltype(MakeAMmaTileDescriptor_M0_M1_M2_K(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1())),
decltype(MakeBMmaTileDescriptor_N0_N1_N2_K(
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1())),
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXdl,
NPerXdl,
MXdlPerWave,
NXdlPerWave,
KPack>{})>;
__device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
// constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1Number, BK1Number);
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
// constexpr auto b_block_space_size_aligned = math::integer_least_multiple(
// b_block_desc_bk0_n_bk1.GetElementSpaceSize(), max_lds_align);
// LDS allocation for C shuffle in LDS
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
constexpr auto c_block_size =
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
return math::max(a_block_space_size_aligned * sizeof(LDSTypeA),
c_block_size * sizeof(CShuffleDataType));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
__host__ static constexpr bool CheckValidity(const Argument& karg)
{
static_assert((MPerBlock % (MPerXdl * MXdlPerWave) == 0) &&
(NPerBlock % (NXdlPerWave * NPerXdl)) == 0,
"Invalid tuning param!");
if constexpr(!(GemmSpec == tensor_operation::device::GemmSpecialization::MPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding) &&
!(is_same<tensor_layout::gemm::RowMajor, ALayout>::value))
{
if(!(karg.M % MPerBlock == 0))
{
#if DEBUG_LOG
std::cout << "Arg M value is not a multiple of MPerBlock! M: " << karg.M << " "
<< __FILE__ << ":" << __LINE__ << ", in function: " << __func__
<< std::endl;
#endif // DEBUG_LOG
return false;
}
}
if constexpr(!(GemmSpec == tensor_operation::device::GemmSpecialization::NPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::NKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding) &&
(is_same<tensor_layout::gemm::RowMajor, BLayout>::value))
{
if(!(karg.N % NPerBlock == 0))
{
#if DEBUG_LOG
std::cout << "Arg N value is not a multiple of NPerBlock! N: " << karg.N << " "
<< __FILE__ << ":" << __LINE__ << ", in function: " << __func__
<< std::endl;
#endif // DEBUG_LOG
return false;
}
}
if constexpr(!(GemmSpec == tensor_operation::device::GemmSpecialization::KPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::NKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding))
{
auto K_t = karg.KBatch * KPerBlock;
if(!(karg.K % K_t == 0))
{
#if DEBUG_LOG
std::cout << "Arg K value is not a multiple of K_Batch * K0PerBlock * K1! K: "
<< karg.K << " " << __FILE__ << ":" << __LINE__
<< ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
else
{
constexpr auto KReadVec = math::lcm(AK1Number, BK1Number);
auto K_t = karg.KBatch * KReadVec;
auto KReadPadSplited = math::integer_divide_ceil(karg.K, K_t) * KReadVec;
if((KReadPadSplited * (karg.KBatch - 1)) >= karg.K)
{
return false;
}
}
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
if(karg.K % ABlockTransferSrcScalarPerVector != 0)
{
#if DEBUG_LOG
std::cout << "Arg K (" << karg.K
<< ") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<< ABlockTransferSrcScalarPerVector << " )! " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
else
{
if(karg.M % ABlockTransferSrcScalarPerVector != 0)
{
#if DEBUG_LOG
std::cout << "Arg M (" << karg.M
<< ") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<< ABlockTransferSrcScalarPerVector << " )! " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
if(karg.N % BBlockTransferSrcScalarPerVector != 0)
{
#if DEBUG_LOG
std::cout << "Arg N (" << karg.N
<< ") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<< BBlockTransferSrcScalarPerVector << " )! " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
else
{
if(karg.K % BBlockTransferSrcScalarPerVector != 0)
{
#if DEBUG_LOG
std::cout << "Arg K (" << karg.K
<< ") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<< BBlockTransferSrcScalarPerVector << " )! " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
if(karg.N % CShuffleBlockTransferScalarPerVector_NPerBlock != 0)
{
#if DEBUG_LOG
std::cout << "Arg N (" << karg.N
<< ") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<< CShuffleBlockTransferScalarPerVector_NPerBlock << " )! " << __FILE__
<< ":" << __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
else
{
if(karg.M % CShuffleBlockTransferScalarPerVector_NPerBlock != 0)
{
#if DEBUG_LOG
std::cout << "Arg M (" << karg.M
<< ") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<< CShuffleBlockTransferScalarPerVector_NPerBlock << " )! " << __FILE__
<< ":" << __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
// check gridwise gemm pipeline
const auto num_k_loop = karg.AK0 / (KPerBlock / AK1Value);
if constexpr(BlkGemmPipelineVer != BlockGemmPipelineVersion::v1)
{
if(num_k_loop <= BlockwiseGemmPipe::PrefetchStages)
{
return false;
}
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / KPerBlock;
return BlockwiseGemmPipe::BlockHasHotloop(num_loop);
}
__host__ __device__ static constexpr TailNumber CalculateKBlockLoopTailNum(index_t K)
{
const index_t num_loop = K / KPerBlock;
return BlockwiseGemmPipe::BlockLoopTailNum(num_loop);
}
template <typename CGridDesc>
__device__ static constexpr auto MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
const CGridDesc& c_grid_desc_m_n, index_t MBlock, index_t NBlock)
{
const auto c_grid_desc_mblock_mperblock_nblock_nperblock = transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(MBlock, Number<MPerBlock>{})),
make_unmerge_transform(make_tuple(NBlock, Number<NPerBlock>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2, 3>{}));
return c_grid_desc_mblock_mperblock_nblock_nperblock;
}
// return block_id to C matrix tile idx (m0, n0) mapping
// if arch = gfx942
using Block2CTileMapDefault = BlockToCTileMap_Grouped_M00_N0_M01Adapt<8, MPerBlock, NPerBlock>;
template <bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
TailNumber TailNum = TailNumber::Odd>
__device__ static void Run(const ADataType* p_a_grid,
const BDataType* p_b_grid,
DsGridPointer& p_ds_grid,
CDataType* p_c_grid,
void* p_shared,
void* p_shared1,
const Problem& problem,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
const auto block_2_ctile_map = Block2CTileMapDefault{problem.M, problem.N, 4};
Run<Block2CTileMapDefault, HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
p_a_grid,
p_b_grid,
p_ds_grid,
p_c_grid,
p_shared,
p_shared1,
problem,
a_element_op,
b_element_op,
c_element_op,
block_2_ctile_map);
}
template <typename Block2CTileMap,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
TailNumber TailNum = TailNumber::Odd>
__device__ static void Run(const ADataType* p_a_grid,
const BDataType* p_b_grid,
DsGridPointer& p_ds_grid,
CDataType* p_c_grid,
void* p_shared,
void* p_shared1,
const Problem& problem,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
const Block2CTileMap& block_2_ctile_map)
{
const auto a_grid_desc_ak0_m_ak1 = MakeAGridDescriptor_AK0_M_AK1(
problem.M, problem.MPadded, problem.K, problem.KPadded, problem.StrideA, problem.AK0);
const auto b_grid_desc_bpreshuffled = MakeBGridDescriptor_Preshuffled(
problem.BN0Shuffled, problem.BK0Shuffled);
const auto c_grid_desc_m_n = MakeCGridDescriptor_M_N<CLayout>(
problem.M, problem.MPadded, problem.N, problem.NPadded, problem.StrideC);
const auto c_grid_desc_mblock_mperblock_nblock_nperblock =
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n, problem.MBlock, problem.NBlock);
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_bpreshuffled.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_grid, c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
make_tuple(c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I0),
c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I2))))
{
return;
}
const index_t block_m_id = __builtin_amdgcn_readfirstlane(block_work_idx[I0]);
const index_t block_n_id = __builtin_amdgcn_readfirstlane(block_work_idx[I1]);
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_m_id * MPerBlock);
const index_t n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_n_id * (NPerBlock / NLane / NWave)) ;
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1Number, BK1Number);
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// A matrix blockwise copy
auto a_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
AElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<AK0Number, MPerBlock, AK1Number>,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ADataType,
LDSTypeA,
decltype(a_grid_desc_ak0_m_ak1),
decltype(a_block_desc_ak0_m_ak1),
ABlockTransferSrcAccessOrder,
Sequence<0, 1, 2>,
ABlockTransferSrcVectorDim,
2,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
1,
1,
AThreadTransferSrcResetCoordinateAfterRun,
true,
BlockwiseGemmPipe::GlobalBufferNum>(
a_grid_desc_ak0_m_ak1,
make_multi_index(0, m_block_data_idx_on_grid, 0),
a_element_op,
a_block_desc_ak0_m_ak1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// using BThreadClusterLengths = Sequence<1, 1, BlockSize>;
// using BBlockTransferClusterArrangeOrder = Sequence<0, 1, 2>;
// B matrix blockwise copy
auto b_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<1, KRepeat, KPack * BlockSize>,
Sequence<1, 1, BlockSize>, //BThreadClusterLengths,
Sequence<0, 1, 2>, //BBlockTransferClusterArrangeOrder,
BDataType,
LDSTypeB,
decltype(b_grid_desc_bpreshuffled),
decltype(b_block_desc_bk0_n_bk1),
Sequence<0, 1, 2>,//BBlockTransferSrcAccessOrder,
Sequence<0, 1, 2>,
BBlockTransferSrcVectorDim,
2,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true,
2>(
b_grid_desc_bpreshuffled,
make_multi_index(n_block_data_idx_on_grid, 0, 0),
b_element_op,
b_block_desc_bk0_n_bk1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
// Cast after lds
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<LDSTypeA*>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto a_block_buf1 = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<LDSTypeA*>(p_shared1), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<LDSTypeB*>(p_shared) +
a_block_space_size_aligned * sizeof(LDSTypeA) / sizeof(LDSTypeB),
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock / AK1Number, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(0, KRepeat, 0);
// Blockwise GEMM pipeline
static_assert(std::is_default_constructible_v<BlockwiseGemmPipe>);
auto blockwise_gemm_pipeline = BlockwiseGemmPipe{};
auto c_thread_buf = blockwise_gemm_pipeline.GetCThreadBuffer();
const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane(
(a_grid_desc_ak0_m_ak1.GetLength(I0) * a_grid_desc_ak0_m_ak1.GetLength(I2)) /
KPerBlock);
blockwise_gemm_pipeline.template Run<HasMainKBlockLoop, TailNum>(a_grid_desc_ak0_m_ak1,
a_block_desc_ak0_m_ak1,
a_blockwise_copy,
a_grid_buf,
a_block_buf,
a_block_buf1,
a_block_slice_copy_step,
b_grid_desc_bpreshuffled,
b_block_desc_bk0_n_bk1,
b_blockwise_copy,
b_grid_buf,
b_block_buf,
b_block_slice_copy_step,
c_thread_buf,
num_k_block_main_loop);
// shuffle C and write out
{
static_assert(MXdlPerWave % CShuffleMXdlPerWavePerShuffle == 0 &&
NXdlPerWave % CShuffleNXdlPerWavePerShuffle == 0,
"wrong!");
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
// TODO: hacky, fix it!
constexpr auto c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2 =
blockwise_gemm_pipeline.GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp =
blockwise_gemm_pipeline.GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
constexpr auto M0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I0);
constexpr auto N0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I1);
constexpr auto M1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I2);
constexpr auto N1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I3);
constexpr auto M2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I4);
constexpr auto M3 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I5);
constexpr auto M4 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I6);
constexpr auto N2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I7);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
auto c_shuffle_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<CShuffleDataType*>(p_shared),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2 = transform_tensor_descriptor(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
make_tuple(
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleMXdlPerWavePerShuffle>{}, // M0 (MXdlPerWave) per shuffle
M1, // M1 = MWave
M2, // M2 * M3 * M4 = MPerXdl
M3,
M4)),
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleNXdlPerWavePerShuffle>{}, // N0 (NXdlPerWave) per shuffle
N1, // N1 = NWave
N2))), // N2 = NPerXdl
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(
Sequence<>{}, Sequence<0, 2, 4, 5, 6>{}, Sequence<>{}, Sequence<1, 3, 7>{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm_pipeline.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const index_t m_thread_data_on_block = c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_block = c_thread_mtx_on_block[I1];
const auto m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M0, M1, M2, M3, M4))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto m_thread_data_on_block_idx =
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor.CalculateBottomIndex(
make_multi_index(m_thread_data_on_block));
const auto n_thread_data_on_block_to_n0_n1_n2_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(N0, N1, N2))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
const auto n_thread_data_on_block_idx =
n_thread_data_on_block_to_n0_n1_n2_adaptor.CalculateBottomIndex(
make_multi_index(n_thread_data_on_block));
// shuffle: threadwise copy C from VGPR to LDS
auto c_thread_copy_vgpr_to_lds =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
CShuffleDataType,
decltype(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2),
decltype(c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2),
ck::tensor_operation::element_wise::PassThrough,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
I1,
I1,
M2,
I1,
M4,
I1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
7,
1,
InMemoryDataOperationEnum::Set,
1,
true>{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
make_multi_index(0,
0,
m_thread_data_on_block_idx[I1],
n_thread_data_on_block_idx[I1],
m_thread_data_on_block_idx[I2],
m_thread_data_on_block_idx[I3],
m_thread_data_on_block_idx[I4],
n_thread_data_on_block_idx[I2]),
ck::tensor_operation::element_wise::PassThrough{}};
using EDataType = CDataType;
const auto ds_grid_desc_m_n = MakeDsGridDescriptor_M_N(
problem.M, problem.MPadded, problem.N, problem.NPadded, problem.StrideDs);
const auto ds_grid_desc_mblock_mperblock_nblock_nperblock =
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
ds_grid_desc_m_n, problem.MBlock, problem.NBlock);
const auto ds_grid_buf = generate_tuple(
[&](auto i) {
return make_dynamic_buffer<AddressSpaceEnum::Global>(
p_ds_grid[i], ds_grid_desc_m_n[i].GetElementSpaceSize());
},
Number<NumDTensor>{});
// tuple of reference to C/Ds tensor descriptors
const auto c_ds_desc_refs = concat_tuple_of_reference(
tie(c_shuffle_block_desc_mblock_mperblock_nblock_nperblock),
generate_tie(
[&](auto i) -> const auto& // return type should be reference
{ return ds_grid_desc_mblock_mperblock_nblock_nperblock[i]; },
Number<NumDTensor>{}));
// tuple of reference to C/Ds tensor descriptors
const auto c_ds_buf_refs = concat_tuple_of_reference(
tie(c_shuffle_block_buf),
generate_tie(
[&](auto i) -> const auto& // return type should be reference
{ return ds_grid_buf[i]; },
Number<NumDTensor>{}));
// tuple of starting index of C/Ds blockwise copy
const auto idx_c_ds_block_begin = container_concat(
make_tuple(make_multi_index(0, 0, 0, 0)),
generate_tuple(
[&](auto) {
return make_multi_index(block_work_idx[I0], 0, block_work_idx[I1], 0);
},
Number<NumDTensor>{}));
const auto e_grid_desc_mblock_mperblock_nblock_nperblock =
c_grid_desc_mblock_mperblock_nblock_nperblock;
using CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock =
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock;
const auto EGlobalMemoryDataOperation = CGlobalMemoryDataOperation;
auto cde_block_copy_lds_and_global = ThreadGroupTensorSliceTransfer_v7r3<
ThisThreadBlock,
decltype(container_concat(make_tuple(CShuffleDataType{}), DsDataType{})),
Tuple<EDataType>,
decltype(c_ds_desc_refs),
decltype(tie(e_grid_desc_mblock_mperblock_nblock_nperblock)),
CElementwiseOperation,
Sequence<static_cast<index_t>(EGlobalMemoryDataOperation)>, // FIXME: make Sequence
// support arbitray type
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>, // BlockSliceLengths,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
Sequence<0, 1, 2, 3>, // typename ThreadClusterArrangeOrder,
Sequence<0, 1, 2, 3>, // typename SrcDimAccessOrder,
Sequence<0, 1, 2, 3>, // typename DstDimAccessOrder,
3, // index_t SrcVectorDim,
3, // index_t DstVectorDim,
CDEShuffleBlockTransferScalarPerVectors,
CShuffleBlockTransferScalarPerVector_NPerBlock,
sequence_merge_t<
Sequence<true>,
uniform_sequence_gen_t<NumDTensor,
false>>, // ThreadTransferSrcResetCoordinateAfterRunFlags
Sequence<false>> // ThreadTransferDstResetCoordinateAfterRunFlags
{c_ds_desc_refs,
idx_c_ds_block_begin,
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
make_tuple(make_multi_index(block_m_id, 0, block_n_id, 0)),
c_element_op};
// space filling curve for threadwise C in VGPR
constexpr auto sfc_c_vgpr =
SpaceFillingCurve<Sequence<MXdlPerWave, NXdlPerWave, 1, 1, M2, 1, M4, 1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
1,
1,
M2,
1,
M4,
1>>{};
constexpr index_t num_access = sfc_c_vgpr.GetNumOfAccess();
// space filling curve for shuffled blockwise C/D/E
constexpr auto sfc_cde_block =
SpaceFillingCurve<Sequence<1, MPerBlock, 1, NPerBlock>,
Sequence<0, 2, 1, 3>,
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>>{};
static_assert(num_access == sfc_cde_block.GetNumOfAccess(), "wrong!");
static_for<0, num_access, 1>{}([&](auto access_id) {
// make sure it's safe to write to LDS
block_sync_lds();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2,
sfc_c_vgpr.GetIndexTupleOfNumber(access_id),
c_thread_buf,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
c_shuffle_block_buf);
// make sure it's safe to read from LDS
block_sync_lds();
// each block copy its data from LDS to global
cde_block_copy_lds_and_global.Run(
c_ds_desc_refs,
c_ds_buf_refs,
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
tie(c_grid_buf));
if constexpr(access_id < num_access - 1)
{
constexpr auto cde_lds_and_global_step =
sfc_cde_block.GetForwardStep(access_id);
// move on Ds
static_for<0, NumDTensor, 1>{}([&](auto i) {
cde_block_copy_lds_and_global.MoveSrcSliceWindow(
c_ds_desc_refs, i + I1, cde_lds_and_global_step);
});
// move on E
cde_block_copy_lds_and_global.MoveDstSliceWindow(
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
I0,
cde_lds_and_global_step);
}
});
}
}
};
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment