Commit 3dc5db72 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'amd-develop' into amd-master

parents b924e330 e547c141
......@@ -4,15 +4,15 @@
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/gemm/pipeline/block_gemm_pipeline_agmem_bgmem_creg_v2_default_policy.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_agmem_bgmem_creg_v2_default_policy.hpp"
namespace ck_tile {
// A Tile Window: global memory
// B Tile Window: global memory
// C Distributed tensor: register
template <typename Problem, typename Policy = BlockGemmPipelineAGmemBGmemCRegV2DefaultPolicy>
struct BlockGemmPipelineAGmemBGmemCRegV2
template <typename Problem, typename Policy = GemmPipelineAGmemBGmemCRegV2DefaultPolicy>
struct GemmPipelineAGmemBGmemCRegV2
{
using ADataType = remove_cvref_t<typename Problem::ADataType>;
using BDataType = remove_cvref_t<typename Problem::BDataType>;
......
......@@ -7,12 +7,11 @@
namespace ck_tile {
// Default policy for BlockGemmPipelineAGmemBGmemCRegV2
// Default policy for GemmPipelineAGmemBGmemCRegV2
// Default policy class should not be templated, put template on member functions instead
// NOTE: policy should be binded to its corresponding operation. It's just a coincidence that
// BlockGemmPipelineAGmemBGmemCRegV2DefaultPolicy is the same as
// BlockGemmPipelineAGmemBGmemCRegV1DefaultPolicy
using BlockGemmPipelineAGmemBGmemCRegV2DefaultPolicy =
BlockGemmPipelineAGmemBGmemCRegV1DefaultPolicy;
// GemmPipelineAGmemBGmemCRegV2DefaultPolicy is the same as
// GemmPipelineAGmemBGmemCRegV1DefaultPolicy
using GemmPipelineAGmemBGmemCRegV2DefaultPolicy = GemmPipelineAGmemBGmemCRegV1DefaultPolicy;
} // namespace ck_tile
......@@ -13,20 +13,23 @@ template <typename ADataType_,
typename BDataType_,
typename CDataType_,
typename BlockGemmShape_,
bool kPadA_ = false,
bool kPadB_ = false,
bool kPadC_ = false>
struct BlockGemmPipelineProblem
typename TileGemmTraits_>
struct GemmPipelineProblem
{
using ADataType = remove_cvref_t<ADataType_>;
using BDataType = remove_cvref_t<BDataType_>;
using CDataType = remove_cvref_t<CDataType_>;
using BlockGemmShape = remove_cvref_t<BlockGemmShape_>;
using GemmTraits = remove_cvref_t<TileGemmTraits_>;
static constexpr index_t kBlockSize = BlockGemmShape::NumWarps * get_warp_size();
static constexpr bool kPadA = kPadA_;
static constexpr bool kPadB = kPadB_;
static constexpr bool kPadC = kPadC_;
static constexpr bool kPadA = GemmTraits::kPadA;
static constexpr bool kPadB = GemmTraits::kPadB;
static constexpr bool kPadC = GemmTraits::kPadC;
using LayoutA = remove_cvref_t<typename GemmTraits::LayoutA>;
using LayoutB = remove_cvref_t<typename GemmTraits::LayoutB>;
using LayoutC = remove_cvref_t<typename GemmTraits::LayoutC>;
static constexpr index_t AlignmentA = kPadA ? 1 : VectorLoadSize / sizeof(ADataType);
static constexpr index_t AlignmentB = kPadB ? 1 : VectorLoadSize / sizeof(BDataType);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
template <bool kPadA_,
bool kPadB_,
bool kPadC_,
typename LayoutA_,
typename LayoutB_,
typename LayoutC_>
struct TileGemmTraits
{
static constexpr bool kPadA = kPadA_;
static constexpr bool kPadB = kPadB_;
static constexpr bool kPadC = kPadC_;
using LayoutA = LayoutA_;
using LayoutB = LayoutB_;
using LayoutC = LayoutC_;
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/ops/image_to_column/kernel/image_to_column_kernel.hpp"
#include "ck_tile/ops/image_to_column/pipeline/block_image_to_column_problem.hpp"
#include "ck_tile/ops/image_to_column/pipeline/tile_image_to_column_shape.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
namespace ck_tile {
template <typename Problem_>
struct ImageToColumn
{
static constexpr auto I0 = number<0>{};
static constexpr auto I1 = number<1>{};
static constexpr auto I2 = number<2>{};
static constexpr auto I3 = number<3>{};
static constexpr auto I4 = number<4>{};
using Problem = remove_cvref_t<Problem_>;
using InDataType = remove_cvref_t<typename Problem::InDataType>;
using OutDataType = remove_cvref_t<typename Problem::OutDataType>;
static constexpr index_t NDimSpatial = Problem::NDimSpatial;
static constexpr index_t AligmentIn = Problem::AligmentIn;
static constexpr index_t AligmentOut = Problem::AligmentOut;
static_assert(NDimSpatial == 2, "Not supported.");
static constexpr index_t kMPerBlock = Problem::BlockShape::kMPerBlock;
static constexpr index_t kKPerBlock = Problem::BlockShape::kKPerBlock;
struct Kargs
{
const void* p_in;
void* p_out;
const long_index_t G;
const long_index_t N;
const long_index_t C;
const array<long_index_t, NDimSpatial> input_spatial_lengths;
const array<long_index_t, NDimSpatial> filter_spatial_lengths;
const array<long_index_t, NDimSpatial> output_spatial_lengths;
const array<long_index_t, NDimSpatial + 3> image_g_n_c_wis_strides;
const array<long_index_t, 3> gemm_g_m_k_strides;
const array<long_index_t, NDimSpatial> conv_filter_strides;
const array<long_index_t, NDimSpatial> conv_filter_dilations;
const array<long_index_t, NDimSpatial> input_left_pads;
const array<long_index_t, NDimSpatial> input_right_pads;
};
CK_TILE_HOST static constexpr Kargs
MakeKargs(const void* p_in,
void* p_out,
const long_index_t G,
const long_index_t N,
const long_index_t C,
const array<long_index_t, NDimSpatial> input_spatial_lengths,
const array<long_index_t, NDimSpatial> filter_spatial_lengths,
const array<long_index_t, NDimSpatial> output_spatial_lengths,
const array<long_index_t, NDimSpatial + 3> image_g_n_c_wis_strides,
const array<long_index_t, 3> gemm_g_m_k_strides,
const array<long_index_t, NDimSpatial> conv_filter_strides,
const array<long_index_t, NDimSpatial> conv_filter_dilations,
const array<long_index_t, NDimSpatial> input_left_pads,
const array<long_index_t, NDimSpatial> input_right_pads)
{
return Kargs{p_in,
p_out,
G,
N,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
image_g_n_c_wis_strides,
gemm_g_m_k_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads};
}
CK_TILE_HOST static constexpr auto GridSize(index_t GemmM, index_t GemmK, index_t Batch)
{
return dim3(
integer_divide_ceil(GemmM, kMPerBlock), integer_divide_ceil(GemmK, kKPerBlock), Batch);
}
CK_TILE_HOST static constexpr auto BlockSize() { return Problem::BlockShape::kBlockSize; }
CK_TILE_DEVICE auto MakeImageMKDesc(const Kargs& kargs) const
{
static_assert(NDimSpatial == 2, "Not supported.");
const auto in_n_hi_wi_c_desc = make_naive_tensor_descriptor(
make_tuple(
kargs.N, kargs.input_spatial_lengths[I0], kargs.input_spatial_lengths[I1], kargs.C),
make_tuple(kargs.image_g_n_c_wis_strides[I1],
kargs.image_g_n_c_wis_strides[I3],
kargs.image_g_n_c_wis_strides[I4],
kargs.image_g_n_c_wis_strides[I2]),
number<AligmentIn>{},
I1);
const auto in_n_hip_wip_c_desc = transform_tensor_descriptor(
in_n_hi_wi_c_desc,
make_tuple(make_pass_through_transform(kargs.N),
make_pad_transform(kargs.input_spatial_lengths[I0],
kargs.input_left_pads[I0],
kargs.input_right_pads[I0]),
make_pad_transform(kargs.input_spatial_lengths[I1],
kargs.input_left_pads[I1],
kargs.input_right_pads[I1]),
make_pass_through_transform(kargs.C)),
make_tuple(sequence<0>{}, sequence<1>{}, sequence<2>{}, sequence<3>{}),
make_tuple(sequence<0>{}, sequence<1>{}, sequence<2>{}, sequence<3>{}));
const auto in_n_y_ho_x_wo_c_desc = transform_tensor_descriptor(
in_n_hip_wip_c_desc,
make_tuple(
make_pass_through_transform(kargs.N),
make_embed_transform(
make_tuple(kargs.filter_spatial_lengths[I0], kargs.output_spatial_lengths[I0]),
make_tuple(kargs.conv_filter_dilations[I0], kargs.conv_filter_strides[I0])),
make_embed_transform(
make_tuple(kargs.filter_spatial_lengths[I1], kargs.output_spatial_lengths[I1]),
make_tuple(kargs.conv_filter_dilations[I1], kargs.conv_filter_strides[I1])),
make_pass_through_transform(kargs.C)),
make_tuple(sequence<0>{}, sequence<1>{}, sequence<2>{}, sequence<3>{}),
make_tuple(sequence<0>{}, sequence<1, 2>{}, sequence<3, 4>{}, sequence<5>{}));
return transform_tensor_descriptor(
in_n_y_ho_x_wo_c_desc,
make_tuple(
make_merge_transform(make_tuple(
kargs.N, kargs.output_spatial_lengths[I0], kargs.output_spatial_lengths[I1])),
make_merge_transform(make_tuple(
kargs.filter_spatial_lengths[I0], kargs.filter_spatial_lengths[I1], kargs.C))),
make_tuple(sequence<0, 2, 4>{}, sequence<1, 3, 5>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
}
CK_TILE_DEVICE auto CalculateMKDims(const Kargs& kargs) const
{
static_assert(NDimSpatial == 2, "Not supported.");
const index_t M = kargs.N * static_cast<index_t>(kargs.output_spatial_lengths[I0] *
kargs.output_spatial_lengths[I1]);
const index_t K = kargs.C * static_cast<index_t>(kargs.filter_spatial_lengths[I0] *
kargs.filter_spatial_lengths[I1]);
return make_tuple(M, K);
}
CK_TILE_DEVICE static constexpr auto MakeBlockTileDistribution()
{
using P = typename Problem::BlockShape;
// P: {kMWarpPerBlock * kKWarpPerBlock, kMThreadPerWarp * kKThreadPerWarp}
// Y: {kMPerThread, kKPerThread}
return make_static_tile_distribution(
tile_distribution_encoding<
sequence<1>,
tuple<sequence<P::kMWarpPerBlock, P::kMThreadPerWarp, P::kMPerThread>,
sequence<P::kKWarpPerBlock, P::kKThreadPerWarp, P::kKPerThread>>,
tuple<sequence<1, 2>, sequence<1, 2>>,
tuple<sequence<0, 0>, sequence<1, 1>>,
sequence<1, 2>,
sequence<2, 2>>{});
}
CK_TILE_DEVICE void ConvTensorRearrange(const Kargs& kargs) const
{
const auto [M, K] = CalculateMKDims(kargs);
const index_t iM = __builtin_amdgcn_readfirstlane(blockIdx.x * kMPerBlock);
const index_t iK = __builtin_amdgcn_readfirstlane(blockIdx.y * kKPerBlock);
const index_t iBatch = __builtin_amdgcn_readfirstlane(blockIdx.z);
const auto in_offset = iBatch * kargs.image_g_n_c_wis_strides[I0];
const auto out_offset = iBatch * kargs.gemm_g_m_k_strides[I0];
const auto image_m_k = make_tensor_view<address_space_enum::global>(
static_cast<const InDataType*>(kargs.p_in) + in_offset, MakeImageMKDesc(kargs));
const auto gemm_m_k = make_naive_tensor_view<address_space_enum::global>(
static_cast<OutDataType*>(kargs.p_out) + out_offset,
make_tuple(M, K),
make_tuple(kargs.gemm_g_m_k_strides[I1], kargs.gemm_g_m_k_strides[I2]),
number<AligmentOut>{},
I1);
const auto image_m_k_padded =
pad_tensor_view(image_m_k,
make_tuple(number<kMPerBlock>{}, number<kKPerBlock>{}),
sequence<false, true>{});
const auto gemm_m_k_padded =
pad_tensor_view(gemm_m_k,
make_tuple(number<kMPerBlock>{}, number<kKPerBlock>{}),
sequence<false, true>{});
constexpr auto dstr = MakeBlockTileDistribution();
const auto image_tile =
make_tile_window(image_m_k_padded,
make_tuple(number<kMPerBlock>{}, number<kKPerBlock>{}),
{iM, iK},
dstr);
auto gemm_tile = make_tile_window(gemm_m_k_padded,
make_tuple(number<kMPerBlock>{}, number<kKPerBlock>{}),
{iM, iK},
dstr);
// load from Global
const auto loaded_tile = load_tile(image_tile);
// save to Global
store_tile(gemm_tile, loaded_tile);
}
CK_TILE_DEVICE void operator()(Kargs& kargs) const { ConvTensorRearrange(kargs); }
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core/utility/type_traits.hpp"
namespace ck_tile {
template <typename InDataType_,
typename OutDataType_,
typename BlockShape_,
index_t NDimSpatial_,
index_t AligmentIn_,
index_t AligmentOut_>
struct BlockImageToColumnProblem
{
using InDataType = remove_cvref_t<InDataType_>;
using OutDataType = remove_cvref_t<OutDataType_>;
using BlockShape = remove_cvref_t<BlockShape_>;
static constexpr index_t NDimSpatial = NDimSpatial_;
static constexpr index_t AligmentIn = AligmentIn_;
static constexpr index_t AligmentOut = AligmentOut_;
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
template <typename ThreadTile, // Sequence<...
typename WarpTile, // Sequence<...
typename BlockTile> // Sequence<...
struct TileImageToColumnShape
{
static constexpr index_t kMPerThread = ThreadTile::at(number<0>{});
static constexpr index_t kKPerThread = ThreadTile::at(number<1>{});
static constexpr index_t kMPerWarp = WarpTile::at(number<0>{});
static constexpr index_t kKPerWarp = WarpTile::at(number<1>{});
static constexpr index_t kMThreadPerWarp = kMPerWarp / kMPerThread;
static constexpr index_t kKThreadPerWarp = kKPerWarp / kKPerThread;
static constexpr index_t kMPerBlock = BlockTile::at(number<0>{});
static constexpr index_t kKPerBlock = BlockTile::at(number<1>{});
static constexpr index_t kMWarpPerBlock = kMPerBlock / kMPerWarp;
static constexpr index_t kKWarpPerBlock = kKPerBlock / kKPerWarp;
static constexpr index_t kBlockSize = warpSize * kMWarpPerBlock * kKWarpPerBlock;
};
} // namespace ck_tile
......@@ -31,8 +31,14 @@ struct Layernorm2dFwd
static constexpr ck_tile::index_t kMPerBlock = Problem::BlockShape::kMPerBlock;
static constexpr ck_tile::index_t kNPerBlock = Problem::BlockShape::kNPerBlock;
static constexpr bool kPadM = Problem::kPadM;
static constexpr bool kPadN = Problem::kPadN;
static constexpr ck_tile::index_t kNThreadPerWarp = Problem::BlockShape::kNThreadPerWarp;
static constexpr ck_tile::index_t kNPerThread = Problem::BlockShape::kNPerThread;
static constexpr auto I0 = number<0>{};
static constexpr auto I1 = number<1>{};
struct Kargs
{
......@@ -96,19 +102,25 @@ struct Layernorm2dFwd
sequence<2>>{});
}
template <typename Dstr>
CK_TILE_DEVICE static constexpr auto GetNPerThread(Dstr)
CK_TILE_DEVICE static int GetWelfordMaxCount(int N)
{
constexpr auto nDstrSpan = Dstr::get_distributed_spans().template at<1>();
using Lengths = decltype(nDstrSpan.impl_);
constexpr ck_tile::index_t kNThreadPerBlock = kNPerBlock / kNPerThread;
ck_tile::index_t ret = 1;
int thread_id_n = get_thread_id() % kNThreadPerBlock;
int max_count =
__builtin_amdgcn_readfirstlane(N < kNPerBlock ? 0 : kNPerThread * (N / kNPerBlock));
int n_per_block_tail_loop =
__builtin_amdgcn_readfirstlane(N - max_count * kNThreadPerBlock);
ck_tile::static_for<0, Lengths::size(), 1>{}(
[&](auto idx) { ret *= Lengths::template at(idx); });
if(n_per_block_tail_loop > 0)
{
int thread_max_n = (thread_id_n + 1) * kNPerThread;
int delta = thread_max_n - n_per_block_tail_loop;
delta = clamp(thread_max_n - n_per_block_tail_loop, 0, kNPerThread);
max_count += kNPerThread - delta;
}
return ret;
return max_count;
}
template <typename DistributedTensor>
......@@ -129,42 +141,29 @@ struct Layernorm2dFwd
return out_dstr_tensor;
}
template <bool Cond = (kHasGamma && kHasBeta)>
CK_TILE_DEVICE std::enable_if_t<Cond> TwoPassLayernorm2dFwd(const XDataType* p_x,
const GammaDataType* p_gamma,
const BetaDataType* p_beta,
YDataType* p_y,
MeanDataType* p_mean,
InvStdDataType* p_invStd,
const ComputeDataType epsilon,
ck_tile::index_t M,
ck_tile::index_t N) const
template <typename XBlockWindow,
typename GammaBlockWindow,
typename BetaBlockWindow,
typename YBlockWindow,
typename MeanBlockWindow,
typename InvStdBlockWindow,
bool Cond = (kHasGamma && kHasBeta)>
CK_TILE_DEVICE std::enable_if_t<Cond>
TwoPassLayernorm2dFwd(XBlockWindow& x_block_window,
GammaBlockWindow& gamma_block_window,
BetaBlockWindow& beta_block_window,
YBlockWindow& y_block_window,
MeanBlockWindow& mean_block_window,
InvStdBlockWindow& inv_std_block_window,
ComputeDataType epsilon,
ck_tile::index_t N) const
{
constexpr auto I0 = number<0>{};
constexpr auto I1 = number<1>{};
const auto x_m_n = make_naive_tensor_view<address_space_enum::global>(
p_x, make_tuple(M, N), make_tuple(N, 1), number<32>{}, number<1>{});
const auto gamma_n = make_naive_tensor_view<address_space_enum::global>(
p_gamma, make_tuple(N), make_tuple(1), number<32>{}, number<1>{});
// TODO - Optimize tail loop to reduce move_tile_window()
index_t num_n_tile_iteration =
__builtin_amdgcn_readfirstlane(integer_divide_ceil(N, kNPerBlock));
const auto beta_n = make_naive_tensor_view<address_space_enum::global>(
p_beta, make_tuple(N), make_tuple(1), number<32>{}, number<1>{});
const auto iM = get_block_id() * kMPerBlock;
constexpr auto xDstr = MakeXBlockTileDistribution();
auto x_block_window = make_tile_window(
x_m_n, make_tuple(number<kMPerBlock>{}, number<kNPerBlock>{}), {iM, 0}, xDstr);
index_t num_n_tile_iteration = __builtin_amdgcn_readfirstlane(N / kNPerBlock);
// TODO: padding - handle max_count if N % kNPerBlock != 0
constexpr auto NPerThread = GetNPerThread(xDstr);
ThreadWelford<ComputeDataType, XDataType> thread_welford{
type_convert<int>(NPerThread * N / kNPerBlock)};
int welford_max_count = GetWelfordMaxCount(N);
ThreadWelford<ComputeDataType, XDataType> thread_welford{welford_max_count};
using XTensorType = decltype(load_tile(x_block_window));
auto mean_compute_block_tensor =
......@@ -190,44 +189,14 @@ struct Layernorm2dFwd
auto inv_std_compute_block_tensor = InvSqrt(var_compute_block_tensor, epsilon);
if constexpr(kSaveMean)
{
const auto mean_m = make_naive_tensor_view_packed<address_space_enum::global>(
p_mean, make_tuple(M), number<32>{});
auto mean_block_window =
make_tile_window(mean_m, make_tuple(number<kMPerBlock>{}), {iM});
store_tile(mean_block_window, cast_tile<MeanDataType>(mean_compute_block_tensor));
}
if constexpr(kSaveInvStd)
{
const auto inv_std_m = make_naive_tensor_view_packed<address_space_enum::global>(
p_invStd, make_tuple(M), number<32>{});
auto inv_std_block_window =
make_tile_window(inv_std_m, make_tuple(number<kMPerBlock>{}), {iM});
store_tile(inv_std_block_window, cast_tile<MeanDataType>(inv_std_compute_block_tensor));
}
// TODO: Extract normalize pipeline
const auto y_m_n = make_naive_tensor_view<address_space_enum::global>(
p_y, make_tuple(M, N), make_tuple(N, 1), number<32>{}, number<1>{});
auto y_block_window = make_tile_window(
y_m_n, make_tuple(number<kMPerBlock>{}, number<kNPerBlock>{}), {iM, 0});
constexpr auto gammaDstr = MakeGammaBetaBlockTileDistribution();
constexpr auto betaDstr = gammaDstr;
auto gamma_block_window =
make_tile_window(gamma_n, make_tuple(number<kNPerBlock>{}), {0}, gammaDstr);
auto beta_block_window = make_tile_window(
beta_n, make_tuple(number<kMPerBlock>{}, number<kNPerBlock>{}), {0}, betaDstr);
store_tile(inv_std_block_window,
cast_tile<InvStdDataType>(inv_std_compute_block_tensor));
// reverse read x to reuse cache
ck_tile::index_t stride_to_right_most_window = N - kNPerBlock;
ck_tile::index_t stride_to_right_most_window =
N % kNPerBlock == 0 ? N - kNPerBlock : N - N % kNPerBlock;
move_tile_window(x_block_window, {0, -kNPerBlock});
move_tile_window(gamma_block_window, {stride_to_right_most_window});
......@@ -274,17 +243,209 @@ struct Layernorm2dFwd
}
}
template <typename XBlockWindow,
typename GammaBlockWindow,
typename BetaBlockWindow,
typename YBlockWindow,
typename MeanBlockWindow,
typename InvStdBlockWindow,
bool Cond = (kHasGamma && kHasBeta)>
CK_TILE_DEVICE std::enable_if_t<Cond>
OnePassLayernorm2dFwd(XBlockWindow& x_block_window,
GammaBlockWindow& gamma_block_window,
BetaBlockWindow& beta_block_window,
YBlockWindow& y_block_window,
MeanBlockWindow& mean_block_window,
InvStdBlockWindow& inv_std_block_window,
ComputeDataType epsilon,
ck_tile::index_t N) const
{
int welford_max_count = GetWelfordMaxCount(N);
ThreadWelford<ComputeDataType, XDataType> thread_welford{welford_max_count};
using XTensorType = decltype(load_tile(x_block_window));
auto mean_compute_block_tensor =
thread_welford.template MakeInitialMeanVarDistributedTensor<XTensorType>();
auto var_compute_block_tensor =
thread_welford.template MakeInitialMeanVarDistributedTensor<XTensorType>();
clear_tile(mean_compute_block_tensor);
clear_tile(var_compute_block_tensor);
const auto x_block_tensor = load_tile(x_block_window);
thread_welford(x_block_tensor, mean_compute_block_tensor, var_compute_block_tensor);
// TODO: support cross warp Welford
WarpMergeWelford<ComputeDataType, true>{}(
mean_compute_block_tensor, var_compute_block_tensor, thread_welford.cur_count_);
auto inv_std_compute_block_tensor = InvSqrt(var_compute_block_tensor, epsilon);
if constexpr(kSaveMean)
store_tile(mean_block_window, cast_tile<MeanDataType>(mean_compute_block_tensor));
if constexpr(kSaveInvStd)
store_tile(inv_std_block_window,
cast_tile<InvStdDataType>(inv_std_compute_block_tensor));
// normalize
const auto gamma_block_tensor = load_tile(gamma_block_window);
const auto beta_block_tensor = load_tile(beta_block_window);
constexpr auto x_spans = decltype(x_block_tensor)::get_distributed_spans();
auto y_block_tensor =
make_static_distributed_tensor<YDataType>(x_block_tensor.get_tile_distribution());
sweep_tile_span(x_spans[I1], [&](auto idx1) {
constexpr auto j_idx = make_tuple(idx1);
const auto gamma = type_convert<ComputeDataType>(gamma_block_tensor[j_idx]);
const auto beta = type_convert<ComputeDataType>(beta_block_tensor[j_idx]);
sweep_tile_span(x_spans[I0], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
constexpr auto i_j_idx = make_tuple(idx0, idx1);
const auto mean = mean_compute_block_tensor[i_idx];
const auto inv_std = inv_std_compute_block_tensor[i_idx];
const auto x = type_convert<ComputeDataType>(x_block_tensor[i_j_idx]);
auto y = (x - mean) * inv_std * gamma + beta;
y_block_tensor(i_j_idx) = type_convert<YDataType>(y);
});
});
store_tile(y_block_window, y_block_tensor);
}
CK_TILE_DEVICE void operator()(Kargs kargs) const
{
TwoPassLayernorm2dFwd(static_cast<const XDataType*>(kargs.p_x),
static_cast<const GammaDataType*>(kargs.p_gamma),
static_cast<const BetaDataType*>(kargs.p_beta),
static_cast<YDataType*>(kargs.p_y),
static_cast<MeanDataType*>(kargs.p_mean),
static_cast<InvStdDataType*>(kargs.p_invStd),
static_cast<const ComputeDataType>(kargs.epsilon),
kargs.M,
kargs.N);
const auto x_m_n = [&]() {
const auto x_dram_naive = make_naive_tensor_view<address_space_enum::global>(
static_cast<const XDataType*>(kargs.p_x),
make_tuple(kargs.M, kargs.N),
make_tuple(kargs.N, 1),
number<kNPerThread>{},
number<1>{});
return pad_tensor_view(x_dram_naive,
make_tuple(number<kMPerBlock>{}, number<kNPerBlock>{}),
sequence<kPadM, kPadN>{});
}();
const auto gamma_n = [&]() {
const auto gamma_dram_naive = make_naive_tensor_view<address_space_enum::global>(
static_cast<const GammaDataType*>(kargs.p_gamma),
make_tuple(kargs.N),
make_tuple(1),
number<kNPerThread>{},
number<1>{});
return pad_tensor_view(
gamma_dram_naive, make_tuple(number<kNPerBlock>{}), sequence<kPadN>{});
}();
const auto beta_n = [&]() {
const auto gamma_dram_naive = make_naive_tensor_view<address_space_enum::global>(
static_cast<const BetaDataType*>(kargs.p_beta),
make_tuple(kargs.N),
make_tuple(1),
number<kNPerThread>{},
number<1>{});
return pad_tensor_view(
gamma_dram_naive, make_tuple(number<kNPerBlock>{}), sequence<kPadN>{});
}();
const auto iM = get_block_id() * kMPerBlock;
constexpr auto xDstr = MakeXBlockTileDistribution();
auto x_block_window = make_tile_window(
x_m_n, make_tuple(number<kMPerBlock>{}, number<kNPerBlock>{}), {iM, 0}, xDstr);
const auto y_m_n = [&]() {
const auto y_dram_naive = make_naive_tensor_view<address_space_enum::global>(
static_cast<YDataType*>(kargs.p_y),
make_tuple(kargs.M, kargs.N),
make_tuple(kargs.N, 1),
number<kNPerThread>{},
number<1>{});
return pad_tensor_view(y_dram_naive,
make_tuple(number<kMPerBlock>{}, number<kNPerBlock>{}),
sequence<kPadM, kPadN>{});
}();
auto y_block_window = make_tile_window(
y_m_n, make_tuple(number<kMPerBlock>{}, number<kNPerBlock>{}), {iM, 0});
constexpr auto gammaDstr = MakeGammaBetaBlockTileDistribution();
constexpr auto betaDstr = gammaDstr;
auto gamma_block_window =
make_tile_window(gamma_n, make_tuple(number<kNPerBlock>{}), {0}, gammaDstr);
auto beta_block_window = make_tile_window(
beta_n, make_tuple(number<kMPerBlock>{}, number<kNPerBlock>{}), {0}, betaDstr);
auto mean_block_window = [&]() {
if constexpr(kSaveMean)
{
const auto mean_m = [&]() {
const auto mean_dram_naive =
make_naive_tensor_view_packed<address_space_enum::global>(
static_cast<MeanDataType*>(kargs.p_mean),
make_tuple(kargs.M),
number<1>{});
return pad_tensor_view(
mean_dram_naive, make_tuple(number<kMPerBlock>{}), sequence<kPadM>{});
}();
return make_tile_window(mean_m, make_tuple(number<kMPerBlock>{}), {iM});
}
else
return make_null_tile_window(make_tuple(number<kMPerBlock>{}));
}();
auto inv_std_block_window = [&]() {
if constexpr(kSaveInvStd)
{
const auto inv_std_m = [&]() {
const auto inv_std_dram_naive =
make_naive_tensor_view_packed<address_space_enum::global>(
static_cast<InvStdDataType*>(kargs.p_invStd),
make_tuple(kargs.M),
number<1>{});
return pad_tensor_view(
inv_std_dram_naive, make_tuple(number<kMPerBlock>{}), sequence<kPadM>{});
}();
return make_tile_window(inv_std_m, make_tuple(number<kMPerBlock>{}), {iM});
}
else
return make_null_tile_window(make_tuple(number<kMPerBlock>{}));
}();
if(kargs.N <= kNPerBlock)
OnePassLayernorm2dFwd(x_block_window,
gamma_block_window,
beta_block_window,
y_block_window,
mean_block_window,
inv_std_block_window,
static_cast<const ComputeDataType>(kargs.epsilon),
kargs.N);
else
TwoPassLayernorm2dFwd(x_block_window,
gamma_block_window,
beta_block_window,
y_block_window,
mean_block_window,
inv_std_block_window,
static_cast<const ComputeDataType>(kargs.epsilon),
kargs.N);
}
};
......
......@@ -14,17 +14,21 @@ template <typename XDataType_,
typename YDataType_,
typename MeanDataType_,
typename InvStdDataType_,
typename BlockShape_>
typename BlockShape_,
bool kPadM_,
bool kPadN_>
struct BlockLayernorm2dFwdProblem
{
using XDataType = remove_cvref_t<XDataType_>;
using GammaDataType = remove_cvref_t<GammaDataType_>;
using BetaDataType = remove_cvref_t<BetaDataType_>;
using ComputeDataType = remove_cvref_t<ComputeDataType_>;
using YDataType = remove_cvref_t<YDataType_>;
using MeanDataType = remove_cvref_t<MeanDataType_>;
using InvStdDataType = remove_cvref_t<InvStdDataType_>;
using BlockShape = remove_cvref_t<BlockShape_>;
using XDataType = remove_cvref_t<XDataType_>;
using GammaDataType = remove_cvref_t<GammaDataType_>;
using BetaDataType = remove_cvref_t<BetaDataType_>;
using ComputeDataType = remove_cvref_t<ComputeDataType_>;
using YDataType = remove_cvref_t<YDataType_>;
using MeanDataType = remove_cvref_t<MeanDataType_>;
using InvStdDataType = remove_cvref_t<InvStdDataType_>;
using BlockShape = remove_cvref_t<BlockShape_>;
static constexpr bool kPadM = kPadM_;
static constexpr bool kPadN = kPadN_;
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename ComputeTypeA,
typename ComputeTypeB>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
naive_gemm_kernel(const ADataType* __restrict__ p_a_grid,
const BDataType* __restrict__ p_b_grid,
CDataType* __restrict__ p_c_grid,
index_t m,
index_t n,
index_t k,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation c_element_op)
{
using RowMajor = ck::tensor_layout::gemm::RowMajor;
const int row_idx = blockIdx.x * blockDim.x + threadIdx.x;
const int col_idx = blockIdx.y * blockDim.y + threadIdx.y;
if(row_idx < m && col_idx < n)
{
AccDataType v_acc = static_cast<AccDataType>(0.0);
ComputeTypeA v_a = static_cast<ComputeTypeA>(0.0);
ComputeTypeB v_b = static_cast<ComputeTypeB>(0.0);
CDataType v_c = static_cast<CDataType>(0.0);
for(int k_idx = 0; k_idx < k; ++k_idx)
{
// check input matrices layout
int element_idx_a = 0;
int element_idx_b = 0;
if constexpr(std::is_same_v<ALayout, RowMajor>)
{
element_idx_a = row_idx * k + k_idx;
}
else
{
element_idx_a = row_idx + m * k_idx;
}
if constexpr(std::is_same_v<BLayout, RowMajor>)
{
element_idx_b = k_idx * n + col_idx;
}
else
{
element_idx_b = k_idx + k * col_idx;
}
// apply a_element_op
a_element_op(v_a, p_a_grid[element_idx_a]);
// apply b_element_op
b_element_op(v_b, p_b_grid[element_idx_b]);
// multiply and accumulate
v_acc += static_cast<AccDataType>(v_a) * static_cast<AccDataType>(v_b);
}
// apply c_element_op
c_element_op(v_c, v_acc);
// check output matrix layout
int element_idx_c = 0;
if constexpr(std::is_same_v<CLayout, RowMajor>)
{
element_idx_c = row_idx * n + col_idx;
}
else
{
element_idx_c = row_idx + m * col_idx;
}
// prepare output
p_c_grid[element_idx_c] = v_c;
}
}
} // namespace ck
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename ComputeTypeA = CDataType,
typename ComputeTypeB = ComputeTypeA>
struct ReferenceGemm : public device::BaseOperator
{
// Argument
struct Argument : public device::BaseArgument
{
Argument(const void* p_a_grid,
const void* p_b_grid,
void* p_c_grid,
index_t m,
index_t n,
index_t k,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
: p_a_grid_{static_cast<const ADataType*>(p_a_grid)},
p_b_grid_{static_cast<const BDataType*>(p_b_grid)},
p_c_grid_{static_cast<CDataType*>(p_c_grid)},
m_{m},
n_{n},
k_{k},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
c_element_op_{c_element_op}
{
}
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
index_t m_;
index_t n_;
index_t k_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
};
// Invoker
struct Invoker : public device::BaseInvoker
{
using Argument = ReferenceGemm::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
int block_size = 16;
dim3 block_dim(block_size, block_size, 1);
dim3 grid_dim(
(arg.m_ + block_size - 1) / block_size, (arg.n_ + block_size - 1) / block_size, 1);
auto launch_kernel = [&]() {
const auto kernel = naive_gemm_kernel<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
ComputeTypeA,
ComputeTypeB>;
return launch_and_time_kernel(stream_config,
kernel,
grid_dim,
block_dim,
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.m_,
arg.n_,
arg.k_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_);
};
return launch_kernel();
}
float Run(const device::BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
bool IsSupportedArgument(const device::BaseArgument*) override { return true; }
static auto MakeArgument(const void* p_a_grid,
const void* p_b_grid,
void* p_c_grid,
index_t m,
index_t n,
index_t k,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
return Argument{
p_a_grid, p_b_grid, p_c_grid, m, n, k, a_element_op, b_element_op, c_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "Device Reference Gemm"
<< std::endl;
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -37,11 +37,7 @@ function(add_instance_library INSTANCE_NAME)
endforeach()
endif()
if(INSTANCES_ONLY)
set(INST_TARGETS ${DEFAULT_GPU_TARGETS})
else()
set(INST_TARGETS ${GPU_TARGETS})
endif()
set(INST_TARGETS ${SUPPORTED_GPU_TARGETS})
# Do not build DL instances if DL_KERNELS macro is not set
foreach(source IN LISTS ARGN)
......@@ -64,9 +60,9 @@ function(add_instance_library INSTANCE_NAME)
list(REMOVE_ITEM ARGN "${source}")
endif()
endforeach()
# Do not build mha instances if gfx94 targets are not on the target list
# Do not build mha instances if gfx94 or gfx90a targets are not on the target list
foreach(source IN LISTS ARGN)
if(NOT INST_TARGETS MATCHES "gfx94" AND source MATCHES "mha")
if(NOT INST_TARGETS MATCHES "gfx94" AND NOT INST_TARGETS MATCHES "gfx90a" AND source MATCHES "mha")
message("removing mha instance ${source} ")
list(REMOVE_ITEM ARGN "${source}")
endif()
......@@ -75,17 +71,13 @@ function(add_instance_library INSTANCE_NAME)
if(ARGN)
set(INST_OBJ)
foreach(source IN LISTS ARGN)
if(INSTANCES_ONLY)
set(INST_TARGETS ${DEFAULT_GPU_TARGETS})
else()
set(INST_TARGETS ${GPU_TARGETS})
endif()
set(INST_TARGETS ${SUPPORTED_GPU_TARGETS})
if(source MATCHES "_xdl")
list(REMOVE_ITEM INST_TARGETS gfx900 gfx906 gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201)
elseif(ARGN MATCHES "_wmma")
list(REMOVE_ITEM INST_TARGETS gfx900 gfx906 gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030)
elseif(ARGN MATCHES "mha")
list(REMOVE_ITEM INST_TARGETS gfx900 gfx906 gfx908 gfx90a gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201)
list(REMOVE_ITEM INST_TARGETS gfx900 gfx906 gfx908 gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201)
endif()
set(offload_targets)
foreach(target IN LISTS INST_TARGETS)
......@@ -191,12 +183,7 @@ FOREACH(subdir_path ${dir_list})
set(add_inst 1)
endif()
if(INSTANCES_ONLY)
set(INST_TARGETS ${DEFAULT_GPU_TARGETS})
else()
set(INST_TARGETS ${GPU_TARGETS})
endif()
set(INST_TARGETS ${SUPPORTED_GPU_TARGETS})
if(("${cmake_instance}" MATCHES "quantization") AND (DEFINED DTYPES) AND (NOT DTYPES MATCHES "int8"))
message("quantization instances will not be built!")
......@@ -320,8 +307,7 @@ if(CK_DEVICE_CONV_INSTANCES)
endif()
if(CK_DEVICE_MHA_INSTANCES)
set(gpu_list ${INST_TARGETS})
list(FILTER gpu_list INCLUDE REGEX "^gfx94")
if(gpu_list)
if(gpu_list MATCHES "gfx94" OR gpu_list MATCHES "gfx90a")
add_library(device_mha_operations STATIC ${CK_DEVICE_MHA_INSTANCES})
add_library(composablekernels::device_mha_operations ALIAS device_mha_operations)
target_compile_features(device_mha_operations PUBLIC)
......
......@@ -24,7 +24,7 @@ set(PROFILER_SOURCES
profile_permute_scale.cpp
)
if(GPU_TARGETS MATCHES "gfx9")
if(SUPPORTED_GPU_TARGETS MATCHES "gfx9")
if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_contraction_bilinear.cpp)
list(APPEND PROFILER_SOURCES profile_contraction_scale.cpp)
......@@ -49,7 +49,7 @@ if(GPU_TARGETS MATCHES "gfx9")
list(APPEND PROFILER_SOURCES profile_grouped_gemm_multiply_tile_loop.cpp)
endif()
list(APPEND PROFILER_SOURCES profile_gemm_multiply_add.cpp)
if(GPU_TARGETS MATCHES "gfx94")
if(SUPPORTED_GPU_TARGETS MATCHES "gfx94")
list(APPEND PROFILER_SOURCES profile_gemm_multiply_multiply.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_ab_scale.cpp)
endif()
......@@ -69,7 +69,7 @@ if(GPU_TARGETS MATCHES "gfx9")
endif()
if(GPU_TARGETS MATCHES "gfx11" OR GPU_TARGETS MATCHES "gfx12" OR GPU_TARGETS MATCHES "gfx9")
if(SUPPORTED_GPU_TARGETS MATCHES "gfx11" OR SUPPORTED_GPU_TARGETS MATCHES "gfx12" OR SUPPORTED_GPU_TARGETS MATCHES "gfx9")
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_gemm_bilinear.cpp)
endif()
......@@ -111,7 +111,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_column_to_image_inst
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_transpose_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_permute_scale_instance)
if(GPU_TARGETS MATCHES "gfx9")
if(SUPPORTED_GPU_TARGETS MATCHES "gfx9")
if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_scale_instance)
......@@ -135,7 +135,7 @@ if(GPU_TARGETS MATCHES "gfx9")
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_multiply_add_instance)
if(GPU_TARGETS MATCHES "gfx94")
if(SUPPORTED_GPU_TARGETS MATCHES "gfx94")
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_multiply_multiply_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_ab_scale_instance)
endif()
......@@ -159,7 +159,7 @@ if(GPU_TARGETS MATCHES "gfx9")
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_fwd_convinvscale_instance)
endif()
if(GPU_TARGETS MATCHES "gfx9" OR GPU_TARGETS MATCHES "gfx11" OR GPU_TARGETS MATCHES "gfx12")
if(SUPPORTED_GPU_TARGETS MATCHES "gfx9" OR SUPPORTED_GPU_TARGETS MATCHES "gfx11" OR SUPPORTED_GPU_TARGETS MATCHES "gfx12")
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance)
endif()
......
......@@ -7,8 +7,11 @@ MY_PROJECT_SOURCE=$1
if [ $# -ge 2 ] ; then
GPU_TARGETS=$2
shift 2
REST_ARGS=$@
else
GPU_TARGETS="gfx908;gfx90a;gfx940"
REST_ARGS=
fi
cmake \
......@@ -20,4 +23,5 @@ cmake
-D GPU_TARGETS=$GPU_TARGETS \
-D CMAKE_VERBOSE_MAKEFILE:BOOL=ON \
-D USE_BITINT_EXTENSION_INT4=OFF \
$REST_ARGS \
${MY_PROJECT_SOURCE}
......@@ -7,8 +7,11 @@ MY_PROJECT_SOURCE=$1
if [ $# -ge 2 ] ; then
GPU_TARGETS=$2
shift 2
REST_ARGS=$@
else
GPU_TARGETS="gfx908;gfx90a;gfx940"
REST_ARGS=
fi
cmake \
......@@ -20,5 +23,6 @@ cmake
-D GPU_TARGETS=$GPU_TARGETS \
-D CMAKE_VERBOSE_MAKEFILE:BOOL=ON \
-D USE_BITINT_EXTENSION_INT4=OFF \
$REST_ARGS \
${MY_PROJECT_SOURCE}
......@@ -41,11 +41,7 @@ function(add_test_executable TEST_NAME)
endforeach()
endif()
if(INSTANCES_ONLY)
set(TEST_TARGETS ${DEFAULT_GPU_TARGETS})
else()
set(TEST_TARGETS ${GPU_TARGETS})
endif()
set(TEST_TARGETS ${SUPPORTED_GPU_TARGETS})
foreach(source IN LISTS ARGN)
if(NOT DEFINED DL_KERNELS AND source MATCHES "_dl")
......@@ -122,11 +118,7 @@ function(add_gtest_executable TEST_NAME)
endforeach()
endif()
if(INSTANCES_ONLY)
set(TEST_TARGETS ${DEFAULT_GPU_TARGETS})
else()
set(TEST_TARGETS ${GPU_TARGETS})
endif()
set(TEST_TARGETS ${SUPPORTED_GPU_TARGETS})
foreach(source IN LISTS ARGN)
if(NOT DEFINED DL_KERNELS AND source MATCHES "_dl")
......@@ -173,6 +165,7 @@ function(add_gtest_executable TEST_NAME)
endfunction()
add_compile_options(-Wno-c++20-extensions)
add_subdirectory(ck_tile)
add_subdirectory(magic_number_division)
add_subdirectory(space_filling_curve)
add_subdirectory(conv_util)
......@@ -210,10 +203,10 @@ add_subdirectory(conv_tensor_rearrange)
add_subdirectory(transpose)
add_subdirectory(permute_scale)
add_subdirectory(wrapper)
if(GPU_TARGETS MATCHES "gfx11")
if(SUPPORTED_GPU_TARGETS MATCHES "gfx11")
add_subdirectory(wmma_op)
endif()
if(GPU_TARGETS MATCHES "gfx942" AND CK_HIP_VERSION_MAJOR GREATER_EQUAL 6 AND CK_HIP_VERSION_MINOR GREATER_EQUAL 2) # smfmac needs ROCm6.2
if(SUPPORTED_GPU_TARGETS MATCHES "gfx942" AND CK_HIP_VERSION_MAJOR GREATER_EQUAL 6 AND CK_HIP_VERSION_MINOR GREATER_EQUAL 2) # smfmac needs ROCm6.2
add_subdirectory(smfmac_op)
endif()
add_subdirectory(position_embedding)
add_subdirectory(image_to_column)
# Currently ck_tile is only built on gfx9
if(GPU_TARGETS MATCHES "gfx9")
add_gtest_executable(test_tile_image_to_column test_tile_image_to_column.cpp)
endif()
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <algorithm>
#include <gtest/gtest.h>
#include "ck_tile/host.hpp"
#include "ck_tile/core.hpp"
#include "ck_tile/host/kernel_launch.hpp"
#include "ck_tile/ops/image_to_column.hpp"
// Host API implementation
template <typename DataType>
class TestCkTileImageToColumn : public ::testing::Test
{
static constexpr ck_tile::index_t VectorSize = 1;
static constexpr ck_tile::index_t NDimSpatial = 2;
protected:
void Run(const ck_tile::conv::ConvParam conv_params)
{
using ImLayout = ck_tile::tensor_layout::convolution::NHWGC;
const auto G = conv_params.G_;
const auto N = conv_params.N_;
const auto C = conv_params.C_;
const ck_tile::long_index_t NDoHoWo =
N * std::accumulate(conv_params.output_spatial_lengths_.begin(),
std::next(conv_params.output_spatial_lengths_.begin(), NDimSpatial),
1,
std::multiplies<>());
const ck_tile::long_index_t CZYX =
C * std::accumulate(conv_params.filter_spatial_lengths_.begin(),
std::next(conv_params.filter_spatial_lengths_.begin(), NDimSpatial),
1,
std::multiplies<>());
const auto in_desc =
ck_tile::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<ImLayout>(
conv_params);
const auto out_desc = ck_tile::HostTensorDescriptor({G, NDoHoWo, CZYX});
// host verify
ck_tile::HostTensor<DataType> in(in_desc);
ck_tile::HostTensor<DataType> out_device(out_desc);
ck_tile::HostTensor<DataType> out_host(out_desc);
std::cout << "input: " << in.mDesc << std::endl;
std::cout << "output: " << out_device.mDesc << std::endl;
ck_tile::FillUniformDistributionIntegerValue<DataType>{-5.f, 5.f}(in);
ck_tile::DeviceMem in_device_buf(in.get_element_space_size_in_bytes());
ck_tile::DeviceMem out_device_buf(out_device.get_element_space_size_in_bytes());
in_device_buf.ToDevice(in.data());
using thread_tile = ck_tile::sequence<4, 4>;
using warp_tile = ck_tile::sequence<8, 128>;
using block_tile = ck_tile::sequence<32, 128>;
using Shape = ck_tile::TileImageToColumnShape<thread_tile, warp_tile, block_tile>;
using PipelineProblem = ck_tile::BlockImageToColumnProblem<DataType,
DataType,
Shape,
NDimSpatial,
VectorSize,
VectorSize>;
using Kernel = ck_tile::ImageToColumn<PipelineProblem>;
auto kargs = Kernel::MakeKargs(
in_device_buf.GetDeviceBuffer(),
out_device_buf.GetDeviceBuffer(),
G,
N,
C,
ck_tile::to_array<ck_tile::long_index_t, NDimSpatial>(
conv_params.input_spatial_lengths_),
ck_tile::to_array<ck_tile::long_index_t, NDimSpatial>(
conv_params.filter_spatial_lengths_),
ck_tile::to_array<ck_tile::long_index_t, NDimSpatial>(
conv_params.output_spatial_lengths_),
ck_tile::to_array<ck_tile::long_index_t, NDimSpatial + 3>(in_desc.get_strides()),
ck_tile::to_array<ck_tile::long_index_t, 3>(out_desc.get_strides()),
ck_tile::to_array<ck_tile::long_index_t, NDimSpatial>(conv_params.conv_filter_strides_),
ck_tile::to_array<ck_tile::long_index_t, NDimSpatial>(
conv_params.conv_filter_dilations_),
ck_tile::to_array<ck_tile::long_index_t, NDimSpatial>(conv_params.input_left_pads_),
ck_tile::to_array<ck_tile::long_index_t, NDimSpatial>(conv_params.input_right_pads_));
const dim3 grids = Kernel::GridSize(
kargs.N * kargs.output_spatial_lengths[0] * kargs.output_spatial_lengths[1],
kargs.filter_spatial_lengths[0] * kargs.filter_spatial_lengths[1] * kargs.C,
kargs.G);
constexpr dim3 blocks = Kernel::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = 2;
ck_tile::launch_kernel(
ck_tile::stream_config{},
ck_tile::make_kernel<blocks.x, kBlockPerCu>(Kernel{}, grids, blocks, 0, kargs));
// reference
ck_tile::reference_im2col<DataType, DataType, NDimSpatial>(in, out_host, conv_params);
out_device_buf.FromDevice(out_device.data());
bool pass = ck_tile::check_err(out_device, out_host);
EXPECT_TRUE(pass);
}
};
class TestCkTileImageToColumnFloat : public TestCkTileImageToColumn<float>
{
};
class TestCkTileImageToColumnHalf : public TestCkTileImageToColumn<ck_tile::half_t>
{
};
TEST_F(TestCkTileImageToColumnFloat, TestCorrectness)
{
this->Run({2, 2, 4, 1, 192, {3, 3}, {28, 28}, {1, 1}, {1, 1}, {1, 1}, {1, 1}});
this->Run({2, 2, 64, 1, 64, {3, 3}, {14, 14}, {1, 1}, {1, 1}, {1, 1}, {1, 1}});
this->Run({2, 1, 64, 1, 64, {1, 1}, {7, 7}, {3, 3}, {1, 1}, {0, 0}, {0, 0}});
this->Run({2, 1, 64, 1, 64, {1, 1}, {3, 3}, {1, 1}, {1, 1}, {0, 0}, {0, 0}});
this->Run({2, 2, 64, 1, 64, {3, 3}, {28, 28}, {2, 2}, {2, 2}, {1, 1}, {1, 1}});
}
TEST_F(TestCkTileImageToColumnHalf, TestCorrectness)
{
this->Run({2, 2, 4, 1, 192, {3, 3}, {28, 28}, {1, 1}, {1, 1}, {1, 1}, {1, 1}});
this->Run({2, 2, 64, 1, 64, {3, 3}, {14, 14}, {1, 1}, {1, 1}, {1, 1}, {1, 1}});
this->Run({2, 1, 64, 1, 64, {1, 1}, {7, 7}, {3, 3}, {1, 1}, {0, 0}, {0, 0}});
this->Run({2, 1, 64, 1, 64, {1, 1}, {3, 3}, {1, 1}, {1, 1}, {0, 0}, {0, 0}});
this->Run({2, 2, 64, 1, 64, {3, 3}, {28, 28}, {2, 2}, {2, 2}, {1, 1}, {1, 1}});
}
......@@ -18,4 +18,9 @@ if(result EQUAL 0)
target_link_libraries(test_bf8 PRIVATE utility)
endif()
add_gtest_executable(test_custom_type test_custom_type.cpp)
if(result EQUAL 0)
target_link_libraries(test_custom_type PRIVATE utility)
endif()
add_gtest_executable(test_type_convert_const type_convert_const.cpp)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment