Unverified Commit 3d61f89a authored by Illia Silin's avatar Illia Silin Committed by GitHub
Browse files

Merge pull request #134 from ROCm/merge_from_public

Merge from public
parents c160c6cf 4558a3f8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_large_tensor_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_fwd_xdl_large_tensor_ndhwgc_gkzyxc_ndhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
Empty_Tuple,
NDHWGK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_large_tensor_f16_instances<3,
NDHWGC,
GKZYXC,
Empty_Tuple,
NDHWGK,
ConvFwdDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_large_tensor_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_fwd_xdl_large_tensor_ndhwgc_gkzyxc_ndhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
Empty_Tuple,
NDHWGK,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_large_tensor_f32_instances<3,
NDHWGC,
GKZYXC,
Empty_Tuple,
NDHWGK,
ConvFwdDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -2,6 +2,7 @@
set(GROUPED_CONV3D_FWD_CONVSCALE
xdl/device_grouped_conv3d_fwd_xdl_convscale_ndhwgc_gkzyxc_ndhwgk_f8_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_convscale_ndhwgc_gkzyxc_ndhwgk_bf8_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_convscale_ndhwgc_gkzyxc_ndhwgk_f8_bf8_instance.cpp)
xdl/device_grouped_conv3d_fwd_xdl_convscale_ndhwgc_gkzyxc_ndhwgk_f8_bf8_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_convscale_ndhwgc_gkzyxc_ndhwgk_bf8_f8_instance.cpp)
add_instance_library(device_grouped_conv3d_fwd_convscale_instance ${GROUPED_CONV3D_FWD_CONVSCALE})
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_outelementop_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using ConvScale = ck::tensor_operation::element_wise::ConvScale;
void add_device_grouped_conv3d_fwd_xdl_convscale_ndhwgc_gkzyxc_ndhwgk_bf8_f8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
BF8,
F8,
ck::Tuple<>,
F8,
PassThrough,
PassThrough,
ConvScale,
BF8,
F8>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_outelementop_bf8_f8_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
ConvFwdDefault,
ConvScale>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_outelementop_bf8_f8_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
ConvFwd1x1P0,
ConvScale>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_outelementop_bf8_f8_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
ConvFwd1x1S1P0,
ConvScale>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
# ONLY XDL_KERNELS
set(GROUPED_CONV3D_FWD_CONVSCALE_ADD
xdl/device_grouped_conv3d_fwd_xdl_convscale_add_ndhwgc_gkzyxc_ndhwgk_f8_instance.cpp)
add_instance_library(device_grouped_conv3d_fwd_convscale_add_instance ${GROUPED_CONV3D_FWD_CONVSCALE_ADD})
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_binary_outelementop_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using ConvScaleAdd = ck::tensor_operation::element_wise::ConvScaleAdd;
void add_device_grouped_conv3d_fwd_xdl_convscale_add_ndhwgc_gkzyxc_ndhwgk_f8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK>,
NDHWGK,
F8,
F8,
ck::Tuple<F32>,
F8,
PassThrough,
PassThrough,
ConvScaleAdd,
F8,
F8>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_binary_outelementop_f8_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK>,
NDHWGK,
ConvFwdDefault,
ConvScaleAdd>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_binary_outelementop_f8_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK>,
NDHWGK,
ConvFwd1x1P0,
ConvScaleAdd>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_binary_outelementop_f8_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK>,
NDHWGK,
ConvFwd1x1S1P0,
ConvScaleAdd>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
# ONLY XDL_KERNELS
set(GROUPED_CONV3D_FWD_CONVSCALE_RELU
xdl/device_grouped_conv3d_fwd_xdl_convscale_relu_ndhwgc_gkzyxc_ndhwgk_f8_instance.cpp)
add_instance_library(device_grouped_conv3d_fwd_convscale_relu_instance ${GROUPED_CONV3D_FWD_CONVSCALE_RELU})
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_outelementop_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/tensor_operation/gpu/element/combined_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using ConvScaleRelu = ck::tensor_operation::element_wise::ConvScaleRelu;
void add_device_grouped_conv3d_fwd_xdl_convscale_relu_ndhwgc_gkzyxc_ndhwgk_f8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
F8,
F8,
ck::Tuple<>,
F8,
PassThrough,
PassThrough,
ConvScaleRelu,
F8,
F8>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_outelementop_f8_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
ConvFwdDefault,
ConvScaleRelu>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_outelementop_f8_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
ConvFwd1x1P0,
ConvScaleRelu>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_outelementop_f8_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
ConvFwd1x1S1P0,
ConvScaleRelu>{});
}
namespace ew = ck::tensor_operation::element_wise;
using CombConvScaleRelu = ew::UnaryCombinedOp<ew::Scale, ew::Scale, ew::Relu>;
void add_device_grouped_conv3d_fwd_xdl_combconvscale_relu_ndhwgc_gkzyxc_ndhwgk_f8_f8_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
F8,
F8,
ck::Tuple<>,
F32,
PassThrough,
PassThrough,
CombConvScaleRelu,
F8,
F8>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_outelementop_f8_f8_f32_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
ConvFwdDefault,
CombConvScaleRelu>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_outelementop_f8_f8_f32_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
ConvFwd1x1P0,
CombConvScaleRelu>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_outelementop_f8_f8_f32_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
ConvFwd1x1S1P0,
CombConvScaleRelu>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
set(FMHA_CPP_FOLDER ${CMAKE_CURRENT_BINARY_DIR})
set(FMHA_SRC_FOLDER ${CMAKE_SOURCE_DIR}/example/ck_tile/01_fmha/)
set(CK_TILE_SRC_FOLDER ${CMAKE_SOURCE_DIR}/include/ck_tile/)
# python stuff
find_package(PythonInterp 3 REQUIRED)
rocm_install(DIRECTORY ${CK_TILE_SRC_FOLDER} DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/ck_tile)
rocm_install(FILES
"${FMHA_SRC_FOLDER}/fmha_fwd.hpp"
"${FMHA_SRC_FOLDER}/bias.hpp"
"${FMHA_SRC_FOLDER}/mask.hpp"
DESTINATION include/ck_tile/ops
)
# header for building lib
file(COPY ${FMHA_SRC_FOLDER}/fmha_fwd.hpp DESTINATION ${FMHA_CPP_FOLDER})
file(COPY ${FMHA_SRC_FOLDER}/bias.hpp DESTINATION ${FMHA_CPP_FOLDER})
file(COPY ${FMHA_SRC_FOLDER}/mask.hpp DESTINATION ${FMHA_CPP_FOLDER})
# generate a list of kernels, but not actually emit files at config stage
execute_process(
COMMAND ${PYTHON_EXECUTABLE} ${CMAKE_SOURCE_DIR}/example/ck_tile/01_fmha/generate.py
--list_blobs ${FMHA_CPP_FOLDER}/blob_list.txt
)
file(STRINGS ${FMHA_CPP_FOLDER}/blob_list.txt FMHA_FWD_GEN_BLOBS)
# actually generate the cpp files
add_custom_command(
OUTPUT ${FMHA_FWD_GEN_BLOBS}
COMMAND ${PYTHON_EXECUTABLE} ${CMAKE_SOURCE_DIR}/example/ck_tile/01_fmha/generate.py
--output_dir ${FMHA_CPP_FOLDER}
COMMENT "Generating mha kernel (cpp) files now ..."
VERBATIM
)
# This is done to remove path info and just
# have filename. Since, it was cauing the cmake
# to throw "File name too long"
set(device_files)
foreach(filepath IN LISTS FMHA_FWD_GEN_BLOBS)
get_filename_component(filename ${filepath} NAME)
# Append the filename to the device_files list
list(APPEND device_files ${filename})
endforeach()
add_custom_target(generate_cpp_files DEPENDS ${FMHA_FWD_GEN_BLOBS})
add_instance_library(device_mha_instance ${device_files})
if (TARGET device_mha_instance)
add_dependencies(device_mha_instance generate_cpp_files)
endif()
add_instance_library(device_permute_scale_instance
add_instance_library(device_permute_scale_instance
device_permute_scale_1d_fp16_instances.cpp
device_permute_scale_2d_fp16_instances.cpp
device_permute_scale_3d_fp16_instances.cpp
......@@ -10,4 +10,5 @@ add_instance_library(device_permute_scale_instance
device_permute_scale_3d_fp32_instances.cpp
device_permute_scale_4d_fp32_instances.cpp
device_permute_scale_5d_fp32_instances.cpp
device_permute_scale_6d_fp32_instances.cpp)
device_permute_scale_6d_fp32_instances.cpp
device_permute_scale_6d_fp32_fp8_instances.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/permute_scale/device_permute_scale_instances.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Scale = element_wise::Scale;
void add_device_permute_scale_6d_f32_f8_instances(
std::vector<std::unique_ptr<DeviceElementwise<ck::Tuple<F32>, ck::Tuple<F8>, Scale, 6>>>&
instances)
{
#ifdef CK_ENABLE_FP8
add_device_operation_instances(instances, device_permute_scale_f32_f8_instances<6, Scale>{});
#else
ignore = instances;
#endif
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -10,15 +10,24 @@ namespace device {
namespace instance {
// clang-format off
// InDataType | AccDataType | OutDataType | Rank | NumReduceDim | ReduceOperation | InElementwiseOp | AccElementwiseOp | PropagateNan | UseIndex
template void add_device_reduce_instance_blockwise<F32, F32, F32, 4, 3, ReduceAMax, UnaryAbs, PassThrough, false, false>(std::vector<DeviceReducePtr<F32, F32, F32, 4, 3, ReduceAMax, UnaryAbs, PassThrough, false, false>>&);
template void add_device_reduce_instance_blockwise<F32, F32, F32, 4, 4, ReduceAMax, UnaryAbs, PassThrough, false, false>(std::vector<DeviceReducePtr<F32, F32, F32, 4, 4, ReduceAMax, UnaryAbs, PassThrough, false, false>>&);
template void add_device_reduce_instance_blockwise<F32, F32, F32, 4, 1, ReduceAMax, UnaryAbs, PassThrough, false, false>(std::vector<DeviceReducePtr<F32, F32, F32, 4, 1, ReduceAMax, UnaryAbs, PassThrough, false, false>>&);
template void add_device_reduce_instance_blockwise<F32, F32, F32, 2, 1, ReduceAMax, UnaryAbs, PassThrough, false, false>(std::vector<DeviceReducePtr<F32, F32, F32, 2, 1, ReduceAMax, UnaryAbs, PassThrough, false, false>>&);
template void add_device_reduce_instance_blockwise<F32, F32, F32, 4, 3, ReduceAMax, UnaryAbs, PassThrough, false, true>(std::vector<DeviceReducePtr<F32, F32, F32, 4, 3, ReduceAMax, UnaryAbs, PassThrough, false, true>>&);
template void add_device_reduce_instance_blockwise<F32, F32, F32, 4, 4, ReduceAMax, UnaryAbs, PassThrough, false, true>(std::vector<DeviceReducePtr<F32, F32, F32, 4, 4, ReduceAMax, UnaryAbs, PassThrough, false, true>>&);
template void add_device_reduce_instance_blockwise<F32, F32, F32, 4, 1, ReduceAMax, UnaryAbs, PassThrough, false, true>(std::vector<DeviceReducePtr<F32, F32, F32, 4, 1, ReduceAMax, UnaryAbs, PassThrough, false, true>>&);
template void add_device_reduce_instance_blockwise<F32, F32, F32, 2, 1, ReduceAMax, UnaryAbs, PassThrough, false, true>(std::vector<DeviceReducePtr<F32, F32, F32, 2, 1, ReduceAMax, UnaryAbs, PassThrough, false, true>>&);
// InDataType | AccDataType | OutDataType | Rank | NumReduceDim | ReduceOperation | InElementwiseOp | AccElementwiseOp | PropagateNan | UseIndex
template void add_device_reduce_instance_blockwise< F32, F32, F32, 4, 3, ReduceAMax, UnaryAbs, PassThrough, false, false>(std::vector<DeviceReducePtr<F32, F32, F32, 4, 3, ReduceAMax, UnaryAbs, PassThrough, false, false>>&);
template void add_device_reduce_instance_blockwise< F32, F32, F32, 4, 4, ReduceAMax, UnaryAbs, PassThrough, false, false>(std::vector<DeviceReducePtr<F32, F32, F32, 4, 4, ReduceAMax, UnaryAbs, PassThrough, false, false>>&);
template void add_device_reduce_instance_blockwise< F32, F32, F32, 4, 1, ReduceAMax, UnaryAbs, PassThrough, false, false>(std::vector<DeviceReducePtr<F32, F32, F32, 4, 1, ReduceAMax, UnaryAbs, PassThrough, false, false>>&);
template void add_device_reduce_instance_blockwise< F32, F32, F32, 2, 1, ReduceAMax, UnaryAbs, PassThrough, false, false>(std::vector<DeviceReducePtr<F32, F32, F32, 2, 1, ReduceAMax, UnaryAbs, PassThrough, false, false>>&);
template void add_device_reduce_instance_blockwise< F32, F32, F32, 4, 3, ReduceAMax, UnaryAbs, PassThrough, false, true>(std::vector<DeviceReducePtr<F32, F32, F32, 4, 3, ReduceAMax, UnaryAbs, PassThrough, false, true>>&);
template void add_device_reduce_instance_blockwise< F32, F32, F32, 4, 4, ReduceAMax, UnaryAbs, PassThrough, false, true>(std::vector<DeviceReducePtr<F32, F32, F32, 4, 4, ReduceAMax, UnaryAbs, PassThrough, false, true>>&);
template void add_device_reduce_instance_blockwise< F32, F32, F32, 4, 1, ReduceAMax, UnaryAbs, PassThrough, false, true>(std::vector<DeviceReducePtr<F32, F32, F32, 4, 1, ReduceAMax, UnaryAbs, PassThrough, false, true>>&);
template void add_device_reduce_instance_blockwise< F32, F32, F32, 2, 1, ReduceAMax, UnaryAbs, PassThrough, false, true>(std::vector<DeviceReducePtr<F32, F32, F32, 2, 1, ReduceAMax, UnaryAbs, PassThrough, false, true>>&);
template void add_device_reduce_instance_blockwise< F32, F32, F32, 6, 6, ReduceAMax, UnaryAbs, PassThrough, true, false>(std::vector<DeviceReducePtr<F32, F32, F32, 6, 6, ReduceAMax, UnaryAbs, PassThrough, true, false>>&);
template void add_device_reduce_instance_blockwise< F32, F32, F32, 5, 5, ReduceAMax, UnaryAbs, PassThrough, true, false>(std::vector<DeviceReducePtr<F32, F32, F32, 5, 5, ReduceAMax, UnaryAbs, PassThrough, true, false>>&);
template void add_device_reduce_instance_blockwise< F32, F32, F32, 4, 4, ReduceAMax, UnaryAbs, PassThrough, true, false>(std::vector<DeviceReducePtr<F32, F32, F32, 4, 4, ReduceAMax, UnaryAbs, PassThrough, true, false>>&);
template void add_device_reduce_instance_blockwise< F32, F32, F32, 6, 3, ReduceAMax, UnaryAbs, PassThrough, true, false>(std::vector<DeviceReducePtr<F32, F32, F32, 6, 3, ReduceAMax, UnaryAbs, PassThrough, true, false>>&);
template void add_device_reduce_instance_blockwise< F32, F32, F32, 5, 3, ReduceAMax, UnaryAbs, PassThrough, true, false>(std::vector<DeviceReducePtr<F32, F32, F32, 5, 3, ReduceAMax, UnaryAbs, PassThrough, true, false>>&);
template void add_device_reduce_instance_blockwise< F32, F32, F32, 4, 3, ReduceAMax, UnaryAbs, PassThrough, true, false>(std::vector<DeviceReducePtr<F32, F32, F32, 4, 3, ReduceAMax, UnaryAbs, PassThrough, true, false>>&);
template void add_device_reduce_instance_blockwise< F32, F32, F32, 3, 3, ReduceAMax, PassThrough, PassThrough, true, false>(std::vector<DeviceReducePtr<F32, F32, F32, 3, 3, ReduceAMax, PassThrough, PassThrough, true, false>>&);
template void add_device_reduce_instance_blockwise< F32, F32, F32, 2, 2, ReduceAMax, PassThrough, PassThrough, true, false>(std::vector<DeviceReducePtr<F32, F32, F32, 2, 2, ReduceAMax, PassThrough, PassThrough, true, false>>&);
template void add_device_reduce_instance_blockwise< F32, F32, F32, 1, 1, ReduceAMax, PassThrough, PassThrough, true, false>(std::vector<DeviceReducePtr<F32, F32, F32, 1, 1, ReduceAMax, PassThrough, PassThrough, true, false>>&);
// clang-format on
} // namespace instance
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/host_utility/io.hpp"
......@@ -20,6 +20,63 @@ ConvParam::ConvParam(ck::index_t n_dim,
const std::vector<ck::index_t>& dilations,
const std::vector<ck::index_t>& left_pads,
const std::vector<ck::index_t>& right_pads)
: num_dim_spatial_(static_cast<ck::long_index_t>(n_dim)),
G_(static_cast<ck::long_index_t>(group_count)),
N_(static_cast<ck::long_index_t>(n_batch)),
K_(static_cast<ck::long_index_t>(n_out_channels)),
C_(static_cast<ck::long_index_t>(n_in_channels)),
filter_spatial_lengths_(num_dim_spatial_),
input_spatial_lengths_(num_dim_spatial_),
output_spatial_lengths_(num_dim_spatial_),
conv_filter_strides_(num_dim_spatial_),
conv_filter_dilations_(num_dim_spatial_),
input_left_pads_(num_dim_spatial_),
input_right_pads_(num_dim_spatial_)
{
if(static_cast<ck::index_t>(filter_spatial_lengths_.size()) != num_dim_spatial_ ||
static_cast<ck::index_t>(input_spatial_lengths_.size()) != num_dim_spatial_ ||
static_cast<ck::index_t>(conv_filter_strides_.size()) != num_dim_spatial_ ||
static_cast<ck::index_t>(conv_filter_dilations_.size()) != num_dim_spatial_ ||
static_cast<ck::index_t>(input_left_pads_.size()) != num_dim_spatial_ ||
static_cast<ck::index_t>(input_right_pads_.size()) != num_dim_spatial_)
{
throw(
std::runtime_error("ConvParam::ConvParam: "
"parameter size is different from number of declared dimensions!"));
}
for(ck::index_t i = 0; i < num_dim_spatial_; ++i)
{
filter_spatial_lengths_[i] = static_cast<ck::long_index_t>(filters_len[i]);
input_spatial_lengths_[i] = static_cast<ck::long_index_t>(input_len[i]);
conv_filter_strides_[i] = static_cast<ck::long_index_t>(strides[i]);
conv_filter_dilations_[i] = static_cast<ck::long_index_t>(dilations[i]);
input_left_pads_[i] = static_cast<ck::long_index_t>(left_pads[i]);
input_right_pads_[i] = static_cast<ck::long_index_t>(right_pads[i]);
// XEff = (X - 1) * conv_dilation_w + 1;
// Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
const ck::long_index_t x_eff =
(filter_spatial_lengths_[i] - 1) * conv_filter_dilations_[i] + 1;
output_spatial_lengths_[i] =
(input_spatial_lengths_[i] + input_left_pads_[i] + input_right_pads_[i] - x_eff) /
conv_filter_strides_[i] +
1;
}
}
ConvParam::ConvParam(ck::long_index_t n_dim,
ck::long_index_t group_count,
ck::long_index_t n_batch,
ck::long_index_t n_out_channels,
ck::long_index_t n_in_channels,
const std::vector<ck::long_index_t>& filters_len,
const std::vector<ck::long_index_t>& input_len,
const std::vector<ck::long_index_t>& strides,
const std::vector<ck::long_index_t>& dilations,
const std::vector<ck::long_index_t>& left_pads,
const std::vector<ck::long_index_t>& right_pads)
: num_dim_spatial_(n_dim),
G_(group_count),
N_(n_batch),
......@@ -49,7 +106,8 @@ ConvParam::ConvParam(ck::index_t n_dim,
{
// XEff = (X - 1) * conv_dilation_w + 1;
// Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
const ck::index_t x_eff = (filter_spatial_lengths_[i] - 1) * conv_filter_dilations_[i] + 1;
const ck::long_index_t x_eff =
(filter_spatial_lengths_[i] - 1) * conv_filter_dilations_[i] + 1;
output_spatial_lengths_[i] =
(input_spatial_lengths_[i] + input_left_pads_[i] + input_right_pads_[i] - x_eff) /
......@@ -63,7 +121,7 @@ ConvParam::ConvParam()
{
}
std::vector<ck::index_t> ConvParam::GetOutputSpatialLengths() const
std::vector<ck::long_index_t> ConvParam::GetOutputSpatialLengths() const
{
return output_spatial_lengths_;
}
......@@ -97,46 +155,46 @@ std::string get_conv_param_parser_helper_msg()
ck::utils::conv::ConvParam parse_conv_param(int num_dim_spatial, int arg_idx, char* const argv[])
{
const ck::index_t G = std::stoi(argv[arg_idx++]);
const ck::index_t N = std::stoi(argv[arg_idx++]);
const ck::index_t K = std::stoi(argv[arg_idx++]);
const ck::index_t C = std::stoi(argv[arg_idx++]);
std::vector<ck::index_t> filter_spatial_lengths(num_dim_spatial);
std::vector<ck::index_t> input_spatial_lengths(num_dim_spatial);
std::vector<ck::index_t> conv_filter_strides(num_dim_spatial);
std::vector<ck::index_t> conv_filter_dilations(num_dim_spatial);
std::vector<ck::index_t> input_left_pads(num_dim_spatial);
std::vector<ck::index_t> input_right_pads(num_dim_spatial);
const ck::long_index_t G = std::stol(argv[arg_idx++]);
const ck::long_index_t N = std::stol(argv[arg_idx++]);
const ck::long_index_t K = std::stol(argv[arg_idx++]);
const ck::long_index_t C = std::stol(argv[arg_idx++]);
std::vector<ck::long_index_t> filter_spatial_lengths(num_dim_spatial);
std::vector<ck::long_index_t> input_spatial_lengths(num_dim_spatial);
std::vector<ck::long_index_t> conv_filter_strides(num_dim_spatial);
std::vector<ck::long_index_t> conv_filter_dilations(num_dim_spatial);
std::vector<ck::long_index_t> input_left_pads(num_dim_spatial);
std::vector<ck::long_index_t> input_right_pads(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
filter_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
filter_spatial_lengths[i] = std::stol(argv[arg_idx++]);
}
for(int i = 0; i < num_dim_spatial; ++i)
{
input_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
input_spatial_lengths[i] = std::stol(argv[arg_idx++]);
}
for(int i = 0; i < num_dim_spatial; ++i)
{
conv_filter_strides[i] = std::stoi(argv[arg_idx++]);
conv_filter_strides[i] = std::stol(argv[arg_idx++]);
}
for(int i = 0; i < num_dim_spatial; ++i)
{
conv_filter_dilations[i] = std::stoi(argv[arg_idx++]);
conv_filter_dilations[i] = std::stol(argv[arg_idx++]);
}
for(int i = 0; i < num_dim_spatial; ++i)
{
input_left_pads[i] = std::stoi(argv[arg_idx++]);
input_left_pads[i] = std::stol(argv[arg_idx++]);
}
for(int i = 0; i < num_dim_spatial; ++i)
{
input_right_pads[i] = std::stoi(argv[arg_idx++]);
input_right_pads[i] = std::stol(argv[arg_idx++]);
}
return ck::utils::conv::ConvParam{num_dim_spatial,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -82,6 +82,29 @@ bool profile_conv_bwd_data_impl(int do_verification,
Tensor<WeiDataType> weight(wei_g_k_c_xs_desc);
Tensor<OutDataType> output(out_g_n_k_wos_desc);
std::vector<ck::index_t> input_spatial_lengths_i32(NDimSpatial);
std::vector<ck::index_t> filter_spatial_lengths_i32(NDimSpatial);
std::vector<ck::index_t> output_spatial_lengths_i32(NDimSpatial);
std::vector<ck::index_t> conv_filter_strides_i32(NDimSpatial);
std::vector<ck::index_t> conv_filter_dilations_i32(NDimSpatial);
std::vector<ck::index_t> input_left_pads_i32(NDimSpatial);
std::vector<ck::index_t> input_right_pads_i32(NDimSpatial);
for(ck::index_t d = 0; d < NDimSpatial; d++)
{
input_spatial_lengths_i32[d] =
static_cast<ck::index_t>(conv_param.input_spatial_lengths_[d]);
filter_spatial_lengths_i32[d] =
static_cast<ck::index_t>(conv_param.filter_spatial_lengths_[d]);
output_spatial_lengths_i32[d] =
static_cast<ck::index_t>(conv_param.GetOutputSpatialLengths()[d]);
conv_filter_strides_i32[d] = static_cast<ck::index_t>(conv_param.conv_filter_strides_[d]);
conv_filter_dilations_i32[d] =
static_cast<ck::index_t>(conv_param.conv_filter_dilations_[d]);
input_left_pads_i32[d] = static_cast<ck::index_t>(conv_param.input_left_pads_[d]);
input_right_pads_i32[d] = static_cast<ck::index_t>(conv_param.input_right_pads_[d]);
}
std::cout << "input: " << input_host_result.mDesc << std::endl;
std::cout << "weight: " << weight.mDesc << std::endl;
std::cout << "output: " << output.mDesc << std::endl;
......@@ -161,16 +184,16 @@ bool profile_conv_bwd_data_impl(int do_verification,
op_ptr->MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
conv_param.N_,
conv_param.K_,
conv_param.C_,
conv_param.input_spatial_lengths_,
conv_param.filter_spatial_lengths_,
conv_param.output_spatial_lengths_,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
static_cast<ck::index_t>(conv_param.N_),
static_cast<ck::index_t>(conv_param.K_),
static_cast<ck::index_t>(conv_param.C_),
input_spatial_lengths_i32,
filter_spatial_lengths_i32,
output_spatial_lengths_i32,
conv_filter_strides_i32,
conv_filter_dilations_i32,
input_left_pads_i32,
input_right_pads_i32,
in_element_op,
wei_element_op,
out_element_op);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -60,6 +60,29 @@ bool profile_conv_fwd_impl(int do_verification,
Tensor<OutDataType> host_output(out_g_n_k_wos_desc);
Tensor<OutDataType> device_output(out_g_n_k_wos_desc);
std::vector<ck::index_t> input_spatial_lengths_i32(NDimSpatial);
std::vector<ck::index_t> filter_spatial_lengths_i32(NDimSpatial);
std::vector<ck::index_t> output_spatial_lengths_i32(NDimSpatial);
std::vector<ck::index_t> conv_filter_strides_i32(NDimSpatial);
std::vector<ck::index_t> conv_filter_dilations_i32(NDimSpatial);
std::vector<ck::index_t> input_left_pads_i32(NDimSpatial);
std::vector<ck::index_t> input_right_pads_i32(NDimSpatial);
for(ck::index_t d = 0; d < NDimSpatial; d++)
{
input_spatial_lengths_i32[d] =
static_cast<ck::index_t>(conv_param.input_spatial_lengths_[d]);
filter_spatial_lengths_i32[d] =
static_cast<ck::index_t>(conv_param.filter_spatial_lengths_[d]);
output_spatial_lengths_i32[d] =
static_cast<ck::index_t>(conv_param.GetOutputSpatialLengths()[d]);
conv_filter_strides_i32[d] = static_cast<ck::index_t>(conv_param.conv_filter_strides_[d]);
conv_filter_dilations_i32[d] =
static_cast<ck::index_t>(conv_param.conv_filter_dilations_[d]);
input_left_pads_i32[d] = static_cast<ck::index_t>(conv_param.input_left_pads_[d]);
input_right_pads_i32[d] = static_cast<ck::index_t>(conv_param.input_right_pads_[d]);
}
std::cout << "input: " << input.mDesc << std::endl;
std::cout << "weight: " << weight.mDesc << std::endl;
std::cout << "output: " << host_output.mDesc << std::endl;
......@@ -143,16 +166,16 @@ bool profile_conv_fwd_impl(int do_verification,
op_ptr->MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
conv_param.N_,
conv_param.K_,
conv_param.C_,
conv_param.input_spatial_lengths_,
conv_param.filter_spatial_lengths_,
conv_param.GetOutputSpatialLengths(),
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
static_cast<ck::index_t>(conv_param.N_),
static_cast<ck::index_t>(conv_param.K_),
static_cast<ck::index_t>(conv_param.C_),
input_spatial_lengths_i32,
filter_spatial_lengths_i32,
output_spatial_lengths_i32,
conv_filter_strides_i32,
conv_filter_dilations_i32,
input_left_pads_i32,
input_right_pads_i32,
in_element_op,
wei_element_op,
out_element_op);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3_ab_scale.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_ab_scale.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace profiler {
template <typename A0DataType,
typename A1DataType,
typename B0DataType,
typename B1DataType,
typename ComputeDataType,
typename AccDataType,
typename EDataType,
index_t ScaleBlockM,
index_t ScaleBlockN,
index_t ScaleBlockK,
typename ALayout,
typename BLayout,
typename ELayout>
bool profile_gemm_ab_scale_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideE,
int n_warmup,
int n_iter,
uint64_t rotating = 0)
{
bool pass = true;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
ck::index_t Scale_Stride_AM = ck::is_same_v<ALayout, tensor_layout::gemm::RowMajor>
? ((K + ScaleBlockK - 1) / ScaleBlockK)
: ((M + ScaleBlockM - 1) / ScaleBlockM);
ck::index_t Scale_Stride_BN = ck::is_same_v<BLayout, ck::tensor_layout::gemm::ColumnMajor>
? ((K + ScaleBlockK - 1) / ScaleBlockK)
: ((N + ScaleBlockN - 1) / ScaleBlockN);
Tensor<A0DataType> a0_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<A1DataType> a1_m_k(f_host_tensor_descriptor((M + ScaleBlockM - 1) / ScaleBlockM,
(K + ScaleBlockK - 1) / ScaleBlockK,
Scale_Stride_AM,
ALayout{}));
Tensor<B0DataType> b0_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<B1DataType> b1_k_n(f_host_tensor_descriptor((K + ScaleBlockK - 1) / ScaleBlockK,
(N + ScaleBlockN - 1) / ScaleBlockN,
Scale_Stride_BN,
BLayout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
int total_gemm_needed =
a0_m_k.GetElementSpaceSizeInBytes() + b0_k_n.GetElementSpaceSizeInBytes() +
a1_m_k.GetElementSpaceSizeInBytes() + b1_k_n.GetElementSpaceSizeInBytes();
int rotating_count = std::max(
1,
std::min(n_iter,
static_cast<int>(std::ceil(static_cast<double>(rotating) / total_gemm_needed))));
std::cout << "a0_m_k: " << a0_m_k.mDesc << std::endl;
std::cout << "a1_m_k: " << a1_m_k.mDesc << std::endl;
std::cout << "b0_k_n: " << b0_k_n.mDesc << std::endl;
std::cout << "b1_k_n: " << b1_k_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_device_result.mDesc << std::endl;
std::cout << "rotating count: " << rotating_count << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a0_m_k.GenerateTensorValue(GeneratorTensor_2<A0DataType>{-2, 2});
b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
a1_m_k.GenerateTensorValue(GeneratorTensor_3<A1DataType>{0, 1.0});
b1_k_n.GenerateTensorValue(GeneratorTensor_3<B1DataType>{0, 1.0});
break;
default:
a0_m_k.GenerateTensorValue(GeneratorTensor_3<A0DataType>{-0.5, 0.5});
b0_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{-0.5, 0.5});
a1_m_k.GenerateTensorValue(GeneratorTensor_3<A1DataType>{0, 1.0});
b1_k_n.GenerateTensorValue(GeneratorTensor_3<B1DataType>{0, 1.0});
}
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
DeviceMem a0_device_buf(sizeof(A0DataType) * a0_m_k.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_k_n.mDesc.GetElementSpaceSize());
DeviceMem a1_device_buf(sizeof(A1DataType) * a1_m_k.mDesc.GetElementSpaceSize());
DeviceMem b1_device_buf(sizeof(B1DataType) * b1_k_n.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a0_device_buf.ToDevice(a0_m_k.mData.data());
b0_device_buf.ToDevice(b0_k_n.mData.data());
a1_device_buf.ToDevice(a1_m_k.mData.data());
b1_device_buf.ToDevice(b1_k_n.mData.data());
using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleD_ABScale<ALayout,
BLayout,
ck::Tuple<>,
ELayout,
A0DataType,
A1DataType,
B0DataType,
B1DataType,
ck::Tuple<>,
EDataType,
ScaleBlockM,
ScaleBlockN,
ScaleBlockK,
AElementOp,
BElementOp,
CElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
// Run reference GEMM
if(do_verification)
{
Tensor<AccDataType> c_m_n({M, N});
Tensor<float> a_m_k({M, K});
Tensor<float> b_k_n({K, N});
for(int m = 0; m < M; m++)
{
for(int k = 0; k < K; k++)
{
a_m_k(m, k) = ck::type_convert<float>(a0_m_k(m, k)) *
a1_m_k(m / ScaleBlockM, k / ScaleBlockK);
}
}
for(int n = 0; n < N; n++)
{
for(int k = 0; k < K; k++)
{
b_k_n(k, n) = ck::type_convert<float>(b0_k_n(k, n)) *
b1_k_n(k / ScaleBlockK, n / ScaleBlockN);
}
}
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<float,
float,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough,
float>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, PassThrough{}, PassThrough{}, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
e_m_n_host_result(m, n) = ck::type_convert<EDataType>(c_m_n(m, n));
}
}
}
std::string best_op_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device GEMM instances
for(auto& op_ptr : op_ptrs)
{
auto argument_ptr =
op_ptr->MakeArgumentPointer(static_cast<A0DataType*>(a0_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_device_buf.GetDeviceBuffer()),
std::array<const void*, 0>{},
static_cast<EDataType*>(c_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, 0>{},
StrideE,
a1_device_buf.GetDeviceBuffer(),
b1_device_buf.GetDeviceBuffer(),
a_element_op,
b_element_op,
c_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
// re-init C to zero before profiling next kernel
c_device_buf.SetZero();
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false, 0, n_warmup, n_iter});
if(do_verification)
{
c_device_buf.FromDevice(e_m_n_device_result.mData.data());
#if defined CK_ENABLE_FP8
// set softer tolerances for fp8
if constexpr(is_same_v<A0DataType, f8_t> || is_same_v<B0DataType, f8_t> ||
is_same_v<EDataType, f8_t>)
{
std::string msg = "Error: Incorrect results!";
double rtol = 5e-2;
double atol = 5e-2;
pass = pass & ck::utils::check_err(
e_m_n_device_result, e_m_n_host_result, msg, rtol, atol);
}
else
{
#endif
pass = pass & ck::utils::check_err(e_m_n_device_result, e_m_n_host_result);
#if defined CK_ENABLE_FP8
}
#endif
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a0_m_k.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "b: ", b0_k_n.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "c_host : ", e_m_n_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "c_device: ", e_m_n_device_result.mData, ",")
<< std::endl;
}
}
std::string op_name = op_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(
argument_ptr.get(),
StreamConfig{
nullptr, time_kernel, 0, n_warmup, n_iter, rotating_count > 1, rotating_count});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
}
}
if constexpr(is_same<EDataType, float>::value)
{
std::cout << "Best Perf for datatype = f32";
}
else if constexpr(is_same<EDataType, half_t>::value)
{
std::cout << "Best Perf for datatype = f16";
}
else if constexpr(is_same<EDataType, bhalf_t>::value)
{
std::cout << "Best Perf for datatype = bf16";
}
else if constexpr(is_same<EDataType, int8_t>::value)
{
std::cout << "Best Perf for datatype = int8";
}
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value)
{
std::cout << " ALayout = RowMajor";
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value)
{
std::cout << " ALayout = ColumnMajor";
}
if constexpr(is_same<BLayout, tensor_layout::gemm::RowMajor>::value)
{
std::cout << " BLayout = RowMajor";
}
else if constexpr(is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value)
{
std::cout << " BLayout = ColumnMajor";
}
std::cout << " M = " << M << " N = " << N << " K = " << K << " StrideA = " << StrideA
<< " StrideB = " << StrideB << " StrideE = " << StrideE << " : " << best_ave_time
<< " ms, " << best_tflops << " TFlops, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
return pass;
}
} // namespace profiler
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_multiply_multiply.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename ComputeDataType,
typename AccDataType,
typename D0DataType,
typename D1DataType,
typename EDataType,
typename ALayout,
typename BLayout,
typename D0Layout,
typename D1Layout,
typename ELayout>
bool profile_gemm_multiply_multiply_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideD0,
int StrideD1,
int StrideE,
int KBatch,
int n_warmup,
int n_iter,
uint64_t rotating = 0)
{
bool pass = true;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<D0DataType> d0_m_n(f_host_tensor_descriptor(M, N, StrideD0, D0Layout{}));
Tensor<D1DataType> d1_m_n(f_host_tensor_descriptor(M, N, StrideD1, D1Layout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
int total_gemm_needed =
a_m_k.GetElementSpaceSizeInBytes() + b_k_n.GetElementSpaceSizeInBytes() +
d0_m_n.GetElementSpaceSizeInBytes() + d1_m_n.GetElementSpaceSizeInBytes();
int rotating_count = std::max(
1,
std::min(n_iter,
static_cast<int>(std::ceil(static_cast<double>(rotating) / total_gemm_needed))));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "d0_m_n: " << d0_m_n.mDesc << std::endl;
std::cout << "d1_m_n: " << d1_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_device_result.mDesc << std::endl;
std::cout << "rotating count: " << rotating_count << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-1, 2});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-1, 2});
d0_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-5, 5});
d1_m_n.GenerateTensorValue(GeneratorTensor_2<D1DataType>{-1, 1});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d0_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{0.0, 1.0});
d1_m_n.GenerateTensorValue(GeneratorTensor_3<D1DataType>{0.0, 1.0});
}
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using MultiplyMultiply = ck::tensor_operation::element_wise::MultiplyMultiply;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = MultiplyMultiply;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem d0_device_buf(sizeof(D0DataType) * d0_m_n.mDesc.GetElementSpaceSize());
DeviceMem d1_device_buf(sizeof(D1DataType) * d1_m_n.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
d0_device_buf.ToDevice(d0_m_n.mData.data());
d1_device_buf.ToDevice(d1_m_n.mData.data());
using DeviceOp =
ck::tensor_operation::device::DeviceGemmMultipleDSplitK<ALayout,
BLayout,
ck::Tuple<D0Layout, D1Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType, D1DataType>,
EDataType,
AElementOp,
BElementOp,
CElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
// Run reference GEMM
if(do_verification)
{
Tensor<AccDataType> c_m_n({M, N});
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough,
ComputeDataType>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, PassThrough{}, PassThrough{}, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
c_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d0_m_n(m, n), d1_m_n(m, n));
}
}
}
std::string best_op_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
float best_kbatch = 0;
// profile device GEMM instances
for(auto& op_ptr : op_ptrs)
{
std::vector<int> kbatch_list = {1, 2, 4, 8, 16, 19, 32, 38};
if(KBatch > 0)
{
kbatch_list = {KBatch};
}
for(std::size_t i = 0; i < kbatch_list.size(); i++)
{
auto kbatch_curr = kbatch_list[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
std::array<const void*, 2>{d0_device_buf.GetDeviceBuffer(),
d1_device_buf.GetDeviceBuffer()},
static_cast<EDataType*>(c_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, 2>{StrideD0, StrideD1},
StrideE,
kbatch_curr,
a_element_op,
b_element_op,
c_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
// re-init C to zero before profiling next kernel
c_device_buf.SetZero();
invoker_ptr->Run(argument_ptr.get(),
StreamConfig{nullptr, false, 0, n_warmup, n_iter});
if(do_verification)
{
c_device_buf.FromDevice(e_m_n_device_result.mData.data());
pass = pass & ck::utils::check_err(e_m_n_device_result, e_m_n_host_result);
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
LogRangeAsType<float>(
std::cout << "c_host : ", e_m_n_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_device: ", e_m_n_device_result.mData, ",")
<< std::endl;
}
}
std::string op_name = op_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(argument_ptr.get(),
StreamConfig{nullptr,
time_kernel,
0,
n_warmup,
n_iter,
rotating_count > 1,
rotating_count});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops
<< " TFlops, " << gb_per_sec << " GB/s, " << op_name << ", KBatch "
<< kbatch_curr << std::endl;
#if defined CK_ENABLE_FP8
// set softer tolerances for fp8
if constexpr(is_same_v<ADataType, f8_t> || is_same_v<BDataType, f8_t> ||
is_same_v<EDataType, f8_t>)
{
std::string msg = "Error: Incorrect results!";
double rtol = 1e-1;
double atol = 1e-1;
pass = pass & ck::utils::check_err(
e_m_n_device_result, e_m_n_host_result, msg, rtol, atol);
}
else
{
#endif
pass = pass & ck::utils::check_err(e_m_n_device_result, e_m_n_host_result);
#if defined CK_ENABLE_FP8
}
#endif
if(tflops > best_tflops && ave_time > 1e-10)
{
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
best_kbatch = kbatch_curr;
}
}
else
{
std::cout << op_ptr->GetTypeString() << " does not support this problem"
<< std::endl;
}
}
}
if constexpr(is_same<EDataType, float>::value)
{
std::cout << "Best Perf for datatype = f32";
}
else if constexpr(is_same<EDataType, half_t>::value)
{
std::cout << "Best Perf for datatype = f16";
}
else if constexpr(is_same<EDataType, bhalf_t>::value)
{
std::cout << "Best Perf for datatype = bf16";
}
else if constexpr(is_same<EDataType, int8_t>::value)
{
std::cout << "Best Perf for datatype = int8";
}
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value)
{
std::cout << " ALayout = RowMajor";
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value)
{
std::cout << " ALayout = ColumnMajor";
}
if constexpr(is_same<BLayout, tensor_layout::gemm::RowMajor>::value)
{
std::cout << " BLayout = RowMajor";
}
else if constexpr(is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value)
{
std::cout << " BLayout = ColumnMajor";
}
std::cout << " M = " << M << " N = " << N << " K = " << K << " StrideA = " << StrideA
<< " StrideB = " << StrideB << " StrideE = " << StrideE << " KBatch = " << best_kbatch
<< " : " << best_ave_time << " ms, " << best_tflops << " TFlops, " << best_gb_per_sec
<< " GB/s, " << best_op_name << std::endl;
return pass;
}
} // namespace profiler
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -26,6 +26,7 @@ namespace profiler {
template <typename ADataType,
typename BDataType,
typename ComputeDataType,
typename AccDataType,
typename CDataType,
typename ALayout,
......@@ -130,7 +131,8 @@ bool profile_gemm_universal_impl(int do_verification,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
CElementOp,
ComputeDataType>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
......@@ -150,7 +152,7 @@ bool profile_gemm_universal_impl(int do_verification,
// profile device GEMM instances
for(auto& op_ptr : op_ptrs)
{
std::vector<int> kbatch_list = {1, 2, 4, 8, 12, 16, 19, 20, 32, 38};
std::vector<int> kbatch_list = {1, 2, 4, 8, 16, 19, 32, 38};
if(KBatch > 0)
{
......@@ -191,7 +193,24 @@ bool profile_gemm_universal_impl(int do_verification,
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass = pass & ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
#if defined CK_ENABLE_FP8
// set softer tolerances for fp8
if constexpr(is_same_v<ADataType, f8_t> || is_same_v<BDataType, f8_t> ||
is_same_v<CDataType, f8_t>)
{
std::string msg = "Error: Incorrect results!";
double rtol = 1e-1;
double atol = 1e-1;
pass = pass & ck::utils::check_err(
c_m_n_device_result, c_m_n_host_result, msg, rtol, atol);
}
else
{
#endif
pass = pass & ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
#if defined CK_ENABLE_FP8
}
#endif
if(do_log)
{
......@@ -230,26 +249,7 @@ bool profile_gemm_universal_impl(int do_verification,
<< " TFlops, " << gb_per_sec << " GB/s, " << op_name << ", KBatch "
<< kbatch_curr << std::endl;
#if defined CK_ENABLE_FP8
// set softer tolerances for fp8
if constexpr(is_same_v<ADataType, f8_t> || is_same_v<BDataType, f8_t> ||
is_same_v<CDataType, f8_t>)
{
std::string msg = "Error: Incorrect results!";
double rtol = 1e-1;
double atol = 1e-1;
pass = pass & ck::utils::check_err(
c_m_n_device_result, c_m_n_host_result, msg, rtol, atol);
}
else
{
#endif
pass = pass & ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
#if defined CK_ENABLE_FP8
}
#endif
if(tflops > best_tflops)
if(tflops > best_tflops && ave_time > 1e-10)
{
best_op_name = op_name;
best_tflops = tflops;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3r1.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_universal_reduce.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename DsDataType,
typename AccDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename DsLayout,
typename CLayout>
bool profile_gemm_universal_reduce_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideC,
int KBatch,
int n_warmup,
int n_iter,
uint64_t rotating = 0)
{
bool pass = true;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
int total_gemm_needed = a_m_k.GetElementSpaceSizeInBytes() + b_k_n.GetElementSpaceSizeInBytes();
int rotating_count = std::max(
1,
std::min(n_iter,
static_cast<int>(std::ceil(static_cast<double>(rotating) / total_gemm_needed))));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_device_result.mDesc << std::endl;
std::cout << "rotating count: " << rotating_count << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-1, 2});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-1, 2});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
}
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
using DeviceOp = ck::tensor_operation::device::DeviceGemmV2R1<ALayout,
BLayout,
DsLayout,
CLayout,
ADataType,
BDataType,
DsDataType,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
// Run reference GEMM
if(do_verification)
{
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
}
std::string best_op_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
float best_kbatch = 0;
// profile device GEMM instances
for(auto& op_ptr : op_ptrs)
{
std::vector<int> kbatch_list = {1, 2, 4, 8, 12, 16, 19, 20, 32, 38};
if(KBatch > 0)
{
kbatch_list = {KBatch};
}
for(std::size_t i = 0; i < kbatch_list.size(); i++)
{
auto kbatch_curr = kbatch_list[i];
auto argument_ptr =
op_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
{},
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
{},
StrideC,
kbatch_curr,
a_element_op,
b_element_op,
c_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
DeviceMem gemm_workspace_dev(op_ptr->GetWorkSpaceSize(argument_ptr.get()));
op_ptr->SetWorkSpacePointer(
argument_ptr.get(), gemm_workspace_dev.GetDeviceBuffer(), StreamConfig{});
// re-init C to zero before profiling next kernel
c_device_buf.SetZero();
invoker_ptr->Run(argument_ptr.get(),
StreamConfig{nullptr, false, 0, n_warmup, n_iter});
if(do_verification)
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass = pass & ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
LogRangeAsType<float>(
std::cout << "c_host : ", c_m_n_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_device: ", c_m_n_device_result.mData, ",")
<< std::endl;
}
}
std::string op_name = op_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(argument_ptr.get(),
StreamConfig{nullptr,
time_kernel,
0,
n_warmup,
n_iter,
rotating_count > 1,
rotating_count});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops
<< " TFlops, " << gb_per_sec << " GB/s, " << op_name << ", KBatch "
<< kbatch_curr << std::endl;
#if defined CK_ENABLE_FP8
// set softer tolerances for fp8
if constexpr(is_same_v<ADataType, f8_t> || is_same_v<BDataType, f8_t> ||
is_same_v<CDataType, f8_t>)
{
std::string msg = "Error: Incorrect results!";
double rtol = 1e-1;
double atol = 1e-1;
pass = pass & ck::utils::check_err(
c_m_n_device_result, c_m_n_host_result, msg, rtol, atol);
}
else
{
#endif
pass = pass & ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
#if defined CK_ENABLE_FP8
}
#endif
if(tflops > best_tflops)
{
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
best_kbatch = kbatch_curr;
}
}
else
{
std::cout << op_ptr->GetTypeString() << " does not support this problem"
<< std::endl;
}
}
}
if constexpr(is_same<CDataType, float>::value)
{
std::cout << "Best Perf for datatype = f32";
}
else if constexpr(is_same<CDataType, half_t>::value)
{
std::cout << "Best Perf for datatype = f16";
}
else if constexpr(is_same<CDataType, bhalf_t>::value)
{
std::cout << "Best Perf for datatype = bf16";
}
else if constexpr(is_same<CDataType, int8_t>::value)
{
std::cout << "Best Perf for datatype = int8";
}
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value)
{
std::cout << " ALayout = RowMajor";
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value)
{
std::cout << " ALayout = ColumnMajor";
}
if constexpr(is_same<BLayout, tensor_layout::gemm::RowMajor>::value)
{
std::cout << " BLayout = RowMajor";
}
else if constexpr(is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value)
{
std::cout << " BLayout = ColumnMajor";
}
std::cout << " M = " << M << " N = " << N << " K = " << K << " StrideA = " << StrideA
<< " StrideB = " << StrideB << " StrideC = " << StrideC << " KBatch = " << best_kbatch
<< " : " << best_ave_time << " ms, " << best_tflops << " TFlops, " << best_gb_per_sec
<< " GB/s, " << best_op_name << std::endl;
return pass;
}
} // namespace profiler
} // namespace ck
......@@ -136,9 +136,10 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
float best_avg_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
float best_avg_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
ck::index_t best_split_k = 1;
// profile device Conv instances
bool all_pass = true;
......@@ -167,99 +168,115 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
range_copy(conv_param.input_left_pads_, begin(input_left_pads));
range_copy(conv_param.input_right_pads_, begin(input_right_pads));
std::vector<ck::index_t> split_k_list = {1, 2, 4, 8, 16, 32, 64, 128};
if(split_k > 0)
{
split_k_list = {split_k};
}
for(auto& op_ptr : op_ptrs)
{
auto argument_ptr =
op_ptr->MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
input_lengths,
input_strides,
filter_lengths,
weights_strides,
output_lengths,
output_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op,
split_k);
const std::size_t workspace_sz = op_ptr->GetWorkSpaceSize(argument_ptr.get());
DeviceMem workspace_dev(workspace_sz);
op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace_dev.GetDeviceBuffer());
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
for(std::size_t split_k_id = 0; split_k_id < split_k_list.size(); split_k_id++)
{
// using atomic add, so need to reset input
wei_device_buf.SetZero();
std::string op_name = op_ptr->GetTypeString();
auto invoker_ptr = op_ptr->MakeInvokerPointer();
float avg_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
auto argument_ptr = op_ptr->MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
input_lengths,
input_strides,
filter_lengths,
weights_strides,
output_lengths,
output_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op,
split_k_list[split_k_id]);
const std::size_t workspace_sz = op_ptr->GetWorkSpaceSize(argument_ptr.get());
DeviceMem workspace_dev(workspace_sz);
op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace_dev.GetDeviceBuffer());
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
// using atomic add, so need to reset input
wei_device_buf.SetZero();
std::size_t flop = conv_param.GetFlops();
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>();
std::string op_name = op_ptr->GetTypeString();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
float avg_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
if(tflops > best_tflops)
{
best_op_name = op_name;
best_tflops = tflops;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
}
std::size_t flop = conv_param.GetFlops();
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>();
if(do_verification)
{
wei_device_buf.FromDevice(weight_device_result.mData.data());
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
bool pass = ck::utils::check_err(weight_device_result, weight_host_result);
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops
<< " TFlops, " << gb_per_sec << " GB/s, " << op_name << ", SplitK "
<< split_k_list[split_k_id] << std::endl;
if(!pass)
if(tflops > best_tflops)
{
std::cout << "Fail info: " << op_ptr->GetTypeString() << std::endl;
best_op_name = op_name;
best_tflops = tflops;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_split_k = split_k_list[split_k_id];
}
all_pass &= pass;
if(do_log)
if(do_verification)
{
LogRangeAsType<float>(std::cout << "output : ", output.mData, ",") << std::endl;
;
LogRangeAsType<float>(
std::cout << "weight (device): ", weight_device_result.mData, ",")
<< std::endl;
;
LogRangeAsType<float>(
std::cout << "weight (host): ", weight_host_result.mData, ",")
<< std::endl;
;
LogRangeAsType<float>(std::cout << "input: ", input.mData, ",") << std::endl;
;
wei_device_buf.FromDevice(weight_device_result.mData.data());
bool pass = ck::utils::check_err(weight_device_result, weight_host_result);
if(!pass)
{
std::cout << "Fail info: " << op_ptr->GetTypeString() << std::endl;
}
all_pass &= pass;
if(do_log)
{
LogRangeAsType<float>(std::cout << "output : ", output.mData, ",")
<< std::endl;
;
LogRangeAsType<float>(
std::cout << "weight (device): ", weight_device_result.mData, ",")
<< std::endl;
;
LogRangeAsType<float>(
std::cout << "weight (host): ", weight_host_result.mData, ",")
<< std::endl;
;
LogRangeAsType<float>(std::cout << "input: ", input.mData, ",")
<< std::endl;
;
}
}
}
}
else
{
std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
else
{
std::cout << op_ptr->GetTypeString() << " does not support this problem"
<< std::endl;
}
}
}
std::cout << "Best configuration parameters:"
<< "\nname: " << best_op_name << "\navg_time: " << best_avg_time
<< "\ntflops: " << best_tflops << "\nGB/s: " << best_gb_per_sec << std::endl;
<< "\ntflops: " << best_tflops << "\nGB/s: " << best_gb_per_sec << ", SplitK "
<< best_split_k << std::endl;
return all_pass;
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment