Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
3e4d0ff3
Commit
3e4d0ff3
authored
Mar 19, 2024
by
Jakub Piasecki
Browse files
Merge remote-tracking branch 'origin/develop' into ggemm_multid_two_stage
parents
1ad29336
9e011bcd
Changes
256
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2229 additions
and
136 deletions
+2229
-136
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v3r1_dequant.hpp
.../thread/threadwise_tensor_slice_transfer_v3r1_dequant.hpp
+1066
-0
include/ck/tensor_operation/gpu/warp/wmma_gemm.hpp
include/ck/tensor_operation/gpu/warp/wmma_gemm.hpp
+85
-35
include/ck/tensor_operation/operator_transform/transform_contraction_to_gemm_arraybase.hpp
...tor_transform/transform_contraction_to_gemm_arraybase.hpp
+391
-0
include/ck/utility/amd_buffer_addressing.hpp
include/ck/utility/amd_buffer_addressing.hpp
+2
-1
include/ck/utility/amd_inline_asm.hpp
include/ck/utility/amd_inline_asm.hpp
+6
-18
include/ck/utility/data_type.hpp
include/ck/utility/data_type.hpp
+15
-0
include/ck/utility/type_convert.hpp
include/ck/utility/type_convert.hpp
+93
-20
include/ck/wrapper/layout.hpp
include/ck/wrapper/layout.hpp
+9
-0
include/ck/wrapper/operations/copy.hpp
include/ck/wrapper/operations/copy.hpp
+3
-0
include/ck/wrapper/operations/gemm.hpp
include/ck/wrapper/operations/gemm.hpp
+6
-0
include/ck/wrapper/tensor.hpp
include/ck/wrapper/tensor.hpp
+9
-0
include/ck/wrapper/traits/blockwise_gemm_xdl_traits.hpp
include/ck/wrapper/traits/blockwise_gemm_xdl_traits.hpp
+3
-0
include/ck/wrapper/utils/kernel_utils.hpp
include/ck/wrapper/utils/kernel_utils.hpp
+3
-0
include/ck/wrapper/utils/layout_utils.hpp
include/ck/wrapper/utils/layout_utils.hpp
+4
-1
include/ck/wrapper/utils/tensor_partition.hpp
include/ck/wrapper/utils/tensor_partition.hpp
+6
-0
include/ck/wrapper/utils/tensor_utils.hpp
include/ck/wrapper/utils/tensor_utils.hpp
+4
-1
library/include/ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp
...reference_tensor_operation/cpu/reference_batched_gemm.hpp
+246
-0
library/include/ck/library/reference_tensor_operation/cpu/reference_fpAintB_gemm.hpp
...reference_tensor_operation/cpu/reference_fpAintB_gemm.hpp
+177
-0
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
...include/ck/library/tensor_operation_instance/gpu/gemm.hpp
+24
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_data/device_grouped_conv_bwd_data_xdl_bilinear_instance.hpp
...ta/device_grouped_conv_bwd_data_xdl_bilinear_instance.hpp
+77
-60
No files found.
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v3r1_dequant.hpp
0 → 100644
View file @
3e4d0ff3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor/static_tensor.hpp"
namespace
ck
{
namespace
detail
{
// TODO: How to fix this? It uses an struct instead of lambda because lambda
// doesn't have constructor
template
<
index_t
SrcVectorDim
,
index_t
SrcScalarPerVector
,
index_t
DstVectorDim
,
index_t
DstScalarPerVector
>
struct
lambda_scalar_per_access_for_src_and_dst_idle
{
__host__
__device__
constexpr
auto
operator
()(
index_t
i
)
const
{
if
(
i
==
SrcVectorDim
&&
i
==
DstVectorDim
)
{
return
math
::
lcm
(
SrcScalarPerVector
,
DstScalarPerVector
);
}
else
if
(
i
==
SrcVectorDim
)
{
return
SrcScalarPerVector
;
}
else
if
(
i
==
DstVectorDim
)
{
return
DstScalarPerVector
;
}
else
{
return
1
;
}
}
};
}
// namespace detail
// Assume:
// 1. src_desc and dst_desc are not known at compile-time
// 2. SrcBuffer and DstBuffer are DynamicBuffer
// 3. src_slice_origin and dst_slice_origin are not known at compile-time,
// 4. Use thread buffer
// 5. Dequantization happened between read and write.
template
<
typename
SliceLengths
,
typename
ScaleSliceLengths
,
typename
SrcElementwiseOperation
,
typename
ScaleElementwiseOperation
,
typename
DstElementwiseOperation
,
InMemoryDataOperationEnum
DstInMemOp
,
typename
SrcData
,
typename
ScaleData
,
typename
DstData
,
typename
SrcDesc
,
typename
ScaleDesc
,
typename
DstDesc
,
typename
SrcDimAccessOrder
,
typename
DstDimAccessOrder
,
index_t
SrcVectorDim
,
index_t
DstVectorDim
,
index_t
SrcScalarPerVector
,
index_t
ScaleScalarPerVector
,
index_t
DstScalarPerVector
,
index_t
SrcScalarStrideInVector
,
index_t
ScaleScalarStrideInVector
,
index_t
DstScalarStrideInVector
,
bool
SrcResetCoordinateAfterRun
,
// control whether to move back src coordinate after each
// RunRead(), will be fused with MoveSrcSliceWindow to
// save addr computation
bool
DstResetCoordinateAfterRun
,
// control whether to move back dst coordinate after each
// RunWrite(), will be fused with MoveDstSliceWindow to
// save addr computation
index_t
NumThreadScratch
=
1
>
struct
ThreadwiseTensorSliceTransfer_v3r1_dequant
{
static
constexpr
index_t
nDim
=
SliceLengths
::
Size
();
using
Index
=
MultiIndex
<
nDim
>
;
using
SrcCoord
=
decltype
(
make_tensor_coordinate
(
SrcDesc
{},
Index
{}));
using
ScaleCoord
=
decltype
(
make_tensor_coordinate
(
SrcDesc
{},
Index
{}));
using
DstCoord
=
decltype
(
make_tensor_coordinate
(
DstDesc
{},
Index
{}));
static
constexpr
auto
I0
=
Number
<
0
>
{};
__device__
constexpr
ThreadwiseTensorSliceTransfer_v3r1_dequant
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_slice_origin
,
const
SrcElementwiseOperation
&
src_element_op
,
const
ScaleDesc
&
scale_desc
,
const
Index
&
scale_slice_origin
,
const
ScaleElementwiseOperation
&
scale_element_op
,
const
DstDesc
&
dst_desc
,
const
Index
&
dst_slice_origin
,
const
DstElementwiseOperation
&
dst_element_op
)
:
src_coord_
(
make_tensor_coordinate
(
src_desc
,
src_slice_origin
)),
scale_coord_
(
make_tensor_coordinate
(
scale_desc
,
scale_slice_origin
)),
dst_coord_
(
make_tensor_coordinate
(
dst_desc
,
dst_slice_origin
)),
src_element_op_
(
src_element_op
),
scale_element_op_
(
scale_element_op
),
dst_element_op_
(
dst_element_op
)
{
}
__device__
void
SetSrcSliceOrigin
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_slice_origin_idx
)
{
src_coord_
=
make_tensor_coordinate
(
src_desc
,
src_slice_origin_idx
);
}
__device__
void
SetScaleSliceOrigin
(
const
ScaleDesc
&
scale_desc
,
const
Index
&
scale_slice_origin_idx
)
{
scale_coord_
=
make_tensor_coordinate
(
scale_desc
,
scale_slice_origin_idx
);
}
__device__
void
SetDstSliceOrigin
(
const
DstDesc
&
dst_desc
,
const
Index
&
dst_slice_origin_idx
)
{
dst_coord_
=
make_tensor_coordinate
(
dst_desc
,
dst_slice_origin_idx
);
}
template
<
typename
SrcBuffer
,
index_t
ThreadScratchId
=
0
>
__device__
void
RunRead
(
const
SrcDesc
&
src_desc
,
const
SrcBuffer
&
src_buf
,
Number
<
ThreadScratchId
>
thread_scratch_id
=
Number
<
ThreadScratchId
>
{})
{
static_assert
(
SrcBuffer
::
GetAddressSpace
()
==
AddressSpaceEnum
::
Global
or
SrcBuffer
::
GetAddressSpace
()
==
AddressSpaceEnum
::
Lds
,
"wrong!"
);
static_assert
(
is_same
<
remove_cvref_t
<
typename
SrcBuffer
::
type
>
,
remove_cvref_t
<
SrcData
>>::
value
,
"wrong! SrcBuffer and SrcData data type are inconsistent"
);
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
src_access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
constexpr
auto
src_dim_access_order
=
SrcDimAccessOrder
{};
constexpr
auto
ordered_src_access_lengths
=
container_reorder_given_new2old
(
src_access_lengths
,
src_dim_access_order
);
// make forward steps
const
auto
src_forward_steps
=
generate_tuple
(
[
&
](
auto
i
)
{
Index
forward_step_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
forward_step_idx
(
j
)
=
(
i
.
value
==
j
.
value
)
?
src_scalar_per_access
[
i
]
:
0
;
});
return
make_tensor_coordinate_step
(
src_desc
,
forward_step_idx
);
},
Number
<
nDim
>
{});
// make backward steps
const
auto
src_backward_steps
=
generate_tuple
(
[
&
](
auto
i
)
{
Index
backward_step_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
backward_step_idx
(
j
)
=
(
i
.
value
==
j
.
value
)
?
-
src_scalar_per_access
[
i
]
:
0
;
});
return
make_tensor_coordinate_step
(
src_desc
,
backward_step_idx
);
},
Number
<
nDim
>
{});
// loop over tensor and copy
static_ford
<
decltype
(
ordered_src_access_lengths
)
>
{}([
&
](
auto
ordered_src_access_idx
)
{
// judge move forward or move backward
constexpr
auto
forward_sweep
=
[
&
]()
{
StaticallyIndexedArray
<
bool
,
nDim
>
forward_sweep_
;
forward_sweep_
(
I0
)
=
true
;
static_for
<
1
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
index_t
tmp
=
ordered_src_access_idx
[
I0
];
static_for
<
1
,
i
,
1
>
{}([
&
](
auto
j
)
{
tmp
=
tmp
*
ordered_src_access_lengths
[
j
]
+
ordered_src_access_idx
[
j
];
});
forward_sweep_
(
i
)
=
tmp
%
2
==
0
;
});
return
forward_sweep_
;
}();
// calculate src data index
constexpr
auto
src_data_idx
=
[
&
]()
{
Index
ordered_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
ordered_idx
(
i
)
=
forward_sweep
[
i
]
?
ordered_src_access_idx
[
i
]
:
ordered_src_access_lengths
[
i
]
-
1
-
ordered_src_access_idx
[
i
];
});
return
container_reorder_given_old2new
(
ordered_idx
,
src_dim_access_order
)
*
src_scalar_per_access
;
}();
constexpr
auto
src_data_idx_seq
=
generate_sequence_v2
(
[
&
](
auto
i
)
{
return
Number
<
src_data_idx
[
i
]
>
{};
},
Number
<
src_data_idx
.
Size
()
>
{});
const
bool
is_src_valid
=
coordinate_has_valid_offset_assuming_visible_index_is_valid
(
src_desc
,
src_coord_
);
using
src_vector_type
=
vector_type_maker_t
<
SrcData
,
SrcScalarPerVector
>
;
using
src_vector_t
=
typename
src_vector_type
::
type
;
// copy data from src_buf into src_vector_container
auto
src_vector_container
=
src_vector_type
{
src_buf
.
template
Get
<
src_vector_t
>(
src_coord_
.
GetOffset
(),
is_src_valid
)};
// copy data from src_vector_container into src_thread_scratch_
src_thread_scratch_tuple_
(
thread_scratch_id
)
.
template
SetAsType
<
src_vector_t
>(
src_data_idx_seq
,
src_vector_container
.
template
AsType
<
src_vector_t
>()[
I0
]);
constexpr
auto
move_on_dim
=
[
&
]()
constexpr
{
StaticallyIndexedArray
<
bool
,
nDim
>
move_on_dim_
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
move_on_dim_
(
i
)
=
ordered_src_access_idx
[
i
]
<
ordered_src_access_lengths
[
i
]
-
1
;
static_for
<
i
+
1
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
move_on_dim_
(
i
)
&=
ordered_src_access_idx
[
j
]
==
ordered_src_access_lengths
[
j
]
-
1
;
});
});
return
move_on_dim_
;
}
();
// move src coord
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
if
constexpr
(
move_on_dim
[
i
])
{
if
constexpr
(
forward_sweep
[
i
])
{
move_tensor_coordinate
(
src_desc
,
src_coord_
,
src_forward_steps
[
src_dim_access_order
[
i
]]);
}
else
{
move_tensor_coordinate
(
src_desc
,
src_coord_
,
src_backward_steps
[
src_dim_access_order
[
i
]]);
}
}
});
});
// move src coordinate back to slice origin (or not)
if
constexpr
(
SrcResetCoordinateAfterRun
)
{
const
auto
src_reset_step
=
make_tensor_coordinate_step
(
src_desc
,
GetSrcCoordinateResetStep
());
move_tensor_coordinate
(
src_desc
,
src_coord_
,
src_reset_step
);
}
}
template
<
typename
ScaleBuffer
>
__device__
void
RunScaleRead
(
const
ScaleDesc
&
scale_desc
,
const
ScaleBuffer
&
scale_buf
)
{
static_assert
(
ScaleBuffer
::
GetAddressSpace
()
==
AddressSpaceEnum
::
Global
or
ScaleBuffer
::
GetAddressSpace
()
==
AddressSpaceEnum
::
Lds
,
"wrong!"
);
static_assert
(
is_same
<
remove_cvref_t
<
typename
ScaleBuffer
::
type
>
,
remove_cvref_t
<
ScaleData
>>::
value
,
"wrong! ScaleBuffer and ScaleData data type are inconsistent"
);
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
scale_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
ScaleScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
scale_access_lengths
=
SliceLengths
{}
/
scale_scalar_per_access
;
constexpr
auto
scale_dim_access_order
=
SrcDimAccessOrder
{};
constexpr
auto
ordered_scale_access_lengths
=
container_reorder_given_new2old
(
scale_access_lengths
,
scale_dim_access_order
);
// make forward steps
const
auto
scale_forward_steps
=
generate_tuple
(
[
&
](
auto
i
)
{
Index
forward_step_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
forward_step_idx
(
j
)
=
(
i
.
value
==
j
.
value
)
?
scale_scalar_per_access
[
i
]
:
0
;
});
return
make_tensor_coordinate_step
(
scale_desc
,
forward_step_idx
);
},
Number
<
nDim
>
{});
// make backward steps
const
auto
scale_backward_steps
=
generate_tuple
(
[
&
](
auto
i
)
{
Index
backward_step_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
backward_step_idx
(
j
)
=
(
i
.
value
==
j
.
value
)
?
-
scale_scalar_per_access
[
i
]
:
0
;
});
return
make_tensor_coordinate_step
(
scale_desc
,
backward_step_idx
);
},
Number
<
nDim
>
{});
// loop over tensor and copy
static_ford
<
decltype
(
ordered_scale_access_lengths
)
>
{}([
&
](
auto
ordered_scale_access_idx
)
{
// judge move forward or move backward
constexpr
auto
forward_sweep
=
[
&
]()
{
StaticallyIndexedArray
<
bool
,
nDim
>
forward_sweep_
;
forward_sweep_
(
I0
)
=
true
;
static_for
<
1
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
index_t
tmp
=
ordered_scale_access_idx
[
I0
];
static_for
<
1
,
i
,
1
>
{}([
&
](
auto
j
)
{
tmp
=
tmp
*
ordered_scale_access_lengths
[
j
]
+
ordered_scale_access_idx
[
j
];
});
forward_sweep_
(
i
)
=
tmp
%
2
==
0
;
});
return
forward_sweep_
;
}();
// calculate scale data index
constexpr
auto
scale_data_idx
=
[
&
]()
{
Index
ordered_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
ordered_idx
(
i
)
=
forward_sweep
[
i
]
?
ordered_scale_access_idx
[
i
]
:
ordered_scale_access_lengths
[
i
]
-
1
-
ordered_scale_access_idx
[
i
];
});
return
container_reorder_given_old2new
(
ordered_idx
,
scale_dim_access_order
)
*
scale_scalar_per_access
;
}();
constexpr
auto
scale_data_idx_seq
=
generate_sequence_v2
([
&
](
auto
i
)
{
return
Number
<
scale_data_idx
[
i
]
>
{};
},
Number
<
scale_data_idx
.
Size
()
>
{});
const
bool
is_scale_valid
=
coordinate_has_valid_offset_assuming_visible_index_is_valid
(
scale_desc
,
scale_coord_
);
using
scale_vector_type
=
vector_type_maker_t
<
ScaleData
,
ScaleScalarPerVector
>
;
using
scale_vector_t
=
typename
scale_vector_type
::
type
;
// copy data from scale_buf into scale_vector_container
auto
scale_vector_container
=
scale_vector_type
{
scale_buf
.
template
Get
<
scale_vector_t
>(
scale_coord_
.
GetOffset
(),
is_scale_valid
)};
// copy data from scale_vector_container into scale_thread_scratch_
scale_thread_scratch_
.
template
SetAsType
<
scale_vector_t
>(
scale_data_idx_seq
,
scale_vector_container
.
template
AsType
<
scale_vector_t
>()[
I0
]);
constexpr
auto
move_on_dim
=
[
&
]()
constexpr
{
StaticallyIndexedArray
<
bool
,
nDim
>
move_on_dim_
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
move_on_dim_
(
i
)
=
ordered_scale_access_idx
[
i
]
<
ordered_scale_access_lengths
[
i
]
-
1
;
static_for
<
i
+
1
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
move_on_dim_
(
i
)
&=
ordered_scale_access_idx
[
j
]
==
ordered_scale_access_lengths
[
j
]
-
1
;
});
});
return
move_on_dim_
;
}
();
// move scale coord
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
if
constexpr
(
move_on_dim
[
i
])
{
if
constexpr
(
forward_sweep
[
i
])
{
move_tensor_coordinate
(
scale_desc
,
scale_coord_
,
scale_forward_steps
[
scale_dim_access_order
[
i
]]);
}
else
{
move_tensor_coordinate
(
scale_desc
,
scale_coord_
,
scale_backward_steps
[
scale_dim_access_order
[
i
]]);
}
}
});
});
// don't need to move scale coordinate back to slice origin
/*
if constexpr(SrcResetCoordinateAfterRun)
{
const auto scale_reset_step =
make_tensor_coordinate_step(scale_desc, GetScaleCoordinateResetStep());
move_tensor_coordinate(scale_desc, scale_coord_, scale_reset_step);
}
*/
}
template
<
index_t
ThreadScratchId
>
__device__
void
TransferDataFromSrcThreadScratchToDstThreadScratch
(
Number
<
ThreadScratchId
>
thread_scratch_id
)
{
#if !CK_EXPERIMENTAL_USE_IN_REGISTER_SUB_DWORD_TRANSPOSE
static_ford
<
SliceLengths
>
{}([
&
](
auto
idx
)
{
// convert from SrcData to DstData here
dst_thread_scratch_
(
idx
)
=
type_convert
<
DstData
>
(
src_thread_scratch_tuple_
[
thread_scratch_id
][
idx
]);
});
#else
// sub-dword transpose between src_thread_scratch_ and dst_thread_scratch_
// TODO make this logic more generic for more sub-dword datatype
if
constexpr
(
SrcVectorDim
!=
DstVectorDim
&&
((
is_same
<
half_t
,
remove_cvref_t
<
SrcData
>>::
value
&&
is_same
<
half_t
,
remove_cvref_t
<
DstData
>>::
value
&&
SrcScalarPerVector
%
2
==
0
&&
DstScalarPerVector
%
2
==
0
)
||
(
is_same
<
int8_t
,
remove_cvref_t
<
SrcData
>>::
value
&&
is_same
<
int8_t
,
remove_cvref_t
<
DstData
>>::
value
&&
SrcScalarPerVector
%
4
==
0
&&
DstScalarPerVector
%
4
==
0
)))
{
// each transpose does
// DstScalarPerVector # of src vectors in src_thread_scratch_
// SrcScalarPerVector # of dst vectors in dst_thread_scratch_
constexpr
index_t
num_src_vector
=
Number
<
DstScalarPerVector
>
{};
constexpr
index_t
num_dst_vector
=
Number
<
SrcScalarPerVector
>
{};
// Assume SrcVectorDim is not the same as DstVectorDim, so we do transpose
// TODO: make this logic generic for all scenario
static_assert
(
SrcVectorDim
!=
DstVectorDim
,
"wrong"
);
constexpr
auto
src_scalar_step_in_vector
=
generate_sequence
(
detail
::
lambda_scalar_step_in_vector
<
SrcVectorDim
>
{},
Number
<
nDim
>
{});
constexpr
auto
dst_scalar_step_in_vector
=
generate_sequence
(
detail
::
lambda_scalar_step_in_vector
<
DstVectorDim
>
{},
Number
<
nDim
>
{});
constexpr
auto
scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access_for_src_and_dst_idle
<
SrcVectorDim
,
SrcScalarPerVector
,
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
access_lengths
=
SliceLengths
{}
/
scalar_per_access
;
static_ford
<
decltype
(
access_lengths
)
>
{}([
&
](
auto
access_idx
)
{
constexpr
auto
data_idx
=
access_idx
*
scalar_per_access
;
constexpr
auto
data_idx_seq
=
generate_sequence_v2
(
[
&
](
auto
i
)
{
return
Number
<
data_idx
[
i
]
>
{};
},
Number
<
nDim
>
{});
using
src_vector_t
=
vector_type_maker_t
<
SrcData
,
SrcScalarPerVector
>
;
using
dst_vector_t
=
vector_type_maker_t
<
DstData
,
DstScalarPerVector
>
;
// get DstScalarPerVector # of read-only references to src vectors from
// src_thread_scratch_
const
auto
src_vector_refs
=
generate_tie
(
[
&
](
auto
i
)
->
const
src_vector_t
&
{
// i increment corresponds to movement in DstVectorDim
return
src_thread_scratch_tuple_
[
thread_scratch_id
].
GetVectorTypeReference
(
data_idx_seq
+
i
*
dst_scalar_step_in_vector
);
},
Number
<
num_src_vector
>
{});
// get SrcScalarPerVector # of references to dst vectors from dst_thread_scratch_
auto
dst_vector_refs
=
generate_tie
(
[
&
](
auto
i
)
->
dst_vector_t
&
{
// i increment corresponds to movement in SrcVectorDim
return
dst_thread_scratch_
.
GetVectorTypeReference
(
data_idx_seq
+
i
*
src_scalar_step_in_vector
);
},
Number
<
num_dst_vector
>
{});
// do data transpose
transpose_vectors
<
SrcData
,
DstScalarPerVector
,
SrcScalarPerVector
>
{}(
src_vector_refs
,
dst_vector_refs
);
});
}
// Do fast numeric convert
constexpr
auto
scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access_for_src_and_dst_idle
<
SrcVectorDim
,
SrcScalarPerVector
,
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
access_lengths
=
SliceLengths
{}
/
scalar_per_access
;
using
src_vector_type
=
vector_type_maker_t
<
SrcData
,
SrcScalarPerVector
>
;
using
src_vector_t
=
typename
src_vector_type
::
type
;
using
src_converted_vector_type
=
vector_type_maker_t
<
DstData
,
SrcScalarPerVector
>
;
using
src_converted_vector_t
=
typename
src_converted_vector_type
::
type
;
// Vector-wise type convert
static_ford
<
decltype
(
access_lengths
)
>
{}([
&
](
auto
access_idx
)
{
auto
src_vector_container
=
src_vector_type
{
src_thread_scratch_tuple_
[
thread_scratch_id
].
template
GetAsType
<
src_vector_t
>(
access_idx
)};
auto
src_converted_vector_container
=
src_converted_vector_type
{
fast_numeric_converter
(
src_vector_container
)};
src_converted_thread_scratch_
.
template
SetAsType
<
src_converted_vector_t
>(
access_idx
,
src_converted_vector_container
.
template
AsType
<
src_converted_vector_t
>()[
I0
]);
});
// Element-scale operation, expect packed multiplication
static_ford
<
SliceLengths
>
{}([
&
](
auto
idx
)
{
DstData
dst_v
;
constexpr
auto
scale_idx
=
Sequence
<
I0
,
idx
.
At
(
1
),
I0
>
{};
// printf("Tid: %03d, scale: %04x\n", get_thread_local_1d_id(),
// *(reinterpret_cast<const uint16_t*>(&scale_thread_scratch_[scale_idx])));
src_element_op_
(
dst_v
,
src_converted_thread_scratch_
[
idx
]
*
scale_thread_scratch_
[
scale_idx
]);
dst_thread_scratch_
(
idx
)
=
dst_v
;
});
#endif
}
template
<
typename
DstBuffer
,
index_t
ThreadScratchId
=
0
>
__device__
void
RunWrite
(
const
DstDesc
&
dst_desc
,
DstBuffer
&
dst_buf
,
Number
<
ThreadScratchId
>
thread_scratch_id
=
Number
<
ThreadScratchId
>
{})
{
// if there is transpose, it's done here
// TODO move this elsewhere
TransferDataFromSrcThreadScratchToDstThreadScratch
(
thread_scratch_id
);
static_assert
(
DstBuffer
::
GetAddressSpace
()
==
AddressSpaceEnum
::
Global
or
DstBuffer
::
GetAddressSpace
()
==
AddressSpaceEnum
::
Lds
,
"wrong!"
);
static_assert
(
is_same
<
remove_cvref_t
<
typename
DstBuffer
::
type
>
,
remove_cvref_t
<
DstData
>>::
value
,
"wrong! SrcBuffer or DstBuffer data type is wrong"
);
// src scalar per access on each dim
// TODO: don't use this
constexpr
auto
dst_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
dst_access_lengths
=
SliceLengths
{}
/
dst_scalar_per_access
;
constexpr
auto
dst_dim_access_order
=
DstDimAccessOrder
{};
constexpr
auto
ordered_dst_access_lengths
=
container_reorder_given_new2old
(
dst_access_lengths
,
dst_dim_access_order
);
// make forward steps
const
auto
dst_forward_steps
=
generate_tuple
(
[
&
](
auto
i
)
{
Index
forward_step_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
forward_step_idx
(
j
)
=
(
i
.
value
==
j
.
value
)
?
dst_scalar_per_access
[
i
]
:
0
;
});
return
make_tensor_coordinate_step
(
dst_desc
,
forward_step_idx
);
},
Number
<
nDim
>
{});
// make backward steps
const
auto
dst_backward_steps
=
generate_tuple
(
[
&
](
auto
i
)
{
Index
backward_step_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
backward_step_idx
(
j
)
=
(
i
.
value
==
j
.
value
)
?
-
dst_scalar_per_access
[
i
]
:
0
;
});
return
make_tensor_coordinate_step
(
dst_desc
,
backward_step_idx
);
},
Number
<
nDim
>
{});
// loop over tensor and copy
static_ford
<
decltype
(
ordered_dst_access_lengths
)
>
{}([
&
](
auto
ordered_dst_access_idx
)
{
// judge move forward or move backward
constexpr
auto
forward_sweep
=
[
&
]()
{
StaticallyIndexedArray
<
bool
,
nDim
>
forward_sweep_
;
forward_sweep_
(
I0
)
=
true
;
static_for
<
1
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
index_t
tmp
=
ordered_dst_access_idx
[
I0
];
static_for
<
1
,
i
,
1
>
{}([
&
](
auto
j
)
{
tmp
=
tmp
*
ordered_dst_access_lengths
[
j
]
+
ordered_dst_access_idx
[
j
];
});
forward_sweep_
(
i
)
=
tmp
%
2
==
0
;
});
return
forward_sweep_
;
}();
// calculate dst data index
constexpr
auto
dst_data_idx
=
[
&
]()
{
Index
ordered_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
ordered_idx
(
i
)
=
forward_sweep
[
i
]
?
ordered_dst_access_idx
[
i
]
:
ordered_dst_access_lengths
[
i
]
-
1
-
ordered_dst_access_idx
[
i
];
});
return
container_reorder_given_old2new
(
ordered_idx
,
dst_dim_access_order
)
*
dst_scalar_per_access
;
}();
constexpr
auto
dst_data_idx_seq
=
generate_sequence_v2
(
[
&
](
auto
i
)
{
return
Number
<
dst_data_idx
[
i
]
>
{};
},
Number
<
dst_data_idx
.
Size
()
>
{});
const
bool
is_dst_valid
=
coordinate_has_valid_offset_assuming_visible_index_is_valid
(
dst_desc
,
dst_coord_
);
using
dst_vector_type
=
vector_type_maker_t
<
DstData
,
DstScalarPerVector
>
;
using
dst_vector_t
=
typename
dst_vector_type
::
type
;
// copy data from dst_thread_scratch_ into dst_vector_container
auto
dst_vector_container
=
dst_vector_type
{
dst_thread_scratch_
.
template
GetAsType
<
dst_vector_t
>(
dst_data_idx_seq
)};
static_for
<
0
,
DstScalarPerVector
,
1
>
{}([
&
](
auto
i
)
{
DstData
dst_v
;
// apply DstElementwiseOperation
dst_element_op_
(
dst_v
,
dst_vector_container
.
template
AsType
<
DstData
>()[
i
]);
dst_vector_container
.
template
AsType
<
DstData
>()(
i
)
=
dst_v
;
});
// copy data from dst_vector_container to dst_buf
dst_buf
.
template
Set
<
dst_vector_t
>(
dst_coord_
.
GetOffset
(),
is_dst_valid
,
dst_vector_container
.
template
AsType
<
dst_vector_t
>()[
I0
]);
constexpr
auto
move_on_dim
=
[
&
]()
constexpr
{
StaticallyIndexedArray
<
bool
,
nDim
>
move_on_dim_
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
move_on_dim_
(
i
)
=
ordered_dst_access_idx
[
i
]
<
ordered_dst_access_lengths
[
i
]
-
1
;
static_for
<
i
+
1
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
move_on_dim_
(
i
)
&=
ordered_dst_access_idx
[
j
]
==
ordered_dst_access_lengths
[
j
]
-
1
;
});
});
return
move_on_dim_
;
}
();
// move dst coord
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
if
constexpr
(
move_on_dim
[
i
])
{
if
constexpr
(
forward_sweep
[
i
])
{
move_tensor_coordinate
(
dst_desc
,
dst_coord_
,
dst_forward_steps
[
dst_dim_access_order
[
i
]]);
}
else
{
move_tensor_coordinate
(
dst_desc
,
dst_coord_
,
dst_backward_steps
[
dst_dim_access_order
[
i
]]);
}
}
});
});
// move dst coordinate back to slice origin (or not)
if
constexpr
(
DstResetCoordinateAfterRun
)
{
const
auto
dst_reset_step
=
make_tensor_coordinate_step
(
dst_desc
,
GetDstCoordinateResetStep
());
move_tensor_coordinate
(
dst_desc
,
dst_coord_
,
dst_reset_step
);
}
}
__device__
static
constexpr
auto
GetSrcCoordinateResetStep
()
{
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
src_access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
constexpr
auto
src_dim_access_order
=
SrcDimAccessOrder
{};
constexpr
auto
ordered_src_access_lengths
=
container_reorder_given_new2old
(
src_access_lengths
,
src_dim_access_order
);
// judge move forward or move backward during the last iteration
constexpr
auto
forward_sweep
=
[
&
]()
{
StaticallyIndexedArray
<
bool
,
nDim
>
forward_sweep_
;
forward_sweep_
(
I0
)
=
true
;
static_for
<
1
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
index_t
tmp
=
ordered_src_access_lengths
[
I0
]
-
1
;
static_for
<
1
,
i
,
1
>
{}([
&
](
auto
j
)
{
tmp
=
tmp
*
ordered_src_access_lengths
[
j
]
+
ordered_src_access_lengths
[
j
]
-
1
;
});
forward_sweep_
(
i
)
=
tmp
%
2
==
0
;
});
return
forward_sweep_
;
}();
// calculate src data index after last iteration in RunRead(), if it has not being reset by
// RunRead()
constexpr
auto
src_data_idx
=
[
&
]()
{
Index
ordered_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
ordered_idx
(
i
)
=
forward_sweep
[
i
]
?
ordered_src_access_lengths
[
i
]
-
1
:
0
;
});
return
container_reorder_given_old2new
(
ordered_idx
,
src_dim_access_order
)
*
src_scalar_per_access
;
}();
//
constexpr
auto
reset_src_data_step
=
[
&
]()
{
Index
reset_src_data_step_
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
reset_src_data_step_
(
i
)
=
-
src_data_idx
[
i
];
});
return
reset_src_data_step_
;
}();
return
reset_src_data_step
;
}
__device__
static
constexpr
auto
GetDstCoordinateResetStep
()
{
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
dst_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
dst_access_lengths
=
SliceLengths
{}
/
dst_scalar_per_access
;
constexpr
auto
dst_dim_access_order
=
DstDimAccessOrder
{};
constexpr
auto
ordered_dst_access_lengths
=
container_reorder_given_new2old
(
dst_access_lengths
,
dst_dim_access_order
);
// judge move forward or move backward during the last iteration
constexpr
auto
forward_sweep
=
[
&
]()
{
StaticallyIndexedArray
<
bool
,
nDim
>
forward_sweep_
;
forward_sweep_
(
I0
)
=
true
;
static_for
<
1
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
index_t
tmp
=
ordered_dst_access_lengths
[
I0
]
-
1
;
static_for
<
1
,
i
,
1
>
{}([
&
](
auto
j
)
{
tmp
=
tmp
*
ordered_dst_access_lengths
[
j
]
+
ordered_dst_access_lengths
[
j
]
-
1
;
});
forward_sweep_
(
i
)
=
tmp
%
2
==
0
;
});
return
forward_sweep_
;
}();
// calculate dst data index after last iteration in RunWrite(), if it has not being reset by
// RunWrite()
constexpr
auto
dst_data_idx
=
[
&
]()
{
Index
ordered_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
ordered_idx
(
i
)
=
forward_sweep
[
i
]
?
ordered_dst_access_lengths
[
i
]
-
1
:
0
;
});
return
container_reorder_given_old2new
(
ordered_idx
,
dst_dim_access_order
)
*
dst_scalar_per_access
;
}();
//
constexpr
auto
reset_dst_data_step
=
[
&
]()
{
Index
reset_dst_data_step_
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
reset_dst_data_step_
(
i
)
=
-
dst_data_idx
[
i
];
});
return
reset_dst_data_step_
;
}();
return
reset_dst_data_step
;
}
// src_slice_origin_step_idx need to be known at compile-time, for performance reason
__device__
void
MoveSrcSliceWindow
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_slice_origin_step_idx
)
{
// if src coord was not reset by RunRead(), then need to adjust the step here
const
auto
adjusted_step_idx
=
SrcResetCoordinateAfterRun
?
src_slice_origin_step_idx
:
src_slice_origin_step_idx
+
GetSrcCoordinateResetStep
();
// is it OK to construct a new step every time?
const
auto
adjusted_step
=
make_tensor_coordinate_step
(
src_desc
,
adjusted_step_idx
);
move_tensor_coordinate
(
src_desc
,
src_coord_
,
adjusted_step
);
}
// dst_slice_origin_step_idx need to be known at compile-time, for performance reason
__device__
void
MoveDstSliceWindow
(
const
DstDesc
&
dst_desc
,
const
Index
&
dst_slice_origin_step_idx
)
{
// if dst coord was not reset by RunWrite(), then need to adjust the step here
const
auto
adjusted_step_idx
=
DstResetCoordinateAfterRun
?
dst_slice_origin_step_idx
:
dst_slice_origin_step_idx
+
GetDstCoordinateResetStep
();
// is it OK to construct a new step every time?
const
auto
adjusted_step
=
make_tensor_coordinate_step
(
dst_desc
,
adjusted_step_idx
);
move_tensor_coordinate
(
dst_desc
,
dst_coord_
,
adjusted_step
);
}
__device__
static
constexpr
auto
GetSrcThreadScratchDescriptor
()
{
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
src_access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
constexpr
auto
src_access_lengths_and_vector_length
=
container_push_back
(
sequence_to_tuple_of_number
(
src_access_lengths
),
Number
<
SrcScalarPerVector
>
{});
// 1st stage of transforms
constexpr
auto
desc0
=
make_naive_tensor_descriptor_packed
(
src_access_lengths_and_vector_length
);
// 2nd stage of transforms
constexpr
auto
transforms
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
SrcVectorDim
)
{
return
make_merge_transform_v3_division_mod
(
make_tuple
(
src_access_lengths_and_vector_length
[
i
],
src_access_lengths_and_vector_length
[
Number
<
nDim
>
{}]));
}
else
{
return
make_pass_through_transform
(
src_access_lengths_and_vector_length
[
i
]);
}
},
Number
<
nDim
>
{});
constexpr
auto
low_dim_idss
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
SrcVectorDim
)
{
return
Sequence
<
i
.
value
,
nDim
>
{};
}
else
{
return
Sequence
<
i
.
value
>
{};
}
},
Number
<
nDim
>
{});
constexpr
auto
up_dim_idss
=
generate_tuple
([
&
](
auto
i
)
{
return
Sequence
<
i
.
value
>
{};
},
Number
<
nDim
>
{});
return
transform_tensor_descriptor
(
desc0
,
transforms
,
low_dim_idss
,
up_dim_idss
);
}
__device__
static
constexpr
auto
GetScaleThreadScratchDescriptor
()
{
constexpr
auto
scale_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
ScaleScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
scale_access_lengths
=
SliceLengths
{}
/
scale_scalar_per_access
;
constexpr
auto
scale_access_lengths_and_vector_length
=
container_push_back
(
sequence_to_tuple_of_number
(
scale_access_lengths
),
Number
<
ScaleScalarPerVector
>
{});
// 1st stage of transforms
constexpr
auto
desc0
=
make_naive_tensor_descriptor_packed
(
scale_access_lengths_and_vector_length
);
// 2nd stage of transforms
constexpr
auto
transforms
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
SrcVectorDim
)
{
return
make_merge_transform_v3_division_mod
(
make_tuple
(
scale_access_lengths_and_vector_length
[
i
],
scale_access_lengths_and_vector_length
[
Number
<
nDim
>
{}]));
}
else
{
return
make_pass_through_transform
(
scale_access_lengths_and_vector_length
[
i
]);
}
},
Number
<
nDim
>
{});
constexpr
auto
low_dim_idss
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
SrcVectorDim
)
{
return
Sequence
<
i
.
value
,
nDim
>
{};
}
else
{
return
Sequence
<
i
.
value
>
{};
}
},
Number
<
nDim
>
{});
constexpr
auto
up_dim_idss
=
generate_tuple
([
&
](
auto
i
)
{
return
Sequence
<
i
.
value
>
{};
},
Number
<
nDim
>
{});
return
transform_tensor_descriptor
(
desc0
,
transforms
,
low_dim_idss
,
up_dim_idss
);
}
__device__
static
constexpr
auto
GetDstThreadScratchDescriptor
()
{
// 1st stage of transforms
constexpr
auto
dst_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
dst_access_lengths
=
SliceLengths
{}
/
dst_scalar_per_access
;
constexpr
auto
dst_access_lengths_and_vector_length
=
container_push_back
(
sequence_to_tuple_of_number
(
dst_access_lengths
),
Number
<
DstScalarPerVector
>
{});
constexpr
auto
desc0
=
make_naive_tensor_descriptor_packed
(
dst_access_lengths_and_vector_length
);
// 2nd stage of transforms
constexpr
auto
transforms
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
DstVectorDim
)
{
return
make_merge_transform_v3_division_mod
(
make_tuple
(
dst_access_lengths_and_vector_length
[
i
],
dst_access_lengths_and_vector_length
[
Number
<
nDim
>
{}]));
}
else
{
return
make_pass_through_transform
(
dst_access_lengths_and_vector_length
[
i
]);
}
},
Number
<
nDim
>
{});
constexpr
auto
low_dim_idss
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
DstVectorDim
)
{
return
Sequence
<
i
.
value
,
nDim
>
{};
}
else
{
return
Sequence
<
i
.
value
>
{};
}
},
Number
<
nDim
>
{});
constexpr
auto
up_dim_idss
=
generate_tuple
([
&
](
auto
i
)
{
return
Sequence
<
i
.
value
>
{};
},
Number
<
nDim
>
{});
return
transform_tensor_descriptor
(
desc0
,
transforms
,
low_dim_idss
,
up_dim_idss
);
}
private:
static
constexpr
auto
src_thread_scratch_desc_
=
decltype
(
GetSrcThreadScratchDescriptor
()){};
static
constexpr
auto
scale_thread_scratch_desc_
=
decltype
(
GetScaleThreadScratchDescriptor
()){};
static
constexpr
auto
dst_thread_scratch_desc_
=
decltype
(
GetDstThreadScratchDescriptor
()){};
/*
template <bool kLastDim>
struct ScaleThreadScratchDesc{};
*/
// Registers, contain raw data loaded from global buffer
using
SrcThreadScratch
=
StaticTensorTupleOfVectorBuffer
<
AddressSpaceEnum
::
Vgpr
,
SrcData
,
SrcScalarPerVector
,
decltype
(
src_thread_scratch_desc_
),
true
>
;
// Registers, contain fast converted data
using
SrcThreadConvertedScratch
=
StaticTensorTupleOfVectorBuffer
<
AddressSpaceEnum
::
Vgpr
,
DstData
,
SrcScalarPerVector
,
decltype
(
src_thread_scratch_desc_
),
true
>
;
// Registers, contain scale data
using
ScaleThreadScratch
=
StaticTensorTupleOfVectorBuffer
<
AddressSpaceEnum
::
Vgpr
,
ScaleData
,
ScaleScalarPerVector
,
decltype
(
scale_thread_scratch_desc_
),
true
>
;
// Registers, contain dequantized data
using
DstThreadScratch
=
StaticTensorTupleOfVectorBuffer
<
AddressSpaceEnum
::
Vgpr
,
DstData
,
DstScalarPerVector
,
decltype
(
dst_thread_scratch_desc_
),
true
>
;
using
FastTypeConverter
=
tensor_operation
::
element_wise
::
FastNumericArrayConverter
<
SrcData
,
DstData
,
SrcScalarPerVector
>
;
StaticallyIndexedArray
<
SrcThreadScratch
,
NumThreadScratch
>
src_thread_scratch_tuple_
;
SrcThreadConvertedScratch
src_converted_thread_scratch_
;
ScaleThreadScratch
scale_thread_scratch_
;
DstThreadScratch
dst_thread_scratch_
;
FastTypeConverter
fast_numeric_converter
;
SrcCoord
src_coord_
;
ScaleCoord
scale_coord_
;
DstCoord
dst_coord_
;
const
SrcElementwiseOperation
src_element_op_
;
const
ScaleElementwiseOperation
scale_element_op_
;
const
DstElementwiseOperation
dst_element_op_
;
};
}
// namespace ck
include/ck/tensor_operation/gpu/warp/wmma_gemm.hpp
View file @
3e4d0ff3
...
@@ -89,6 +89,7 @@ struct wmma_type<WmmaInstr::wmma_f32_16x16x16_f16,
...
@@ -89,6 +89,7 @@ struct wmma_type<WmmaInstr::wmma_f32_16x16x16_f16,
static
constexpr
index_t
src_a_data_size
=
2
;
static
constexpr
index_t
src_a_data_size
=
2
;
static
constexpr
index_t
src_b_data_size
=
2
;
static
constexpr
index_t
src_b_data_size
=
2
;
static
constexpr
index_t
acc_data_size
=
4
;
static
constexpr
index_t
acc_data_size
=
4
;
static
constexpr
index_t
acc_pack_number
=
1
;
// * Thread mapping inside wave, num_thread_per_subgroups always alone N direction
// * Thread mapping inside wave, num_thread_per_subgroups always alone N direction
static
constexpr
index_t
num_thread_per_subgroups
=
n_per_wmma
;
static
constexpr
index_t
num_thread_per_subgroups
=
n_per_wmma
;
...
@@ -100,7 +101,7 @@ struct wmma_type<WmmaInstr::wmma_f32_16x16x16_f16,
...
@@ -100,7 +101,7 @@ struct wmma_type<WmmaInstr::wmma_f32_16x16x16_f16,
// * num_acc_vgprs_per_wave alone M direction
// * num_acc_vgprs_per_wave alone M direction
// * num_subgroups alone M direction
// * num_subgroups alone M direction
static
constexpr
index_t
num_acc_vgprs_per_wave
=
static
constexpr
index_t
num_acc_vgprs_per_wave
=
m_per_wmma
*
n_per_wmma
*
acc_data_size
/
wave_size
/
4
;
m_per_wmma
*
n_per_wmma
*
acc_data_size
*
acc_pack_number
/
wave_size
/
4
;
static
constexpr
index_t
num_subgroups
=
wave_size
/
num_thread_per_subgroups
;
static
constexpr
index_t
num_subgroups
=
wave_size
/
num_thread_per_subgroups
;
template
<
index_t
MPerWmma
,
index_t
NPerWmma
,
class
FloatA
,
class
FloatB
,
class
FloatC
>
template
<
index_t
MPerWmma
,
index_t
NPerWmma
,
class
FloatA
,
class
FloatB
,
class
FloatC
>
...
@@ -129,6 +130,7 @@ struct wmma_type<WmmaInstr::wmma_f32_16x16x16_bf16,
...
@@ -129,6 +130,7 @@ struct wmma_type<WmmaInstr::wmma_f32_16x16x16_bf16,
static
constexpr
index_t
src_a_data_size
=
2
;
static
constexpr
index_t
src_a_data_size
=
2
;
static
constexpr
index_t
src_b_data_size
=
2
;
static
constexpr
index_t
src_b_data_size
=
2
;
static
constexpr
index_t
acc_data_size
=
4
;
static
constexpr
index_t
acc_data_size
=
4
;
static
constexpr
index_t
acc_pack_number
=
1
;
static
constexpr
index_t
num_thread_per_subgroups
=
n_per_wmma
;
static
constexpr
index_t
num_thread_per_subgroups
=
n_per_wmma
;
// Wave mode dependent propety
// Wave mode dependent propety
...
@@ -136,7 +138,7 @@ struct wmma_type<WmmaInstr::wmma_f32_16x16x16_bf16,
...
@@ -136,7 +138,7 @@ struct wmma_type<WmmaInstr::wmma_f32_16x16x16_bf16,
static
constexpr
index_t
num_src_a_vgprs_per_wave
=
m_per_wmma
*
src_a_data_size
/
4
;
static
constexpr
index_t
num_src_a_vgprs_per_wave
=
m_per_wmma
*
src_a_data_size
/
4
;
static
constexpr
index_t
num_src_b_vgprs_per_wave
=
n_per_wmma
*
src_b_data_size
/
4
;
static
constexpr
index_t
num_src_b_vgprs_per_wave
=
n_per_wmma
*
src_b_data_size
/
4
;
static
constexpr
index_t
num_acc_vgprs_per_wave
=
static
constexpr
index_t
num_acc_vgprs_per_wave
=
m_per_wmma
*
n_per_wmma
*
acc_data_size
/
wave_size
/
4
;
m_per_wmma
*
n_per_wmma
*
acc_data_size
*
acc_pack_number
/
wave_size
/
4
;
static
constexpr
index_t
num_subgroups
=
wave_size
/
num_thread_per_subgroups
;
static
constexpr
index_t
num_subgroups
=
wave_size
/
num_thread_per_subgroups
;
template
<
index_t
MPerWmma
,
index_t
NPerWmma
,
class
FloatA
,
class
FloatB
,
class
FloatC
>
template
<
index_t
MPerWmma
,
index_t
NPerWmma
,
class
FloatA
,
class
FloatB
,
class
FloatC
>
...
@@ -153,7 +155,6 @@ struct wmma_type<WmmaInstr::wmma_f32_16x16x16_bf16,
...
@@ -153,7 +155,6 @@ struct wmma_type<WmmaInstr::wmma_f32_16x16x16_bf16,
}
}
};
};
#ifdef CK_UNPACKED_ACC_DESC_LOGIC
template
<
index_t
WaveSize
>
template
<
index_t
WaveSize
>
struct
wmma_type
<
WmmaInstr
::
wmma_f16_16x16x16_f16
,
struct
wmma_type
<
WmmaInstr
::
wmma_f16_16x16x16_f16
,
WaveSize
,
WaveSize
,
...
@@ -166,6 +167,7 @@ struct wmma_type<WmmaInstr::wmma_f16_16x16x16_f16,
...
@@ -166,6 +167,7 @@ struct wmma_type<WmmaInstr::wmma_f16_16x16x16_f16,
static
constexpr
index_t
src_a_data_size
=
2
;
static
constexpr
index_t
src_a_data_size
=
2
;
static
constexpr
index_t
src_b_data_size
=
2
;
static
constexpr
index_t
src_b_data_size
=
2
;
static
constexpr
index_t
acc_data_size
=
2
;
static
constexpr
index_t
acc_data_size
=
2
;
static
constexpr
index_t
acc_pack_number
=
2
;
static
constexpr
index_t
num_thread_per_subgroups
=
n_per_wmma
;
static
constexpr
index_t
num_thread_per_subgroups
=
n_per_wmma
;
// Wave mode dependent propety
// Wave mode dependent propety
...
@@ -173,28 +175,22 @@ struct wmma_type<WmmaInstr::wmma_f16_16x16x16_f16,
...
@@ -173,28 +175,22 @@ struct wmma_type<WmmaInstr::wmma_f16_16x16x16_f16,
static
constexpr
index_t
num_src_a_vgprs_per_wave
=
m_per_wmma
*
src_a_data_size
/
4
;
static
constexpr
index_t
num_src_a_vgprs_per_wave
=
m_per_wmma
*
src_a_data_size
/
4
;
static
constexpr
index_t
num_src_b_vgprs_per_wave
=
n_per_wmma
*
src_b_data_size
/
4
;
static
constexpr
index_t
num_src_b_vgprs_per_wave
=
n_per_wmma
*
src_b_data_size
/
4
;
static
constexpr
index_t
num_acc_vgprs_per_wave
=
static
constexpr
index_t
num_acc_vgprs_per_wave
=
m_per_wmma
*
n_per_wmma
*
acc_data_size
/
wave_size
/
4
;
m_per_wmma
*
n_per_wmma
*
acc_data_size
*
acc_pack_number
/
wave_size
/
4
;
static
constexpr
index_t
num_subgroups
=
wave_size
/
num_thread_per_subgroups
;
static
constexpr
index_t
num_subgroups
=
wave_size
/
num_thread_per_subgroups
;
template
<
index_t
MPerWmma
,
template
<
index_t
MPerWmma
,
index_t
NPerWmma
,
class
FloatA
,
class
FloatB
,
class
FloatC
>
index_t
NPerWmma
,
index_t
Opsel
,
class
FloatA
,
class
FloatB
,
class
FloatC
>
__device__
void
run
(
const
FloatA
&
a
,
const
FloatB
&
b
,
FloatC
&
reg_c
)
const
__device__
void
run
(
const
FloatA
&
a
,
const
FloatB
&
b
,
FloatC
&
reg_c
)
const
{
{
if
constexpr
(
wave_size
==
32
)
if
constexpr
(
wave_size
==
32
)
{
{
intrin_wmma_f16_16x16x16_f16_w32
<
MPerWmma
,
NPerWmma
,
Op
se
l
>::
Run
(
a
,
b
,
reg_c
);
intrin_wmma_f16_16x16x16_f16_w32
<
MPerWmma
,
NPerWmma
,
fal
se
>::
Run
(
a
,
b
,
reg_c
);
}
}
else
if
constexpr
(
wave_size
==
64
)
else
if
constexpr
(
wave_size
==
64
)
{
{
intrin_wmma_f16_16x16x16_f16_w64
<
MPerWmma
,
NPerWmma
,
Op
se
l
>::
Run
(
a
,
b
,
reg_c
);
intrin_wmma_f16_16x16x16_f16_w64
<
MPerWmma
,
NPerWmma
,
fal
se
>::
Run
(
a
,
b
,
reg_c
);
}
}
}
}
};
};
template
<
index_t
WaveSize
>
template
<
index_t
WaveSize
>
struct
wmma_type
<
WmmaInstr
::
wmma_bf16_16x16x16_bf16
,
struct
wmma_type
<
WmmaInstr
::
wmma_bf16_16x16x16_bf16
,
WaveSize
,
WaveSize
,
...
@@ -207,6 +203,7 @@ struct wmma_type<WmmaInstr::wmma_bf16_16x16x16_bf16,
...
@@ -207,6 +203,7 @@ struct wmma_type<WmmaInstr::wmma_bf16_16x16x16_bf16,
static
constexpr
index_t
src_a_data_size
=
2
;
static
constexpr
index_t
src_a_data_size
=
2
;
static
constexpr
index_t
src_b_data_size
=
2
;
static
constexpr
index_t
src_b_data_size
=
2
;
static
constexpr
index_t
acc_data_size
=
2
;
static
constexpr
index_t
acc_data_size
=
2
;
static
constexpr
index_t
acc_pack_number
=
2
;
static
constexpr
index_t
num_thread_per_subgroups
=
n_per_wmma
;
static
constexpr
index_t
num_thread_per_subgroups
=
n_per_wmma
;
// Wave mode dependent propety
// Wave mode dependent propety
...
@@ -214,7 +211,7 @@ struct wmma_type<WmmaInstr::wmma_bf16_16x16x16_bf16,
...
@@ -214,7 +211,7 @@ struct wmma_type<WmmaInstr::wmma_bf16_16x16x16_bf16,
static
constexpr
index_t
num_src_a_vgprs_per_wave
=
m_per_wmma
*
src_a_data_size
/
4
;
static
constexpr
index_t
num_src_a_vgprs_per_wave
=
m_per_wmma
*
src_a_data_size
/
4
;
static
constexpr
index_t
num_src_b_vgprs_per_wave
=
n_per_wmma
*
src_b_data_size
/
4
;
static
constexpr
index_t
num_src_b_vgprs_per_wave
=
n_per_wmma
*
src_b_data_size
/
4
;
static
constexpr
index_t
num_acc_vgprs_per_wave
=
static
constexpr
index_t
num_acc_vgprs_per_wave
=
m_per_wmma
*
n_per_wmma
*
acc_data_size
/
wave_size
/
4
;
m_per_wmma
*
n_per_wmma
*
acc_data_size
*
acc_pack_number
/
wave_size
/
4
;
static
constexpr
index_t
num_subgroups
=
wave_size
/
num_thread_per_subgroups
;
static
constexpr
index_t
num_subgroups
=
wave_size
/
num_thread_per_subgroups
;
template
<
index_t
MPerWmma
,
template
<
index_t
MPerWmma
,
...
@@ -227,17 +224,15 @@ struct wmma_type<WmmaInstr::wmma_bf16_16x16x16_bf16,
...
@@ -227,17 +224,15 @@ struct wmma_type<WmmaInstr::wmma_bf16_16x16x16_bf16,
{
{
if
constexpr
(
wave_size
==
32
)
if
constexpr
(
wave_size
==
32
)
{
{
intrin_wmma_bf16_16x16x16_bf16_w32
<
MPerWmma
,
NPerWmma
,
Op
se
l
>::
Run
(
a
,
b
,
reg_c
);
intrin_wmma_bf16_16x16x16_bf16_w32
<
MPerWmma
,
NPerWmma
,
fal
se
>::
Run
(
a
,
b
,
reg_c
);
}
}
else
if
constexpr
(
wave_size
==
64
)
else
if
constexpr
(
wave_size
==
64
)
{
{
intrin_wmma_bf16_16x16x16_bf16_w64
<
MPerWmma
,
NPerWmma
,
Op
se
l
>::
Run
(
a
,
b
,
reg_c
);
intrin_wmma_bf16_16x16x16_bf16_w64
<
MPerWmma
,
NPerWmma
,
fal
se
>::
Run
(
a
,
b
,
reg_c
);
}
}
}
}
};
};
#endif
template
<
index_t
WaveSize
>
template
<
index_t
WaveSize
>
struct
wmma_type
<
WmmaInstr
::
wmma_i32_16x16x16_iu8
,
struct
wmma_type
<
WmmaInstr
::
wmma_i32_16x16x16_iu8
,
WaveSize
,
WaveSize
,
...
@@ -250,6 +245,7 @@ struct wmma_type<WmmaInstr::wmma_i32_16x16x16_iu8,
...
@@ -250,6 +245,7 @@ struct wmma_type<WmmaInstr::wmma_i32_16x16x16_iu8,
static
constexpr
index_t
src_a_data_size
=
2
;
static
constexpr
index_t
src_a_data_size
=
2
;
static
constexpr
index_t
src_b_data_size
=
2
;
static
constexpr
index_t
src_b_data_size
=
2
;
static
constexpr
index_t
acc_data_size
=
4
;
static
constexpr
index_t
acc_data_size
=
4
;
static
constexpr
index_t
acc_pack_number
=
1
;
static
constexpr
index_t
num_thread_per_subgroups
=
n_per_wmma
;
static
constexpr
index_t
num_thread_per_subgroups
=
n_per_wmma
;
// Wave mode dependent propety
// Wave mode dependent propety
...
@@ -257,7 +253,7 @@ struct wmma_type<WmmaInstr::wmma_i32_16x16x16_iu8,
...
@@ -257,7 +253,7 @@ struct wmma_type<WmmaInstr::wmma_i32_16x16x16_iu8,
static
constexpr
index_t
num_src_a_vgprs_per_wave
=
m_per_wmma
*
src_a_data_size
/
4
;
static
constexpr
index_t
num_src_a_vgprs_per_wave
=
m_per_wmma
*
src_a_data_size
/
4
;
static
constexpr
index_t
num_src_b_vgprs_per_wave
=
n_per_wmma
*
src_b_data_size
/
4
;
static
constexpr
index_t
num_src_b_vgprs_per_wave
=
n_per_wmma
*
src_b_data_size
/
4
;
static
constexpr
index_t
num_acc_vgprs_per_wave
=
static
constexpr
index_t
num_acc_vgprs_per_wave
=
m_per_wmma
*
n_per_wmma
*
acc_data_size
/
wave_size
/
4
;
m_per_wmma
*
n_per_wmma
*
acc_data_size
*
acc_pack_number
/
wave_size
/
4
;
static
constexpr
index_t
num_subgroups
=
wave_size
/
num_thread_per_subgroups
;
static
constexpr
index_t
num_subgroups
=
wave_size
/
num_thread_per_subgroups
;
template
<
index_t
MPerWmma
,
template
<
index_t
MPerWmma
,
...
@@ -346,7 +342,7 @@ struct WmmaSelector
...
@@ -346,7 +342,7 @@ struct WmmaSelector
static_assert
(
selected_wmma
.
k_per_wmma
==
16
,
"WRONG! WMMA_M must equal to 16"
);
static_assert
(
selected_wmma
.
k_per_wmma
==
16
,
"WRONG! WMMA_M must equal to 16"
);
static_assert
(
selected_wmma
.
wave_size
*
selected_wmma
.
num_acc_vgprs_per_wave
*
static_assert
(
selected_wmma
.
wave_size
*
selected_wmma
.
num_acc_vgprs_per_wave
*
selected_wmma
.
acc_data_size
==
selected_wmma
.
acc_data_size
*
selected_wmma
.
acc_pack_number
==
selected_wmma
.
m_per_wmma
*
selected_wmma
.
n_per_wmma
*
4
,
selected_wmma
.
m_per_wmma
*
selected_wmma
.
n_per_wmma
*
4
,
"WRONG! Invalid Number of Accumulator Register"
);
"WRONG! Invalid Number of Accumulator Register"
);
}
}
...
@@ -358,7 +354,8 @@ template <typename src_type_a,
...
@@ -358,7 +354,8 @@ template <typename src_type_a,
index_t
MPerWmma
,
index_t
MPerWmma
,
index_t
NPerWmma
,
index_t
NPerWmma
,
index_t
KPack
,
index_t
KPack
,
bool
TransposeC
=
false
>
bool
TransposeC
=
false
,
bool
AssemblyBackend
=
false
>
struct
WmmaGemm
struct
WmmaGemm
{
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I0
=
Number
<
0
>
{};
...
@@ -369,14 +366,14 @@ struct WmmaGemm
...
@@ -369,14 +366,14 @@ struct WmmaGemm
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
using
CIndex
=
MultiIndex
<
2
>
;
using
CIndex
=
MultiIndex
<
2
>
;
using
CIndex
4
D
=
MultiIndex
<
4
>
;
using
CIndex
3
D
=
MultiIndex
<
3
>
;
__host__
__device__
constexpr
WmmaGemm
()
__host__
__device__
constexpr
WmmaGemm
()
{
{
static_assert
(
NPerWmma
==
16
&&
MPerWmma
==
16
,
static_assert
(
NPerWmma
==
16
&&
MPerWmma
==
16
,
"Only support GemmNPerWmma == 16 and GemmMPerWmma == 16 for wmma"
);
"Only support GemmNPerWmma == 16 and GemmMPerWmma == 16 for wmma"
);
static_assert
(
KPack
==
wmma_instr
.
k_per_wmma
,
"KPack should be k_per_wmma"
);
static_assert
(
KPack
%
wmma_instr
.
k_per_wmma
==
0
,
"KPack should be
multiple of
k_per_wmma"
);
}
}
// WMMA output supporting C = A * B
// WMMA output supporting C = A * B
...
@@ -421,9 +418,49 @@ struct WmmaGemm
...
@@ -421,9 +418,49 @@ struct WmmaGemm
Sequence
<
5
>
{}));
Sequence
<
5
>
{}));
}
}
// Transposed WMMA Output C' = B' * A'
template
<
typename
CDesc_MBlockxRepeat_MWave_MPerWMMA_NBlockxRepeat_NWave_NPerWMMA
>
__host__
__device__
static
constexpr
auto
MakeCDesc_MBlockxRepeat_MWave_MThreadPerSubGroup_NBlockxRepeat_NWave_NSubGroup_NAccVgprs
(
const
CDesc_MBlockxRepeat_MWave_MPerWMMA_NBlockxRepeat_NWave_NPerWMMA
&
c_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma
)
{
const
auto
MBlockxRepeat
=
c_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma
.
GetLength
(
I0
);
const
auto
NBlockxRepeat
=
c_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma
.
GetLength
(
I3
);
const
auto
MWave
=
c_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma
.
GetLength
(
I1
);
const
auto
NWave
=
c_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma
.
GetLength
(
I4
);
return
transform_tensor_descriptor
(
c_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma
,
make_tuple
(
make_pass_through_transform
(
MBlockxRepeat
),
make_pass_through_transform
(
MWave
),
make_pass_through_transform
(
Number
<
wmma_instr
.
num_thread_per_subgroups
>
{}),
make_pass_through_transform
(
NBlockxRepeat
),
make_pass_through_transform
(
NWave
),
make_unmerge_transform
(
make_tuple
(
Number
<
wmma_instr
.
num_subgroups
>
{},
Number
<
wmma_instr
.
num_acc_vgprs_per_wave
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
,
6
>
{}));
}
__device__
static
constexpr
index_t
GetRegSizePerWmma
()
__device__
static
constexpr
index_t
GetRegSizePerWmma
()
{
{
return
wmma_instr
.
num_acc_vgprs_per_wave
;
return
wmma_instr
.
num_acc_vgprs_per_wave
*
wmma_instr
.
acc_pack_number
;
}
}
__device__
static
constexpr
index_t
GetWaveSize
()
{
return
wmma_instr
.
wave_size
;
}
__device__
static
constexpr
index_t
GetWaveSize
()
{
return
wmma_instr
.
wave_size
;
}
...
@@ -449,14 +486,16 @@ struct WmmaGemm
...
@@ -449,14 +486,16 @@ struct WmmaGemm
,
,
"base type couple must be (half, float), (bhalf, float), (half, half), (bhalf, bhalf), "
"base type couple must be (half, float), (bhalf, float), (half, half), (bhalf, bhalf), "
"(int8, int32) or (int4, int32)!"
);
"(int8, int32) or (int4, int32)!"
);
if
constexpr
(
!
TransposeC
)
static_for
<
0
,
KPack
/
wmma_instr
.
k_per_wmma
,
1
>
{}([
&
](
auto
k
)
{
{
if
constexpr
(
!
TransposeC
)
wmma_instr
.
template
run
<
MPerWmma
,
NPerWmma
>(
p_a_wave
,
p_b_wave
,
p_c_thread
);
{
}
wmma_instr
.
template
run
<
MPerWmma
,
NPerWmma
>(
p_a_wave
[
k
],
p_b_wave
[
k
],
p_c_thread
);
else
}
{
else
wmma_instr
.
template
run
<
MPerWmma
,
NPerWmma
>(
p_b_wave
,
p_a_wave
,
p_c_thread
);
{
}
wmma_instr
.
template
run
<
MPerWmma
,
NPerWmma
>(
p_b_wave
[
k
],
p_a_wave
[
k
],
p_c_thread
);
}
});
}
}
__device__
static
auto
GetLaneId
()
{
return
get_thread_local_1d_id
()
%
wmma_instr
.
wave_size
;
}
__device__
static
auto
GetLaneId
()
{
return
get_thread_local_1d_id
()
%
wmma_instr
.
wave_size
;
}
...
@@ -477,12 +516,12 @@ struct WmmaGemm
...
@@ -477,12 +516,12 @@ struct WmmaGemm
__host__
__device__
static
auto
CalculateAThreadOriginDataIndex
()
__host__
__device__
static
auto
CalculateAThreadOriginDataIndex
()
{
{
return
GetSwizzledLaneIdLow
();
return
TransposeC
?
GetLaneIdUnderSubGroup
()
:
GetSwizzledLaneIdLow
();
}
}
__host__
__device__
static
auto
CalculateBThreadOriginDataIndex
()
__host__
__device__
static
auto
CalculateBThreadOriginDataIndex
()
{
{
return
GetLaneIdUnderSubGroup
();
return
TransposeC
?
GetSwizzledLaneIdLow
()
:
GetLaneIdUnderSubGroup
();
}
}
__device__
static
CIndex
GetBeginOfThreadBlk
()
__device__
static
CIndex
GetBeginOfThreadBlk
()
...
@@ -493,6 +532,14 @@ struct WmmaGemm
...
@@ -493,6 +532,14 @@ struct WmmaGemm
return
TransposeC
?
CIndex
{
n_offset
,
m_offset
}
:
CIndex
{
m_offset
,
n_offset
};
return
TransposeC
?
CIndex
{
n_offset
,
m_offset
}
:
CIndex
{
m_offset
,
n_offset
};
}
}
__device__
static
CIndex3D
GetBeginOfThreadBlk3D
()
{
index_t
n_offset
=
GetLaneIdUnderSubGroup
();
index_t
m_offset
=
GetSubGroupId
();
return
TransposeC
?
CIndex3D
{
n_offset
,
m_offset
,
I0
}
:
CIndex3D
{
m_offset
,
n_offset
,
I0
};
}
static
constexpr
auto
wmma
=
static
constexpr
auto
wmma
=
WmmaSelector
<
src_type_a
,
src_type_b
,
dst_type
,
MPerWmma
,
NPerWmma
>
{};
WmmaSelector
<
src_type_a
,
src_type_b
,
dst_type
,
MPerWmma
,
NPerWmma
>
{};
static
constexpr
auto
wmma_instr
=
wmma
.
selected_wmma
;
static
constexpr
auto
wmma_instr
=
wmma
.
selected_wmma
;
...
@@ -500,7 +547,10 @@ struct WmmaGemm
...
@@ -500,7 +547,10 @@ struct WmmaGemm
__host__
__device__
static
constexpr
auto
__host__
__device__
static
constexpr
auto
GetCMSubGroupNThreadPerSubGroupMAccVgprsThreadBlkLengths
()
GetCMSubGroupNThreadPerSubGroupMAccVgprsThreadBlkLengths
()
{
{
return
make_tuple
(
I1
,
I1
,
Number
<
wmma_instr
.
num_acc_vgprs_per_wave
>
{});
return
make_tuple
(
I1
,
I1
,
Number
<
wmma_instr
.
num_acc_vgprs_per_wave
>
{},
Number
<
wmma_instr
.
acc_pack_number
>
{});
}
}
};
};
...
...
include/ck/tensor_operation/operator_transform/transform_contraction_to_gemm_arraybase.hpp
0 → 100644
View file @
3e4d0ff3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
namespace
ck
{
namespace
tensor_operation
{
// assume C[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
template
<
index_t
NumDimG
,
index_t
NumDimM
,
index_t
NumDimN
,
device
::
TensorSpecialization
TensorSpec
>
__host__
__device__
static
auto
MakeGridDescriptorPair
(
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
gs_ms_ns_lengths_vec
,
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
gs_ms_ns_strides_vec
)
{
// if(!(gs_ms_ns_lengths_vec.size() == NumDimG + NumDimM + NumDimN &&
// gs_ms_ns_strides_vec.size() == NumDimG + NumDimM + NumDimN))
// {
// throw std::runtime_error("wrong! dimension must match input lengths");
// }
const
auto
to_tuple
=
[
&
](
auto
&
vec
,
auto
start
,
auto
end
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
start
+
i
];
},
Number
<
end
-
start
>
{});
};
const
auto
gs_ms_ns_lengths
=
to_tuple
(
gs_ms_ns_lengths_vec
,
Number
<
0
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
const
auto
gs_ms_ns_strides
=
to_tuple
(
gs_ms_ns_strides_vec
,
Number
<
0
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
// dimension Ids for G0, G1, ...
constexpr
auto
gDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDimG
,
1
>::
type
{};
// dimension Ids for M0, M1, ...
constexpr
auto
mDimIds
=
typename
arithmetic_sequence_gen
<
NumDimG
,
NumDimG
+
NumDimM
,
1
>::
type
{};
// dimension Ids for N0, N1, ...
constexpr
auto
nDimIds
=
typename
arithmetic_sequence_gen
<
NumDimG
+
NumDimM
,
NumDimG
+
NumDimM
+
NumDimN
,
1
>::
type
{};
// lengths for G0, G1, ...
const
auto
gLengths
=
get_container_subset
(
gs_ms_ns_lengths
,
gDimIds
);
// lengths for M0, M1, ...
const
auto
mLengths
=
get_container_subset
(
gs_ms_ns_lengths
,
mDimIds
);
// lengths for N0, N1, ...
const
auto
nLengths
=
get_container_subset
(
gs_ms_ns_lengths
,
nDimIds
);
if
constexpr
(
TensorSpec
==
device
::
TensorSpecialization
::
Packed
)
{
auto
G
=
container_reduce
(
gLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
auto
M
=
container_reduce
(
mLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
auto
N
=
container_reduce
(
nLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
const
auto
grid_desc_g_mraw_nraw
=
make_naive_tensor_descriptor
(
make_tuple
(
G
,
M
,
N
),
make_tuple
(
gs_ms_ns_strides
[
Number
<
NumDimG
-
1
>
{}],
gs_ms_ns_strides
[
Number
<
NumDimG
+
NumDimM
-
1
>
{}],
gs_ms_ns_strides
[
Number
<
NumDimG
+
NumDimM
+
NumDimN
-
1
>
{}]));
const
auto
grid_desc_mraw_nraw
=
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
gs_ms_ns_strides
[
Number
<
NumDimG
+
NumDimM
-
1
>
{}],
gs_ms_ns_strides
[
Number
<
NumDimG
+
NumDimM
+
NumDimN
-
1
>
{}]));
return
std
::
make_pair
(
grid_desc_g_mraw_nraw
,
grid_desc_mraw_nraw
);
}
else
{
// naive tensor C[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
const
auto
grid_desc_gs_ms_ns
=
make_naive_tensor_descriptor
(
gs_ms_ns_lengths
,
gs_ms_ns_strides
);
// transformed tensor C[G = G0 * G1 * ..., MRaw = M0 * M1 * M2 * ... , NRaw = N0 * N1 *
// N2 * ...]
// Note: This does not require padding as it only provides G offset calculation. Technically
// descriptor for only G is needed. Here we opt for backward compatibility purpose to return
// G_M_N
const
auto
grid_desc_g_mraw_nraw
=
transform_tensor_descriptor
(
grid_desc_gs_ms_ns
,
make_tuple
(
make_merge_transform
(
gLengths
),
make_merge_transform
(
mLengths
),
make_merge_transform
(
nLengths
)),
make_tuple
(
gDimIds
,
mDimIds
,
nDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
const
auto
c_ms_ns_lengths
=
to_tuple
(
gs_ms_ns_lengths_vec
,
Number
<
NumDimG
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
const
auto
c_ms_ns_strides
=
to_tuple
(
gs_ms_ns_strides_vec
,
Number
<
NumDimG
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
// transformed tensor C[MRaw = M0 * M1 * M2 * ... , NRaw = N0 * N1 *
// N2 * ...]
const
auto
grid_desc_ms_ns
=
make_naive_tensor_descriptor
(
c_ms_ns_lengths
,
c_ms_ns_strides
);
const
auto
grid_desc_mraw_nraw
=
transform_tensor_descriptor
(
grid_desc_ms_ns
,
make_tuple
(
make_merge_transform
(
mLengths
),
make_merge_transform
(
nLengths
)),
make_tuple
(
mDimIds
-
Number
<
NumDimG
>
{},
nDimIds
-
Number
<
NumDimG
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
std
::
make_pair
(
grid_desc_g_mraw_nraw
,
grid_desc_mraw_nraw
);
}
}
template
<
typename
NumDims_G_M_N_K_O
,
// Sequence<>
typename
PerBlock_M_N_K_O
,
// Sequence<>
device
::
GemmSpecialization
GemmSpec
,
device
::
TensorSpecialization
ASpec
,
device
::
TensorSpecialization
B0Spec
,
device
::
TensorSpecialization
B1Spec
,
device
::
TensorSpecialization
CSpec
>
struct
TransformBatchedContractionContractionToBatchedGemmGemm_Wmma
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
index_t
NumDimG
=
NumDims_G_M_N_K_O
::
At
(
I0
);
static
constexpr
index_t
NumDimM
=
NumDims_G_M_N_K_O
::
At
(
I1
);
static
constexpr
index_t
NumDimN
=
NumDims_G_M_N_K_O
::
At
(
I2
);
static
constexpr
index_t
NumDimK
=
NumDims_G_M_N_K_O
::
At
(
I3
);
static
constexpr
index_t
NumDimO
=
NumDims_G_M_N_K_O
::
At
(
I4
);
static
constexpr
index_t
MPerBlock
=
PerBlock_M_N_K_O
::
At
(
I0
);
static
constexpr
index_t
NPerBlock
=
PerBlock_M_N_K_O
::
At
(
I1
);
static
constexpr
index_t
KPerBlock
=
PerBlock_M_N_K_O
::
At
(
I2
);
static
constexpr
index_t
OPerBlock
=
PerBlock_M_N_K_O
::
At
(
I3
);
static
constexpr
auto
matrix_padder
=
device
::
GemmGemmPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
,
OPerBlock
};
//
// A
//
__host__
__device__
static
auto
MakeAGridDescriptorPair
(
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
a_gs_ms_ks_lengths_vec
,
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
a_gs_ms_ks_strides_vec
)
{
return
MakeGridDescriptorPair
<
NumDimG
,
NumDimM
,
NumDimK
,
ASpec
>
(
a_gs_ms_ks_lengths_vec
,
a_gs_ms_ks_strides_vec
);
}
// TODO: rename to G_MRaw_KRaw
__host__
__device__
static
auto
MakeAGridDescriptor_G_M_K
(
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
a_gs_ms_ks_lengths_vec
,
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
a_gs_ms_ks_strides_vec
)
{
return
MakeAGridDescriptorPair
(
a_gs_ms_ks_lengths_vec
,
a_gs_ms_ks_strides_vec
).
first
;
}
__host__
__device__
static
auto
MakeAGridDescriptor_M_K
(
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
a_gs_ms_ks_lengths_vec
,
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
a_gs_ms_ks_strides_vec
)
{
return
matrix_padder
.
PadADescriptor_M_K
(
MakeAGridDescriptorPair
(
a_gs_ms_ks_lengths_vec
,
a_gs_ms_ks_strides_vec
).
second
);
}
template
<
typename
AGridDesc_M_K
,
typename
Number
>
__host__
__device__
static
constexpr
auto
MakeAGridDescriptor_AK0_M_AK1
(
const
AGridDesc_M_K
&
a_grid_desc_m_k
,
const
Number
&
AK1
)
{
const
auto
M
=
a_grid_desc_m_k
.
GetLength
(
I0
);
const
auto
K
=
a_grid_desc_m_k
.
GetLength
(
I1
);
const
auto
AK0
=
K
/
AK1
;
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
template
<
typename
AGridDesc_M_K
,
typename
WmmaK
,
typename
MRepeat
,
typename
MWaves
,
typename
MPerWmma
,
typename
AK1
>
__host__
__device__
static
constexpr
auto
MakeAGridDescriptor_AKWmma_MBlockRepeat_MWaves_AK0PerWmma_AKRow_MPerWmma_AK1
(
const
AGridDesc_M_K
&
a_grid_desc_m_k
,
const
WmmaK
&
,
const
MRepeat
&
,
const
MWaves
&
,
const
MPerWmma
&
,
const
AK1
&
)
{
const
auto
M0
=
a_grid_desc_m_k
.
GetLength
(
I0
)
/
MPerBlock
;
const
auto
K
=
a_grid_desc_m_k
.
GetLength
(
I1
);
const
auto
AKWmma
=
K
/
WmmaK
{};
constexpr
auto
AKRow
=
2
;
constexpr
auto
AK0PerWmma
=
WmmaK
{}
/
AKRow
/
AK1
{};
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AKWmma
,
Number
<
AK0PerWmma
>
{},
Number
<
AKRow
>
{},
AK1
{})),
make_unmerge_transform
(
make_tuple
(
M0
*
MRepeat
{},
MWaves
{},
MPerWmma
{}))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
3
,
4
,
6
>
{},
Sequence
<
1
,
2
,
5
>
{}));
}
//
// B (alias of B0)
//
__host__
__device__
static
auto
MakeB0GridDescriptorPair
(
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
b0_gs_ns_ks_lengths_vec
,
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
b0_gs_ns_ks_strides_vec
)
{
return
MakeGridDescriptorPair
<
NumDimG
,
NumDimN
,
NumDimK
,
B0Spec
>
(
b0_gs_ns_ks_lengths_vec
,
b0_gs_ns_ks_strides_vec
);
}
// TODO: rename to G_MRaw_NRaw
__host__
__device__
static
auto
MakeB0GridDescriptor_G_N_K
(
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
b0_gs_ns_ks_lengths_vec
,
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
b0_gs_ns_ks_strides_vec
)
{
return
MakeB0GridDescriptorPair
(
b0_gs_ns_ks_lengths_vec
,
b0_gs_ns_ks_strides_vec
).
first
;
}
__host__
__device__
static
auto
MakeB0GridDescriptor_N_K
(
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
b0_gs_ns_ks_lengths_vec
,
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
b0_gs_ns_ks_strides_vec
)
{
// alias of matrix_padder.PadB0Descriptor_N_K
return
matrix_padder
.
PadBDescriptor_N_K
(
MakeB0GridDescriptorPair
(
b0_gs_ns_ks_lengths_vec
,
b0_gs_ns_ks_strides_vec
).
second
);
}
template
<
typename
BGridDesc_N_K
,
typename
Number
>
__host__
__device__
static
constexpr
auto
MakeB0GridDescriptor_BK0_N_BK1
(
const
BGridDesc_N_K
&
b_grid_desc_n_k
,
const
Number
&
BK1
)
{
const
auto
N
=
b_grid_desc_n_k
.
GetLength
(
I0
);
const
auto
K
=
b_grid_desc_n_k
.
GetLength
(
I1
);
const
auto
BK0
=
K
/
BK1
;
return
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
template
<
typename
BGridDesc_L_K
,
typename
WmmaK
,
typename
LRepeat
,
typename
LWaves
,
typename
LPerWmma
,
typename
BK1
>
__host__
__device__
static
constexpr
auto
MakeB0GridDescriptor_BKWmma_LBlockRepeat_LWaves_BK0PerWmma_BKRow_LPerWmma_BK1
(
const
BGridDesc_L_K
&
b_grid_desc_l_k
,
const
WmmaK
&
,
const
LRepeat
&
,
const
LWaves
&
,
const
LPerWmma
&
,
const
BK1
&
)
{
const
auto
L0
=
b_grid_desc_l_k
.
GetLength
(
I0
)
/
NPerBlock
;
const
auto
K
=
b_grid_desc_l_k
.
GetLength
(
I1
);
const
auto
BKWmma
=
K
/
WmmaK
{};
constexpr
auto
BKRow
=
2
;
constexpr
auto
BK0PerWmma
=
WmmaK
{}
/
BKRow
/
BK1
{};
return
transform_tensor_descriptor
(
b_grid_desc_l_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BKWmma
,
Number
<
BK0PerWmma
>
{},
Number
<
BKRow
>
{},
BK1
{})),
make_unmerge_transform
(
make_tuple
(
L0
*
LRepeat
{},
LWaves
{},
LPerWmma
{}))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
3
,
4
,
6
>
{},
Sequence
<
1
,
2
,
5
>
{}));
}
//
// B1
//
__host__
__device__
static
auto
MakeB1GridDescriptorPair
(
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
b1_gs_os_ns_lengths_vec
,
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
b1_gs_os_ns_strides_vec
)
{
return
MakeGridDescriptorPair
<
NumDimG
,
NumDimO
,
NumDimN
,
B1Spec
>
(
b1_gs_os_ns_lengths_vec
,
b1_gs_os_ns_strides_vec
);
}
// TODO: rename to G_NRaw_KRaw
__host__
__device__
static
auto
MakeB1GridDescriptor_G_N_K
(
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
b1_gs_os_ns_lengths_vec
,
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
b1_gs_os_ns_strides_vec
)
{
return
MakeB1GridDescriptorPair
(
b1_gs_os_ns_lengths_vec
,
b1_gs_os_ns_strides_vec
).
first
;
}
__host__
__device__
static
auto
MakeB1GridDescriptor_N_K
(
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
b1_gs_os_ns_lengths_vec
,
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
b1_gs_os_ns_strides_vec
)
{
// alias of matrix_padder.PadB1Descriptor_O_N
return
matrix_padder
.
PadB1Descriptor_N_K
(
MakeB1GridDescriptorPair
(
b1_gs_os_ns_lengths_vec
,
b1_gs_os_ns_strides_vec
).
second
);
}
template
<
typename
B1GridDesc_N_K
,
typename
Number
>
__host__
__device__
static
constexpr
auto
MakeB1GridDescriptor_BK0_N_BK1
(
const
B1GridDesc_N_K
&
b1_grid_desc_n_k
,
const
Number
&
B1K1
)
{
const
auto
N
=
b1_grid_desc_n_k
.
GetLength
(
I0
);
const
auto
K
=
b1_grid_desc_n_k
.
GetLength
(
I1
);
const
auto
B1K0
=
K
/
B1K1
;
return
transform_tensor_descriptor
(
b1_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
B1K0
,
B1K1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
template
<
typename
BGridDesc_N_L
,
typename
WmmaL
,
typename
NRepeat
,
typename
NWaves
,
typename
NPerWmma
,
typename
BL1
>
__host__
__device__
static
constexpr
auto
MakeB1GridDescriptor_BLWmma_NBlockRepeat_NWaves__BL0PerWmma_BLRow_NPerWmma_BL1
(
const
BGridDesc_N_L
&
b_grid_desc_n_l
,
const
WmmaL
&
,
const
NRepeat
&
,
const
NWaves
&
,
const
NPerWmma
&
,
const
BL1
&
)
{
const
auto
N0
=
b_grid_desc_n_l
.
GetLength
(
I0
)
/
OPerBlock
;
const
auto
L
=
b_grid_desc_n_l
.
GetLength
(
I1
);
const
auto
BLWmma
=
L
/
WmmaL
{};
constexpr
auto
BLRow
=
2
;
constexpr
auto
BL0PerWmma
=
WmmaL
{}
/
BLRow
/
BL1
{};
return
transform_tensor_descriptor
(
b_grid_desc_n_l
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BLWmma
,
Number
<
BL0PerWmma
>
{},
Number
<
BLRow
>
{},
BL1
{})),
make_unmerge_transform
(
make_tuple
(
N0
*
NRepeat
{},
NWaves
{},
NPerWmma
{}))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
3
,
4
,
6
>
{},
Sequence
<
1
,
2
,
5
>
{}));
}
//
// C
//
__host__
__device__
static
auto
MakeCGridDescriptorPair
(
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
c_gs_ms_os_lengths_vec
,
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
c_gs_ms_os_strides_vec
)
{
return
MakeGridDescriptorPair
<
NumDimG
,
NumDimM
,
NumDimO
,
CSpec
>
(
c_gs_ms_os_lengths_vec
,
c_gs_ms_os_strides_vec
);
}
// TODO: rename to G_MRaw_NRaw
__host__
__device__
static
auto
MakeCGridDescriptor_G_M_N
(
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
c_gs_ms_os_lengths_vec
,
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
c_gs_ms_os_strides_vec
)
{
return
MakeCGridDescriptorPair
(
c_gs_ms_os_lengths_vec
,
c_gs_ms_os_strides_vec
).
first
;
}
__host__
__device__
static
auto
MakeCGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
c_gs_ms_os_lengths_vec
,
const
std
::
array
<
index_t
,
NumDimG
+
NumDimM
+
NumDimN
>&
c_gs_ms_os_strides_vec
)
{
return
matrix_padder
.
PadCDescriptor_M_N
(
MakeCGridDescriptorPair
(
c_gs_ms_os_lengths_vec
,
c_gs_ms_os_strides_vec
).
second
);
}
};
}
// namespace tensor_operation
}
// namespace ck
include/ck/utility/amd_buffer_addressing.hpp
View file @
3e4d0ff3
...
@@ -417,7 +417,8 @@ __device__ typename vector_type<T, N>::type amd_buffer_load_impl(int32x4_t src_w
...
@@ -417,7 +417,8 @@ __device__ typename vector_type<T, N>::type amd_buffer_load_impl(int32x4_t src_w
(
is_same
<
T
,
int32_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
int32_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
f8_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
f8_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
bf8_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
bf8_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
int8_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
)),
(
is_same
<
T
,
int8_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
uint8_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
)),
"wrong! not implemented"
);
"wrong! not implemented"
);
using
r_t
=
typename
vector_type
<
T
,
N
>::
type
;
using
r_t
=
typename
vector_type
<
T
,
N
>::
type
;
...
...
include/ck/utility/amd_inline_asm.hpp
View file @
3e4d0ff3
...
@@ -220,8 +220,8 @@ amd_assembly_outer_product_1x2(int8x4_t a, int8x4_t b0, int8x4_t b1, int32_t& c0
...
@@ -220,8 +220,8 @@ amd_assembly_outer_product_1x2(int8x4_t a, int8x4_t b0, int8x4_t b1, int32_t& c0
"0"
(
c0
),
"0"
(
c0
),
"1"
(
c1
));
"1"
(
c1
));
#else
#else
c0
=
__builtin_amdgcn_sdot4
(
bit_cast
<
int32_t
>
(
a
),
bit_cast
<
int32_t
>
(
b0
),
c0
,
false
);
c0
=
__builtin_amdgcn_sdot4
(
bit_cast
<
int32_t
>
(
a
),
bit_cast
<
int32_t
>
(
b0
),
c0
,
false
);
c1
=
__builtin_amdgcn_sdot4
(
bit_cast
<
int32_t
>
(
a
),
bit_cast
<
int32_t
>
(
b1
),
c1
,
false
);
c1
=
__builtin_amdgcn_sdot4
(
bit_cast
<
int32_t
>
(
a
),
bit_cast
<
int32_t
>
(
b1
),
c1
,
false
);
#endif
#endif
}
}
...
@@ -257,10 +257,10 @@ __device__ void amd_assembly_outer_product_1x4(int8x4_t a,
...
@@ -257,10 +257,10 @@ __device__ void amd_assembly_outer_product_1x4(int8x4_t a,
"2"
(
c2
),
"2"
(
c2
),
"3"
(
c3
));
"3"
(
c3
));
#else
#else
c0
=
__builtin_amdgcn_sdot4
(
bit_cast
<
int32_t
>
(
a
),
bit_cast
<
int32_t
>
(
b0
),
c0
,
false
);
c0
=
__builtin_amdgcn_sdot4
(
bit_cast
<
int32_t
>
(
a
),
bit_cast
<
int32_t
>
(
b0
),
c0
,
false
);
c1
=
__builtin_amdgcn_sdot4
(
bit_cast
<
int32_t
>
(
a
),
bit_cast
<
int32_t
>
(
b1
),
c1
,
false
);
c1
=
__builtin_amdgcn_sdot4
(
bit_cast
<
int32_t
>
(
a
),
bit_cast
<
int32_t
>
(
b1
),
c1
,
false
);
c2
=
__builtin_amdgcn_sdot4
(
bit_cast
<
int32_t
>
(
a
),
bit_cast
<
int32_t
>
(
b2
),
c2
,
false
);
c2
=
__builtin_amdgcn_sdot4
(
bit_cast
<
int32_t
>
(
a
),
bit_cast
<
int32_t
>
(
b2
),
c2
,
false
);
c3
=
__builtin_amdgcn_sdot4
(
bit_cast
<
int32_t
>
(
a
),
bit_cast
<
int32_t
>
(
b3
),
c3
,
false
);
c3
=
__builtin_amdgcn_sdot4
(
bit_cast
<
int32_t
>
(
a
),
bit_cast
<
int32_t
>
(
b3
),
c3
,
false
);
#endif
#endif
}
}
...
@@ -355,17 +355,5 @@ __device__ void amd_assembly_outer_product_1x4(int8x16_t a,
...
@@ -355,17 +355,5 @@ __device__ void amd_assembly_outer_product_1x4(int8x16_t a,
c3
);
c3
);
}
}
// Ranged input operand
__device__
void
amd_assembly_wmma_f32_16x16x16_f16_w32
(
half16_t
a
,
half16_t
b
,
float8_t
&
c
)
{
#if defined(__gfx11__)
asm
volatile
(
"v_wmma_f32_16x16x16_f16 %0, %1, %2, %0"
:
"=v"
(
c
)
:
"v"
(
a
),
"v"
(
b
),
"0"
(
c
));
#else
ignore
=
a
;
ignore
=
b
;
ignore
=
c
;
#endif
}
}
// namespace ck
}
// namespace ck
#endif
#endif
include/ck/utility/data_type.hpp
View file @
3e4d0ff3
...
@@ -133,6 +133,13 @@ struct scalar_type<int8_t>
...
@@ -133,6 +133,13 @@ struct scalar_type<int8_t>
static
constexpr
index_t
vector_size
=
1
;
static
constexpr
index_t
vector_size
=
1
;
};
};
template
<
>
struct
scalar_type
<
uint8_t
>
{
using
type
=
uint8_t
;
static
constexpr
index_t
vector_size
=
1
;
};
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
template
<
>
template
<
>
struct
scalar_type
<
int4_t
>
struct
scalar_type
<
int4_t
>
...
@@ -1037,6 +1044,14 @@ using bf8x8_t = typename vector_type<bf8_t, 8>::type;
...
@@ -1037,6 +1044,14 @@ using bf8x8_t = typename vector_type<bf8_t, 8>::type;
using
bf8x16_t
=
typename
vector_type
<
bf8_t
,
16
>::
type
;
using
bf8x16_t
=
typename
vector_type
<
bf8_t
,
16
>::
type
;
using
bf8x32_t
=
typename
vector_type
<
bf8_t
,
32
>::
type
;
using
bf8x32_t
=
typename
vector_type
<
bf8_t
,
32
>::
type
;
using
bf8x64_t
=
typename
vector_type
<
bf8_t
,
64
>::
type
;
using
bf8x64_t
=
typename
vector_type
<
bf8_t
,
64
>::
type
;
// u8
// i8
using
uint8x2_t
=
typename
vector_type
<
uint8_t
,
2
>::
type
;
using
uint8x4_t
=
typename
vector_type
<
uint8_t
,
4
>::
type
;
using
uint8x8_t
=
typename
vector_type
<
uint8_t
,
8
>::
type
;
using
uint8x16_t
=
typename
vector_type
<
uint8_t
,
16
>::
type
;
using
uint8x32_t
=
typename
vector_type
<
uint8_t
,
32
>::
type
;
using
uint8x64_t
=
typename
vector_type
<
uint8_t
,
64
>::
type
;
template
<
typename
T
>
template
<
typename
T
>
struct
NumericLimits
struct
NumericLimits
...
...
include/ck/utility/type_convert.hpp
View file @
3e4d0ff3
...
@@ -99,6 +99,63 @@ inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, int8_t>(int8_
...
@@ -99,6 +99,63 @@ inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, int8_t>(int8_
return
type_convert
<
bhalf_t
>
(
x_fp32
);
return
type_convert
<
bhalf_t
>
(
x_fp32
);
}
}
// Convert X to Y
template
<
typename
Y
,
typename
X
>
__host__
__device__
constexpr
Y
type_convert_sp
(
X
x
)
{
static_assert
(
!
std
::
is_reference_v
<
Y
>
&&
!
std
::
is_reference_v
<
X
>
);
return
static_cast
<
Y
>
(
x
);
}
template
<
>
inline
__host__
__device__
constexpr
int
type_convert_sp
<
int
,
float
>
(
float
x
)
{
union
{
float
fp32
;
int
int32
;
}
u
=
{
x
};
return
u
.
int32
;
}
template
<
>
inline
__host__
__device__
constexpr
float
type_convert_sp
<
float
,
int
>
(
int
x
)
{
union
{
int
int32
;
float
fp32
;
}
u
=
{
x
};
return
u
.
fp32
;
}
template
<
>
inline
__host__
__device__
constexpr
int
type_convert_sp
<
int
,
half_t
>
(
half_t
x
)
{
union
{
half_t
fp16
;
int
int32
;
}
u
=
{
x
};
return
u
.
int32
;
}
template
<
>
inline
__host__
__device__
constexpr
half_t
type_convert_sp
<
half_t
,
int
>
(
int
x
)
{
union
{
int
int32
;
half_t
fp16
;
}
u
=
{
x
};
return
u
.
fp16
;
}
// Declare a template function for fp8 conversion using SR
// Declare a template function for fp8 conversion using SR
template
<
typename
Y
,
typename
X
>
template
<
typename
Y
,
typename
X
>
__host__
__device__
constexpr
Y
f8_convert_sr
(
X
x
);
__host__
__device__
constexpr
Y
f8_convert_sr
(
X
x
);
...
@@ -107,21 +164,24 @@ __host__ __device__ constexpr Y f8_convert_sr(X x);
...
@@ -107,21 +164,24 @@ __host__ __device__ constexpr Y f8_convert_sr(X x);
template
<
>
template
<
>
inline
__host__
__device__
f8_t
f8_convert_sr
<
f8_t
,
float
>
(
float
x
)
inline
__host__
__device__
f8_t
f8_convert_sr
<
f8_t
,
float
>
(
float
x
)
{
{
constexpr
int
seed
=
42
;
constexpr
int
seed
=
1254739
;
uint32_t
rng
=
prand_generator
<
float
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
uint32_t
rng
=
prand_generator
<
float
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
#if defined(__gfx94__)
#if defined(__gfx94__)
float
max_fp8
=
240.0
f
;
x
=
x
>
max_fp8
?
max_fp8
:
(
x
<
-
max_fp8
?
-
max_fp8
:
x
);
union
union
{
{
float
fval
;
float
fval
;
uint32_t
i32val
;
uint32_t
i32val
;
uint8_t
i8val
[
4
];
// not endian independent
uint8_t
i8val
[
4
];
// not endian independent
}
val
;
}
val
;
val
.
fval
=
x
;
val
.
fval
=
x
;
uint32_t
ival
=
0
;
uint32_t
ival
=
0
;
ival
=
__builtin_amdgcn_cvt_sr_fp8_f32
(
val
.
fval
,
rng
,
ival
,
0
);
// 0 pos
const
float
max_fp8
=
240.0
f
;
val
.
i32val
=
ival
;
// if x is not +/- infinity or nan
if
((
val
.
i32val
&
NumericUtils
<
float
>::
nan_mask
)
!=
NumericUtils
<
float
>::
Inf
)
// clip float value
val
.
fval
=
__builtin_amdgcn_fmed3f
(
val
.
fval
,
max_fp8
,
-
max_fp8
);
ival
=
__builtin_amdgcn_cvt_sr_fp8_f32
(
val
.
fval
,
rng
,
ival
,
0
);
// 0 pos
val
.
i32val
=
ival
;
return
val
.
i8val
[
0
];
// little endian
return
val
.
i8val
[
0
];
// little endian
#else
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
negative_zero_nan
=
true
;
...
@@ -144,7 +204,7 @@ inline __host__ __device__ f8_t f8_convert_sr<f8_t, half_t>(half_t x)
...
@@ -144,7 +204,7 @@ inline __host__ __device__ f8_t f8_convert_sr<f8_t, half_t>(half_t x)
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
constexpr
int
seed
=
42
;
constexpr
int
seed
=
1254739
;
uint32_t
rng
=
prand_generator
<
half_t
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
uint32_t
rng
=
prand_generator
<
half_t
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
return
utils
::
return
utils
::
cast_to_f8
<
half_t
,
f8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
cast_to_f8
<
half_t
,
f8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
...
@@ -156,7 +216,7 @@ inline __host__ __device__ f8_t f8_convert_sr<f8_t, half_t>(half_t x)
...
@@ -156,7 +216,7 @@ inline __host__ __device__ f8_t f8_convert_sr<f8_t, half_t>(half_t x)
template
<
>
template
<
>
inline
__host__
__device__
bf8_t
f8_convert_sr
<
bf8_t
,
float
>
(
float
x
)
inline
__host__
__device__
bf8_t
f8_convert_sr
<
bf8_t
,
float
>
(
float
x
)
{
{
constexpr
int
seed
=
42
;
constexpr
int
seed
=
1254739
;
uint32_t
rng
=
prand_generator
<
float
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
uint32_t
rng
=
prand_generator
<
float
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
#if defined(__gfx94__)
#if defined(__gfx94__)
union
union
...
@@ -165,10 +225,15 @@ inline __host__ __device__ bf8_t f8_convert_sr<bf8_t, float>(float x)
...
@@ -165,10 +225,15 @@ inline __host__ __device__ bf8_t f8_convert_sr<bf8_t, float>(float x)
uint32_t
i32val
;
uint32_t
i32val
;
uint8_t
i8val
[
4
];
// not endian independent
uint8_t
i8val
[
4
];
// not endian independent
}
val
;
}
val
;
val
.
fval
=
x
;
val
.
fval
=
x
;
uint32_t
ival
=
0
;
uint32_t
ival
=
0
;
ival
=
__builtin_amdgcn_cvt_sr_bf8_f32
(
val
.
fval
,
rng
,
ival
,
0
);
// 0 pos
const
float
max_bf8
=
57344.0
f
;
val
.
i32val
=
ival
;
// if x is not +/- infinity or nan
if
((
val
.
i32val
&
NumericUtils
<
float
>::
nan_mask
)
!=
NumericUtils
<
float
>::
Inf
)
// clip float value
val
.
fval
=
__builtin_amdgcn_fmed3f
(
val
.
fval
,
max_bf8
,
-
max_bf8
);
ival
=
__builtin_amdgcn_cvt_sr_bf8_f32
(
val
.
fval
,
rng
,
ival
,
0
);
// 0 pos
val
.
i32val
=
ival
;
return
val
.
i8val
[
0
];
// little endian
return
val
.
i8val
[
0
];
// little endian
#else
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
negative_zero_nan
=
true
;
...
@@ -191,7 +256,7 @@ inline __host__ __device__ bf8_t f8_convert_sr<bf8_t, half_t>(half_t x)
...
@@ -191,7 +256,7 @@ inline __host__ __device__ bf8_t f8_convert_sr<bf8_t, half_t>(half_t x)
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
constexpr
int
seed
=
42
;
constexpr
int
seed
=
1254739
;
uint32_t
rng
=
prand_generator
<
half_t
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
uint32_t
rng
=
prand_generator
<
half_t
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
return
utils
::
return
utils
::
cast_to_f8
<
half_t
,
bf8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
cast_to_f8
<
half_t
,
bf8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
...
@@ -208,16 +273,19 @@ template <>
...
@@ -208,16 +273,19 @@ template <>
inline
__host__
__device__
f8_t
f8_convert_rne
<
f8_t
,
float
>
(
float
x
)
inline
__host__
__device__
f8_t
f8_convert_rne
<
f8_t
,
float
>
(
float
x
)
{
{
#if defined(__gfx94__)
#if defined(__gfx94__)
float
max_fp8
=
240.0
f
;
x
=
x
>
max_fp8
?
max_fp8
:
(
x
<
-
max_fp8
?
-
max_fp8
:
x
);
union
union
{
{
float
fval
;
float
fval
;
uint32_t
i32val
;
uint32_t
i32val
;
uint8_t
i8val
[
4
];
// not endian independent
uint8_t
i8val
[
4
];
// not endian independent
}
val
;
}
val
;
val
.
fval
=
x
;
val
.
fval
=
x
;
uint32_t
ival
=
0
;
uint32_t
ival
=
0
;
const
float
max_fp8
=
240.0
f
;
// if x is not +/- infinity or nan
if
((
val
.
i32val
&
NumericUtils
<
float
>::
nan_mask
)
!=
NumericUtils
<
float
>::
Inf
)
// clip float value
val
.
fval
=
__builtin_amdgcn_fmed3f
(
val
.
fval
,
max_fp8
,
-
max_fp8
);
ival
=
__builtin_amdgcn_cvt_pk_fp8_f32
(
val
.
fval
,
val
.
fval
,
ival
,
false
);
// false -> WORD0
ival
=
__builtin_amdgcn_cvt_pk_fp8_f32
(
val
.
fval
,
val
.
fval
,
ival
,
false
);
// false -> WORD0
val
.
i32val
=
ival
;
val
.
i32val
=
ival
;
return
val
.
i8val
[
0
];
return
val
.
i8val
[
0
];
...
@@ -261,8 +329,13 @@ inline __host__ __device__ bf8_t f8_convert_rne<bf8_t, float>(float x)
...
@@ -261,8 +329,13 @@ inline __host__ __device__ bf8_t f8_convert_rne<bf8_t, float>(float x)
uint32_t
i32val
;
uint32_t
i32val
;
uint8_t
i8val
[
4
];
// not endian independent
uint8_t
i8val
[
4
];
// not endian independent
}
val
;
}
val
;
val
.
fval
=
x
;
val
.
fval
=
x
;
uint32_t
ival
=
0
;
uint32_t
ival
=
0
;
const
float
max_bf8
=
57344.0
f
;
// if x is not +/- infinity or nan
if
((
val
.
i32val
&
NumericUtils
<
float
>::
nan_mask
)
!=
NumericUtils
<
float
>::
Inf
)
// clip float value
val
.
fval
=
__builtin_amdgcn_fmed3f
(
val
.
fval
,
max_bf8
,
-
max_bf8
);
ival
=
__builtin_amdgcn_cvt_pk_bf8_f32
(
val
.
fval
,
val
.
fval
,
ival
,
false
);
// false -> WORD0
ival
=
__builtin_amdgcn_cvt_pk_bf8_f32
(
val
.
fval
,
val
.
fval
,
ival
,
false
);
// false -> WORD0
val
.
i32val
=
ival
;
val
.
i32val
=
ival
;
return
val
.
i8val
[
0
];
return
val
.
i8val
[
0
];
...
...
include/ck/wrapper/layout.hpp
View file @
3e4d0ff3
...
@@ -5,8 +5,11 @@
...
@@ -5,8 +5,11 @@
#include "ck/wrapper/utils/layout_utils.hpp"
#include "ck/wrapper/utils/layout_utils.hpp"
// Disable from doxygen docs generation
/// @cond INTERNAL
namespace
ck
{
namespace
ck
{
namespace
wrapper
{
namespace
wrapper
{
/// @endcond
/**
/**
* \brief Layout wrapper that performs the tensor descriptor logic.
* \brief Layout wrapper that performs the tensor descriptor logic.
...
@@ -19,6 +22,8 @@ namespace wrapper {
...
@@ -19,6 +22,8 @@ namespace wrapper {
template
<
typename
Shape
,
typename
UnrolledDescriptorType
>
template
<
typename
Shape
,
typename
UnrolledDescriptorType
>
struct
Layout
struct
Layout
{
{
// Disable from doxygen docs generation
/// @cond INTERNAL
private:
private:
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
...
@@ -246,6 +251,7 @@ struct Layout
...
@@ -246,6 +251,7 @@ struct Layout
using
Descriptor1dType
=
using
Descriptor1dType
=
remove_cvref_t
<
decltype
(
MakeMerge1d
(
Shape
{},
UnrolledDescriptorType
{}))
>
;
remove_cvref_t
<
decltype
(
MakeMerge1d
(
Shape
{},
UnrolledDescriptorType
{}))
>
;
using
DefaultIdxsTupleType
=
remove_cvref_t
<
decltype
(
GenerateDefaultIdxsTuple
(
Shape
{}))
>
;
using
DefaultIdxsTupleType
=
remove_cvref_t
<
decltype
(
GenerateDefaultIdxsTuple
(
Shape
{}))
>
;
/// @endcond
public:
public:
using
LayoutShape
=
Shape
;
using
LayoutShape
=
Shape
;
...
@@ -457,6 +463,8 @@ struct Layout
...
@@ -457,6 +463,8 @@ struct Layout
return
unrolled_descriptor_
;
return
unrolled_descriptor_
;
}
}
// Disable from doxygen docs generation
/// @cond INTERNAL
private:
private:
// All dimensions are unrolled
// All dimensions are unrolled
UnrolledDescriptorType
unrolled_descriptor_
;
UnrolledDescriptorType
unrolled_descriptor_
;
...
@@ -469,6 +477,7 @@ struct Layout
...
@@ -469,6 +477,7 @@ struct Layout
// Descriptor1dType lengths: (8)
// Descriptor1dType lengths: (8)
// MergedNestsDescriptorType lengths: (4, 2)
// MergedNestsDescriptorType lengths: (4, 2)
const
Shape
shape_
;
const
Shape
shape_
;
/// @endcond
};
};
}
// namespace wrapper
}
// namespace wrapper
...
...
include/ck/wrapper/operations/copy.hpp
View file @
3e4d0ff3
...
@@ -12,8 +12,11 @@
...
@@ -12,8 +12,11 @@
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_description/tensor_space_filling_curve.hpp"
#include "ck/tensor_description/tensor_space_filling_curve.hpp"
// Disable from doxygen docs generation
/// @cond INTERNAL
namespace
ck
{
namespace
ck
{
namespace
wrapper
{
namespace
wrapper
{
/// @endcond
/**
/**
* \brief Perform optimized copy between two tensors partitions (threadwise copy).
* \brief Perform optimized copy between two tensors partitions (threadwise copy).
...
...
include/ck/wrapper/operations/gemm.hpp
View file @
3e4d0ff3
...
@@ -9,9 +9,14 @@
...
@@ -9,9 +9,14 @@
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
// Disable from doxygen docs generation
/// @cond INTERNAL
namespace
ck
{
namespace
ck
{
namespace
wrapper
{
namespace
wrapper
{
/// @endcond
// Disable from doxygen docs generation
/// @cond INTERNAL
namespace
{
namespace
{
namespace
detail
{
namespace
detail
{
/**
/**
...
@@ -45,6 +50,7 @@ __device__ constexpr auto GetBlockDescriptor()
...
@@ -45,6 +50,7 @@ __device__ constexpr auto GetBlockDescriptor()
}
// namespace detail
}
// namespace detail
}
// namespace
}
// namespace
/// @endcond
/**
/**
* \brief Perform blockwise gemm xdl on tensors stored in lds. Result will be
* \brief Perform blockwise gemm xdl on tensors stored in lds. Result will be
...
...
include/ck/wrapper/tensor.hpp
View file @
3e4d0ff3
...
@@ -7,9 +7,14 @@
...
@@ -7,9 +7,14 @@
#include "utils/tensor_partition.hpp"
#include "utils/tensor_partition.hpp"
#include "utils/layout_utils.hpp"
#include "utils/layout_utils.hpp"
// Disable from doxygen docs generation
/// @cond INTERNAL
namespace
ck
{
namespace
ck
{
namespace
wrapper
{
namespace
wrapper
{
/// @endcond
// Disable from doxygen docs generation
/// @cond INTERNAL
namespace
{
namespace
{
namespace
detail
{
namespace
detail
{
/**
/**
...
@@ -189,6 +194,7 @@ __host__ __device__ constexpr auto GenerateSlicedDescriptor(const Tuple<Ts...>&
...
@@ -189,6 +194,7 @@ __host__ __device__ constexpr auto GenerateSlicedDescriptor(const Tuple<Ts...>&
}
}
}
// namespace detail
}
// namespace detail
}
// namespace
}
// namespace
/// @endcond
/**
/**
* \brief Tensor wrapper that performs static and dynamic buffer logic.
* \brief Tensor wrapper that performs static and dynamic buffer logic.
...
@@ -394,6 +400,8 @@ struct Tensor
...
@@ -394,6 +400,8 @@ struct Tensor
}
}
private:
private:
// Disable from doxygen docs generation
/// @cond INTERNAL
using
DynamicBufferType
=
DynamicBuffer
<
BufferAddressSpace
,
using
DynamicBufferType
=
DynamicBuffer
<
BufferAddressSpace
,
ElementType
,
ElementType
,
ElementSpaceSize
,
ElementSpaceSize
,
...
@@ -428,6 +436,7 @@ struct Tensor
...
@@ -428,6 +436,7 @@ struct Tensor
// tensor descriptor (thus all it's transforms) and is linear (1D).
// tensor descriptor (thus all it's transforms) and is linear (1D).
// We store base_offset_ to avoid multiple recalculations.
// We store base_offset_ to avoid multiple recalculations.
index_t
base_offset_
;
index_t
base_offset_
;
/// @endcond
};
};
}
// namespace wrapper
}
// namespace wrapper
...
...
include/ck/wrapper/traits/blockwise_gemm_xdl_traits.hpp
View file @
3e4d0ff3
...
@@ -5,8 +5,11 @@
...
@@ -5,8 +5,11 @@
#include "ck/ck.hpp"
#include "ck/ck.hpp"
// Disable from doxygen docs generation
/// @cond INTERNAL
namespace
ck
{
namespace
ck
{
namespace
wrapper
{
namespace
wrapper
{
/// @endcond
/**
/**
* \brief Traits for blockwise gemm xdl.
* \brief Traits for blockwise gemm xdl.
...
...
include/ck/wrapper/utils/kernel_utils.hpp
View file @
3e4d0ff3
...
@@ -5,8 +5,11 @@
...
@@ -5,8 +5,11 @@
#include "ck/ck.hpp"
#include "ck/ck.hpp"
// Disable from doxygen docs generation
/// @cond INTERNAL
namespace
ck
{
namespace
ck
{
namespace
wrapper
{
namespace
wrapper
{
/// @endcond
#define __CK_WRAPPER_LAUNCH_BOUNDS__ __launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#define __CK_WRAPPER_LAUNCH_BOUNDS__ __launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
...
...
include/ck/wrapper/utils/layout_utils.hpp
View file @
3e4d0ff3
...
@@ -17,11 +17,14 @@
...
@@ -17,11 +17,14 @@
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
// Disable from doxygen docs generation
/// @cond INTERNAL
namespace
ck
{
namespace
ck
{
namespace
wrapper
{
namespace
wrapper
{
/// @endcond
// Disable from doxygen docs generation
// Disable from doxygen docs generation
/// @cond
/// @cond
INTERNAL
// forward declaration
// forward declaration
template
<
typename
Shape
,
typename
UnrolledDescriptorType
>
template
<
typename
Shape
,
typename
UnrolledDescriptorType
>
struct
Layout
;
struct
Layout
;
...
...
include/ck/wrapper/utils/tensor_partition.hpp
View file @
3e4d0ff3
...
@@ -9,9 +9,14 @@
...
@@ -9,9 +9,14 @@
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_description/cluster_descriptor.hpp"
#include "ck/tensor_description/cluster_descriptor.hpp"
// Disable from doxygen docs generation
/// @cond INTERNAL
namespace
ck
{
namespace
ck
{
namespace
wrapper
{
namespace
wrapper
{
/// @endcond
// Disable from doxygen docs generation
/// @cond INTERNAL
namespace
{
namespace
{
namespace
detail
{
namespace
detail
{
...
@@ -236,6 +241,7 @@ __host__ __device__ constexpr auto CalculateThreadMultiIdx(
...
@@ -236,6 +241,7 @@ __host__ __device__ constexpr auto CalculateThreadMultiIdx(
}
}
}
// namespace detail
}
// namespace detail
}
// namespace
}
// namespace
/// @endcond
/**
/**
* \brief Create local partition for thread (At now only packed partition
* \brief Create local partition for thread (At now only packed partition
...
...
include/ck/wrapper/utils/tensor_utils.hpp
View file @
3e4d0ff3
...
@@ -13,8 +13,11 @@
...
@@ -13,8 +13,11 @@
#include "ck/utility/amd_address_space.hpp"
#include "ck/utility/amd_address_space.hpp"
#include "ck/utility/multi_index.hpp"
#include "ck/utility/multi_index.hpp"
// Disable from doxygen docs generation
/// @cond INTERNAL
namespace
ck
{
namespace
ck
{
namespace
wrapper
{
namespace
wrapper
{
/// @endcond
/**
/**
* \brief Memory type, allowed members:
* \brief Memory type, allowed members:
...
@@ -27,7 +30,7 @@ namespace wrapper {
...
@@ -27,7 +30,7 @@ namespace wrapper {
using
MemoryTypeEnum
=
AddressSpaceEnum
;
using
MemoryTypeEnum
=
AddressSpaceEnum
;
// Disable from doxygen docs generation
// Disable from doxygen docs generation
/// @cond
/// @cond
INTERNAL
// forward declarations
// forward declarations
template
<
typename
Shape
,
typename
UnrolledDescriptorType
>
template
<
typename
Shape
,
typename
UnrolledDescriptorType
>
struct
Layout
;
struct
Layout
;
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp
View file @
3e4d0ff3
...
@@ -133,6 +133,252 @@ struct ReferenceBatchedGemm : public device::BaseOperator
...
@@ -133,6 +133,252 @@ struct ReferenceBatchedGemm : public device::BaseOperator
}
}
};
};
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
struct
ReferenceBatchedGemm_MQA
:
public
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_g0_g1_m_k
,
const
Tensor
<
BDataType
>&
b_g0_1_k_n
,
Tensor
<
CDataType
>&
c_g0_g1_m_n
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
:
a_g0_g1_m_k_
{
a_g0_g1_m_k
},
b_g0_1_k_n_
{
b_g0_1_k_n
},
c_g0_g1_m_n_
{
c_g0_g1_m_n
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_g0_g1_m_k_
;
const
Tensor
<
BDataType
>&
b_g0_1_k_n_
;
Tensor
<
CDataType
>&
c_g0_g1_m_n_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
};
// Invoker
struct
Invoker
:
public
device
::
BaseInvoker
{
using
Argument
=
ReferenceBatchedGemm_MQA
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_g0g1mk_g01kn_g0g1mn
=
[
&
](
auto
g0
,
auto
g1
,
auto
m
,
auto
n
)
{
const
int
K
=
arg
.
a_g0_g1_m_k_
.
mDesc
.
GetLengths
()[
3
];
AccDataType
v_acc
=
0
;
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
ADataType
v_a
;
BDataType
v_b
;
arg
.
a_element_op_
(
v_a
,
arg
.
a_g0_g1_m_k_
(
g0
,
g1
,
m
,
k
));
arg
.
b_element_op_
(
v_b
,
arg
.
b_g0_1_k_n_
(
g0
,
0
,
k
,
n
));
v_acc
+=
ck
::
type_convert
<
AccDataType
>
(
v_a
)
*
ck
::
type_convert
<
AccDataType
>
(
v_b
);
}
AccDataType
v_c
;
arg
.
c_element_op_
(
v_c
,
v_acc
);
arg
.
c_g0_g1_m_n_
(
g0
,
g1
,
m
,
n
)
=
ck
::
type_convert
<
CDataType
>
(
v_c
);
};
make_ParallelTensorFunctor
(
f_g0g1mk_g01kn_g0g1mn
,
arg
.
c_g0_g1_m_n_
.
mDesc
.
GetLengths
()[
0
],
arg
.
c_g0_g1_m_n_
.
mDesc
.
GetLengths
()[
1
],
arg
.
c_g0_g1_m_n_
.
mDesc
.
GetLengths
()[
2
],
arg
.
c_g0_g1_m_n_
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_g0_g1_m_k
,
const
Tensor
<
BDataType
>&
b_g0_1_k_n
,
Tensor
<
CDataType
>&
c_g0_g1_m_n
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
a_g0_g1_m_k
,
b_g0_1_k_n
,
c_g0_g1_m_n
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceBatchedGemm_MQA"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
ck
::
index_t
QueryGroupNumber
>
struct
ReferenceBatchedGemm_GQA
:
public
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_g0_g1_m_k
,
const
Tensor
<
BDataType
>&
b_g0_gq_k_n
,
Tensor
<
CDataType
>&
c_g0_g1_m_n
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
:
a_g0_g1_m_k_
{
a_g0_g1_m_k
},
b_g0_gq_k_n_
{
b_g0_gq_k_n
},
c_g0_g1_m_n_
{
c_g0_g1_m_n
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_g0_g1_m_k_
;
const
Tensor
<
BDataType
>&
b_g0_gq_k_n_
;
Tensor
<
CDataType
>&
c_g0_g1_m_n_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
};
// Invoker
struct
Invoker
:
public
device
::
BaseInvoker
{
using
Argument
=
ReferenceBatchedGemm_GQA
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_g0g1mk_g0gqkn_g0g1mn
=
[
&
](
auto
g0
,
auto
g1
,
auto
m
,
auto
n
)
{
const
int
G1
=
arg
.
a_g0_g1_m_k_
.
mDesc
.
GetLengths
()[
1
];
const
int
K
=
arg
.
a_g0_g1_m_k_
.
mDesc
.
GetLengths
()[
3
];
AccDataType
v_acc
=
0
;
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
ADataType
v_a
;
BDataType
v_b
;
arg
.
a_element_op_
(
v_a
,
arg
.
a_g0_g1_m_k_
(
g0
,
g1
,
m
,
k
));
arg
.
b_element_op_
(
v_b
,
arg
.
b_g0_gq_k_n_
(
g0
,
g1
*
QueryGroupNumber
/
G1
,
k
,
n
));
v_acc
+=
ck
::
type_convert
<
AccDataType
>
(
v_a
)
*
ck
::
type_convert
<
AccDataType
>
(
v_b
);
}
AccDataType
v_c
;
arg
.
c_element_op_
(
v_c
,
v_acc
);
arg
.
c_g0_g1_m_n_
(
g0
,
g1
,
m
,
n
)
=
ck
::
type_convert
<
CDataType
>
(
v_c
);
};
make_ParallelTensorFunctor
(
f_g0g1mk_g0gqkn_g0g1mn
,
arg
.
c_g0_g1_m_n_
.
mDesc
.
GetLengths
()[
0
],
arg
.
c_g0_g1_m_n_
.
mDesc
.
GetLengths
()[
1
],
arg
.
c_g0_g1_m_n_
.
mDesc
.
GetLengths
()[
2
],
arg
.
c_g0_g1_m_n_
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_g0_g1_m_k
,
const
Tensor
<
BDataType
>&
b_g0_gq_k_n
,
Tensor
<
CDataType
>&
c_g0_g1_m_n
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
a_g0_g1_m_k
,
b_g0_gq_k_n
,
c_g0_g1_m_n
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceBatchedGemm_GQA"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace host
}
// namespace host
}
// namespace tensor_operation
}
// namespace tensor_operation
}
// namespace ck
}
// namespace ck
library/include/ck/library/reference_tensor_operation/cpu/reference_fpAintB_gemm.hpp
0 → 100644
View file @
3e4d0ff3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
host
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
ScaleDataType
,
typename
CDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
struct
ReferencefpAintBGemm
:
public
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
BDataType
>&
b_k_n
,
const
Tensor
<
ScaleDataType
>&
scale_k_n
,
Tensor
<
CDataType
>&
c_m_n
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
:
a_m_k_
{
a_m_k
},
b_k_n_
{
b_k_n
},
scale_k_n_
{
scale_k_n
},
c_m_n_
{
c_m_n
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_m_k_
;
const
Tensor
<
BDataType
>&
b_k_n_
;
const
Tensor
<
ScaleDataType
>&
scale_k_n_
;
Tensor
<
CDataType
>&
c_m_n_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
};
// Invoker
struct
Invoker
:
public
device
::
BaseInvoker
{
using
Argument
=
ReferencefpAintBGemm
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_mk_kn_mn
=
[
&
](
auto
m
,
auto
n
)
{
const
int
K
=
arg
.
a_m_k_
.
mDesc
.
GetLengths
()[
1
];
AccDataType
v_acc
=
0
;
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
ADataType
v_a
;
BDataType
v_b
;
ScaleDataType
v_scale
;
ADataType
v_converted_b
;
// use PassThrough instead of ConvertBF16RTN for reference calculation
if
constexpr
(
is_same_v
<
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
ConvertBF16RTN
>
)
{
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}(
v_a
,
arg
.
a_m_k_
(
m
,
k
));
}
else
{
arg
.
a_element_op_
(
v_a
,
arg
.
a_m_k_
(
m
,
k
));
}
// same for B matrix
if
constexpr
(
is_same_v
<
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
ConvertBF16RTN
>
)
{
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}(
v_b
,
arg
.
b_k_n_
(
k
,
n
));
}
else
{
arg
.
b_element_op_
(
v_b
,
arg
.
b_k_n_
(
k
,
n
));
}
// same for scale matrix
if
constexpr
(
is_same_v
<
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
ConvertBF16RTN
>
)
{
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}(
v_scale
,
arg
.
scale_k_n_
(
k
,
n
));
}
else
{
arg
.
b_element_op_
(
v_scale
,
arg
.
scale_k_n_
(
k
,
n
));
}
v_converted_b
=
type_convert
<
ADataType
>
(
v_b
)
*
v_scale
;
v_acc
+=
ck
::
type_convert
<
AccDataType
>
(
v_a
)
*
ck
::
type_convert
<
AccDataType
>
(
v_converted_b
);
}
AccDataType
v_c
;
arg
.
c_element_op_
(
v_c
,
v_acc
);
arg
.
c_m_n_
(
m
,
n
)
=
ck
::
type_convert
<
CDataType
>
(
v_c
);
};
make_ParallelTensorFunctor
(
f_mk_kn_mn
,
arg
.
c_m_n_
.
mDesc
.
GetLengths
()[
0
],
arg
.
c_m_n_
.
mDesc
.
GetLengths
()[
1
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
BDataType
>&
b_k_n
,
const
Tensor
<
ScaleDataType
>&
scale_k_n
,
Tensor
<
CDataType
>&
c_m_n
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
a_m_k
,
b_k_n
,
scale_k_n
,
c_m_n
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceGemm"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace host
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
View file @
3e4d0ff3
...
@@ -384,6 +384,26 @@ void add_device_gemm_xdl_c_shuffle_f16_f8_f16_mk_nk_mn_instances(
...
@@ -384,6 +384,26 @@ void add_device_gemm_xdl_c_shuffle_f16_f8_f16_mk_nk_mn_instances(
instances
);
instances
);
#endif
#endif
void
add_device_gemm_wmma_f16_f16_f16_km_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_wmma_f16_f16_f16_km_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_wmma_f16_f16_f16_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_wmma_f16_f16_f16_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
template
<
typename
ALayout
,
template
<
typename
ALayout
,
typename
BLayout
,
typename
BLayout
,
typename
CLayout
,
typename
CLayout
,
...
@@ -478,6 +498,7 @@ struct DeviceOperationInstanceFactory<
...
@@ -478,6 +498,7 @@ struct DeviceOperationInstanceFactory<
add_device_gemm_dpp_f16_f16_f16_mk_kn_mn_irregular_instances
(
op_ptrs
);
add_device_gemm_dpp_f16_f16_f16_mk_kn_mn_irregular_instances
(
op_ptrs
);
#endif
#endif
add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
add_device_gemm_wmma_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
is_same_v
<
CLayout
,
Row
>
)
...
@@ -493,6 +514,7 @@ struct DeviceOperationInstanceFactory<
...
@@ -493,6 +514,7 @@ struct DeviceOperationInstanceFactory<
add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instances
(
add_device_gemm_xdl_c_shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
op_ptrs
);
add_device_gemm_wmma_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Row
>
&&
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
is_same_v
<
CLayout
,
Row
>
)
...
@@ -505,6 +527,7 @@ struct DeviceOperationInstanceFactory<
...
@@ -505,6 +527,7 @@ struct DeviceOperationInstanceFactory<
add_device_gemm_dpp_f16_f16_f16_km_kn_mn_irregular_instances
(
op_ptrs
);
add_device_gemm_dpp_f16_f16_f16_km_kn_mn_irregular_instances
(
op_ptrs
);
#endif
#endif
add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances
(
op_ptrs
);
add_device_gemm_wmma_f16_f16_f16_km_kn_mn_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Col
>
&&
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
is_same_v
<
CLayout
,
Row
>
)
...
@@ -517,6 +540,7 @@ struct DeviceOperationInstanceFactory<
...
@@ -517,6 +540,7 @@ struct DeviceOperationInstanceFactory<
add_device_gemm_dpp_f16_f16_f16_km_nk_mn_irregular_instances
(
op_ptrs
);
add_device_gemm_dpp_f16_f16_f16_km_nk_mn_irregular_instances
(
op_ptrs
);
#endif
#endif
add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances
(
op_ptrs
);
add_device_gemm_wmma_f16_f16_f16_km_nk_mn_instances
(
op_ptrs
);
}
}
}
}
#endif
#endif
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_data/device_grouped_conv_bwd_data_xdl_bilinear_instance.hpp
View file @
3e4d0ff3
...
@@ -18,8 +18,6 @@ namespace instance {
...
@@ -18,8 +18,6 @@ namespace instance {
using
BF16
=
ck
::
bhalf_t
;
using
BF16
=
ck
::
bhalf_t
;
using
F16
=
ck
::
half_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F32
=
float
;
using
BF8
=
ck
::
bf8_t
;
using
F8
=
ck
::
f8_t
;
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
@@ -35,27 +33,42 @@ static constexpr auto ConvBwdDataFilter1x1Stride1Pad0 =
...
@@ -35,27 +33,42 @@ static constexpr auto ConvBwdDataFilter1x1Stride1Pad0 =
ConvolutionBackwardDataSpecialization
::
Filter1x1Stride1Pad0
;
ConvolutionBackwardDataSpecialization
::
Filter1x1Stride1Pad0
;
// f16_f16_f32_f16
// f16_f16_f32_f16
template
<
index_t
NDimSpatial
,
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
ALayout
,
typename
BLayout
,
typename
BLayout
,
typename
DsLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ELayout
,
ConvolutionBackwardDataSpecialization
ConvSpec
>
ConvolutionBackwardDataSpecialization
ConvSpec
>
using
device_grouped_conv_bwd_data_xdl_bilinear_f16_instances
=
std
::
tuple
<
using
device_grouped_conv_bwd_data_xdl_bilinear_f16_instances
=
// clang-format off
std
::
tuple
<
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// clang-format off
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
// generic instance
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
E
Layout
>
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
Ds
Layout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
// instances for small conv.K and conv.C
// instances for small conv.K and conv.C
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
1
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
1
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
// clang-format on
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
>
;
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
32
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
32
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
// clang-format on
>
;
// bf16_bf16_f32_bf16
// bf16_bf16_f32_bf16
template
<
index_t
NDimSpatial
,
template
<
index_t
NDimSpatial
,
...
@@ -66,17 +79,30 @@ template <index_t NDimSpatial,
...
@@ -66,17 +79,30 @@ template <index_t NDimSpatial,
ConvolutionBackwardDataSpecialization
ConvSpec
>
ConvolutionBackwardDataSpecialization
ConvSpec
>
using
device_grouped_conv_bwd_data_xdl_bilinear_bf16_instances
=
std
::
tuple
<
using
device_grouped_conv_bwd_data_xdl_bilinear_bf16_instances
=
std
::
tuple
<
// clang-format off
// clang-format off
// ##############################################| NDim| ALayout| BLayout|
DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ##############################################|
NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ##############################################| Spatial| | |
| | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################|
Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################|
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| | |
|
| | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################|
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// ##############################################| | |
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
// generic instance
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
E
Layout
>
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
Ds
Layout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
// instances for small conv.K and conv.C
// instances for small conv.K and conv.C
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
1
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
1
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
32
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
32
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
// clang-format on
// clang-format on
>
;
>
;
...
@@ -87,44 +113,35 @@ template <index_t NDimSpatial,
...
@@ -87,44 +113,35 @@ template <index_t NDimSpatial,
typename
DsLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ELayout
,
ConvolutionBackwardDataSpecialization
ConvSpec
>
ConvolutionBackwardDataSpecialization
ConvSpec
>
using
device_grouped_conv_bwd_data_xdl_bilinear_f32_instances
=
std
::
tuple
<
using
device_grouped_conv_bwd_data_xdl_bilinear_f32_instances
=
// clang-format off
std
::
tuple
<
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// clang-format off
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
// generic instance
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
E
Layout
>
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
Ds
Layout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
// instances for small conv.K and conv.C
// instances for small conv.K and conv.C
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
1
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
1
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
,
// clang-format on
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
,
>
;
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
>
,
// f16_f16_f16_comp_f8
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
,
template
<
index_t
NDimSpatial
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
,
typename
ALayout
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
>
,
typename
BLayout
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
4
>
,
typename
DsLayout
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
,
typename
ELayout
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
,
ConvolutionBackwardDataSpecialization
ConvSpec
>
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
,
using
device_grouped_conv_bwd_data_xdl_bilinear_input_fp16_comp_bf8f8_instances
=
std
::
tuple
<
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
32
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
>
,
// clang-format off
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
4
>
,
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
32
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// clang-format on
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
>
;
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F32
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
BF8
,
F8
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F32
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
,
LoopScheduler
::
Default
,
BF8
,
F8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F32
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
BF8
,
F8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F32
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
,
LoopScheduler
::
Default
,
BF8
,
F8
>
// clang-format on
>
;
}
// namespace instance
}
// namespace instance
}
// namespace device
}
// namespace device
...
...
Prev
1
…
6
7
8
9
10
11
12
13
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment