Commit 3c4fb1dd authored by Umang Yadav's avatar Umang Yadav
Browse files

Merge remote-tracking branch 'origin/develop' into migx_merge

parents 57cdd70b e8cddfdc
......@@ -9,13 +9,13 @@ namespace ck {
struct GridwiseGemmPipeline_v2
{
__host__ __device__ static constexpr bool IsSupported(index_t num_loop)
__host__ __device__ static constexpr bool IsSupported(const index_t num_loop)
{
// TODO: improve applicability
return num_loop % 2 == 0;
}
__host__ __device__ static constexpr bool CalculateHasMainLoop(index_t num_loop)
__host__ __device__ static constexpr bool CalculateHasMainLoop(const index_t num_loop)
{
return (num_loop / 2) > 1;
}
......
......@@ -457,6 +457,7 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
BlockSize,
FloatAB,
FloatAB,
FloatGemmAcc,
decltype(a_block_desc_ak0_m_ak1),
decltype(b_block_desc_bk0_n_bk1),
......
......@@ -588,6 +588,7 @@ struct GridwiseGemmSplitKMultipleD_xdl_cshuffle
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
BlockSize,
ABDataType,
ABDataType,
AccDataType,
decltype(a_block_desc_ak0_m_ak1),
decltype(b_block_desc_bk0_n_bk1),
......@@ -1012,6 +1013,7 @@ struct GridwiseGemmSplitKMultipleD_xdl_cshuffle
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
BlockSize,
ABDataType,
ABDataType,
AccDataType,
decltype(a_block_desc_ak0_m_ak1),
decltype(b_block_desc_bk0_n_bk1),
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
namespace ck {
// GEMM:
// input : A[M, K]
// input : B[N, K]
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// D0, D1, ... and E have the same layout
template <typename ADataType, // FIXME: don't assume A/B have same datatype
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename ComputeType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1Value,
index_t BK1Value,
index_t MPerXdl,
index_t NPerXdl,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_KBatch_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool AThreadTransferSrcResetCoordinateAfterRun,
index_t ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_KBatch_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BThreadTransferSrcResetCoordinateAfterRun,
index_t BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEShuffleBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched,
PipelineVersion PipelineVer = PipelineVersion::v1>
struct GridwiseGemmMultipleD_xdl_splitk_cshuffle
{
static constexpr index_t NumDTensor = DsDataType::Size();
using GemmSpecialization = ck::tensor_operation::device::GemmSpecialization;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
static constexpr auto I7 = Number<7>{};
// K1 should be Number<...>
static constexpr auto AK1 = Number<AK1Value>{};
static constexpr auto BK1 = Number<BK1Value>{};
static constexpr auto AK0PerBlock = Number<KPerBlock / AK1Value>{};
static constexpr auto BK0PerBlock = Number<KPerBlock / BK1Value>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
using GridwiseGemmPipe = remove_cvref_t<
decltype(GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>())>;
__host__ __device__ static constexpr auto GetABlockDescriptor_KBatch_AK0PerBlock_MPerBlock_AK1()
{
// A matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(I1, AK0PerBlock, Number<MPerBlock>{}, AK1),
make_tuple(AK0PerBlock * Number<MPerBlock + ABlockLdsExtraM>{} * AK1,
Number<MPerBlock + ABlockLdsExtraM>{} * AK1,
AK1,
I1));
}
__host__ __device__ static constexpr auto GetBBlockDescriptor_KBatch_BK0PerBlock_NPerBlock_BK1()
{
// B matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(I1, BK0PerBlock, Number<NPerBlock>{}, BK1),
make_tuple(BK0PerBlock * Number<NPerBlock + BBlockLdsExtraN>{} * BK1,
Number<NPerBlock + BBlockLdsExtraN>{} * BK1,
BK1,
I1));
}
__host__ __device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()
{
// A matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(AK0PerBlock, Number<MPerBlock>{}, AK1),
make_tuple(Number<MPerBlock + ABlockLdsExtraM>{} * AK1, AK1, I1));
}
__host__ __device__ static constexpr auto GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1()
{
// B matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(BK0PerBlock, Number<NPerBlock>{}, BK1),
make_tuple(Number<NPerBlock + BBlockLdsExtraN>{} * BK1, BK1, I1));
}
__host__ __device__ static constexpr auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock()
{
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl>{},
I1,
Number<CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>{}));
return c_shuffle_block_desc_mblock_mperblock_nblock_nperblock;
}
// ck::Tuple<const D0DataType*, const D1DataType*, ...>
static constexpr auto MakeDsGridPointer()
{
return generate_tuple(
[&](auto i) {
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
return static_cast<const DDataType*>(nullptr);
},
Number<NumDTensor>{});
}
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1, BK1);
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size_aligned = math::integer_least_multiple(
b_block_desc_bk0_n_bk1.GetElementSpaceSize(), max_lds_align);
// LDS allocation for C shuffle in LDS
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
constexpr auto c_block_size =
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
return math::max(a_block_space_size_aligned * sizeof(ADataType) +
b_block_space_size_aligned * sizeof(BDataType),
c_block_size * sizeof(CShuffleDataType));
}
__host__ __device__ static auto CalculateMPadded(index_t M)
{
return math::integer_least_multiple(M, MPerBlock);
}
__host__ __device__ static auto CalculateNPadded(index_t N)
{
return math::integer_least_multiple(N, NPerBlock);
}
__host__ __device__ static auto CalculateKPadded(index_t K, index_t K_Batch)
{
return math::integer_least_multiple(K, KPerBlock * K_Batch);
}
template <typename ALayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeAGridDescriptor_KBatch_AK0_M_AK1(index_t M, index_t K, index_t StrideA, index_t KBatch)
{
const auto a_grid_desc_m_k = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
}
}();
const auto MPad = CalculateMPadded(M);
const auto KPad = CalculateKPadded(K, KBatch);
const auto a_grid_desc_m_kpad = transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_pass_through_transform(M), make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto AK0 = KPad / (KBatch * AK1);
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding)
{
// const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return transform_tensor_descriptor(
a_grid_desc_m_kpad,
make_tuple(make_unmerge_transform(make_tuple(KBatch, AK0, AK1)),
make_right_pad_transform(M, MPad - M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else
{
return transform_tensor_descriptor(
a_grid_desc_m_kpad,
make_tuple(make_unmerge_transform(make_tuple(KBatch, AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
}
template <typename BLayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeBGridDescriptor_KBatch_BK0_N_BK1(index_t K, index_t N, index_t StrideB, index_t KBatch)
{
const auto b_grid_desc_k_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
}
}();
const auto NPad = CalculateNPadded(N);
const auto KPad = CalculateKPadded(K, KBatch);
const auto b_grid_desc_kpad_n = transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_right_pad_transform(K, KPad - K), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto BK0 = KPad / (KBatch * BK1);
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::NPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::NKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding)
{
// const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
b_grid_desc_kpad_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, BK0, BK1)),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else
{
return transform_tensor_descriptor(
b_grid_desc_kpad_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
}
// E desc for destination in blockwise copy
template <typename EGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(const EGridDesc_M_N& e_grid_desc_m_n)
{
const auto M = e_grid_desc_m_n.GetLength(I0);
const auto N = e_grid_desc_m_n.GetLength(I1);
const auto MBlock = M / MPerBlock;
const auto NBlock = N / NPerBlock;
const auto e_grid_desc_mblock_mperblock_nblock_nperblock = transform_tensor_descriptor(
e_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(MBlock, Number<MPerBlock>{})),
make_unmerge_transform(make_tuple(NBlock, Number<NPerBlock>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2, 3>{}));
return e_grid_desc_mblock_mperblock_nblock_nperblock;
}
// Ds desc for source in blockwise copy
template <typename DsGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(const DsGridDesc_M_N& ds_grid_desc_m_n)
{
return generate_tuple(
[&](auto i) {
return MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(ds_grid_desc_m_n[i]);
},
Number<NumDTensor>{});
}
// return block_id to E matrix tile idx (m0, n0) mapping
template <typename EGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeDefaultBlock2ETileMap(const EGridDesc_M_N& e_grid_desc_m_n)
{
return BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, EGridDesc_M_N>(
e_grid_desc_m_n);
}
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
GemmSpecialization GemmSpec>
__host__ __device__ static constexpr bool
CheckValidity(const index_t M,
const index_t N,
const index_t K,
const index_t StrideA,
const index_t StrideB,
const std::array<index_t, NumDTensor> StrideDs,
const index_t StrideE,
const index_t KBatch)
{
const auto a_grid_desc_kbatch_ak0_m_ak1 =
MakeAGridDescriptor_KBatch_AK0_M_AK1<ALayout, GemmSpec>(M, K, StrideA, KBatch);
const auto b_grid_desc_kbatch_bk0_n_bk1 =
MakeBGridDescriptor_KBatch_BK0_N_BK1<BLayout, GemmSpec>(K, N, StrideB, KBatch);
ignore = StrideDs;
const auto e_grid_desc_m_n = MakeEGridDescriptor_M_N<ELayout, GemmSpec>(M, N, StrideE);
#if 0
// check tile size
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K % KPerBlock == 0))
{
return false;
}
#endif
// check gridwise gemm pipeline
const auto num_k_loop = K / KPerBlock;
if(!GridwiseGemmPipe::IsSupported(num_k_loop))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
// check tensor size: cannot be larger than 2GB each
constexpr long_index_t TwoGB = (long_index_t{1} << 31);
if(!(a_grid_desc_kbatch_ak0_m_ak1.GetElementSpaceSize() * sizeof(ADataType) <= TwoGB &&
b_grid_desc_kbatch_bk0_n_bk1.GetElementSpaceSize() * sizeof(BDataType) <= TwoGB &&
e_grid_desc_m_n.GetElementSpaceSize() * sizeof(EDataType) <= TwoGB))
{
return false;
}
return true;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / KPerBlock;
return GridwiseGemmPipe::CalculateHasMainLoop(num_loop);
}
using DsGridPointer = decltype(MakeDsGridPointer());
template <typename ELayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeEGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideE)
{
constexpr auto matrix_padder =
ck::tensor_operation::device::MatrixPadder<GemmSpec, index_t, index_t, index_t>{
MPerBlock, NPerBlock, KPerBlock};
const auto e_grid_desc_mraw_nraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ELayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(StrideE, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ELayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(I1, StrideE));
}
}();
return matrix_padder.PadCDescriptor_M_N(e_grid_desc_mraw_nraw);
}
template <typename DsLayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeDsGridDescriptor_M_N(const std::array<index_t, NumDTensor>& MRaws,
const std::array<index_t, NumDTensor>& NRaws,
const std::array<index_t, NumDTensor>& DsStride)
{
return generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return MakeEGridDescriptor_M_N<DLayout, GemmSpec>(MRaws[i], NRaws[i], DsStride[i]);
},
Number<NumDTensor>{});
}
__device__ __host__ static constexpr auto GetMPerBlock() { return MPerBlock; }
template <bool HasMainKBlockLoop,
InMemoryDataOperationEnum EGlobalMemoryDataOperation,
index_t NumDTensor_,
typename DsDataType_,
typename AGridDesc_KBatch_AK0_M_AK1,
typename BGridDesc_KBatch_BK0_N_BK1,
typename DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename CDEElementwiseOperation_,
typename Block2ETileMap>
__device__ static void Run(const ADataType* __restrict__ p_a_grid,
const BDataType* __restrict__ p_b_grid,
DsGridPointer p_ds_grid,
EDataType* __restrict__ p_e_grid,
void* __restrict__ p_shared,
uint32_t* barrier_count_finished,
const index_t KBatch,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation_& cde_element_op,
const AGridDesc_KBatch_AK0_M_AK1& a_grid_desc_kbatch_ak0_m_ak1,
const BGridDesc_KBatch_BK0_N_BK1& b_grid_desc_kbatch_bk0_n_bk1,
const DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock&
ds_grid_desc_mblock_mperblock_nblock_nperblock,
const EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock&
e_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2ETileMap& block_2_etile_map)
{
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_kbatch_ak0_m_ak1.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_kbatch_bk0_n_bk1.GetElementSpaceSize());
const auto ds_grid_buf = generate_tuple(
[&](auto i) {
return make_dynamic_buffer<AddressSpaceEnum::Global>(
p_ds_grid[i],
ds_grid_desc_mblock_mperblock_nblock_nperblock[i].GetElementSpaceSize());
},
Number<NumDTensor_>{});
auto e_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_e_grid, e_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
// divide block work by [M, N]
const auto block_work_idx =
block_2_etile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t kbatch_id = __builtin_amdgcn_readfirstlane(block_work_idx[I0]);
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I1] * MPerBlock);
const index_t n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I2] * NPerBlock);
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1, BK1);
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_kbatch_ak0_m_ak1 =
GetABlockDescriptor_KBatch_AK0PerBlock_MPerBlock_AK1();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_kbatch_bk0_n_bk1 =
GetBBlockDescriptor_KBatch_BK0PerBlock_NPerBlock_BK1();
// A matrix blockwise copy
auto a_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
AElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<1, AK0PerBlock, MPerBlock, AK1>,
ABlockTransferThreadClusterLengths_KBatch_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ADataType,
ComputeType,
decltype(a_grid_desc_kbatch_ak0_m_ak1),
decltype(a_block_desc_kbatch_ak0_m_ak1),
ABlockTransferSrcAccessOrder,
Sequence<2, 0, 1, 3>,
ABlockTransferSrcVectorDim,
3,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
1,
1,
AThreadTransferSrcResetCoordinateAfterRun,
true,
NumGemmKPrefetchStage>(
a_grid_desc_kbatch_ak0_m_ak1,
make_multi_index(kbatch_id, 0, m_block_data_idx_on_grid, 0),
a_element_op,
a_block_desc_kbatch_ak0_m_ak1,
make_multi_index(0, 0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// B matrix blockwise copy
auto b_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<1, BK0PerBlock, NPerBlock, BK1>,
BBlockTransferThreadClusterLengths_KBatch_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BDataType,
ComputeType,
decltype(b_grid_desc_kbatch_bk0_n_bk1),
decltype(b_block_desc_kbatch_bk0_n_bk1),
BBlockTransferSrcAccessOrder,
Sequence<2, 0, 1, 3>,
BBlockTransferSrcVectorDim,
3,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true,
NumGemmKPrefetchStage>(
b_grid_desc_kbatch_bk0_n_bk1,
make_multi_index(kbatch_id, 0, n_block_data_idx_on_grid, 0),
b_element_op,
b_block_desc_kbatch_bk0_n_bk1,
make_multi_index(0, 0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[K0PerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr index_t KPack =
math::max(math::lcm(AK1, BK1),
MfmaSelector<ComputeType, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
BlockSize,
ComputeType,
AccDataType,
decltype(a_block_desc_ak0_m_ak1),
decltype(b_block_desc_bk0_n_bk1),
MPerXdl,
NPerXdl,
MXdlPerWave,
NXdlPerWave,
KPack,
LoopSched>();
#if 1
if(block_work_idx[I0] == 0)
{
const index_t nThreadSize = CDEShuffleBlockTransferScalarPerVector_NPerBlock;
const index_t numNThreads = NPerBlock / nThreadSize;
const index_t numMThreads = BlockSize / numNThreads;
const index_t mThreadSize = MPerBlock / numMThreads;
const index_t m_tid = get_thread_local_1d_id() / numNThreads;
const index_t n_tid = get_thread_local_1d_id() % numNThreads;
auto c_thread_desc_mblock_mperblock_nblock_nperblock =
make_naive_tensor_descriptor_packed(
make_tuple(I1, Number<mThreadSize>{}, I1, Number<nThreadSize>{}));
StaticBuffer<AddressSpaceEnum::Vgpr,
EDataType,
c_thread_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize(),
true>
e_thread_zero_buf;
auto c_thread_copy = ThreadwiseTensorSliceTransfer_v1r3<
EDataType,
EDataType,
decltype(c_thread_desc_mblock_mperblock_nblock_nperblock),
decltype(e_grid_desc_mblock_mperblock_nblock_nperblock),
ck::tensor_operation::element_wise::PassThrough,
Sequence<1, mThreadSize, 1, nThreadSize>,
Sequence<0, 1, 2, 3>,
3,
CDEShuffleBlockTransferScalarPerVector_NPerBlock,
InMemoryDataOperationEnum::Set,
1,
true>{e_grid_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(block_work_idx[I1],
m_tid * mThreadSize,
block_work_idx[I2],
n_tid * nThreadSize),
ck::tensor_operation::element_wise::PassThrough{}};
c_thread_copy.Run(c_thread_desc_mblock_mperblock_nblock_nperblock,
make_tuple(I0, I0, I0, I0),
e_thread_zero_buf,
e_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_buf);
__syncthreads();
if(threadIdx.x == 0)
{
atomicAdd(barrier_count_finished, 1);
}
}
#endif
auto c_thread_buf = blockwise_gemm.GetCThreadBuffer();
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ComputeType*>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ComputeType*>(p_shared) + a_block_space_size_aligned,
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
constexpr auto a_block_slice_copy_step = make_multi_index(0, KPerBlock / AK1, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(0, KPerBlock / BK1, 0, 0);
// gridwise GEMM pipeline
const auto gridwise_gemm_pipeline =
GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>();
const index_t num_k_block_main_loop =
__builtin_amdgcn_readfirstlane((a_grid_desc_kbatch_ak0_m_ak1.GetLength(I1) *
a_grid_desc_kbatch_ak0_m_ak1.GetLength(I3)) /
KPerBlock);
gridwise_gemm_pipeline.template Run<HasMainKBlockLoop>(a_grid_desc_kbatch_ak0_m_ak1,
a_block_desc_kbatch_ak0_m_ak1,
a_blockwise_copy,
a_grid_buf,
a_block_buf,
a_block_slice_copy_step,
b_grid_desc_kbatch_bk0_n_bk1,
b_block_desc_kbatch_bk0_n_bk1,
b_blockwise_copy,
b_grid_buf,
b_block_buf,
b_block_slice_copy_step,
blockwise_gemm,
c_thread_buf,
num_k_block_main_loop);
// shuffle C and write out
{
if(threadIdx.x == 0)
{
while(__atomic_load_n(barrier_count_finished, __ATOMIC_RELAXED) == 0) {}
}
__syncthreads();
static_assert(MXdlPerWave % CShuffleMXdlPerWavePerShuffle == 0 &&
NXdlPerWave % CShuffleNXdlPerWavePerShuffle == 0,
"wrong!");
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
// TODO: hacky, fix it!
constexpr auto c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2 =
blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp =
blockwise_gemm.GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
constexpr auto M0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I0);
constexpr auto N0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I1);
constexpr auto M1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I2);
constexpr auto N1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I3);
constexpr auto M2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I4);
constexpr auto M3 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I5);
constexpr auto M4 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I6);
constexpr auto N2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I7);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
auto c_shuffle_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<CShuffleDataType*>(p_shared),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2 = transform_tensor_descriptor(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
make_tuple(
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleMXdlPerWavePerShuffle>{}, // M0 (MXdlPerWave) per shuffle
M1, // M1 = MWave
M2, // M2 * M3 * M4 = MPerXdl
M3,
M4)),
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleNXdlPerWavePerShuffle>{}, // N0 (NXdlPerWave) per shuffle
N1, // N1 = NWave
N2))), // N2 = NPerXdl
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(
Sequence<>{}, Sequence<0, 2, 4, 5, 6>{}, Sequence<>{}, Sequence<1, 3, 7>{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const index_t m_thread_data_on_block = c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_block = c_thread_mtx_on_block[I1];
const auto m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M0, M1, M2, M3, M4))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto m_thread_data_on_block_idx =
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor.CalculateBottomIndex(
make_multi_index(m_thread_data_on_block));
const auto n_thread_data_on_block_to_n0_n1_n2_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(N0, N1, N2))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
const auto n_thread_data_on_block_idx =
n_thread_data_on_block_to_n0_n1_n2_adaptor.CalculateBottomIndex(
make_multi_index(n_thread_data_on_block));
// shuffle: threadwise copy C from VGPR to LDS
auto c_thread_copy_vgpr_to_lds =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
CShuffleDataType,
decltype(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2),
decltype(c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2),
ck::tensor_operation::element_wise::PassThrough,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
I1,
I1,
M2,
I1,
M4,
I1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
7,
1,
InMemoryDataOperationEnum::Set,
1,
true>{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
make_multi_index(0,
0,
m_thread_data_on_block_idx[I1],
n_thread_data_on_block_idx[I1],
m_thread_data_on_block_idx[I2],
m_thread_data_on_block_idx[I3],
m_thread_data_on_block_idx[I4],
n_thread_data_on_block_idx[I2]),
ck::tensor_operation::element_wise::PassThrough{}};
// tuple of reference to C/Ds tensor descriptors
const auto c_ds_desc_refs = concat_tuple_of_reference(
tie(c_shuffle_block_desc_mblock_mperblock_nblock_nperblock),
generate_tie(
[&](auto i) -> const auto& // return type should be reference
{ return ds_grid_desc_mblock_mperblock_nblock_nperblock[i]; },
Number<NumDTensor_>{}));
// tuple of reference to C/Ds tensor descriptors
const auto c_ds_buf_refs = concat_tuple_of_reference(
tie(c_shuffle_block_buf),
generate_tie(
[&](auto i) -> const auto& // return type should be reference
{ return ds_grid_buf[i]; },
Number<NumDTensor_>{}));
// tuple of starting index of C/Ds blockwise copy
const auto idx_c_ds_block_begin = container_concat(
make_tuple(make_multi_index(0, 0, 0, 0)),
generate_tuple(
[&](auto) {
return make_multi_index(block_work_idx[I1], 0, block_work_idx[I2], 0);
},
Number<NumDTensor_>{}));
// space filling curve for threadwise C in VGPR before shuffle
constexpr auto sfc_c_vgpr =
SpaceFillingCurve<Sequence<MXdlPerWave, NXdlPerWave, 1, 1, M2, 1, M4, 1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
1,
1,
M2,
1,
M4,
1>>{};
// space filling curve for shuffled blockwise C/D/E
constexpr auto sfc_cde_block =
SpaceFillingCurve<Sequence<1, MPerBlock, 1, NPerBlock>,
Sequence<0, 2, 1, 3>,
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>>{};
constexpr index_t num_access = sfc_c_vgpr.GetNumOfAccess();
static_assert(num_access == sfc_cde_block.GetNumOfAccess(), "wrong!");
// blockwise copy C/D/E between LDS and global
auto cde_block_copy_lds_and_global = ThreadGroupTensorSliceTransfer_v7<
ThisThreadBlock,
decltype(container_concat(make_tuple(CShuffleDataType{}), DsDataType_{})),
Tuple<EDataType>,
decltype(c_ds_desc_refs),
decltype(tie(e_grid_desc_mblock_mperblock_nblock_nperblock)),
CDEElementwiseOperation_,
Sequence<static_cast<index_t>(EGlobalMemoryDataOperation)>, // FIXME: make
// Sequence support
// arbitray type
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>, // BlockSliceLengths,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
Sequence<0, 1, 2, 3>, // typename ThreadClusterArrangeOrder,
Sequence<0, 1, 2, 3>, // typename DimAccessOrder,
3, // index_t VectorDim,
CDEShuffleBlockTransferScalarPerVector_NPerBlock,
sequence_merge_t<
Sequence<true>,
uniform_sequence_gen_t<NumDTensor_,
false>>, // ThreadTransferSrcResetCoordinateAfterRunFlags
Sequence<false>> // ThreadTransferDstResetCoordinateAfterRunFlags
{c_ds_desc_refs,
idx_c_ds_block_begin,
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
make_tuple(make_multi_index(block_work_idx[I1], 0, block_work_idx[I2], 0)),
cde_element_op};
static_for<0, num_access, 1>{}([&](auto access_id) {
// make sure it's safe to write to LDS
block_sync_lds();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2,
sfc_c_vgpr.GetIndexTupleOfNumber(access_id),
c_thread_buf,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
c_shuffle_block_buf);
// make sure it's safe to read from LDS
block_sync_lds();
// each block copy its data from LDS to global
cde_block_copy_lds_and_global.Run(
c_ds_desc_refs,
c_ds_buf_refs,
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
tie(e_grid_buf));
if constexpr(access_id < num_access - 1)
{
constexpr auto cde_lds_and_global_step =
sfc_cde_block.GetForwardStep(access_id);
// move on Ds
static_for<0, NumDTensor_, 1>{}([&](auto i) {
cde_block_copy_lds_and_global.MoveSrcSliceWindow(
c_ds_desc_refs, i + I1, cde_lds_and_global_step);
});
// move on E
cde_block_copy_lds_and_global.MoveDstSliceWindow(
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
I0,
cde_lds_and_global_step);
}
});
if(threadIdx.x == 0)
{
index_t k_id_finished_t = atomicAdd(barrier_count_finished, 1);
if(k_id_finished_t == KBatch)
{
*barrier_count_finished = 0;
}
}
}
}
template <bool HasMainKBlockLoop,
InMemoryDataOperationEnum EGlobalMemoryDataOperation,
GemmSpecialization GemmSpec,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename Block2ETileMap>
__device__ static void Run(const void* __restrict__ p_a_grid_,
const void* __restrict__ p_b_grid_,
DsGridPointer p_ds_grid,
void* __restrict__ p_e_grid_,
void* __restrict__ p_shared,
uint32_t* barrier_count_finished,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op,
const index_t M,
const index_t N,
const index_t K,
const index_t StrideA,
const index_t StrideB,
const std::array<index_t, NumDTensor> StrideDs,
const index_t StrideE,
const index_t KBatch,
const Block2ETileMap& block_2_etile_map)
{
const auto p_a_grid = reinterpret_cast<const ADataType*>(p_a_grid_);
const auto p_b_grid = reinterpret_cast<const BDataType*>(p_b_grid_);
const auto p_e_grid = reinterpret_cast<EDataType*>(p_e_grid_);
using DsGridDesc_M_N =
remove_cvref_t<decltype(MakeDsGridDescriptor_M_N<DsLayout, GemmSpec>({}, {}, {}))>;
DsGridDesc_M_N ds_grid_desc_m_n;
static_for<0, NumDTensor, 1>{}([&](auto j) {
using DLayout = remove_cvref_t<tuple_element_t<j.value, DsLayout>>;
ds_grid_desc_m_n(j) = MakeEGridDescriptor_M_N<DLayout, GemmSpec>(M, N, StrideDs[j]);
});
const auto e_grid_desc_m_n = MakeEGridDescriptor_M_N<ELayout, GemmSpec>(M, N, StrideE);
// tensor descriptors for block/thread-wise copy
const auto a_grid_desc_kbatch_ak0_m_ak1 =
MakeAGridDescriptor_KBatch_AK0_M_AK1<ALayout, GemmSpec>(M, K, StrideA, KBatch);
const auto b_grid_desc_kbatch_bk0_n_bk1 =
MakeBGridDescriptor_KBatch_BK0_N_BK1<BLayout, GemmSpec>(K, N, StrideB, KBatch);
using DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
remove_cvref_t<decltype(MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
DsGridDesc_M_N{}))>;
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock ds_grid_desc_mblock_mperblock_nblock_nperblock;
static_for<0, NumDTensor, 1>{}([&](auto j) {
ds_grid_desc_mblock_mperblock_nblock_nperblock(j) =
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(ds_grid_desc_m_n[j]);
});
const auto e_grid_desc_mblock_mperblock_nblock_nperblock =
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(e_grid_desc_m_n);
const auto block_work_idx =
block_2_etile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
const index_t kbatch_id = __builtin_amdgcn_readfirstlane(block_work_idx[I0]);
if(kbatch_id == KBatch - 1)
{
Run<HasMainKBlockLoop, EGlobalMemoryDataOperation, NumDTensor, DsDataType>(
p_a_grid,
p_b_grid,
p_ds_grid,
p_e_grid,
p_shared,
barrier_count_finished,
KBatch,
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_kbatch_ak0_m_ak1,
b_grid_desc_kbatch_bk0_n_bk1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_etile_map);
}
else
{
Run<HasMainKBlockLoop, EGlobalMemoryDataOperation, 0, Tuple<>>(
p_a_grid,
p_b_grid,
p_ds_grid,
p_e_grid,
p_shared,
barrier_count_finished,
KBatch,
a_element_op,
b_element_op,
ck::tensor_operation::element_wise::PassThrough{},
a_grid_desc_kbatch_ak0_m_ak1,
b_grid_desc_kbatch_bk0_n_bk1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_etile_map);
}
}
};
} // namespace ck
......@@ -108,7 +108,8 @@ template <typename ALayout,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched,
PipelineVersion PipelineVer = PipelineVersion::v1,
typename ComputeType = FloatC>
typename ComputeTypeA = FloatC,
typename ComputeTypeB = ComputeTypeA>
struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
{
static constexpr auto I0 = Number<0>{};
......@@ -547,8 +548,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
constexpr auto c_block_size =
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
return math::max((a_block_space_size_aligned * sizeof(ComputeType) +
b_block_space_size_aligned * sizeof(ComputeType)),
return math::max((a_block_space_size_aligned * sizeof(ComputeTypeA) +
b_block_space_size_aligned * sizeof(ComputeTypeB)),
c_block_size * sizeof(FloatCShuffle));
}
......@@ -750,7 +751,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
FloatA,
ComputeType,
ComputeTypeA,
decltype(a_grid_desc_ak0_m_ak1),
decltype(a_block_desc_ak0_m_ak1),
ABlockTransferSrcAccessOrder,
......@@ -781,7 +782,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
FloatB,
ComputeType,
ComputeTypeB,
decltype(b_grid_desc_bk0_n_bk1),
decltype(b_block_desc_bk0_n_bk1),
BBlockTransferSrcAccessOrder,
......@@ -809,13 +810,14 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr index_t KPack =
math::max(math::lcm(AK1Number, BK1Number),
MfmaSelector<ComputeType, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
constexpr index_t KPack = math::max(
math::lcm(AK1Number, BK1Number),
MfmaSelector<ComputeTypeA, MPerXdl, NPerXdl, ComputeTypeB>::selected_mfma.k_per_blk);
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
BlockSize,
ComputeType,
ComputeTypeA,
ComputeTypeB,
FloatGemmAcc,
decltype(a_block_desc_ak0_m_ak1),
decltype(b_block_desc_bk0_n_bk1),
......@@ -833,10 +835,10 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ComputeType*>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
static_cast<ComputeTypeA*>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ComputeType*>(p_shared) + a_block_space_size_aligned,
static_cast<ComputeTypeB*>(p_shared) + a_block_space_size_aligned,
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock / AK1Number, 0, 0);
......
......@@ -495,6 +495,7 @@ struct GridwiseGemmLayernorm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
BlockSize,
FloatAB,
FloatAB,
FloatGemmAcc,
decltype(a_block_desc_ak0_m_ak1),
decltype(b_block_desc_bk0_n_bk1),
......
......@@ -494,6 +494,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<
TileMathThreadGroupSize,
ABDataType,
ABDataType,
FloatGemmAcc,
decltype(a_block_desc_ak0_m_ak1),
decltype(b_block_desc_bk0_n_bk1),
......
......@@ -139,7 +139,8 @@ __host__ __device__ constexpr auto make_merge_transform_v4_no_carry(const LowLen
}
template <typename GridwiseGemm,
typename FloatAB,
typename FloatA,
typename FloatB,
typename FloatC,
typename AGridDesc_B_K0_M_K1,
typename BGridDesc_B_K0_N_K1,
......@@ -153,8 +154,8 @@ __global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_xdlops_bwd_weight(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
kernel_gemm_xdlops_bwd_weight(const FloatA* __restrict__ p_a_grid,
const FloatB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
const AGridDesc_B_K0_M_K1 a_b_k0_m_k1_grid_desc,
const BGridDesc_B_K0_N_K1 b_b_k0_n_k1_grid_desc,
......@@ -181,21 +182,22 @@ __global__ void
c_element_op,
c_block_cluster_adaptor);
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_c_grid;
ignore = a_b_k0_m_k1_grid_desc;
ignore = b_b_k0_n_k1_grid_desc;
ignore = c_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = a_element_op;
ignore = b_element_op;
ignore = c_element_op;
ignore = c_block_cluster_adaptor;
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_c_grid;
ignore = a_b_k0_m_k1_grid_desc;
ignore = b_b_k0_n_k1_grid_desc;
ignore = c_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = a_element_op;
ignore = b_element_op;
ignore = c_element_op;
ignore = c_block_cluster_adaptor;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template <index_t BlockSize,
typename FloatAB,
typename FloatA,
typename FloatB,
typename FloatAcc,
typename FloatC,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
......@@ -242,7 +244,9 @@ template <index_t BlockSize,
bool ABlockLdsExtraM1Wrw = false,
bool BBlockLdsExtraN1Wrw = false,
index_t NumGemmKPrefetchStage = 1,
PipelineVersion PipelineVer = PipelineVersion::v1>
PipelineVersion PipelineVer = PipelineVersion::v1,
typename ComputeTypeA = FloatA,
typename ComputeTypeB = ComputeTypeA>
struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
{
static constexpr auto I0 = Number<0>{};
......@@ -265,11 +269,16 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
// denorm test fix, required to work around fp16 mfma issue
// we convert fp16->fp32->bf16 and execute bf16 mfma instruction
// when mfma if fixed, remove this section and update
// FloatABAdjusted -> FloatAB throughout this file
// FloatAAdjusted -> ComputeTypeA, FloatBAdjusted -> ComputeTypeB,
// throughout this file
#if CK_WORKAROUND_DENORM_FIX
using FloatABAdjusted = conditional_t<is_same_v<FloatAB, ck::half_t>, ck::bhalf_t, FloatAB>;
using FloatAAdjusted =
conditional_t<is_same_v<ComputeTypeA, ck::half_t>, ck::bhalf_t, ComputeTypeA>;
using FloatBAdjusted =
conditional_t<is_same_v<ComputeTypeB, ck::half_t>, ck::bhalf_t, ComputeTypeB>;
#else
using FloatABAdjusted = FloatAB;
using FloatAAdjusted = ComputeTypeA;
using FloatBAdjusted = ComputeTypeB;
#endif
// M0/M1/M1Padding
......@@ -506,7 +515,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
constexpr auto c_block_size =
GetCBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock().GetElementSpaceSize();
return math::max((a_block_space_size + b_block_space_size) * sizeof(FloatAB),
return math::max((a_block_space_size * sizeof(FloatAAdjusted) +
b_block_space_size * sizeof(FloatBAdjusted)),
c_block_size * sizeof(FloatC));
}
......@@ -610,8 +620,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
using CBlockClusterAdaptor = decltype(MakeCBlockClusterAdaptor(CMNGridDesc{}, 1, 1, 1));
template <bool HasMainKBlockLoop>
__device__ static void Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
__device__ static void Run(const FloatA* __restrict__ p_a_grid,
const FloatB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
void* __restrict__ p_shared,
const AGridDesc_B_K0_M_K1& a_b_k0_m_k1_grid_desc,
......@@ -673,8 +683,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
Sequence<1, K0PerBlock, MPerBlock, K1>,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatABAdjusted,
FloatA,
FloatAAdjusted,
decltype(a_b_k0_m_k1_grid_desc),
decltype(a_b_k0_m_k1_block_desc),
ABlockTransferSrcAccessOrder,
......@@ -703,8 +713,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
Sequence<1, K0PerBlock, NPerBlock, K1>,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatABAdjusted,
FloatB,
FloatBAdjusted,
decltype(b_b_k0_n_k1_grid_desc),
decltype(b_b_k0_n_k1_block_desc),
BBlockTransferSrcAccessOrder,
......@@ -733,11 +743,14 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
// sanity check
constexpr index_t KPack =
math::max(K1, MfmaSelector<FloatABAdjusted, MPerXDL, NPerXDL>::selected_mfma.k_per_blk);
math::max(K1,
MfmaSelector<FloatAAdjusted, MPerXDL, NPerXDL, FloatBAdjusted>::selected_mfma
.k_per_blk);
auto blockwise_gemm =
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
FloatABAdjusted,
FloatAAdjusted,
FloatBAdjusted,
FloatAcc,
decltype(a_k0_m_k1_block_desc),
decltype(b_k0_n_k1_block_desc),
......@@ -757,10 +770,10 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
constexpr auto b_block_slice_copy_step = make_multi_index(0, K0PerBlock, 0, 0);
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<FloatABAdjusted*>(p_shared), a_k0_m_k1_block_desc.GetElementSpaceSize());
static_cast<FloatAAdjusted*>(p_shared), a_k0_m_k1_block_desc.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<FloatABAdjusted*>(p_shared) + a_block_space_size,
static_cast<FloatBAdjusted*>(p_shared) + a_block_space_size,
b_k0_n_k1_block_desc.GetElementSpaceSize());
// gridwise GEMM pipeline
......
......@@ -37,7 +37,8 @@ __global__ void
index_t StrideC,
typename GridwiseGemm::Block2CTileMap block_mapping)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
constexpr index_t shared_size = GridwiseGemm::GetSharedMemoryNumberOfByte();
__shared__ uint8_t p_shared[shared_size];
......@@ -489,6 +490,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_streamk
auto blockwise_gemm =
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
FloatAB,
FloatAB,
FloatAcc,
decltype(a_block_desc_k0_m_k1),
......
......@@ -175,7 +175,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
return math::integer_divide_ceil(N, NPerBlock) * NPerBlock;
}
__host__ static auto CalculateK0(index_t K) { return math::integer_divide_floor(K, K1Value); }
__host__ static auto CalculateK0(index_t K) { return math::integer_divide_ceil(K, K1Value); }
// Argument
struct Problem
......@@ -194,7 +194,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
StrideC{StrideC_},
MPadded{CalculateMPadded(M_)},
NPadded{CalculateNPadded(N_)},
K0{CalculateK0(K)}
K0{CalculateK0(K_)}
{
}
......@@ -369,9 +369,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
"Invalid tuning param!");
// check gridwise gemm pipeline
const index_t K0 = problem.K / K1Value;
const auto num_k_loop = K0 / K0PerBlock;
const auto num_k_loop = math::integer_divide_ceil(problem.K0, K0PerBlock);
if(!GridwiseGemmPipe::IsSupported(num_k_loop))
{
return false;
......@@ -383,7 +381,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
__host__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / (K0PerBlock * K1);
const index_t num_loop = math::integer_divide_ceil(K, K0PerBlock * K1);
return GridwiseGemmPipe::CalculateHasMainLoop(num_loop);
}
......@@ -426,6 +424,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
using BlockwiseGemm =
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
FloatABAdjusted,
FloatABAdjusted,
FloatAcc,
decltype(a_block_desc_k0_m_k1),
......@@ -571,6 +570,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
BlockSize,
FloatABAdjusted,
FloatABAdjusted,
FloatAcc,
decltype(a_block_desc_k0_m_k1),
decltype(b_block_desc_k0_n_k1),
......@@ -840,7 +840,25 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3_ext
}
}();
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding)
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding)
{
const auto K0Pad = math::integer_divide_ceil(K0, K0PerBlock) * K0PerBlock;
const auto KPad = K0Pad * K1Value;
const auto a_grid_desc_m_kpad = transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_pass_through_transform(M), make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return transform_tensor_descriptor(
a_grid_desc_m_kpad,
make_tuple(make_unmerge_transform(make_tuple(K0Pad, K1Value)),
make_right_pad_transform(M, MPad - M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding)
{
return transform_tensor_descriptor(
a_grid_desc_m_k,
......@@ -874,7 +892,26 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3_ext
}
}();
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding)
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding)
{
const auto K0Pad = math::integer_divide_ceil(K0, K0PerBlock) * K0PerBlock;
const auto KPad = K0Pad * K1Value;
const auto b_grid_desc_kpad_n = transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_right_pad_transform(K, KPad - K), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return transform_tensor_descriptor(
b_grid_desc_kpad_n,
make_tuple(make_unmerge_transform(make_tuple(K0Pad, K1Value)),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding)
{
return transform_tensor_descriptor(
b_grid_desc_k_n,
......@@ -908,7 +945,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3_ext
}
}();
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding)
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding)
{
return transform_tensor_descriptor(c_grid_desc_m_n,
make_tuple(make_right_pad_transform(M, MPad - M),
......@@ -989,8 +1027,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3_ext
}
// check gridwise gemm pipeline
const index_t K0 = problem.K / K1;
const auto num_k_loop = K0 / K0PerBlock;
const auto num_k_loop = math::integer_divide_ceil(problem.K0, K0PerBlock);
if(!GridwiseGemmPipe::IsSupported(num_k_loop))
{
......
......@@ -22,13 +22,19 @@ namespace ck {
template <typename GridwiseGemm,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
typename Block2CTileMap>
typename Block2CTileMap,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_xdlops_v2r4r2_simplified(typename GridwiseGemm::Argument karg,
const Block2CTileMap& b2c_map)
const Block2CTileMap& b2c_map,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CElementwiseOperation c_element_op)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
......@@ -37,10 +43,13 @@ __global__ void
__shared__ uint8_t p_shared[shared_size];
GridwiseGemm::template Run<HasMainKBlockLoop, CGlobalMemoryDataOperation>(
karg, static_cast<void*>(p_shared), b2c_map);
karg, static_cast<void*>(p_shared), b2c_map, a_element_op, b_element_op, c_element_op);
#else
ignore = karg;
ignore = b2c_map;
ignore = a_element_op;
ignore = b_element_op;
ignore = c_element_op;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
......@@ -127,7 +136,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
index_t MPadded;
index_t NPadded;
index_t KPadded;
index_t K0;
index_t K0Padded;
index_t k_batch;
Argument(const FloatA* p_a_grid_,
......@@ -142,7 +151,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
index_t MPadded_,
index_t NPadded_,
index_t KPadded_,
index_t K0_,
index_t K0Padded_,
index_t k_batch_)
: p_a_grid(p_a_grid_),
p_b_grid(p_b_grid_),
......@@ -156,7 +165,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
MPadded(MPadded_),
NPadded(NPadded_),
KPadded(KPadded_),
K0(K0_),
K0Padded(K0Padded_),
k_batch(k_batch_)
{
}
......@@ -173,7 +182,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
<< "MP:" << MPadded << ", "
<< "NP:" << NPadded << ", "
<< "KP:" << KPadded << ", "
<< "K0:" << K0 << ", "
<< "K0Padded:" << K0Padded << ", "
<< "KB:" << k_batch << "}" << std::endl;
}
};
......@@ -196,7 +205,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
return math::integer_least_multiple(N, NPerBlock);
}
__host__ __device__ static auto CalculateK0(index_t K, index_t K_Batch = 1)
__host__ __device__ static auto CalculateK0Padded(index_t K, index_t K_Batch = 1)
{
// k_batch * k0 * k0_per_block * k1
auto K_t = K_Batch * K0PerBlock * K1;
......@@ -205,8 +214,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
__host__ __device__ static auto CalculateKPadded(index_t K, index_t K_Batch = 1)
{
auto K0 = CalculateK0(K, K_Batch);
return K_Batch * K0 * K1;
auto K0Padded = CalculateK0Padded(K, K_Batch);
return K_Batch * K0Padded * K1;
}
__host__ __device__ static auto MakeAGridDescriptor_KBatch_K0_M_K1(index_t M,
......@@ -214,7 +223,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
index_t K,
index_t StrideA,
index_t KBatch,
index_t K0,
index_t K0Padded,
index_t KPad)
{
const auto a_grid_desc_m_k = [&]() {
......@@ -228,21 +237,33 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
}
}();
const auto a_grid_desc_m_kpad = transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_pass_through_transform(M), make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding)
{
const auto a_grid_desc_m_kpad = transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_pass_through_transform(M), make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
// const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return transform_tensor_descriptor(
a_grid_desc_m_kpad,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0, K1)),
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0Padded, K1)),
make_right_pad_transform(M, MPad - M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding)
{
// const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0Padded, K1)),
make_right_pad_transform(M, MPad - M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
......@@ -250,8 +271,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
else
{
return transform_tensor_descriptor(
a_grid_desc_m_kpad,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0, K1)),
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0Padded, K1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
......@@ -263,7 +284,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
index_t N,
index_t StrideB,
index_t KBatch,
index_t K0,
index_t K0Padded,
index_t KPad)
{
const auto b_grid_desc_k_n = [&]() {
......@@ -277,21 +298,33 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
}
}();
const auto b_grid_desc_kpad_n = transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_right_pad_transform(K, KPad - K), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::NPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::NKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding)
{
const auto b_grid_desc_kpad_n = transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_right_pad_transform(K, KPad - K), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
// const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
b_grid_desc_kpad_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0, K1)),
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0Padded, K1)),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::NPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding)
{
// const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0Padded, K1)),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
......@@ -299,8 +332,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
else
{
return transform_tensor_descriptor(
b_grid_desc_kpad_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0, K1)),
b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0Padded, K1)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
......@@ -389,6 +422,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
return false;
}
}
if constexpr(!(GemmSpec == tensor_operation::device::GemmSpecialization::NPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::NKPadding ||
......@@ -401,6 +435,25 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
<< __FILE__ << ":" << __LINE__ << ", in function: " << __func__
<< std::endl;
#endif // DEBUG_LOG
return false;
}
}
if constexpr(!(GemmSpec == tensor_operation::device::GemmSpecialization::KPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::NKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding))
{
auto K_t = karg.k_batch * K0PerBlock * K1;
if(!(karg.K % K_t == 0))
{
#if DEBUG_LOG
std::cout << "Arg K value is not a multiple of K_Batch * K0PerBlock * K1! K: "
<< karg.K << " " << __FILE__ << ":" << __LINE__
<< ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
......@@ -469,11 +522,11 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
if(karg.N % CBlockTransferScalarPerVector_NWaveNPerXDL != 0)
{
#if DEBUG_LOG
std::cout
<< "Arg N (" << karg.N
<< ") value is not a multiple of CBlockTransferScalarPerVector_NWaveNPerXDL ("
<< CBlockTransferScalarPerVector_NWaveNPerXDL << " )! " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__ << std::endl;
std::cout << "Arg N (" << karg.N
<< ") value is not a multiple of "
"CBlockTransferScalarPerVector_NWaveNPerXDL ("
<< CBlockTransferScalarPerVector_NWaveNPerXDL << " )! " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
......@@ -484,25 +537,25 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
if(karg.M % CBlockTransferScalarPerVector_NWaveNPerXDL != 0)
{
#if DEBUG_LOG
std::cout
<< "Arg M (" << karg.M
<< ") value is not a multiple of CBlockTransferScalarPerVector_NWaveNPerXDL ("
<< CBlockTransferScalarPerVector_NWaveNPerXDL << " )! " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__ << std::endl;
std::cout << "Arg M (" << karg.M
<< ") value is not a multiple of "
"CBlockTransferScalarPerVector_NWaveNPerXDL ("
<< CBlockTransferScalarPerVector_NWaveNPerXDL << " )! " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
const auto num_k_loop = karg.K0 / K0PerBlock;
const auto num_k_loop = karg.K0Padded / K0PerBlock;
if(!GridwiseGemmPipe::IsSupported(num_k_loop))
{
#if DEBUG_LOG
std::cout << "The number of k loops (" << num_k_loop
<< ") value is not supported by GridwiseGemm Pipeline."
<< " K0: " << karg.K0 << ", K0PerBlock: " << K0PerBlock << " " << __FILE__
<< ":" << __LINE__ << ", in function: " << __func__ << std::endl;
<< " K0Padded: " << karg.K0Padded << ", K0PerBlock: " << K0PerBlock << " "
<< __FILE__ << ":" << __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
......@@ -512,14 +565,15 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
__host__ __device__ static auto GetKPad(index_t K, index_t KBatch)
{
const index_t K0 = math::integer_divide_ceil(K, K1 * K0PerBlock * KBatch) * K0PerBlock;
const index_t KPad = KBatch * K0 * K1;
const index_t K0Padded =
math::integer_divide_ceil(K, K1 * K0PerBlock * KBatch) * K0PerBlock;
const index_t KPad = KBatch * K0Padded * K1;
return KPad;
}
__host__ __device__ static constexpr bool CalculateHasMainK0BlockLoop(index_t K0)
__host__ __device__ static constexpr bool CalculateHasMainK0BlockLoop(index_t K0Padded)
{
const index_t num_loop = K0 / K0PerBlock;
const index_t num_loop = K0Padded / K0PerBlock;
return GridwiseGemmPipe::CalculateHasMainLoop(num_loop);
}
......@@ -577,22 +631,22 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
typename Block2CTileMap>
__device__ static void Run(const Argument& karg,
void* __restrict__ p_shared_block,
const Block2CTileMap& block_2_ctile_map)
const Block2CTileMap& block_2_ctile_map,
const AElementwiseOperation a_element_op = AElementwiseOperation{},
const BElementwiseOperation b_element_op = BElementwiseOperation{},
const CElementwiseOperation c_element_op = CElementwiseOperation{})
{
const FloatA* p_a_grid = karg.p_a_grid;
const FloatB* p_b_grid = karg.p_b_grid;
FloatC* p_c_grid = karg.p_c_grid;
const auto a_b_k0_m_k1_grid_desc = MakeAGridDescriptor_KBatch_K0_M_K1(
karg.M, karg.MPadded, karg.K, karg.StrideA, karg.k_batch, karg.K0, karg.KPadded);
karg.M, karg.MPadded, karg.K, karg.StrideA, karg.k_batch, karg.K0Padded, karg.KPadded);
const auto b_b_k0_n_k1_grid_desc = MakeBGridDescriptor_KBatch_K0_N_K1(
karg.K, karg.NPadded, karg.N, karg.StrideB, karg.k_batch, karg.K0, karg.KPadded);
karg.K, karg.NPadded, karg.N, karg.StrideB, karg.k_batch, karg.K0Padded, karg.KPadded);
const auto c_grid_desc_m_n = MakeCGridDescriptor_M_N(karg.M, karg.N, karg.StrideC);
const auto c_grid_desc_mblock_mperblock_nblock_nperblock =
MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(c_grid_desc_m_n);
const AElementwiseOperation a_element_op = AElementwiseOperation{};
const BElementwiseOperation b_element_op = BElementwiseOperation{};
const CElementwiseOperation c_element_op = CElementwiseOperation{};
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_b_k0_m_k1_grid_desc.GetElementSpaceSize());
......@@ -761,7 +815,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
BlockSize,
ComputeType,
ComputeType, // ComputeType A
ComputeType, // ComputeType B
FloatAcc,
decltype(a_k0_m_k1_block_desc),
decltype(b_k0_n_k1_block_desc),
......
......@@ -451,6 +451,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1
auto blockwise_gemm =
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
FloatAB,
FloatAB,
FloatAcc,
decltype(a_block_desc_ak0_m_ak1),
......
......@@ -471,6 +471,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r2
auto blockwise_gemm =
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
FloatAB,
FloatAB,
FloatAcc,
decltype(a_block_desc_k0_m_k1),
......
......@@ -489,6 +489,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3
auto blockwise_gemm =
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
FloatAB,
FloatAB,
FloatAcc,
decltype(a_block_desc_k0_m_k1),
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace ck {
template <typename InputGridDesc,
typename InputDataType,
typename OutputGridDesc,
typename OutputDataType,
typename Block2ETileMap,
typename ComputePtrOffsetOfStridedBatch,
typename GridwiseTensorRearrangeKernel>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_tensor_rearrange(const InputGridDesc in_grid_desc,
const InputDataType* __restrict__ p_in_global,
const OutputGridDesc out_grid_desc,
OutputDataType* __restrict__ p_out_global,
const index_t batch_count,
const Block2ETileMap block_2_tile_map,
const ComputePtrOffsetOfStridedBatch compute_ptr_offset_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx1030__) || defined(__gfx1100__) || \
defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx941__) || defined(__gfx942__))
GridwiseTensorRearrangeKernel::Run(in_grid_desc,
p_in_global,
out_grid_desc,
p_out_global,
batch_count,
block_2_tile_map,
compute_ptr_offset_of_batch);
#else
ignore = in_grid_desc;
ignore = p_in_global;
ignore = out_grid_desc;
ignore = p_out_global;
ignore = block_2_tile_map;
#endif
}
template <typename InputGridDesc,
typename InputDataType,
typename OutputGridDesc,
typename OutputDataType,
index_t BlockSize,
index_t MPerBlock,
index_t KPerBlock,
typename ThreadClusterLengths,
index_t ScalarPerVector,
InMemoryDataOperationEnum DstInMemOp,
typename Block2ETileMap,
typename ComputePtrOffsetOfStridedBatch>
struct GridwiseTensorRearrange
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
__device__ static void Run(const InputGridDesc& in_grid_desc,
const InputDataType* __restrict__ p_in_global,
const OutputGridDesc& out_grid_desc,
OutputDataType* __restrict__ p_out_global,
const index_t batch_count,
const Block2ETileMap& block_2_tile_map,
const ComputePtrOffsetOfStridedBatch& compute_ptr_offset_of_batch)
{
const auto block_work_idx =
block_2_tile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
const index_t k_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I1] * KPerBlock);
auto copy_global_to_global =
ThreadGroupTensorSliceTransfer_v7<ThisThreadBlock,
Tuple<InputDataType>,
Tuple<OutputDataType>,
decltype(tie(in_grid_desc)),
decltype(tie(out_grid_desc)),
tensor_operation::element_wise::PassThrough,
Sequence<static_cast<index_t>(DstInMemOp)>,
Sequence<MPerBlock, KPerBlock>,
ThreadClusterLengths,
Sequence<0, 1>,
Sequence<0, 1>,
I1,
ScalarPerVector,
Sequence<true>,
Sequence<true>>{
in_grid_desc,
make_tuple(make_multi_index(m_block_data_idx_on_grid, k_block_data_idx_on_grid)),
out_grid_desc,
make_tuple(make_multi_index(m_block_data_idx_on_grid, k_block_data_idx_on_grid)),
tensor_operation::element_wise::PassThrough{}};
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx =
__builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
// Global Memory
const index_t a_batch_offset =
__builtin_amdgcn_readfirstlane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const index_t c_batch_offset =
__builtin_amdgcn_readfirstlane(compute_ptr_offset_of_batch.GetCPtrOffset(g_idx));
const auto in_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_in_global + a_batch_offset, in_grid_desc.GetElementSpaceSize());
auto out_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_out_global + c_batch_offset, out_grid_desc.GetElementSpaceSize());
copy_global_to_global.Run(
tie(in_grid_desc), tie(in_global_buf), tie(out_grid_desc), tie(out_global_buf));
}
__host__ static constexpr bool CheckValidity(const InputGridDesc& in_grid_desc,
const OutputGridDesc& out_grid_desc)
{
if(in_grid_desc.GetLength(I0) % MPerBlock != 0 ||
in_grid_desc.GetLength(I1) % KPerBlock != 0)
return false;
if(out_grid_desc.GetLength(I0) % MPerBlock != 0 ||
out_grid_desc.GetLength(I1) % KPerBlock != 0)
return false;
return true;
}
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/block/reduction_functions_blockwise.hpp"
namespace ck {
// dgamma = reduce_sum(dy * (x - mean) * inv_std)
// dbeta = reduce_sum(dy)
template <typename DYDataType,
typename XDataType,
typename MeanInvStdDataType,
typename ComputeDataType,
typename DGammaDataType,
typename DBetaDataType,
typename GridDesc_M_K,
typename GridDesc_M,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
index_t MThreadSliceSize,
index_t KThreadSliceSize,
index_t DYSrcVectorDim,
index_t DYSrcVectorSize,
index_t XSrcVectorDim,
index_t XSrcVectorSize,
index_t MeanInvStdSrcVectorDim,
index_t MeanInvStdSrcVectorSize,
index_t DGammaDstVectorSize,
index_t DBetaDstVectorSize>
struct GridwiseNormalizationBwdGammaBeta_mk_to_k
{
// if we just check ThreadSliceSize & VectorSize == 0, the performance may be poor
static_assert(((DYSrcVectorDim == 0 && MThreadSliceSize == DYSrcVectorSize) ||
(DYSrcVectorDim == 1 && KThreadSliceSize == DYSrcVectorSize)),
"Invalid thread slice sizes and/or dy vector sizes configuration, please check!");
static_assert(((XSrcVectorDim == 0 && MThreadSliceSize == XSrcVectorSize) ||
(XSrcVectorDim == 1 && KThreadSliceSize == XSrcVectorSize)),
"Invalid thread slice sizes and/or x vector sizes configuration, please check!");
using ThreadClusterLengths_M_K = Sequence<MThreadClusterSize, KThreadClusterSize>;
using DYThreadBufferDimAccessOrder =
typename conditional<DYSrcVectorDim == 0, Sequence<1, 0>, Sequence<0, 1>>::type;
using XThreadBufferDimAccessOrder =
typename conditional<XSrcVectorDim == 0, Sequence<1, 0>, Sequence<0, 1>>::type;
using MeanInvStdThreadBufferDimAccessOrder =
typename conditional<MeanInvStdSrcVectorDim == 0, Sequence<1, 0>, Sequence<0, 1>>::type;
using ThreadClusterArrangeOrder = DYThreadBufferDimAccessOrder;
static constexpr auto thread_cluster_desc =
make_cluster_descriptor(ThreadClusterLengths_M_K{}, ThreadClusterArrangeOrder{});
using ThreadBufferLengths_M_K = Sequence<MThreadSliceSize, KThreadSliceSize>;
using ThreadBufferLengths_M = Sequence<MThreadSliceSize>;
static constexpr auto thread_buffer_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<KThreadSliceSize>{}));
static constexpr auto thread_buffer_desc_m =
make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{}));
using PassThroughOp = tensor_operation::element_wise::PassThrough;
using BlockwiseSumReduce = PartitionedBlockwiseReduction<ComputeDataType,
BlockSize,
ThreadClusterLengths_M_K,
ThreadClusterArrangeOrder,
reduce::Add,
true>;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
__device__ static void Run(const GridDesc_M_K& dy_grid_desc_m_k,
const GridDesc_M_K& x_grid_desc_m_k,
const GridDesc_M_K& mean_grid_desc_m_k,
const GridDesc_M_K& inv_std_grid_desc_m_k,
const GridDesc_M& dgamma_grid_desc_m,
const GridDesc_M& dbeta_grid_desc_m,
index_t num_k_block_tile_iteration,
const DYDataType* const __restrict__ p_dy_global,
const XDataType* const __restrict__ p_x_global,
const MeanInvStdDataType* const __restrict__ p_mean_global,
const MeanInvStdDataType* const __restrict__ p_inv_std_global,
DGammaDataType* const __restrict__ p_dgamma_global,
DBetaDataType* const __restrict__ p_dbeta_global)
{
// LDS
__shared__ ComputeDataType p_reduce_work_buffer[BlockSize];
auto reduce_work_buf =
make_dynamic_buffer<AddressSpaceEnum::Lds>(p_reduce_work_buffer, BlockSize);
// Global
const auto dy_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_dy_global, dy_grid_desc_m_k.GetElementSpaceSize());
const auto x_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_x_global, x_grid_desc_m_k.GetElementSpaceSize());
const auto mean_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_mean_global, mean_grid_desc_m_k.GetElementSpaceSize());
const auto inv_std_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_inv_std_global, inv_std_grid_desc_m_k.GetElementSpaceSize());
auto dgamma_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_dgamma_global, dgamma_grid_desc_m.GetElementSpaceSize());
auto dbeta_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_dbeta_global, dbeta_grid_desc_m.GetElementSpaceSize());
// VGPR
auto dy_thread_buf = StaticBuffer<AddressSpaceEnum::Vgpr,
ComputeDataType,
MThreadSliceSize * KThreadSliceSize,
true>{};
auto x_thread_buf = StaticBuffer<AddressSpaceEnum::Vgpr,
ComputeDataType,
MThreadSliceSize * KThreadSliceSize,
true>{};
auto mean_thread_buf = StaticBuffer<AddressSpaceEnum::Vgpr,
ComputeDataType,
MThreadSliceSize * KThreadSliceSize,
true>{};
auto inv_std_thread_buf = StaticBuffer<AddressSpaceEnum::Vgpr,
ComputeDataType,
MThreadSliceSize * KThreadSliceSize,
true>{};
auto dgamma_thread_buf =
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MThreadSliceSize, true>{};
auto dbeta_thread_buf =
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MThreadSliceSize, true>{};
const index_t thread_local_id = get_thread_local_1d_id();
const index_t block_global_id = get_block_1d_id();
const auto thread_cluster_idx =
thread_cluster_desc.CalculateBottomIndex(make_multi_index(thread_local_id));
const auto thread_m_cluster_id = thread_cluster_idx[I0];
const auto thread_k_cluster_id = thread_cluster_idx[I1];
// IO
auto threadwise_dy_load = ThreadwiseTensorSliceTransfer_v2<DYDataType,
ComputeDataType,
GridDesc_M_K,
decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K,
DYThreadBufferDimAccessOrder,
DYSrcVectorDim,
DYSrcVectorSize,
1,
true>(
dy_grid_desc_m_k,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * KThreadSliceSize));
auto threadwise_x_load = ThreadwiseTensorSliceTransfer_v2<XDataType,
ComputeDataType,
GridDesc_M_K,
decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K,
XThreadBufferDimAccessOrder,
XSrcVectorDim,
XSrcVectorSize,
1,
true>(
x_grid_desc_m_k,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * KThreadSliceSize));
auto threadwise_mean_load =
ThreadwiseTensorSliceTransfer_v2<MeanInvStdDataType,
ComputeDataType,
GridDesc_M_K,
decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K,
MeanInvStdThreadBufferDimAccessOrder,
MeanInvStdSrcVectorDim,
MeanInvStdSrcVectorSize,
1,
true>(
mean_grid_desc_m_k,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * KThreadSliceSize));
auto threadwise_inv_std_load =
ThreadwiseTensorSliceTransfer_v2<MeanInvStdDataType,
ComputeDataType,
GridDesc_M_K,
decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K,
MeanInvStdThreadBufferDimAccessOrder,
MeanInvStdSrcVectorDim,
MeanInvStdSrcVectorSize,
1,
true>(
inv_std_grid_desc_m_k,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * KThreadSliceSize));
auto threadwise_dgamma_store =
ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
DGammaDataType,
decltype(thread_buffer_desc_m),
GridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>,
0,
DGammaDstVectorSize,
InMemoryDataOperationEnum::Set,
1,
true>(
dgamma_grid_desc_m,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
auto threadwise_dbeta_store =
ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
DBetaDataType,
decltype(thread_buffer_desc_m),
GridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>,
0,
DBetaDstVectorSize,
InMemoryDataOperationEnum::Set,
1,
true>(
dbeta_grid_desc_m,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
dgamma_thread_buf(I) = type_convert<ComputeDataType>(0.0f);
dbeta_thread_buf(I) = type_convert<ComputeDataType>(0.0f);
});
constexpr auto thread_copy_fwd_step_m_k = make_multi_index(0, K_BlockTileSize);
for(index_t reducedTiles = 0; reducedTiles < num_k_block_tile_iteration; ++reducedTiles)
{
threadwise_dy_load.Run(dy_grid_desc_m_k,
dy_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
dy_thread_buf);
threadwise_x_load.Run(x_grid_desc_m_k,
x_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
x_thread_buf);
threadwise_mean_load.Run(mean_grid_desc_m_k,
mean_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
mean_thread_buf);
threadwise_inv_std_load.Run(inv_std_grid_desc_m_k,
inv_std_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
inv_std_thread_buf);
threadwise_dy_load.MoveSrcSliceWindow(dy_grid_desc_m_k, thread_copy_fwd_step_m_k);
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_fwd_step_m_k);
threadwise_mean_load.MoveSrcSliceWindow(mean_grid_desc_m_k, thread_copy_fwd_step_m_k);
threadwise_inv_std_load.MoveSrcSliceWindow(inv_std_grid_desc_m_k,
thread_copy_fwd_step_m_k);
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
constexpr auto offset_m =
Number<thread_buffer_desc_m.CalculateOffset(make_tuple(iM))>{};
static_for<0, KThreadSliceSize, 1>{}([&](auto iK) {
constexpr auto offset_m_k =
Number<thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK))>{};
dgamma_thread_buf(offset_m) +=
dy_thread_buf[offset_m_k] * inv_std_thread_buf[offset_m_k] *
(x_thread_buf[offset_m_k] - mean_thread_buf[offset_m_k]);
dbeta_thread_buf(offset_m) += dy_thread_buf[offset_m_k];
});
});
}
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
if constexpr(I > 0)
block_sync_lds();
BlockwiseSumReduce::Reduce(reduce_work_buf, dbeta_thread_buf(I));
block_sync_lds();
BlockwiseSumReduce::Reduce(reduce_work_buf, dgamma_thread_buf(I));
});
if(thread_k_cluster_id == 0)
{
threadwise_dgamma_store.Run(thread_buffer_desc_m,
make_tuple(I0),
dgamma_thread_buf,
dgamma_grid_desc_m,
dgamma_global_val_buf);
threadwise_dbeta_store.Run(thread_buffer_desc_m,
make_tuple(I0),
dbeta_thread_buf,
dbeta_grid_desc_m,
dbeta_global_val_buf);
}
}
};
} // namespace ck
......@@ -18,9 +18,11 @@ template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename SaveMeanInvStdDataType,
typename ComputeDataType,
typename YElementwiseOperation,
typename GridDesc_M_K,
typename GridDesc_M,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
......@@ -34,6 +36,7 @@ template <typename XDataType,
index_t BetaSrcVectorSize,
index_t YDstVectorDim,
index_t YDstVectorSize,
index_t SaveMeanInvStdDstVectorSize,
bool SweepOnce>
struct GridwiseNormalizationNaiveVariance_mk_to_mk
{
......@@ -45,6 +48,10 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
(YDstVectorDim == 1 && KThreadSliceSize % YDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static_assert(MThreadSliceSize % SaveMeanInvStdDstVectorSize == 0,
"Invalid thread slice sizes and/or save mean and inverse std vector sizes "
"configuration, please check!");
static_assert(XSrcVectorSize == YDstVectorSize);
static_assert(XSrcVectorSize == GammaSrcVectorSize);
static_assert(XSrcVectorSize == BetaSrcVectorSize);
......@@ -66,6 +73,10 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
static constexpr auto thread_buffer_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<XSrcVectorSize>{}));
using ThreadBufferLengths_M = Sequence<MThreadSliceSize>;
static constexpr auto thread_buffer_desc_m =
make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{}));
using ThreadReduceSrcDesc_M_K = decltype(make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<XSrcVectorSize>{})));
using ThreadReduceDstDesc_M =
......@@ -84,6 +95,8 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
reduce::Add,
true>;
using PassThroughOp = tensor_operation::element_wise::PassThrough;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
......@@ -98,12 +111,16 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
const GridDesc_M_K& gamma_grid_desc_m_k,
const GridDesc_M_K& beta_grid_desc_m_k,
const GridDesc_M_K& y_grid_desc_m_k,
const GridDesc_M& save_mean_grid_desc_m,
const GridDesc_M& save_inv_std_grid_desc_m,
index_t num_k_block_tile_iteration,
ComputeDataType epsilon,
const XDataType* const __restrict__ p_x_global,
const GammaDataType* const __restrict__ p_gamma_global,
const BetaDataType* const __restrict__ p_beta_global,
YDataType* const __restrict__ p_y_global,
SaveMeanInvStdDataType* const __restrict__ p_save_mean_global,
SaveMeanInvStdDataType* const __restrict__ p_save_inv_std_global,
const YElementwiseOperation y_elementwise_op)
{
// LDS
......@@ -115,6 +132,12 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
auto y_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_y_global, y_grid_desc_m_k.GetElementSpaceSize());
auto save_mean_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_save_mean_global, save_mean_grid_desc_m.GetElementSpaceSize());
auto save_inv_std_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_save_inv_std_global, save_inv_std_grid_desc_m.GetElementSpaceSize());
auto x_thread_buf = generate_tuple(
[&](auto) {
return StaticBuffer<AddressSpaceEnum::Vgpr,
......@@ -152,6 +175,8 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
mean_square_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MThreadSliceSize, true>&
var_thread_buf = mean_square_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MThreadSliceSize, true>&
inv_std_thread_buf = mean_square_thread_buf;
const index_t thread_local_id = get_thread_local_1d_id();
const index_t block_global_id = get_block_1d_id();
......@@ -228,6 +253,42 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
thread_k_cluster_id * YDstVectorSize),
y_elementwise_op);
auto threadwise_mean_store =
ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
SaveMeanInvStdDataType,
decltype(thread_buffer_desc_m),
GridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
SaveMeanInvStdDstVectorSize, // ScalarPerVector
InMemoryDataOperationEnum::Set,
1,
true>(
save_mean_grid_desc_m,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
auto threadwise_inv_std_store =
ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
SaveMeanInvStdDataType,
decltype(thread_buffer_desc_m),
GridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
SaveMeanInvStdDstVectorSize, // ScalarPerVector
InMemoryDataOperationEnum::Set,
1,
true>(
save_inv_std_grid_desc_m,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
constexpr auto thread_copy_fwd_step_m_k = make_multi_index(0, K_BlockTileStepSize);
constexpr auto thread_copy_bwd_step_m_k =
make_multi_index(0, SweepOnce ? 0 : -K_BlockTileSize);
......@@ -243,7 +304,8 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
// E(x), E[x^2], var(x)
// FIXME: Should not hack the transform from deviceOP
int reduce_length = x_grid_desc_m_k.GetTransforms()[I2].GetUpperLengths()[I0];
ComputeDataType reduce_length = type_convert<ComputeDataType>(
x_grid_desc_m_k.GetTransforms()[I2].GetUpperLengths()[I0]);
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
mean_thread_buf(I) = reduce::Add::template GetIdentityValue<ComputeDataType>();
......@@ -302,10 +364,34 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
// var(x) = E[x^2] - E[x]^2
var_thread_buf(I) =
mean_square_thread_buf(I) - (mean_thread_buf(I) * mean_thread_buf(I));
inv_std_thread_buf(I) = type_convert<ComputeDataType>(1.0f) /
ck::math::sqrt(var_thread_buf(I) + epsilon);
});
// save mean and inverse std for backward (optional)
if(thread_k_cluster_id == 0)
{
if(p_save_mean_global != nullptr)
{
threadwise_mean_store.Run(thread_buffer_desc_m,
make_tuple(I0),
mean_thread_buf,
save_mean_grid_desc_m,
save_mean_global_val_buf);
}
if(p_save_inv_std_global != nullptr)
{
threadwise_inv_std_store.Run(thread_buffer_desc_m,
make_tuple(I0),
inv_std_thread_buf,
save_inv_std_grid_desc_m,
save_inv_std_global_val_buf);
}
}
// normalization
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
auto divisor = 1 / ck::math::sqrt(var_thread_buf(iM) + epsilon);
static_for<0, ThreadBufferNumber, 1>{}([&](auto iK0) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) {
constexpr auto offset_m_k =
......@@ -314,7 +400,7 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
// normalize
y_thread_buf(iK0)(Number<offset_m_k>{}) =
(x_thread_buf(iK0)(Number<offset_m_k>{}) - mean_thread_buf(iM)) *
divisor;
inv_std_thread_buf(iM);
// gamma & beta
y_thread_buf(iK0)(Number<offset_m_k>{}) =
......@@ -404,8 +490,30 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
// var(x) = E[x^2] - E[x]^2
var_thread_buf(I) =
mean_square_thread_buf(I) - (mean_thread_buf(I) * mean_thread_buf(I));
inv_std_thread_buf(I) = 1 / ck::math::sqrt(var_thread_buf(I) + epsilon);
});
if(thread_k_cluster_id == 0)
{
if(p_save_mean_global != nullptr)
{
threadwise_mean_store.Run(thread_buffer_desc_m,
make_tuple(I0),
mean_thread_buf,
save_mean_grid_desc_m,
save_mean_global_val_buf);
}
if(p_save_inv_std_global != nullptr)
{
threadwise_inv_std_store.Run(thread_buffer_desc_m,
make_tuple(I0),
inv_std_thread_buf,
save_inv_std_grid_desc_m,
save_inv_std_global_val_buf);
}
}
auto thread_copy_tail_m_k =
(num_k_block_tile_iteration - 1) * ThreadBufferNumber * thread_copy_fwd_step_m_k;
......@@ -437,7 +545,6 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
});
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
auto divisor = 1 / ck::math::sqrt(var_thread_buf(iM) + epsilon);
static_for<0, ThreadBufferNumber, 1>{}([&](auto iK0) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) {
constexpr auto offset_m_k =
......@@ -446,7 +553,7 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
// normalize
y_thread_buf(iK0)(Number<offset_m_k>{}) =
(x_thread_buf(iK0)(Number<offset_m_k>{}) - mean_thread_buf(iM)) *
divisor;
inv_std_thread_buf(iM);
// gamma
y_thread_buf(iK0)(Number<offset_m_k>{}) =
......
......@@ -12,31 +12,42 @@ template <typename GridwiseReduction,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename SaveMeanInvStdDataType,
typename ComputeDataType,
typename YElementwiseOperation,
typename GridDesc_M_K>
__global__ void kernel_normalization(const GridDesc_M_K x_grid_desc_m_k,
const GridDesc_M_K gamma_grid_desc_m_k,
const GridDesc_M_K beta_grid_desc_m_k,
const GridDesc_M_K y_grid_desc_m_k,
index_t num_k_block_tile_iteration,
ComputeDataType epsilon,
const XDataType* const __restrict__ p_x_global,
const GammaDataType* const __restrict__ p_gamma_global,
const BetaDataType* const __restrict__ p_beta_global,
YDataType* const __restrict__ p_y_global,
const YElementwiseOperation y_elementwise_op)
typename GridDesc_M_K,
typename GridDesc_M>
__global__ void
kernel_normalization(const GridDesc_M_K x_grid_desc_m_k,
const GridDesc_M_K gamma_grid_desc_m_k,
const GridDesc_M_K beta_grid_desc_m_k,
const GridDesc_M_K y_grid_desc_m_k,
const GridDesc_M save_mean_grid_desc_m,
const GridDesc_M save_inv_std_grid_desc_m,
index_t num_k_block_tile_iteration,
ComputeDataType epsilon,
const XDataType* const __restrict__ p_x_global,
const GammaDataType* const __restrict__ p_gamma_global,
const BetaDataType* const __restrict__ p_beta_global,
YDataType* const __restrict__ p_y_global,
SaveMeanInvStdDataType* const __restrict__ p_save_mean_global,
SaveMeanInvStdDataType* const __restrict__ p_save_inv_std_global,
const YElementwiseOperation y_elementwise_op)
{
GridwiseReduction::Run(x_grid_desc_m_k,
gamma_grid_desc_m_k,
beta_grid_desc_m_k,
y_grid_desc_m_k,
save_mean_grid_desc_m,
save_inv_std_grid_desc_m,
num_k_block_tile_iteration,
epsilon,
p_x_global,
p_gamma_global,
p_beta_global,
p_y_global,
p_save_mean_global,
p_save_inv_std_global,
y_elementwise_op);
};
......@@ -44,9 +55,11 @@ template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename SaveMeanInvStdDataType,
typename ComputeDataType,
typename YElementwiseOperation,
typename GridDesc_M_K,
typename GridDesc_M,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
......@@ -60,6 +73,7 @@ template <typename XDataType,
index_t BetaSrcVectorSize,
index_t YDstVectorDim,
index_t YDstVectorSize,
index_t SaveMeanInvStdDstVectorSize,
bool UseWelford>
auto NormalizationKernelSelector(bool isSweepOnce)
{
......@@ -68,9 +82,11 @@ auto NormalizationKernelSelector(bool isSweepOnce)
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K,
GridDesc_M,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
......@@ -84,15 +100,18 @@ auto NormalizationKernelSelector(bool isSweepOnce)
BetaSrcVectorSize,
YDstVectorDim,
YDstVectorSize,
SaveMeanInvStdDstVectorSize,
false>;
using GridwiseNormalizationSweepOnceNaive =
GridwiseNormalizationNaiveVariance_mk_to_mk<XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K,
GridDesc_M,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
......@@ -106,15 +125,18 @@ auto NormalizationKernelSelector(bool isSweepOnce)
BetaSrcVectorSize,
YDstVectorDim,
YDstVectorSize,
SaveMeanInvStdDstVectorSize,
true>;
using GridwiseNormalizationGenericWelford =
GridwiseNormalizationWelfordVariance_mk_to_mk<XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K,
GridDesc_M,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
......@@ -128,15 +150,18 @@ auto NormalizationKernelSelector(bool isSweepOnce)
BetaSrcVectorSize,
YDstVectorDim,
YDstVectorSize,
SaveMeanInvStdDstVectorSize,
false>;
using GridwiseNormalizationSweepOnceWelford =
GridwiseNormalizationWelfordVariance_mk_to_mk<XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K,
GridDesc_M,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
......@@ -150,6 +175,7 @@ auto NormalizationKernelSelector(bool isSweepOnce)
BetaSrcVectorSize,
YDstVectorDim,
YDstVectorSize,
SaveMeanInvStdDstVectorSize,
true>;
if constexpr(UseWelford)
......@@ -159,17 +185,21 @@ auto NormalizationKernelSelector(bool isSweepOnce)
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K>
GridDesc_M_K,
GridDesc_M>
: kernel_normalization<GridwiseNormalizationGenericWelford,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K>;
GridDesc_M_K,
GridDesc_M>;
}
else
{
......@@ -178,17 +208,21 @@ auto NormalizationKernelSelector(bool isSweepOnce)
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K>
GridDesc_M_K,
GridDesc_M>
: kernel_normalization<GridwiseNormalizationGenericNaive,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K>;
GridDesc_M_K,
GridDesc_M>;
}
}
......
......@@ -17,11 +17,13 @@ template <typename MeanVarDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename SaveMeanInvStdDataType,
typename ComputeDataType,
typename YElementwiseOperation,
typename MeanVarGridDesc_M_KBlock,
typename CountGridDesc_M_KBlock,
typename XYGammaBetaGridDesc_M_K,
typename SaveMeanInvStdGridDesc_M,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
......@@ -34,7 +36,8 @@ template <typename MeanVarDataType,
index_t BetaSrcVectorDim,
index_t BetaSrcVectorSize,
index_t YDstVectorDim,
index_t YDstVectorSize>
index_t YDstVectorSize,
index_t SaveMeanInvStdDstVectorSize>
struct GridwiseNormalizationSplitK2nd
{
static_assert((XSrcVectorDim == 0 && MThreadSliceSize % XSrcVectorSize == 0) ||
......@@ -45,6 +48,10 @@ struct GridwiseNormalizationSplitK2nd
(YDstVectorDim == 1 && KThreadSliceSize % YDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static_assert(MThreadSliceSize % SaveMeanInvStdDstVectorSize == 0,
"Invalid thread slice sizes and/or save mean and inverse std vector sizes "
"configuration, please check!");
static_assert(XSrcVectorSize == YDstVectorSize);
static_assert(XSrcVectorSize == GammaSrcVectorSize);
static_assert(XSrcVectorSize == BetaSrcVectorSize);
......@@ -69,6 +76,10 @@ struct GridwiseNormalizationSplitK2nd
static constexpr auto thread_buffer_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<XSrcVectorSize>{}));
using ThreadBufferLengths_M = Sequence<MThreadSliceSize>;
static constexpr auto thread_buffer_desc_m =
make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{}));
using ThreadBufferLengths_M_1 = Sequence<MThreadSliceSize, 1>;
static constexpr auto thread_buffer_desc_m_1 =
make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{}, I1));
......@@ -99,6 +110,8 @@ struct GridwiseNormalizationSplitK2nd
const XYGammaBetaGridDesc_M_K& gamma_grid_desc_m_k,
const XYGammaBetaGridDesc_M_K& beta_grid_desc_m_k,
const XYGammaBetaGridDesc_M_K& y_grid_desc_m_k,
const SaveMeanInvStdGridDesc_M& save_mean_grid_desc_m,
const SaveMeanInvStdGridDesc_M& save_inv_std_grid_desc_m,
index_t num_k_mean_var_count_iteration,
index_t num_k_block_tile_iteration,
index_t k_grid_size,
......@@ -110,6 +123,8 @@ struct GridwiseNormalizationSplitK2nd
const GammaDataType* const __restrict__ p_gamma_global,
const BetaDataType* const __restrict__ p_beta_global,
YDataType* const __restrict__ p_y_global,
SaveMeanInvStdDataType* const __restrict__ p_save_mean_global,
SaveMeanInvStdDataType* const __restrict__ p_save_inv_std_global,
const YElementwiseOperation y_elementwise_op)
{
// Thread/Block id
......@@ -145,6 +160,12 @@ struct GridwiseNormalizationSplitK2nd
auto y_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_y_global, y_grid_desc_m_k.GetElementSpaceSize());
auto save_mean_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_save_mean_global, save_mean_grid_desc_m.GetElementSpaceSize());
auto save_inv_std_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_save_inv_std_global, save_inv_std_grid_desc_m.GetElementSpaceSize());
// VGPR
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MThreadSliceSize, true>
in_mean_thread_buf;
......@@ -158,6 +179,7 @@ struct GridwiseNormalizationSplitK2nd
var_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, int32_t, MThreadSliceSize, true>
welford_count_thread_buf;
auto& inv_std_thread_buf = var_thread_buf;
auto x_thread_buf = generate_tuple(
[&](auto) {
......@@ -283,6 +305,42 @@ struct GridwiseNormalizationSplitK2nd
thread_k_cluster_id * YDstVectorSize),
y_elementwise_op);
auto threadwise_mean_store =
ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
SaveMeanInvStdDataType,
decltype(thread_buffer_desc_m),
SaveMeanInvStdGridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
SaveMeanInvStdDstVectorSize, // ScalarPerVector
InMemoryDataOperationEnum::Set,
1,
true>(
save_mean_grid_desc_m,
make_multi_index(block_m_cluster_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
auto threadwise_inv_std_store =
ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
SaveMeanInvStdDataType,
decltype(thread_buffer_desc_m),
SaveMeanInvStdGridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
SaveMeanInvStdDstVectorSize, // ScalarPerVector
InMemoryDataOperationEnum::Set,
1,
true>(
save_inv_std_grid_desc_m,
make_multi_index(block_m_cluster_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
// step1: Merge mean and variance
constexpr auto mean_var_count_thread_copy_step_I0_k =
make_multi_index(I0, KThreadClusterSize);
......@@ -332,9 +390,33 @@ struct GridwiseNormalizationSplitK2nd
BlockwiseWelford::Run(
mean_thread_buf(I), var_thread_buf(I), welford_count_thread_buf(I));
inv_std_thread_buf(I) =
type_convert<ComputeDataType>(1.0f) / ck::math::sqrt(var_thread_buf(I) + epsilon);
});
// step2: normalization
// step2: save mean and inverse std for backward (optional)
if(block_k_cluster_id == 0 && thread_k_cluster_id == 0)
{
if(p_save_mean_global != nullptr)
{
threadwise_mean_store.Run(thread_buffer_desc_m,
make_tuple(I0),
mean_thread_buf,
save_mean_grid_desc_m,
save_mean_global_val_buf);
}
if(p_save_inv_std_global != nullptr)
{
threadwise_inv_std_store.Run(thread_buffer_desc_m,
make_tuple(I0),
inv_std_thread_buf,
save_inv_std_grid_desc_m,
save_inv_std_global_val_buf);
}
}
// step3: normalization
constexpr auto thread_copy_fwd_step_m_k = make_multi_index(0, K_BlockTileStepSize);
for(index_t k = 0; k < num_k_block_tile_iteration; ++k)
......@@ -360,7 +442,6 @@ struct GridwiseNormalizationSplitK2nd
});
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
auto divisor = 1 / ck::math::sqrt(var_thread_buf(iM) + epsilon);
static_for<0, ThreadBufferNumber, 1>{}([&](auto iK0) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) {
constexpr auto offset_m_k =
......@@ -369,7 +450,7 @@ struct GridwiseNormalizationSplitK2nd
// normalize
y_thread_buf(iK0)(Number<offset_m_k>{}) =
(x_thread_buf(iK0)(Number<offset_m_k>{}) - mean_thread_buf(iM)) *
divisor;
inv_std_thread_buf(iM);
// gamma
y_thread_buf(iK0)(Number<offset_m_k>{}) =
......
......@@ -16,9 +16,11 @@ template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename SaveMeanInvStdDataType,
typename ComputeDataType,
typename YElementwiseOperation,
typename GridDesc_M_K,
typename GridDesc_M,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
......@@ -32,6 +34,7 @@ template <typename XDataType,
index_t BetaSrcVectorSize,
index_t YDstVectorDim,
index_t YDstVectorSize,
index_t SaveMeanInvStdDstVectorSize,
bool SweepOnce>
struct GridwiseNormalizationWelfordVariance_mk_to_mk
{
......@@ -43,6 +46,10 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
(YDstVectorDim == 1 && KThreadSliceSize % YDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static_assert(MThreadSliceSize % SaveMeanInvStdDstVectorSize == 0,
"Invalid thread slice sizes and/or save mean and inverse std vector sizes "
"configuration, please check!");
static_assert(XSrcVectorSize == YDstVectorSize);
static_assert(XSrcVectorSize == GammaSrcVectorSize);
static_assert(XSrcVectorSize == BetaSrcVectorSize);
......@@ -64,6 +71,10 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
static constexpr auto thread_buffer_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<XSrcVectorSize>{}));
using ThreadBufferLengths_M = Sequence<MThreadSliceSize>;
static constexpr auto thread_buffer_desc_m =
make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{}));
using ThreadReduceSrcDesc_M_K = decltype(make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<XSrcVectorSize>{})));
using ThreadReduceDstDesc_M =
......@@ -77,6 +88,8 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
ThreadClusterLengths_M_K,
ThreadClusterArrangeOrder>;
using PassThroughOp = tensor_operation::element_wise::PassThrough;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
......@@ -114,17 +127,18 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
const GridDesc_M_K& gamma_grid_desc_m_k,
const GridDesc_M_K& beta_grid_desc_m_k,
const GridDesc_M_K& y_grid_desc_m_k,
const GridDesc_M& save_mean_grid_desc_m,
const GridDesc_M& save_inv_std_grid_desc_m,
index_t num_k_block_tile_iteration,
ComputeDataType epsilon,
const XDataType* const __restrict__ p_x_global,
const GammaDataType* const __restrict__ p_gamma_global,
const BetaDataType* const __restrict__ p_beta_global,
YDataType* const __restrict__ p_y_global,
SaveMeanInvStdDataType* const __restrict__ p_save_mean_global,
SaveMeanInvStdDataType* const __restrict__ p_save_inv_std_global,
const YElementwiseOperation y_elementwise_op)
{
auto y_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_y_global, y_grid_desc_m_k.GetElementSpaceSize());
auto x_thread_buf = generate_tuple(
[&](auto) {
return StaticBuffer<AddressSpaceEnum::Vgpr,
......@@ -150,6 +164,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
mean_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MThreadSliceSize, true>
var_thread_buf;
auto& inv_std_thread_buf = var_thread_buf;
const index_t thread_local_id = get_thread_local_1d_id();
const index_t block_global_id = get_block_1d_id();
......@@ -226,6 +241,42 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
thread_k_cluster_id * YDstVectorSize),
y_elementwise_op);
auto threadwise_mean_store =
ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
SaveMeanInvStdDataType,
decltype(thread_buffer_desc_m),
GridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
SaveMeanInvStdDstVectorSize, // ScalarPerVector
InMemoryDataOperationEnum::Set,
1,
true>(
save_mean_grid_desc_m,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
auto threadwise_inv_std_store =
ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
SaveMeanInvStdDataType,
decltype(thread_buffer_desc_m),
GridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
SaveMeanInvStdDstVectorSize, // ScalarPerVector
InMemoryDataOperationEnum::Set,
1,
true>(
save_inv_std_grid_desc_m,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
constexpr auto thread_copy_fwd_step_m_k = make_multi_index(0, K_BlockTileStepSize);
constexpr auto thread_copy_bwd_step_m_k =
make_multi_index(0, SweepOnce ? 0 : -K_BlockTileSize);
......@@ -239,6 +290,15 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
const auto beta_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_beta_global, beta_grid_desc_m_k.GetElementSpaceSize());
auto y_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_y_global, y_grid_desc_m_k.GetElementSpaceSize());
auto save_mean_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_save_mean_global, save_mean_grid_desc_m.GetElementSpaceSize());
auto save_inv_std_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_save_inv_std_global, save_inv_std_grid_desc_m.GetElementSpaceSize());
auto threadwise_welford = ThreadwiseWelford();
threadwise_welford.max_count_ = GetKPerThread(x_grid_desc_m_k, thread_k_cluster_id);
......@@ -279,10 +339,33 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
int count = threadwise_welford.cur_count_;
BlockwiseWelford::Run(mean_thread_buf(I), var_thread_buf(I), count);
inv_std_thread_buf(I) = type_convert<ComputeDataType>(1.0f) /
ck::math::sqrt(var_thread_buf(I) + epsilon);
});
// save mean and inverse std for backward (optional)
if(thread_k_cluster_id == 0)
{
if(p_save_mean_global != nullptr)
{
threadwise_mean_store.Run(thread_buffer_desc_m,
make_tuple(I0),
mean_thread_buf,
save_mean_grid_desc_m,
save_mean_global_val_buf);
}
if(p_save_inv_std_global != nullptr)
{
threadwise_inv_std_store.Run(thread_buffer_desc_m,
make_tuple(I0),
inv_std_thread_buf,
save_inv_std_grid_desc_m,
save_inv_std_global_val_buf);
}
}
// normalization
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
auto divisor = 1 / ck::math::sqrt(var_thread_buf(iM) + epsilon);
static_for<0, ThreadBufferNumber, 1>{}([&](auto iK0) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) {
constexpr auto offset_m_k =
......@@ -291,7 +374,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
// normalize
y_thread_buf(iK0)(Number<offset_m_k>{}) =
(x_thread_buf(iK0)(Number<offset_m_k>{}) - mean_thread_buf(iM)) *
divisor;
inv_std_thread_buf(iM);
// gamma & beta
y_thread_buf(iK0)(Number<offset_m_k>{}) =
......@@ -360,8 +443,29 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
int count = threadwise_welford.cur_count_;
BlockwiseWelford::Run(mean_thread_buf(I), var_thread_buf(I), count);
inv_std_thread_buf(I) = 1 / ck::math::sqrt(var_thread_buf(I) + epsilon);
});
if(thread_k_cluster_id == 0)
{
if(p_save_mean_global != nullptr)
{
threadwise_mean_store.Run(thread_buffer_desc_m,
make_tuple(I0),
mean_thread_buf,
save_mean_grid_desc_m,
save_mean_global_val_buf);
}
if(p_save_inv_std_global != nullptr)
{
threadwise_inv_std_store.Run(thread_buffer_desc_m,
make_tuple(I0),
inv_std_thread_buf,
save_inv_std_grid_desc_m,
save_inv_std_global_val_buf);
}
}
auto thread_copy_tail_m_k =
(num_k_block_tile_iteration - 1) * ThreadBufferNumber * thread_copy_fwd_step_m_k;
......@@ -393,7 +497,6 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
});
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
auto divisor = 1 / ck::math::sqrt(var_thread_buf(iM) + epsilon);
static_for<0, ThreadBufferNumber, 1>{}([&](auto iK0) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) {
constexpr auto offset_m_k =
......@@ -402,7 +505,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
// normalize
y_thread_buf(iK0)(Number<offset_m_k>{}) =
(x_thread_buf(iK0)(Number<offset_m_k>{}) - mean_thread_buf(iM)) *
divisor;
inv_std_thread_buf(iM);
// gamma
y_thread_buf(iK0)(Number<offset_m_k>{}) =
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment