Commit 3f6360d0 authored by Jakub Piasecki's avatar Jakub Piasecki
Browse files

added pool2d fwd

parent 886d14cc
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -101,7 +101,7 @@ bool pool_test(bool do_verification, ...@@ -101,7 +101,7 @@ bool pool_test(bool do_verification,
switch(init_method) switch(init_method)
{ {
case 0: break; case 0: break;
case 1: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}); break; case 1: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{2}); break;
case 2: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}); break; case 2: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}); break;
default: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}); default: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0});
} }
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream> #include <iostream>
...@@ -52,7 +52,7 @@ int main(int argc, char* argv[]) ...@@ -52,7 +52,7 @@ int main(int argc, char* argv[])
if(argc == 1) if(argc == 1)
{ {
do_verification = true; do_verification = true;
init_method = 1; init_method = 2;
time_kernel = true; time_kernel = true;
} }
else if(argc == 4) else if(argc == 4)
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream> #include <iostream>
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
#include "ck/tensor_operation/gpu/device/impl/device_pool3d_fwd_ndhwc_ndhwc.hpp" #include <iostream>
#include <sstream>
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/device_pool_fwd.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_2d_reduction_threadwise.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -16,95 +27,363 @@ template <typename InDataType, ...@@ -16,95 +27,363 @@ template <typename InDataType,
ck::ReduceTensorOp ReduceOpId, ck::ReduceTensorOp ReduceOpId,
bool OutputIndex, bool OutputIndex,
ck::index_t BlockSize, ck::index_t BlockSize,
ck::index_t ReduceMThreadClusterSize, ck::index_t MThreadClusterSize,
ck::index_t ReduceKThreadClusterSize, ck::index_t KThreadClusterSize,
ck::index_t ReduceMThreadSliceSize, ck::index_t MThreadSliceSize,
ck::index_t ReduceKThreadSliceSize, ck::index_t KThreadSliceSize,
ck::index_t InSrcOutDstVectorSize> ck::index_t InSrcOutDstVectorSize>
struct DevicePool2dFwd_NHWC_NHWC : public DevicePool3dFwd_NDHWC_NDHWC<InDataType, struct DevicePool2dFwd_NHWC_NHWC : public DevicePoolFwd<4,
OutDataType, 2,
IndexDataType, InDataType,
ComputeDataType, OutDataType,
ReduceOpId, IndexDataType,
OutputIndex, tensor_layout::convolution::NHWC,
BlockSize, tensor_layout::convolution::NHWC,
ReduceMThreadClusterSize, ReduceOpId,
ReduceKThreadClusterSize, OutputIndex>
ReduceMThreadSliceSize,
ReduceKThreadSliceSize,
InSrcOutDstVectorSize>
{ {
using DevicePool3D = DevicePool3dFwd_NDHWC_NDHWC<InDataType, static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr index_t InOutRank = 4;
static constexpr index_t WindowRank = 2;
using ReduceOperation = typename reduce_binary_operator<ReduceOpId>::opType;
using InElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::InElementwiseOperation;
using AccElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::AccElementwiseOperation;
static constexpr ck::index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr ck::index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
static auto MakeABGridDescriptor_A_M_K_B_M(std::vector<ck::index_t> input_nchw_lengths,
std::vector<ck::index_t> output_nchw_lengths,
std::vector<ck::index_t> input_nchw_stride,
std::vector<ck::index_t> output_nchw_stride,
std::vector<ck::index_t> window_spatial_yx_lengths,
std::vector<ck::index_t> window_yx_strides,
std::vector<ck::index_t> window_yx_dilations,
std::vector<ck::index_t> input_left_hw_pads,
std::vector<ck::index_t> input_right_hw_pads)
{
const index_t N = input_nchw_lengths[0];
const index_t C = input_nchw_lengths[1];
const index_t Hi = input_nchw_lengths[2];
const index_t Wi = input_nchw_lengths[3];
const index_t Ho = output_nchw_lengths[2];
const index_t Wo = output_nchw_lengths[3];
const index_t Y = window_spatial_yx_lengths[0];
const index_t X = window_spatial_yx_lengths[1];
const index_t WindowStrideH = window_yx_strides[0];
const index_t WindowStrideW = window_yx_strides[1];
const index_t WindowDilationH = window_yx_dilations[0];
const index_t WindowDilationW = window_yx_dilations[1];
const index_t InLeftPadH = input_left_hw_pads[0];
const index_t InLeftPadW = input_left_hw_pads[1];
const index_t InRightPadH = input_right_hw_pads[0];
const index_t InRightPadW = input_right_hw_pads[1];
const index_t MRaw = N * Ho * Wo * C;
const index_t MPad = math::integer_least_multiple(MRaw, M_BlockTileSize) - MRaw;
const index_t KRaw = Y * X;
const index_t KPad = math::integer_least_multiple(KRaw, K_BlockTileSize) - KRaw;
// A[ReduceM, ReduceK]
const index_t Ni_stride = input_nchw_stride[0];
const index_t Ci_stride = input_nchw_stride[1];
const index_t Hi_stride = input_nchw_stride[2];
const index_t Wi_stride = input_nchw_stride[3];
const auto in_grid_desc_n_hi_wi_c = make_naive_tensor_descriptor(
make_tuple(N, Hi, Wi, C), make_tuple(Ni_stride, Hi_stride, Wi_stride, Ci_stride));
const auto in_grid_desc_n_hip_wip_c = transform_tensor_descriptor(
in_grid_desc_n_hi_wi_c,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_grid_desc_n_y_ho_x_wo_c = transform_tensor_descriptor(
in_grid_desc_n_hip_wip_c,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Y, Ho), make_tuple(WindowDilationH, WindowStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(WindowDilationW, WindowStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_grid_desc_reducemraw_reducekraw =
transform_tensor_descriptor(in_grid_desc_n_y_ho_x_wo_c,
make_tuple(make_merge_transform(make_tuple(N, Ho, Wo, C)),
make_merge_transform(make_tuple(Y, X))),
make_tuple(Sequence<0, 2, 4, 5>{}, Sequence<1, 3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_grid_desc_reducem_reducek = transform_tensor_descriptor(
in_grid_desc_reducemraw_reducekraw,
make_tuple(make_right_pad_transform(MRaw, MPad), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
// B[ReduceM]
const index_t No_stride = output_nchw_stride[0];
const index_t Co_stride = output_nchw_stride[1];
const index_t Ho_stride = output_nchw_stride[2];
const index_t Wo_stride = output_nchw_stride[3];
const auto out_grid_desc_n_ho_wo_c = make_naive_tensor_descriptor(
make_tuple(N, Hi, Wi, C), make_tuple(No_stride, Ho_stride, Wo_stride, Co_stride));
const auto out_grid_desc_reducemraw =
transform_tensor_descriptor(out_grid_desc_n_ho_wo_c,
make_tuple(make_merge_transform(make_tuple(N, Ho, Wo, C))),
make_tuple(Sequence<0, 1, 2, 3>{}),
make_tuple(Sequence<0>{}));
const auto out_grid_desc_reducem =
transform_tensor_descriptor(out_grid_desc_reducemraw,
make_tuple(make_right_pad_transform(MRaw, MPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return make_tuple(in_grid_desc_reducem_reducek, out_grid_desc_reducem);
}
using ABGridDescs =
decltype(MakeABGridDescriptor_A_M_K_B_M({}, {}, {}, {}, {}, {}, {}, {}, {}));
using AGridDesc_M_K = remove_cvref_t<decltype(ABGridDescs{}[I0])>;
using BGridDesc_M = remove_cvref_t<decltype(ABGridDescs{}[I1])>;
struct Argument : public BaseArgument
{
Argument(const InDataType* p_in_dev,
OutDataType* p_out_dev,
IndexDataType* p_out_indices_dev,
std::vector<ck::index_t>& input_nchw_lengths,
std::vector<ck::index_t>& output_nchw_lengths,
std::vector<ck::index_t>& input_nchw_stride,
std::vector<ck::index_t>& output_nchw_stride,
std::vector<ck::index_t>&, // indices_nchw_stride
std::vector<ck::index_t>& window_spatial_yx_lengths,
std::vector<ck::index_t>& window_yx_strides,
std::vector<ck::index_t>& window_yx_dilations,
std::vector<ck::index_t>& input_left_hw_pads,
std::vector<ck::index_t>& input_right_hw_pads)
: p_in_dev_{p_in_dev},
p_out_dev_{p_out_dev},
p_out_indices_dev_{p_out_indices_dev},
a_grid_desc_m_k_{},
b_grid_desc_m_{},
input_nchw_lengths_{input_nchw_lengths},
output_nchw_lengths_{output_nchw_lengths},
input_nchw_stride_{input_nchw_stride},
output_nchw_stride_{output_nchw_stride}
{
const auto descs = MakeABGridDescriptor_A_M_K_B_M(input_nchw_lengths,
output_nchw_lengths,
input_nchw_stride,
output_nchw_stride,
window_spatial_yx_lengths,
window_yx_strides,
window_yx_dilations,
input_left_hw_pads,
input_right_hw_pads);
a_grid_desc_m_k_ = descs[I0];
b_grid_desc_m_ = descs[I1];
int32_t reduceLength = window_spatial_yx_lengths[0] * window_spatial_yx_lengths[1];
std::tie(in_element_op_, acc_element_op_) =
reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator(reduceLength);
}
const InDataType* p_in_dev_;
OutDataType* p_out_dev_;
IndexDataType* p_out_indices_dev_;
AGridDesc_M_K a_grid_desc_m_k_;
BGridDesc_M b_grid_desc_m_;
InElementwiseOperation in_element_op_;
AccElementwiseOperation acc_element_op_;
// for checking vector load/store
std::vector<ck::index_t> input_nchw_lengths_;
std::vector<ck::index_t> output_nchw_lengths_;
std::vector<ck::index_t> input_nchw_stride_;
std::vector<ck::index_t> output_nchw_stride_;
};
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
// for NHWC, the dim C is the fastest dimension, and is not reduced.
// Hence, it is in M dimension for reduction kernel.
static constexpr index_t InSrcOutDstVectorDim = 0; // 0: M, 1: K
using gridwise_reduce =
GridwiseReduction_mk_to_m_threadwise<InDataType,
OutDataType, OutDataType,
IndexDataType,
ComputeDataType, ComputeDataType,
ReduceOpId, IndexDataType,
OutputIndex, AGridDesc_M_K,
BGridDesc_M,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
InMemoryDataOperationEnum::Set,
false, // propagate_nan
BlockSize, BlockSize,
ReduceMThreadClusterSize, MThreadSliceSize,
ReduceKThreadClusterSize, KThreadSliceSize,
ReduceMThreadSliceSize, InSrcOutDstVectorDim,
ReduceKThreadSliceSize, InSrcOutDstVectorSize,
InSrcOutDstVectorSize>; InSrcOutDstVectorSize>;
std::unique_ptr<BaseArgument> const auto kernel =
kernel_reduce_threadwise<gridwise_reduce,
OutputIndex,
true, // pooling need to return global index
false, // don't have index input
InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
AGridDesc_M_K,
BGridDesc_M,
InElementwiseOperation,
AccElementwiseOperation>;
ck::index_t M = arg.a_grid_desc_m_k_.GetLength(I0);
const index_t grid_size = (M / M_BlockTileSize);
return launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.a_grid_desc_m_k_,
arg.b_grid_desc_m_,
arg.in_element_op_,
arg.acc_element_op_,
float(1),
arg.p_in_dev_,
nullptr,
float(0),
arg.p_out_dev_,
arg.p_out_indices_dev_);
}
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
const Argument* pArg = dynamic_cast<const Argument*>(p_arg);
// C should be fastest dimension
if(pArg->input_nchw_stride_[1] != 1)
return false;
for(int i = 0; i < InOutRank; ++i)
{
if(pArg->input_nchw_stride_[i] == 1 &&
pArg->input_nchw_lengths_[i] % InSrcOutDstVectorSize != 0)
return false;
if(pArg->output_nchw_stride_[i] == 1 &&
pArg->output_nchw_lengths_[i] % InSrcOutDstVectorSize != 0)
return false;
}
return true;
}
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in_dev, MakeArgumentPointer(const void* p_in_dev,
void* p_out_dev, void* p_out_dev,
void* p_out_indices_dev, void* p_out_indices_dev,
std::vector<ck::index_t> input_lengths, std::vector<ck::index_t> input_nchw_lengths,
std::vector<ck::index_t> window_lengths, std::vector<ck::index_t> window_yx_lengths,
std::vector<ck::index_t> output_lengths, std::vector<ck::index_t> output_nchw_lengths,
std::vector<ck::index_t> input_stride, std::vector<ck::index_t> input_nchw_stride,
std::vector<ck::index_t> output_stride, std::vector<ck::index_t> output_nchw_stride,
std::vector<ck::index_t> indices_stride, std::vector<ck::index_t> indices_nchw_stride,
std::vector<ck::index_t> window_strides, std::vector<ck::index_t> window_yx_strides,
std::vector<ck::index_t> window_dilations, std::vector<ck::index_t> window_yx_dilations,
std::vector<ck::index_t> input_left_pads, std::vector<ck::index_t> input_left_hw_pads,
std::vector<ck::index_t> input_right_pads, std::vector<ck::index_t> input_right_hw_pads,
std::vector<ck::index_t> pooling_dims) override std::vector<ck::index_t> pooling_dims) override
{ {
static constexpr index_t InOutRank = 4; if(input_nchw_lengths.size() != InOutRank || window_yx_lengths.size() != WindowRank ||
static constexpr index_t WindowRank = 2; input_nchw_lengths.size() != InOutRank || window_yx_strides.size() != WindowRank ||
window_yx_dilations.size() != WindowRank || input_left_hw_pads.size() != WindowRank ||
if(input_lengths.size() != InOutRank || window_lengths.size() != WindowRank || input_right_hw_pads.size() != WindowRank)
input_lengths.size() != InOutRank || window_strides.size() != WindowRank ||
window_dilations.size() != WindowRank || input_left_pads.size() != WindowRank ||
input_right_pads.size() != WindowRank)
throw std::runtime_error("dimension is incorrect"); throw std::runtime_error("dimension is incorrect");
if(pooling_dims != std::vector<ck::index_t>{2, 3}) if(pooling_dims != std::vector<ck::index_t>{2, 3})
throw std::runtime_error("pooling_dims only support {2, 3} in pool2d so far"); throw std::runtime_error("pooling_dims only support {2, 3} in pool2d so far");
// NCHW to NCDHW if(output_nchw_stride != indices_nchw_stride)
input_lengths.insert(input_lengths.begin() + 2, 1); throw std::runtime_error(
output_lengths.insert(output_lengths.begin() + 2, 1); "output_nchw_stride need to be equal to indices_nchw_stride for now");
input_stride.insert(input_stride.begin() + 2, 0);
output_stride.insert(output_stride.begin() + 2, 0); return std::make_unique<Argument>(static_cast<const InDataType*>(p_in_dev),
indices_stride.insert(indices_stride.begin() + 2, 0); static_cast<OutDataType*>(p_out_dev),
static_cast<IndexDataType*>(p_out_indices_dev),
// YX to ZYX input_nchw_lengths,
window_lengths.insert(window_lengths.begin(), 1); output_nchw_lengths,
window_strides.insert(window_strides.begin(), 0); input_nchw_stride,
window_dilations.insert(window_dilations.begin(), 0); output_nchw_stride,
input_left_pads.insert(input_left_pads.begin(), 0); indices_nchw_stride,
input_right_pads.insert(input_right_pads.begin(), 0); window_yx_lengths,
window_yx_strides,
pooling_dims = {2, 3, 4}; window_yx_dilations,
input_left_hw_pads,
return DevicePool3D::MakeArgumentPointer(p_in_dev, input_right_hw_pads);
p_out_dev, }
p_out_indices_dev,
input_lengths, std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
window_lengths, {
output_lengths, return std::make_unique<Invoker>(Invoker{});
input_stride, }
output_stride,
indices_stride, std::string GetTypeString() const override
window_strides, {
window_dilations, auto str = std::stringstream();
input_left_pads,
input_right_pads, // clang-format off
pooling_dims); str << "DevicePool2dFwd_NHWC_NHWC<" << BlockSize << ",";
str << "M_C" << MThreadClusterSize << "_S" << MThreadSliceSize << ",";
str << "K_C" << KThreadClusterSize << "_S" << KThreadSliceSize << ",";
str <<"InSrcOutDstVectorSize_" << InSrcOutDstVectorSize << ">";
// clang-format on
return str.str();
} }
}; };
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_pool_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto InOutRank = 4;
static constexpr auto WindowRank = 2;
static constexpr auto MaxOp = ck::ReduceTensorOp::MAX;
static constexpr auto AvgOp = ck::ReduceTensorOp::AVG;
#ifdef CK_ENABLE_FP16
// FP16
void add_device_pool2d_fwd_nhwc_f16_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, F16, F16, I32, NHWC, NHWC, MaxOp, false>>>&);
void add_device_pool2d_fwd_nhwc_f16_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, F16, F16, I32, NHWC, NHWC, AvgOp, false>>>&);
// FP16 - return index
void add_device_pool2d_fwd_nhwc_index_f16_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, F16, F16, I32, NHWC, NHWC, MaxOp, true>>>&);
#endif
#ifdef CK_ENABLE_BF16
// BF16
void add_device_pool2d_fwd_nhwc_bf16_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, BF16, BF16, I32, NHWC, NHWC, MaxOp, false>>>&);
void add_device_pool2d_fwd_nhwc_bf16_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, BF16, BF16, I32, NHWC, NHWC, AvgOp, false>>>&);
// BF16 - return index
void add_device_pool2d_fwd_nhwc_index_bf16_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, BF16, BF16, I32, NHWC, NHWC, MaxOp, true>>>&);
#endif
#ifdef CK_ENABLE_FP32
// FP32
void add_device_pool2d_fwd_nhwc_f32_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, F32, F32, I32, NHWC, NHWC, MaxOp, false>>>&);
void add_device_pool2d_fwd_nhwc_f32_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, F32, F32, I32, NHWC, NHWC, AvgOp, false>>>&);
// FP32 - return index
void add_device_pool2d_fwd_nhwc_index_f32_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, F32, F32, I32, NHWC, NHWC, MaxOp, true>>>&);
#endif
template <typename InDataType,
typename OutDataType,
typename IndexDataType,
typename InLayout,
typename OutLayout,
ck::ReduceTensorOp ReduceOpId,
bool OutputIndex>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DevicePoolFwd<InOutRank,
WindowRank,
InDataType,
OutDataType,
IndexDataType,
InLayout,
OutLayout,
ReduceOpId,
OutputIndex>>
{
using DeviceOp = DevicePoolFwd<InOutRank,
WindowRank,
InDataType,
OutDataType,
IndexDataType,
InLayout,
OutLayout,
ReduceOpId,
OutputIndex>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<InLayout, NHWC> && is_same_v<OutLayout, NHWC>)
{
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, F16> && is_same_v<OutDataType, F16> &&
is_same_v<IndexDataType, I32>)
{
if constexpr(OutputIndex && ReduceOpId == MaxOp)
{
add_device_pool2d_fwd_nhwc_index_f16_instances(op_ptrs);
}
else
{
add_device_pool2d_fwd_nhwc_f16_instances(op_ptrs);
}
}
#endif
#ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, BF16> && is_same_v<OutDataType, BF16> &&
is_same_v<IndexDataType, I32>)
{
if constexpr(OutputIndex && ReduceOpId == MaxOp)
{
add_device_pool2d_fwd_nhwc_index_bf16_instances(op_ptrs);
}
else
{
add_device_pool2d_fwd_nhwc_bf16_instances(op_ptrs);
}
}
#endif
#ifdef CK_ENABLE_FP32
else if constexpr(is_same_v<InDataType, F32> && is_same_v<OutDataType, F32> &&
is_same_v<IndexDataType, I32>)
{
if constexpr(OutputIndex && ReduceOpId == MaxOp)
{
add_device_pool2d_fwd_nhwc_index_f32_instances(op_ptrs);
}
else
{
add_device_pool2d_fwd_nhwc_f32_instances(op_ptrs);
}
}
#endif
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
set(DEVICE_POOL2D_FWD_INSTANCES)
list(APPEND DEVICE_POOL2D_FWD_INSTANCES device_avg_pool2d_fwd_nhwc_f16_instance.cpp
device_max_pool2d_fwd_nhwc_f16_instance.cpp
device_avg_pool2d_fwd_nhwc_f32_instance.cpp
device_max_pool2d_fwd_nhwc_f32_instance.cpp
device_avg_pool2d_fwd_nhwc_bf16_instance.cpp
device_max_pool2d_fwd_nhwc_bf16_instance.cpp)
add_instance_library(device_pool2d_fwd_instance ${DEVICE_POOL2D_FWD_INSTANCES})
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "pool2d_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
void add_device_pool2d_fwd_nhwc_bf16_instances(
std::vector<
std::unique_ptr<DevicePoolFwd<4, 2, BF16, BF16, I32, NHWC, NHWC, ReduceOpId, false>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<BF16, BF16, I32, F32, ReduceOpId, false>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "pool2d_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
void add_device_pool2d_fwd_nhwc_f16_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F16, F16, I32, NHWC, NHWC, ReduceOpId, false>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F16, F16, I32, F32, ReduceOpId, false>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "pool2d_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
void add_device_pool2d_fwd_nhwc_f32_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F32, F32, I32, NHWC, NHWC, ReduceOpId, false>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F32, F32, I32, F32, ReduceOpId, false>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "pool2d_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
void add_device_pool2d_fwd_nhwc_bf16_instances(
std::vector<
std::unique_ptr<DevicePoolFwd<4, 2, BF16, BF16, I32, NHWC, NHWC, ReduceOpId, false>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<BF16, BF16, I32, F32, ReduceOpId, false>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "pool2d_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
void add_device_pool2d_fwd_nhwc_f16_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F16, F16, I32, NHWC, NHWC, ReduceOpId, false>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F16, F16, I32, F32, ReduceOpId, false>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "pool2d_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
void add_device_pool2d_fwd_nhwc_f32_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F32, F32, I32, NHWC, NHWC, ReduceOpId, false>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F32, F32, I32, F32, ReduceOpId, false>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using I32 = int32_t;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using NHWC = ck::tensor_layout::convolution::NHWC;
template <typename InDataType,
typename OutDataType,
typename IndexDataType,
typename ComputeDataType,
ReduceTensorOp ReduceOpId,
bool OutputIndex>
using device_pool2d_fwd_nhwc_instances =
// clang-format off
std::tuple <
DevicePool2dFwd_NHWC_NHWC<InDataType, OutDataType, IndexDataType, ComputeDataType, ReduceOpId, OutputIndex, 256, 256, 1, 1, 1, 1>,
DevicePool2dFwd_NHWC_NHWC<InDataType, OutDataType, IndexDataType, ComputeDataType, ReduceOpId, OutputIndex, 256, 256, 1, 2, 1, 2>,
DevicePool2dFwd_NHWC_NHWC<InDataType, OutDataType, IndexDataType, ComputeDataType, ReduceOpId, OutputIndex, 256, 256, 1, 4, 1, 4>
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment