Commit 3afb2f74 authored by root's avatar root
Browse files

add multi_d deviceop

parent 489599ba
...@@ -25,7 +25,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa ...@@ -25,7 +25,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
using DeviceGemmV2Instance = using DeviceGemmV2Instance =
ck::tensor_operation::device::DeviceGemm_Xdl_CShuffleV3< ck::tensor_operation::device::DeviceGemm_Xdl_CShuffleV3<
ALayout, BLayout, CLayout, ALayout, BLayout, CLayout,
ADataType, BDataType, ck::Tuple<>, CDataType, AccDataType, CShuffleDataType, ADataType, BDataType, CDataType, AccDataType, CShuffleDataType,
PassThrough, PassThrough, PassThrough, GemmDefault, PassThrough, PassThrough, PassThrough, GemmDefault,
256, 256,
224, 256, 224, 256,
......
...@@ -133,12 +133,10 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config) ...@@ -133,12 +133,10 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
#ifdef BUILD_INT4_EXAMPLE #ifdef BUILD_INT4_EXAMPLE
static_cast<KernelADataType*>(a_m_k_device_buf.GetDeviceBuffer()), static_cast<KernelADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<KernelBDataType*>(b_k_n_device_buf.GetDeviceBuffer()), static_cast<KernelBDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
{},
static_cast<KernelCDataType*>(c_m_n_device_buf.GetDeviceBuffer()), static_cast<KernelCDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
#else #else
static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()), static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()), static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
{},
static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()), static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
#endif #endif
M, M,
...@@ -146,7 +144,6 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config) ...@@ -146,7 +144,6 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
K, K,
StrideA, StrideA,
StrideB, StrideB,
{},
StrideC, StrideC,
KBatch, KBatch,
a_element_op, a_element_op,
......
...@@ -14,26 +14,21 @@ template <typename ALayout, ...@@ -14,26 +14,21 @@ template <typename ALayout,
typename CLayout, typename CLayout,
typename ADataType, typename ADataType,
typename BDataType, typename BDataType,
typename DsDataType,
typename CDataType, typename CDataType,
typename AElementwiseOperation, typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
typename CElementwiseOperation> typename CElementwiseOperation>
struct DeviceGemmV2 : public BaseOperator struct DeviceGemmV2 : public BaseOperator
{ {
static constexpr index_t NumDTensor = DsDataType::Size();
virtual std::unique_ptr<BaseArgument> virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a, MakeArgumentPointer(const void* p_a,
const void* p_b, const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_c, void* p_c,
ck::index_t M, ck::index_t M,
ck::index_t N, ck::index_t N,
ck::index_t K, ck::index_t K,
ck::index_t StrideA, ck::index_t StrideA,
ck::index_t StrideB, ck::index_t StrideB,
std::array<ck::index_t, NumDTensor> StrideDs,
ck::index_t StrideC, ck::index_t StrideC,
ck::index_t KSplit, ck::index_t KSplit,
AElementwiseOperation a_element_op, AElementwiseOperation a_element_op,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multi_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v3.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename DsDataType,
typename CDataType,
typename GemmAccDataType,
typename CShuffleDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
GemmSpecialization GemmSpec,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1,
index_t BK1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
BlockGemmPipelineScheduler BlkGemmPipeSched = BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion BlkGemmPipelineVer = BlockGemmPipelineVersion::v1,
typename ComputeTypeA = CDataType,
typename ComputeTypeB = ComputeTypeA>
struct DeviceGemmMultiD_Xdl_CShuffle_V3 : public DeviceGemmMultipleD<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
DsDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>
{
static constexpr index_t NumDTensor = DsDataType::Size();
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_xdl_cshuffle_v3<
ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
GemmAccDataType,
CShuffleDataType,
Tuple<>,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
GemmSpec,
BlockSize,
MPerBlock,
NPerBlock,
KPerBlock,
AK1,
BK1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
false,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
false,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock,
BlkGemmPipeSched,
BlkGemmPipelineVer,
ComputeTypeA,
ComputeTypeB>;
using Argument = typename GridwiseGemm::Argument;
// Invoker
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(stream_config.log_level_ > 0)
{
arg.Print();
}
if(!GridwiseGemm::CheckValidity(arg))
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
index_t gdx, gdy, gdz;
std::tie(gdx, gdy, gdz) = GridwiseGemm::CalculateGridSize(arg.M, arg.N, arg.KBatch);
float ave_time = 0;
index_t k_grain = arg.KBatch * KPerBlock;
index_t K_split = (arg.K + k_grain - 1) / k_grain * KPerBlock;
const bool has_main_k_block_loop = GridwiseGemm::CalculateHasMainKBlockLoop(K_split);
const auto Run = [&](const auto& kernel) {
if(arg.KBatch > 1)
hipGetErrorString(hipMemsetAsync(arg.p_c_grid,
0,
arg.M * arg.N * sizeof(CDataType),
stream_config.stream_id_));
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(gdx, gdy, gdz), dim3(BlockSize), 0, arg);
};
constexpr index_t minimum_occupancy =
BlkGemmPipeSched == BlockGemmPipelineScheduler::Intrawave ? 1 : 2;
if(has_main_k_block_loop)
{
// Tail number always full
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1 ||
BlkGemmPipelineVer == BlockGemmPipelineVersion::v3)
{
if(arg.KBatch > 1)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
}
// Tail number could be One to Seven
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2)
{
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::One)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::One>;
Run(kernel);
}
else if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Full)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Full>;
Run(kernel);
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Two)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Two>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 3)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Three)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Three>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Four)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Four>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 5)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Five)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Five>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 6)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Six)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Six>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 7)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Seven)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Seven>;
Run(kernel);
}
}
}
else
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::One)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::One>;
Run(kernel);
}
else if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Full)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Full>;
Run(kernel);
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Two)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Two>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 3)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Three)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Three>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Four)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Four>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 5)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Five)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Five>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 6)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Six)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Six>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 7)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Seven)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Seven>;
Run(kernel);
}
}
}
}
// Tail number could be Odd or Even
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v4)
{
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
else
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_2lds<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_2lds<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
else
{
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
else
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
}
else
{
// Tail number always 1
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1)
{
if(arg.KBatch > 1)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
false,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
false,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
}
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
if(!ck::is_xdl_supported())
{
return false;
}
if((arg.K % AK1 != 0 || arg.K % BK1 != 0) && !(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding ||
GemmSpec == GemmSpecialization::KPadding))
{
return false;
}
return GridwiseGemm::CheckValidity(arg);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const ADataType* p_a,
const BDataType* p_b,
std::array<const void*, NumDTensor> p_ds,
CDataType* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
std::array<index_t, NumDTensor> StrideDs,
index_t StrideC,
index_t KBatch,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
return Argument{p_a,
p_b,
p_ds,
p_c,
M,
N,
K,
StrideA,
StrideB,
StrideDs,
StrideC,
KBatch,
a_element_op,
b_element_op,
c_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
std::array<ck::index_t, NumDTensor> StrideDs,
index_t StrideC,
index_t KBatch,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
p_ds,
static_cast<CDataType*>(p_c),
M,
N,
K,
StrideA,
StrideB,
StrideDs,
StrideC,
KBatch,
a_element_op,
b_element_op,
c_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
std::map<BlockGemmPipelineScheduler, std::string> BlkGemmPipelineSchedulerToString{
{BlockGemmPipelineScheduler::Intrawave, "Intrawave"},
{BlockGemmPipelineScheduler::Interwave, "Interwave"}};
std::map<BlockGemmPipelineVersion, std::string> BlkGemmPipelineVersionToString{
{BlockGemmPipelineVersion::v1, "v1"},
{BlockGemmPipelineVersion::v2, "v2"},
{BlockGemmPipelineVersion::v3, "v3"},
{BlockGemmPipelineVersion::v4, "v4"},
{BlockGemmPipelineVersion::v5, "v5"}};
// clang-format off
str << "DeviceGemmXdlUniversal"
<< "<"
<< getGemmSpecializationString(GemmSpec) << ", "
<< std::string(ALayout::name)[0]
<< std::string(BLayout::name)[0]
<< std::string(CLayout::name)[0]
<< ">"
<< " BlkSize: "
<< BlockSize << ", "
<< "BlkTile: "
<< MPerBlock<<"x"<<NPerBlock<<"x"<<KPerBlock << ", "
<< "WaveTile: "
<< MPerXDL<<"x"<<NPerXDL << ", "
<< "WaveMap: "
<< MXdlPerWave<<"x" << NXdlPerWave<<", "
<< "VmemReadVec: "
<< ABlockTransferSrcScalarPerVector<<"x"<<BBlockTransferSrcScalarPerVector<<", "
<< "BlkGemmPipelineScheduler: "
<< BlkGemmPipelineSchedulerToString[BlkGemmPipeSched] << ", "
<< "BlkGemmPipelineVersion: "
<< BlkGemmPipelineVersionToString[BlkGemmPipelineVer] << ", "
<< "BlkGemmPipelinePrefetchStages: "
<< GridwiseGemm::BlockwiseGemmPipe::PrefetchStages;
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
# ckProfiler # ckProfiler
set(PROFILER_SOURCES set(PROFILER_SOURCES
profiler.cpp profiler.cpp
profile_gemm.cpp #profile_gemm.cpp
profile_reduce.cpp #profile_reduce.cpp
profile_groupnorm_bwd_data.cpp #profile_groupnorm_bwd_data.cpp
profile_groupnorm_fwd.cpp #profile_groupnorm_fwd.cpp
profile_layernorm_bwd_data.cpp #profile_layernorm_bwd_data.cpp
profile_layernorm_bwd_gamma_beta.cpp #profile_layernorm_bwd_gamma_beta.cpp
profile_groupnorm_bwd_gamma_beta.cpp #profile_groupnorm_bwd_gamma_beta.cpp
profile_layernorm_fwd.cpp #profile_layernorm_fwd.cpp
profile_max_pool3d_fwd.cpp #profile_max_pool3d_fwd.cpp
profile_avg_pool3d_bwd.cpp #profile_avg_pool3d_bwd.cpp
profile_max_pool3d_bwd.cpp #profile_max_pool3d_bwd.cpp
profile_softmax.cpp #profile_softmax.cpp
profile_batchnorm_fwd.cpp #profile_batchnorm_fwd.cpp
profile_batchnorm_bwd.cpp #profile_batchnorm_bwd.cpp
profile_batchnorm_infer.cpp #profile_batchnorm_infer.cpp
profile_conv_tensor_rearrange.cpp #profile_conv_tensor_rearrange.cpp
profile_transpose.cpp #profile_transpose.cpp
profile_permute_scale.cpp #profile_permute_scale.cpp
profile_gemm_universal.cpp
) )
if(GPU_TARGETS MATCHES "gfx9") #if(GPU_TARGETS MATCHES "gfx9")
if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES) # if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_contraction_bilinear.cpp) # list(APPEND PROFILER_SOURCES profile_contraction_bilinear.cpp)
list(APPEND PROFILER_SOURCES profile_contraction_scale.cpp) # list(APPEND PROFILER_SOURCES profile_contraction_scale.cpp)
endif() # endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES) # if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_gemm_reduce.cpp) # list(APPEND PROFILER_SOURCES profile_gemm_reduce.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm_gemm.cpp) # list(APPEND PROFILER_SOURCES profile_batched_gemm_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm_add_relu_gemm_add.cpp) # list(APPEND PROFILER_SOURCES profile_batched_gemm_add_relu_gemm_add.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add.cpp) # list(APPEND PROFILER_SOURCES profile_gemm_add.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_add_fastgelu.cpp) # list(APPEND PROFILER_SOURCES profile_gemm_add_add_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_fastgelu.cpp) # list(APPEND PROFILER_SOURCES profile_gemm_add_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm.cpp) # list(APPEND PROFILER_SOURCES profile_grouped_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_streamk.cpp) # list(APPEND PROFILER_SOURCES profile_gemm_streamk.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_fastgelu.cpp) # list(APPEND PROFILER_SOURCES profile_gemm_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_relu.cpp) # list(APPEND PROFILER_SOURCES profile_gemm_add_relu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_silu.cpp) # list(APPEND PROFILER_SOURCES profile_gemm_add_silu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_relu_add_layernorm.cpp) # list(APPEND PROFILER_SOURCES profile_gemm_add_relu_add_layernorm.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fixed_nk.cpp) # list(APPEND PROFILER_SOURCES profile_grouped_gemm_fixed_nk.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_two_stage.cpp) # list(APPEND PROFILER_SOURCES profile_grouped_gemm_two_stage.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp) # list(APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp)
endif() # endif()
list(APPEND PROFILER_SOURCES profile_gemm_multiply_add.cpp) # list(APPEND PROFILER_SOURCES profile_gemm_multiply_add.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm.cpp) # list(APPEND PROFILER_SOURCES profile_batched_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm_reduce.cpp) # list(APPEND PROFILER_SOURCES profile_batched_gemm_reduce.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_multiply.cpp) # list(APPEND PROFILER_SOURCES profile_gemm_add_multiply.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_bias_add_reduce.cpp) # list(APPEND PROFILER_SOURCES profile_gemm_bias_add_reduce.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_splitk.cpp) # list(APPEND PROFILER_SOURCES profile_gemm_splitk.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_universal.cpp) # list(APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu.cpp)
list(APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu.cpp) # list(APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu_add.cpp)
list(APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu_add.cpp) # list(APPEND PROFILER_SOURCES profile_conv_bwd_data.cpp)
list(APPEND PROFILER_SOURCES profile_conv_bwd_data.cpp) # list(APPEND PROFILER_SOURCES profile_conv_fwd.cpp)
list(APPEND PROFILER_SOURCES profile_conv_fwd.cpp) #
#endif()
endif() #
#if(GPU_TARGETS MATCHES "gfx11" OR GPU_TARGETS MATCHES "gfx9")
if(GPU_TARGETS MATCHES "gfx11" OR GPU_TARGETS MATCHES "gfx9") # if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES) # list(APPEND PROFILER_SOURCES profile_gemm_bilinear.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_bilinear.cpp) # endif()
endif() # list(APPEND PROFILER_SOURCES profile_grouped_conv_fwd.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_conv_fwd.cpp) # list(APPEND PROFILER_SOURCES profile_grouped_conv_bwd_data.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_conv_bwd_data.cpp) # list(APPEND PROFILER_SOURCES profile_grouped_conv_bwd_weight.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_conv_bwd_weight.cpp) #endif()
endif() #
#if(DL_KERNELS)
if(DL_KERNELS) # list(APPEND PROFILER_SOURCES profile_batched_gemm_multi_d.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm_multi_d.cpp) # list(APPEND PROFILER_SOURCES profile_grouped_conv_bwd_weight.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_conv_bwd_weight.cpp) #endif()
endif()
set(PROFILER_EXECUTABLE ckProfiler) set(PROFILER_EXECUTABLE ckProfiler)
...@@ -77,76 +77,76 @@ add_executable(${PROFILER_EXECUTABLE} ${PROFILER_SOURCES}) ...@@ -77,76 +77,76 @@ add_executable(${PROFILER_EXECUTABLE} ${PROFILER_SOURCES})
target_compile_options(${PROFILER_EXECUTABLE} PRIVATE -Wno-global-constructors) target_compile_options(${PROFILER_EXECUTABLE} PRIVATE -Wno-global-constructors)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE utility getopt::getopt) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE utility getopt::getopt)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_instance) #target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_fwd_instance) #target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_bwd_data_instance) #target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_bwd_gamma_beta_instance) #target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_bwd_gamma_beta_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance) #target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance) #target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance) #target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_pool3d_fwd_instance) #target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_pool3d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_avg_pool3d_bwd_instance) #target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_avg_pool3d_bwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_max_pool_bwd_instance) #target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_max_pool_bwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_image_to_column_instance) #target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_image_to_column_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_column_to_image_instance) #target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_column_to_image_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_transpose_instance) #target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_transpose_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_permute_scale_instance) #target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_permute_scale_instance)
#
if(GPU_TARGETS MATCHES "gfx9") #if(GPU_TARGETS MATCHES "gfx9")
if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES) # if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_scale_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_scale_instance)
endif() # endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES) # if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_add_fastgelu_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_fastgelu_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_gemm_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_add_relu_gemm_add_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_add_relu_gemm_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_streamk_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_streamk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_fastgelu_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_silu_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_silu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_add_layernorm_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_add_layernorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fixed_nk_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fixed_nk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fastgelu_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fastgelu_instance)
endif() # endif()
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_reduce_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_multiply_add_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_multiply_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_universal_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_universal_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_multiply_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_multiply_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_reduce_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bias_add_reduce_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bias_add_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_add_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_fwd_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv1d_bwd_data_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv1d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv3d_bwd_data_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv3d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_bwd_data_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_bwd_weight_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_weight_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_weight_instance)
endif() #endif()
#
if(GPU_TARGETS MATCHES "gfx9" OR GPU_TARGETS MATCHES "gfx11") #if(GPU_TARGETS MATCHES "gfx9" OR GPU_TARGETS MATCHES "gfx11")
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES) # if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance)
endif() # endif()
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_fwd_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_data_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_data_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_fwd_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance)
endif() #endif()
#
if(DL_KERNELS) #if(DL_KERNELS)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_multi_d_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_multi_d_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_bwd_weight_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_weight_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance) # target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance)
endif() #endif()
rocm_install(TARGETS ${PROFILER_EXECUTABLE} COMPONENT profiler) rocm_install(TARGETS ${PROFILER_EXECUTABLE} COMPONENT profiler)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment