Unverified Commit 3696fe1c authored by rocking's avatar rocking Committed by GitHub
Browse files

Layernorm and groupnorm support to save mean and inverse std in forward (#929)

* save mean and inverse std in normalization

* Save mean and inverse std in splitK

* Vector save mean and inv std

* Modify instance for save mean and std

* simplify the layernorm example

* Save mean and std in groupnorm example

* Save mean and inv std in ckProfiler and test

* Remove compute data type from base class

* Save mean and inv std in client example

* Add changelog

* clang format

* Fix compile error

* Refine naming

* Avoid error in bf16

* revert changelog
parent 58338bb2
......@@ -19,13 +19,13 @@ namespace instance {
#ifdef CK_ENABLE_FP16
// FP16
void add_device_normalization_rank_2_1_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, PassThrough, 2, 1>>>&);
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, PassThrough, 2, 1>>>&);
void add_device_normalization_rank_4_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, PassThrough, 4, 3>>>&);
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, PassThrough, 4, 3>>>&);
void add_device_normalization_rank_5_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, PassThrough, 5, 3>>>&);
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, PassThrough, 5, 3>>>&);
#endif
#ifdef CK_ENABLE_FP32
// FP32
......@@ -42,14 +42,15 @@ template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename SaveMeanInvStdDataType,
index_t Rank,
index_t NumReduceDim>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceNormalization<
XDataType,
GammaDataType,
BetaDataType,
F32,
YDataType,
SaveMeanInvStdDataType,
ck::tensor_operation::element_wise::PassThrough,
Rank,
NumReduceDim>>
......@@ -57,8 +58,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceNormal
using DeviceOp = DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
F32,
YDataType,
SaveMeanInvStdDataType,
ck::tensor_operation::element_wise::PassThrough,
Rank,
NumReduceDim>;
......@@ -68,7 +69,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceNormal
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<XDataType, F16> && is_same_v<GammaDataType, F16> &&
is_same_v<BetaDataType, F16> && is_same_v<YDataType, F16>)
is_same_v<BetaDataType, F16> && is_same_v<YDataType, F16> &&
is_same_v<SaveMeanInvStdDataType, F32>)
{
if constexpr(Rank == 2 && NumReduceDim == 1)
{
......@@ -86,7 +88,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceNormal
#endif
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<XDataType, F32> && is_same_v<GammaDataType, F32> &&
is_same_v<BetaDataType, F32> && is_same_v<YDataType, F32>)
is_same_v<BetaDataType, F32> && is_same_v<YDataType, F32> &&
is_same_v<SaveMeanInvStdDataType, F32>)
{
if constexpr(Rank == 2 && NumReduceDim == 1)
{
......
......@@ -19,7 +19,7 @@ namespace instance {
// FP16
void add_device_normalization_rank_5_3_swish_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, Swish, 5, 3>>>&);
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, Swish, 5, 3>>>&);
// FP32
void add_device_normalization_rank_5_3_swish_f32_instances(
......@@ -27,20 +27,21 @@ void add_device_normalization_rank_5_3_swish_f32_instances(
// [x, gamma, beta, y] = [f16, f32, f32, f16]
void add_device_normalization_rank_5_3_swish_f16_f32_f32_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F32, F32, F32, F16, Swish, 5, 3>>>&);
std::vector<std::unique_ptr<DeviceNormalization<F16, F32, F32, F16, F32, Swish, 5, 3>>>&);
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename SaveMeanInvStdDataType,
index_t Rank,
index_t NumReduceDim>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
F32,
YDataType,
SaveMeanInvStdDataType,
ck::tensor_operation::element_wise::Swish,
Rank,
NumReduceDim>>
......@@ -48,8 +49,8 @@ struct DeviceOperationInstanceFactory<
using DeviceOp = DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
F32,
YDataType,
SaveMeanInvStdDataType,
ck::tensor_operation::element_wise::Swish,
Rank,
NumReduceDim>;
......@@ -59,7 +60,8 @@ struct DeviceOperationInstanceFactory<
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<XDataType, F16> && is_same_v<GammaDataType, F16> &&
is_same_v<BetaDataType, F16> && is_same_v<YDataType, F16>)
is_same_v<BetaDataType, F16> && is_same_v<YDataType, F16> &&
is_same_v<SaveMeanInvStdDataType, F32>)
{
if constexpr(Rank == 5 && NumReduceDim == 3)
{
......@@ -67,7 +69,8 @@ struct DeviceOperationInstanceFactory<
}
}
else if constexpr(is_same_v<XDataType, F32> && is_same_v<GammaDataType, F32> &&
is_same_v<BetaDataType, F32> && is_same_v<YDataType, F32>)
is_same_v<BetaDataType, F32> && is_same_v<YDataType, F32> &&
is_same_v<SaveMeanInvStdDataType, F32>)
{
if constexpr(Rank == 5 && NumReduceDim == 3)
{
......@@ -75,7 +78,8 @@ struct DeviceOperationInstanceFactory<
}
}
else if constexpr(is_same_v<XDataType, F16> && is_same_v<GammaDataType, F32> &&
is_same_v<BetaDataType, F32> && is_same_v<YDataType, F16>)
is_same_v<BetaDataType, F32> && is_same_v<YDataType, F16> &&
is_same_v<SaveMeanInvStdDataType, F32>)
{
if constexpr(Rank == 5 && NumReduceDim == 3)
{
......
......@@ -11,7 +11,7 @@ namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_5_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, Pass, 5, 3>>>&
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, Pass, 5, 3>>>&
instances)
{
add_device_operation_instances(instances,
......
......@@ -11,7 +11,7 @@ namespace instance {
using Swish = ck::tensor_operation::element_wise::Swish;
void add_device_normalization_rank_5_3_swish_f16_f32_f32_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F32, F32, F32, F16, Swish, 5, 3>>>&
std::vector<std::unique_ptr<DeviceNormalization<F16, F32, F32, F16, F32, Swish, 5, 3>>>&
instances)
{
add_device_operation_instances(
......
......@@ -11,7 +11,7 @@ namespace instance {
using Swish = ck::tensor_operation::element_wise::Swish;
void add_device_normalization_rank_5_3_swish_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, Swish, 5, 3>>>&
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, Swish, 5, 3>>>&
instances)
{
add_device_operation_instances(instances,
......
......@@ -11,7 +11,7 @@ namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_2_1_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, Pass, 2, 1>>>&
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, Pass, 2, 1>>>&
instances)
{
add_device_operation_instances(instances,
......
......@@ -11,7 +11,7 @@ namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_4_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, Pass, 4, 3>>>&
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, Pass, 4, 3>>>&
instances)
{
add_device_operation_instances(instances,
......
......@@ -80,6 +80,8 @@ bool profile_elementwise_layernorm_impl(int do_verification,
Tensor<BetaDataType> beta(gammaBetaLength);
Tensor<YDataType> y(length);
Tensor<YDataType> host_y(length);
Tensor<AccDataType> host_save_mean({M});
Tensor<AccDataType> host_save_inv_std({M});
switch(init_method)
{
......@@ -152,14 +154,23 @@ bool profile_elementwise_layernorm_impl(int do_verification,
BetaDataType,
YDataType,
AccDataType,
AccDataType,
PassThrough,
Rank,
NumReduceDim>;
ReferenceInstance ref;
auto ref_argument =
ref.MakeArgument(x, gamma, beta, host_y, PassThrough{}, {M, N}, {1}, 1e-4);
auto ref_invoker = ref.MakeInvoker();
auto ref_argument = ref.MakeArgument(x,
gamma,
beta,
host_y,
host_save_mean,
host_save_inv_std,
PassThrough{},
{M, N},
{1},
1e-4);
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
}
......
......@@ -66,12 +66,15 @@ void host_gemm_layernorm(Tensor<HDataType>& h_m_n,
BetaDataType,
HDataType,
AccDataType,
AccDataType,
HElementOp,
2,
1>;
Tensor<EMeanVarDataType> e_m_n(HostTensorDescriptor{M, N});
Tensor<AccDataType> c_m_n(HostTensorDescriptor{M, N});
Tensor<AccDataType> save_mean({M});
Tensor<AccDataType> save_inv_std({M});
auto ref_gemm = ReferenceGemm{};
auto ref_gemm_invoker = ref_gemm.MakeInvoker();
......@@ -97,7 +100,7 @@ void host_gemm_layernorm(Tensor<HDataType>& h_m_n,
auto ref_layernorm_invoker = ref_layernorm.MakeInvoker();
auto ref_layernorm_argument = ref_layernorm.MakeArgument(
e_m_n, gamma_n, beta_n, h_m_n, h_element_op, {M, N}, {1}, epsilon);
e_m_n, gamma_n, beta_n, h_m_n, save_mean, save_inv_std, h_element_op, {M, N}, {1}, epsilon);
ref_layernorm_invoker.Run(ref_layernorm_argument);
}
......
......@@ -21,8 +21,10 @@ namespace profiler {
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename AccDataType,
typename YDataType>
typename ComputeDataType,
typename YDataType,
typename SaveMeanInvStdDataType,
bool SaveMeanInvStd>
bool profile_groupnorm_impl(int do_verification,
int init_method,
bool do_log,
......@@ -34,6 +36,7 @@ bool profile_groupnorm_impl(int do_verification,
if(length.size() != 5)
return false;
index_t N = length[0];
index_t G = length[3];
index_t C = length[4];
......@@ -45,7 +48,14 @@ bool profile_groupnorm_impl(int do_verification,
Tensor<GammaDataType> gamma(gammaBetaLength);
Tensor<BetaDataType> beta(gammaBetaLength);
Tensor<YDataType> y(length);
Tensor<SaveMeanInvStdDataType> save_mean({N, G});
Tensor<SaveMeanInvStdDataType> save_inv_std({N, G});
Tensor<YDataType> host_y(length);
Tensor<SaveMeanInvStdDataType> host_save_mean({N, G});
Tensor<SaveMeanInvStdDataType> host_save_inv_std({N, G});
std::vector<index_t> strideSaveMeanInvStd = {1};
switch(init_method)
{
......@@ -69,6 +79,9 @@ bool profile_groupnorm_impl(int do_verification,
DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize());
DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpaceSize());
DeviceMem save_mean_dev(sizeof(SaveMeanInvStdDataType) * save_mean.mDesc.GetElementSpaceSize());
DeviceMem save_inv_std_dev(sizeof(SaveMeanInvStdDataType) *
save_inv_std.mDesc.GetElementSpaceSize());
x_dev.ToDevice(x.mData.data());
gamma_dev.ToDevice(gamma.mData.data());
......@@ -78,8 +91,8 @@ bool profile_groupnorm_impl(int do_verification,
using DeviceOp = ck::tensor_operation::device::DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
SaveMeanInvStdDataType,
PassThrough,
5,
3>;
......@@ -97,38 +110,70 @@ bool profile_groupnorm_impl(int do_verification,
if(do_verification)
{
using ReferenceInstance = ck::tensor_operation::host::ReferenceGroupnorm<XDataType,
GammaDataType,
BetaDataType,
YDataType,
AccDataType,
PassThrough>;
using ReferenceInstance =
ck::tensor_operation::host::ReferenceGroupnorm<XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
PassThrough>;
ReferenceInstance ref;
auto ref_argument = ref.MakeArgument(x, gamma, beta, host_y, PassThrough{}, length, 1e-6);
auto ref_invoker = ref.MakeInvoker();
auto ref_argument = ref.MakeArgument(
x, gamma, beta, host_y, host_save_mean, host_save_inv_std, PassThrough{}, length, 1e-6);
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
}
int num_kernel = 0;
auto f_get_argument = [&](auto& inst_ptr) {
if constexpr(SaveMeanInvStd)
return inst_ptr->MakeArgumentPointer(
length,
std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()},
gammaBetaStride,
gammaBetaStride,
std::vector<ck::index_t>{y.mDesc.GetStrides().begin(), y.mDesc.GetStrides().end()},
std::vector<ck::index_t>{save_mean.mDesc.GetStrides().begin(),
save_mean.mDesc.GetStrides().end()},
std::vector<ck::index_t>{save_inv_std.mDesc.GetStrides().begin(),
save_inv_std.mDesc.GetStrides().end()},
reduce_dim,
1e-6,
x_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(),
y_dev.GetDeviceBuffer(),
save_mean_dev.GetDeviceBuffer(),
save_inv_std_dev.GetDeviceBuffer(),
PassThrough{});
else
return inst_ptr->MakeArgumentPointer(
length,
std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()},
gammaBetaStride,
gammaBetaStride,
std::vector<ck::index_t>{y.mDesc.GetStrides().begin(), y.mDesc.GetStrides().end()},
std::vector<ck::index_t>{save_mean.mDesc.GetStrides().begin(),
save_mean.mDesc.GetStrides().end()},
std::vector<ck::index_t>{save_inv_std.mDesc.GetStrides().begin(),
save_inv_std.mDesc.GetStrides().end()},
reduce_dim,
1e-6,
x_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(),
y_dev.GetDeviceBuffer(),
nullptr,
nullptr,
PassThrough{});
};
for(auto& inst_ptr : instance_ptrs)
{
auto argument_ptr = inst_ptr->MakeArgumentPointer(
length,
std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()},
gammaBetaStride,
gammaBetaStride,
std::vector<ck::index_t>{y.mDesc.GetStrides().begin(), y.mDesc.GetStrides().end()},
reduce_dim,
1e-6,
x_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(),
y_dev.GetDeviceBuffer(),
nullptr,
nullptr,
PassThrough{});
auto argument_ptr = f_get_argument(inst_ptr);
if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
{
......@@ -152,6 +197,10 @@ bool profile_groupnorm_impl(int do_verification,
beta.mDesc.GetElementSize() * sizeof(BetaDataType) +
y.mDesc.GetElementSize() * sizeof(YDataType);
if constexpr(SaveMeanInvStd)
num_bytes += save_mean.mDesc.GetElementSpaceSize() * sizeof(SaveMeanInvStdDataType) +
save_inv_std.mDesc.GetElementSpaceSize() * sizeof(SaveMeanInvStdDataType);
float gb_per_sec = num_bytes / 1.E6 / avg_time;
if(time_kernel)
......@@ -168,9 +217,22 @@ bool profile_groupnorm_impl(int do_verification,
if(do_verification)
{
y_dev.FromDevice(y.mData.data());
bool pass = ck::utils::check_err(y, host_y, "Error: Incorrect results", 1e-3, 1e-3);
if constexpr(SaveMeanInvStd)
{
save_mean_dev.FromDevice(save_mean.mData.data());
pass &= ck::utils::check_err(
save_mean.mData, host_save_mean.mData, "Error: Incorrect results", 1e-3, 1e-3);
save_inv_std_dev.FromDevice(save_inv_std.mData.data());
pass &= ck::utils::check_err(save_inv_std.mData,
host_save_inv_std.mData,
"Error: Incorrect results",
1e-3,
1e-3);
}
if(do_log)
{
LogRangeAsType<float>(std::cout << "x : ", x.mData, ",") << std::endl;
......
......@@ -21,6 +21,8 @@ template <typename XDataType,
typename BetaDataType,
typename ComputeDataType,
typename YDataType,
typename SaveMeanInvStdDataType,
bool SaveMeanInvStd,
index_t Rank>
bool profile_layernorm_impl(int do_verification,
int init_method,
......@@ -43,13 +45,19 @@ bool profile_layernorm_impl(int do_verification,
Tensor<GammaDataType> gamma(reduce_length);
Tensor<BetaDataType> beta(reduce_length);
Tensor<YDataType> y(length);
Tensor<SaveMeanInvStdDataType> save_mean({length[0]});
Tensor<SaveMeanInvStdDataType> save_inv_std({length[0]});
Tensor<YDataType> host_y(length);
Tensor<SaveMeanInvStdDataType> host_save_mean({length[0]});
Tensor<SaveMeanInvStdDataType> host_save_inv_std({length[0]});
std::vector<index_t> strideXY =
std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()};
std::vector<index_t> strideGammaBeta = strideXY;
strideGammaBeta[0] = 0;
std::vector<index_t> strideSaveMeanInvStd = {1};
switch(init_method)
{
case 0:
......@@ -75,6 +83,9 @@ bool profile_layernorm_impl(int do_verification,
DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize());
DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpaceSize());
DeviceMem save_mean_dev(sizeof(SaveMeanInvStdDataType) * save_mean.mDesc.GetElementSpaceSize());
DeviceMem save_inv_std_dev(sizeof(SaveMeanInvStdDataType) *
save_inv_std.mDesc.GetElementSpaceSize());
x_dev.ToDevice(x.mData.data());
gamma_dev.ToDevice(gamma.mData.data());
......@@ -86,8 +97,8 @@ bool profile_layernorm_impl(int do_verification,
using DeviceOp = ck::tensor_operation::device::DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
ComputeDataType,
YDataType,
SaveMeanInvStdDataType,
PassThrough,
Rank,
NumReduceDim>;
......@@ -105,40 +116,74 @@ bool profile_layernorm_impl(int do_verification,
if(do_verification)
{
using ReferenceInstance = ck::tensor_operation::host::ReferenceLayernorm<XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
PassThrough,
Rank,
NumReduceDim>;
using ReferenceInstance =
ck::tensor_operation::host::ReferenceLayernorm<XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
PassThrough,
Rank,
NumReduceDim>;
ReferenceInstance ref;
auto ref_argument =
ref.MakeArgument(x, gamma, beta, host_y, PassThrough{}, length, reduce_dim, 1e-4);
auto ref_invoker = ref.MakeInvoker();
auto ref_argument = ref.MakeArgument(x,
gamma,
beta,
host_y,
host_save_mean,
host_save_inv_std,
PassThrough{},
length,
reduce_dim,
1e-4);
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
}
int num_kernel = 0;
auto f_get_argument = [&](auto& inst_ptr) {
if constexpr(SaveMeanInvStd)
return inst_ptr->MakeArgumentPointer(length,
strideXY,
strideGammaBeta,
strideGammaBeta,
strideXY,
strideSaveMeanInvStd,
strideSaveMeanInvStd,
reduce_dim,
1e-4,
x_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(),
y_dev.GetDeviceBuffer(),
save_mean_dev.GetDeviceBuffer(),
save_inv_std_dev.GetDeviceBuffer(),
PassThrough{});
else
return inst_ptr->MakeArgumentPointer(length,
strideXY,
strideGammaBeta,
strideGammaBeta,
strideXY,
strideSaveMeanInvStd,
strideSaveMeanInvStd,
reduce_dim,
1e-4,
x_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(),
y_dev.GetDeviceBuffer(),
nullptr,
nullptr,
PassThrough{});
};
for(auto& inst_ptr : instance_ptrs)
{
auto argument_ptr = inst_ptr->MakeArgumentPointer(length,
strideXY,
strideGammaBeta,
strideGammaBeta,
strideXY,
reduce_dim,
1e-4,
x_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(),
y_dev.GetDeviceBuffer(),
nullptr,
nullptr,
PassThrough{});
auto argument_ptr = f_get_argument(inst_ptr);
if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
{
......@@ -168,6 +213,10 @@ bool profile_layernorm_impl(int do_verification,
beta.mDesc.GetElementSize() * sizeof(BetaDataType) +
y.mDesc.GetElementSize() * sizeof(YDataType);
if constexpr(SaveMeanInvStd)
num_bytes += save_mean.mDesc.GetElementSpaceSize() * sizeof(SaveMeanInvStdDataType) +
save_inv_std.mDesc.GetElementSpaceSize() * sizeof(SaveMeanInvStdDataType);
float gb_per_sec = num_bytes / 1.E6 / avg_time;
if(time_kernel)
......@@ -184,10 +233,23 @@ bool profile_layernorm_impl(int do_verification,
if(do_verification)
{
y_dev.FromDevice(y.mData.data());
bool pass =
ck::utils::check_err(y.mData, host_y.mData, "Error: Incorrect results", 1e-3, 1e-3);
if constexpr(SaveMeanInvStd)
{
save_mean_dev.FromDevice(save_mean.mData.data());
pass &= ck::utils::check_err(
save_mean.mData, host_save_mean.mData, "Error: Incorrect results", 1e-3, 1e-3);
save_inv_std_dev.FromDevice(save_inv_std.mData.data());
pass &= ck::utils::check_err(save_inv_std.mData,
host_save_inv_std.mData,
"Error: Incorrect results",
1e-3,
1e-3);
}
if(do_log)
{
LogRangeAsType<float>(std::cout << "x : ", x.mData, ",") << std::endl;
......
......@@ -93,12 +93,12 @@ int profile_groupnorm(int argc, char* argv[])
if(data_type == ck::DataTypeEnum::Float)
{
ck::profiler::profile_groupnorm_impl<F32, F32, F32, F32, F32>(
ck::profiler::profile_groupnorm_impl<F32, F32, F32, F32, F32, F32, false>(
do_verification, init_method, do_log, time_kernel, length);
}
else if(data_type == ck::DataTypeEnum::Half)
{
ck::profiler::profile_groupnorm_impl<F16, F16, F16, F32, F16>(
ck::profiler::profile_groupnorm_impl<F16, F16, F16, F32, F16, F32, false>(
do_verification, init_method, do_log, time_kernel, length);
}
else
......
......@@ -82,12 +82,12 @@ int profile_layernorm(int argc, char* argv[])
if(data_type == ck::DataTypeEnum::Half)
{
ck::profiler::profile_layernorm_impl<F16, F16, F16, F32, F16, rank>(
ck::profiler::profile_layernorm_impl<F16, F16, F16, F32, F16, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else if(data_type == ck::DataTypeEnum::Float)
{
ck::profiler::profile_layernorm_impl<F32, F32, F32, F32, F32, rank>(
ck::profiler::profile_layernorm_impl<F32, F32, F32, F32, F32, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else
......
......@@ -12,11 +12,12 @@ template <typename Tuple>
class TestGroupnorm : public ::testing::Test
{
protected:
using XDataType = std::tuple_element_t<0, Tuple>;
using GammaDataType = std::tuple_element_t<1, Tuple>;
using BetaDataType = std::tuple_element_t<2, Tuple>;
using ComputeDataType = std::tuple_element_t<3, Tuple>;
using YDataType = std::tuple_element_t<4, Tuple>;
using XDataType = std::tuple_element_t<0, Tuple>;
using GammaDataType = std::tuple_element_t<1, Tuple>;
using BetaDataType = std::tuple_element_t<2, Tuple>;
using ComputeDataType = std::tuple_element_t<3, Tuple>;
using YDataType = std::tuple_element_t<4, Tuple>;
using SaveMeanInvStdDataType = std::tuple_element_t<5, Tuple>;
void Run()
{
......@@ -37,7 +38,9 @@ class TestGroupnorm : public ::testing::Test
GammaDataType,
BetaDataType,
ComputeDataType,
YDataType>(true, 2, false, false, length);
YDataType,
SaveMeanInvStdDataType,
true>(true, 2, false, false, length);
EXPECT_TRUE(success);
}
}
......@@ -45,7 +48,7 @@ class TestGroupnorm : public ::testing::Test
using KernelTypes = ::testing::Types<
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType>
std::tuple<F16, F16, F16, F32, F16>>;
std::tuple<F16, F16, F16, F32, F16, F32>>;
TYPED_TEST_SUITE(TestGroupnorm, KernelTypes);
TYPED_TEST(TestGroupnorm, Test_FP16) { this->Run(); }
......@@ -12,11 +12,12 @@ template <typename Tuple>
class TestGroupnorm : public ::testing::Test
{
protected:
using XDataType = std::tuple_element_t<0, Tuple>;
using GammaDataType = std::tuple_element_t<1, Tuple>;
using BetaDataType = std::tuple_element_t<2, Tuple>;
using ComputeDataType = std::tuple_element_t<3, Tuple>;
using YDataType = std::tuple_element_t<4, Tuple>;
using XDataType = std::tuple_element_t<0, Tuple>;
using GammaDataType = std::tuple_element_t<1, Tuple>;
using BetaDataType = std::tuple_element_t<2, Tuple>;
using ComputeDataType = std::tuple_element_t<3, Tuple>;
using YDataType = std::tuple_element_t<4, Tuple>;
using SaveMeanInvStdDataType = std::tuple_element_t<5, Tuple>;
void Run()
{
......@@ -35,7 +36,9 @@ class TestGroupnorm : public ::testing::Test
GammaDataType,
BetaDataType,
ComputeDataType,
YDataType>(true, 2, false, false, length);
YDataType,
SaveMeanInvStdDataType,
true>(true, 2, false, false, length);
EXPECT_TRUE(success);
}
}
......@@ -43,7 +46,7 @@ class TestGroupnorm : public ::testing::Test
using KernelTypes = ::testing::Types<
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType>
std::tuple<F32, F32, F32, F32, F32>>;
std::tuple<F32, F32, F32, F32, F32, F32>>;
TYPED_TEST_SUITE(TestGroupnorm, KernelTypes);
TYPED_TEST(TestGroupnorm, Test_FP32) { this->Run(); }
......@@ -12,11 +12,12 @@ template <typename Tuple>
class TestLayernorm2d : public ::testing::Test
{
protected:
using XDataType = std::tuple_element_t<0, Tuple>;
using GammaDataType = std::tuple_element_t<1, Tuple>;
using BetaDataType = std::tuple_element_t<2, Tuple>;
using ComputeDataType = std::tuple_element_t<3, Tuple>;
using YDataType = std::tuple_element_t<4, Tuple>;
using XDataType = std::tuple_element_t<0, Tuple>;
using GammaDataType = std::tuple_element_t<1, Tuple>;
using BetaDataType = std::tuple_element_t<2, Tuple>;
using ComputeDataType = std::tuple_element_t<3, Tuple>;
using YDataType = std::tuple_element_t<4, Tuple>;
using SaveMeanInvStdDataType = std::tuple_element_t<5, Tuple>;
void Run()
{
......@@ -31,6 +32,8 @@ class TestLayernorm2d : public ::testing::Test
BetaDataType,
ComputeDataType,
YDataType,
SaveMeanInvStdDataType,
true,
2>(true, 2, false, false, length);
EXPECT_TRUE(success);
}
......@@ -39,7 +42,7 @@ class TestLayernorm2d : public ::testing::Test
using KernelTypes = ::testing::Types<
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType>
std::tuple<F16, F16, F16, F32, F16>>;
std::tuple<F16, F16, F16, F32, F16, F32>>;
TYPED_TEST_SUITE(TestLayernorm2d, KernelTypes);
TYPED_TEST(TestLayernorm2d, Test_FP16) { this->Run(); }
......@@ -12,11 +12,12 @@ template <typename Tuple>
class TestLayernorm2d : public ::testing::Test
{
protected:
using XDataType = std::tuple_element_t<0, Tuple>;
using GammaDataType = std::tuple_element_t<1, Tuple>;
using BetaDataType = std::tuple_element_t<2, Tuple>;
using ComputeDataType = std::tuple_element_t<3, Tuple>;
using YDataType = std::tuple_element_t<4, Tuple>;
using XDataType = std::tuple_element_t<0, Tuple>;
using GammaDataType = std::tuple_element_t<1, Tuple>;
using BetaDataType = std::tuple_element_t<2, Tuple>;
using ComputeDataType = std::tuple_element_t<3, Tuple>;
using YDataType = std::tuple_element_t<4, Tuple>;
using SaveMeanInvStdDataType = std::tuple_element_t<5, Tuple>;
void Run()
{
......@@ -31,6 +32,8 @@ class TestLayernorm2d : public ::testing::Test
BetaDataType,
ComputeDataType,
YDataType,
SaveMeanInvStdDataType,
true,
2>(true, 2, false, false, length);
EXPECT_TRUE(success);
}
......@@ -39,7 +42,7 @@ class TestLayernorm2d : public ::testing::Test
using KernelTypes = ::testing::Types<
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType>
std::tuple<F32, F32, F32, F32, F32>>;
std::tuple<F32, F32, F32, F32, F32, F32>>;
TYPED_TEST_SUITE(TestLayernorm2d, KernelTypes);
TYPED_TEST(TestLayernorm2d, Test_FP32) { this->Run(); }
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment