Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
3552041a
Commit
3552041a
authored
Jul 26, 2024
by
danyao12
Browse files
Merge branch 'develop' into ck_tile/fa_bwd_opt
parents
e8927110
733f33af
Changes
273
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2557 additions
and
37 deletions
+2557
-37
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_default_instance.cpp
..._streamk_f16_f16_f16_mk_nk_mn_mem_v2_default_instance.cpp
+31
-0
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_kpadding_instance.cpp
...streamk_f16_f16_f16_mk_nk_mn_mem_v2_kpadding_instance.cpp
+31
-0
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_mnkpadding_instance.cpp
...reamk_f16_f16_f16_mk_nk_mn_mem_v2_mnkpadding_instance.cpp
+31
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale/CMakeLists.txt
..._instance/gpu/grouped_conv3d_fwd_convscale/CMakeLists.txt
+2
-1
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale/xdl/device_grouped_conv3d_fwd_xdl_convscale_ndhwgc_gkzyxc_ndhwgk_bf8_f8_instance.cpp
...wd_xdl_convscale_ndhwgc_gkzyxc_ndhwgk_bf8_f8_instance.cpp
+62
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale_add/CMakeLists.txt
...tance/gpu/grouped_conv3d_fwd_convscale_add/CMakeLists.txt
+5
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale_add/xdl/device_grouped_conv3d_fwd_xdl_convscale_add_ndhwgc_gkzyxc_ndhwgk_f8_instance.cpp
...wd_xdl_convscale_add_ndhwgc_gkzyxc_ndhwgk_f8_instance.cpp
+63
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale_relu/CMakeLists.txt
...ance/gpu/grouped_conv3d_fwd_convscale_relu/CMakeLists.txt
+5
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale_relu/xdl/device_grouped_conv3d_fwd_xdl_convscale_relu_ndhwgc_gkzyxc_ndhwgk_f8_instance.cpp
...d_xdl_convscale_relu_ndhwgc_gkzyxc_ndhwgk_f8_instance.cpp
+63
-0
profiler/include/profiler/profile_gemm_ab_scale_impl.hpp
profiler/include/profiler/profile_gemm_ab_scale_impl.hpp
+363
-0
profiler/include/profiler/profile_gemm_multiply_multiply_impl.hpp
.../include/profiler/profile_gemm_multiply_multiply_impl.hpp
+329
-0
profiler/include/profiler/profile_gemm_universal_impl.hpp
profiler/include/profiler/profile_gemm_universal_impl.hpp
+22
-22
profiler/include/profiler/profile_gemm_universal_reduce_impl.hpp
...r/include/profiler/profile_gemm_universal_reduce_impl.hpp
+323
-0
profiler/include/profiler/profile_gemm_universal_streamk_impl.hpp
.../include/profiler/profile_gemm_universal_streamk_impl.hpp
+332
-0
profiler/include/profiler/profile_grouped_conv_fwd_outelementop_impl.hpp
...e/profiler/profile_grouped_conv_fwd_outelementop_impl.hpp
+352
-0
profiler/src/CMakeLists.txt
profiler/src/CMakeLists.txt
+11
-0
profiler/src/profile_gemm_ab_scale.cpp
profiler/src/profile_gemm_ab_scale.cpp
+182
-0
profiler/src/profile_gemm_multiply_multiply.cpp
profiler/src/profile_gemm_multiply_multiply.cpp
+169
-0
profiler/src/profile_gemm_universal.cpp
profiler/src/profile_gemm_universal.cpp
+23
-14
profiler/src/profile_gemm_universal_reduce.cpp
profiler/src/profile_gemm_universal_reduce.cpp
+158
-0
No files found.
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_default_instance.cpp
0 → 100644
View file @
3552041a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_default_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_instances
<
Interwave
,
GemmDefault
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_kpadding_instance.cpp
0 → 100644
View file @
3552041a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_kpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_instances
<
Interwave
,
GemmKPadding
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_mnkpadding_instance.cpp
0 → 100644
View file @
3552041a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_mnkpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_instances
<
Interwave
,
GemmMNKPadding
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale/CMakeLists.txt
View file @
3552041a
...
...
@@ -2,6 +2,7 @@
set
(
GROUPED_CONV3D_FWD_CONVSCALE
xdl/device_grouped_conv3d_fwd_xdl_convscale_ndhwgc_gkzyxc_ndhwgk_f8_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_convscale_ndhwgc_gkzyxc_ndhwgk_bf8_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_convscale_ndhwgc_gkzyxc_ndhwgk_f8_bf8_instance.cpp
)
xdl/device_grouped_conv3d_fwd_xdl_convscale_ndhwgc_gkzyxc_ndhwgk_f8_bf8_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_convscale_ndhwgc_gkzyxc_ndhwgk_bf8_f8_instance.cpp
)
add_instance_library
(
device_grouped_conv3d_fwd_convscale_instance
${
GROUPED_CONV3D_FWD_CONVSCALE
}
)
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale/xdl/device_grouped_conv3d_fwd_xdl_convscale_ndhwgc_gkzyxc_ndhwgk_bf8_f8_instance.cpp
0 → 100644
View file @
3552041a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_outelementop_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
ConvScale
=
ck
::
tensor_operation
::
element_wise
::
ConvScale
;
void
add_device_grouped_conv3d_fwd_xdl_convscale_ndhwgc_gkzyxc_ndhwgk_bf8_f8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
BF8
,
F8
,
ck
::
Tuple
<>
,
F8
,
PassThrough
,
PassThrough
,
ConvScale
,
BF8
,
F8
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_outelementop_bf8_f8_instances
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ConvFwdDefault
,
ConvScale
>
{});
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_outelementop_bf8_f8_instances
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ConvFwd1x1P0
,
ConvScale
>
{});
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_outelementop_bf8_f8_instances
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ConvFwd1x1S1P0
,
ConvScale
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale_add/CMakeLists.txt
0 → 100644
View file @
3552041a
# ONLY XDL_KERNELS
set
(
GROUPED_CONV3D_FWD_CONVSCALE_ADD
xdl/device_grouped_conv3d_fwd_xdl_convscale_add_ndhwgc_gkzyxc_ndhwgk_f8_instance.cpp
)
add_instance_library
(
device_grouped_conv3d_fwd_convscale_add_instance
${
GROUPED_CONV3D_FWD_CONVSCALE_ADD
}
)
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale_add/xdl/device_grouped_conv3d_fwd_xdl_convscale_add_ndhwgc_gkzyxc_ndhwgk_f8_instance.cpp
0 → 100644
View file @
3552041a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_binary_outelementop_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
ConvScaleAdd
=
ck
::
tensor_operation
::
element_wise
::
ConvScaleAdd
;
void
add_device_grouped_conv3d_fwd_xdl_convscale_add_ndhwgc_gkzyxc_ndhwgk_f8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<
NDHWGK
>
,
NDHWGK
,
F8
,
F8
,
ck
::
Tuple
<
F32
>
,
F8
,
PassThrough
,
PassThrough
,
ConvScaleAdd
,
F8
,
F8
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_binary_outelementop_f8_instances
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<
NDHWGK
>
,
NDHWGK
,
ConvFwdDefault
,
ConvScaleAdd
>
{});
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_binary_outelementop_f8_instances
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<
NDHWGK
>
,
NDHWGK
,
ConvFwd1x1P0
,
ConvScaleAdd
>
{});
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_binary_outelementop_f8_instances
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<
NDHWGK
>
,
NDHWGK
,
ConvFwd1x1S1P0
,
ConvScaleAdd
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale_relu/CMakeLists.txt
0 → 100644
View file @
3552041a
# ONLY XDL_KERNELS
set
(
GROUPED_CONV3D_FWD_CONVSCALE_RELU
xdl/device_grouped_conv3d_fwd_xdl_convscale_relu_ndhwgc_gkzyxc_ndhwgk_f8_instance.cpp
)
add_instance_library
(
device_grouped_conv3d_fwd_convscale_relu_instance
${
GROUPED_CONV3D_FWD_CONVSCALE_RELU
}
)
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_convscale_relu/xdl/device_grouped_conv3d_fwd_xdl_convscale_relu_ndhwgc_gkzyxc_ndhwgk_f8_instance.cpp
0 → 100644
View file @
3552041a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_outelementop_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
ConvScaleRelu
=
ck
::
tensor_operation
::
element_wise
::
ConvScaleRelu
;
void
add_device_grouped_conv3d_fwd_xdl_convscale_relu_ndhwgc_gkzyxc_ndhwgk_f8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
F8
,
F8
,
ck
::
Tuple
<>
,
F8
,
PassThrough
,
PassThrough
,
ConvScaleRelu
,
F8
,
F8
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_outelementop_f8_instances
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ConvFwdDefault
,
ConvScaleRelu
>
{});
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_outelementop_f8_instances
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ConvFwd1x1P0
,
ConvScaleRelu
>
{});
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_outelementop_f8_instances
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ConvFwd1x1S1P0
,
ConvScaleRelu
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
profiler/include/profiler/profile_gemm_ab_scale_impl.hpp
0 → 100644
View file @
3552041a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3_ab_scale.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_ab_scale.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
A0DataType
,
typename
A1DataType
,
typename
B0DataType
,
typename
B1DataType
,
typename
ComputeDataType
,
typename
AccDataType
,
typename
EDataType
,
index_t
ScaleBlockM
,
index_t
ScaleBlockN
,
index_t
ScaleBlockK
,
typename
ALayout
,
typename
BLayout
,
typename
ELayout
>
bool
profile_gemm_ab_scale_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideE
,
int
n_warmup
,
int
n_iter
,
uint64_t
rotating
=
0
)
{
bool
pass
=
true
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
ck
::
index_t
Scale_Stride_AM
=
ck
::
is_same_v
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>
?
((
K
+
ScaleBlockK
-
1
)
/
ScaleBlockK
)
:
((
M
+
ScaleBlockM
-
1
)
/
ScaleBlockM
);
ck
::
index_t
Scale_Stride_BN
=
ck
::
is_same_v
<
BLayout
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
>
?
((
K
+
ScaleBlockK
-
1
)
/
ScaleBlockK
)
:
((
N
+
ScaleBlockN
-
1
)
/
ScaleBlockN
);
Tensor
<
A0DataType
>
a0_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
A1DataType
>
a1_m_k
(
f_host_tensor_descriptor
((
M
+
ScaleBlockM
-
1
)
/
ScaleBlockM
,
(
K
+
ScaleBlockK
-
1
)
/
ScaleBlockK
,
Scale_Stride_AM
,
ALayout
{}));
Tensor
<
B0DataType
>
b0_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
B1DataType
>
b1_k_n
(
f_host_tensor_descriptor
((
K
+
ScaleBlockK
-
1
)
/
ScaleBlockK
,
(
N
+
ScaleBlockN
-
1
)
/
ScaleBlockN
,
Scale_Stride_BN
,
BLayout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
int
total_gemm_needed
=
a0_m_k
.
GetElementSpaceSizeInBytes
()
+
b0_k_n
.
GetElementSpaceSizeInBytes
()
+
a1_m_k
.
GetElementSpaceSizeInBytes
()
+
b1_k_n
.
GetElementSpaceSizeInBytes
();
int
rotating_count
=
std
::
max
(
1
,
std
::
min
(
n_iter
,
static_cast
<
int
>
(
std
::
ceil
(
static_cast
<
double
>
(
rotating
)
/
total_gemm_needed
))));
std
::
cout
<<
"a0_m_k: "
<<
a0_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a1_m_k: "
<<
a1_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_k_n: "
<<
b0_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_k_n: "
<<
b1_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_device_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"rotating count: "
<<
rotating_count
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
2
,
2
});
b0_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
a1_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
A1DataType
>
{
0
,
1.0
});
b1_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
0
,
1.0
});
break
;
default:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
-
0.5
,
0.5
});
b0_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
-
0.5
,
0.5
});
a1_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
A1DataType
>
{
0
,
1.0
});
b1_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
0
,
1.0
});
}
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
DeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
a0_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
b0_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a1_device_buf
(
sizeof
(
A1DataType
)
*
a1_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
b1_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_device_buf
.
ToDevice
(
a0_m_k
.
mData
.
data
());
b0_device_buf
.
ToDevice
(
b0_k_n
.
mData
.
data
());
a1_device_buf
.
ToDevice
(
a1_m_k
.
mData
.
data
());
b1_device_buf
.
ToDevice
(
b1_k_n
.
mData
.
data
());
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD_ABScale
<
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
A0DataType
,
A1DataType
,
B0DataType
,
B1DataType
,
ck
::
Tuple
<>
,
EDataType
,
ScaleBlockM
,
ScaleBlockN
,
ScaleBlockK
,
AElementOp
,
BElementOp
,
CElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
// Run reference GEMM
if
(
do_verification
)
{
Tensor
<
AccDataType
>
c_m_n
({
M
,
N
});
Tensor
<
float
>
a_m_k
({
M
,
K
});
Tensor
<
float
>
b_k_n
({
K
,
N
});
for
(
int
m
=
0
;
m
<
M
;
m
++
)
{
for
(
int
k
=
0
;
k
<
K
;
k
++
)
{
a_m_k
(
m
,
k
)
=
ck
::
type_convert
<
float
>
(
a0_m_k
(
m
,
k
))
*
a1_m_k
(
m
/
ScaleBlockM
,
k
/
ScaleBlockK
);
}
}
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
k
=
0
;
k
<
K
;
k
++
)
{
b_k_n
(
k
,
n
)
=
ck
::
type_convert
<
float
>
(
b0_k_n
(
k
,
n
))
*
b1_k_n
(
k
/
ScaleBlockK
,
n
/
ScaleBlockN
);
}
}
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
float
,
float
,
AccDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
,
float
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
e_m_n_host_result
(
m
,
n
)
=
ck
::
type_convert
<
EDataType
>
(
c_m_n
(
m
,
n
));
}
}
}
std
::
string
best_op_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device GEMM instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
A0DataType
*>
(
a0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B0DataType
*>
(
b0_device_buf
.
GetDeviceBuffer
()),
std
::
array
<
const
void
*
,
0
>
{},
static_cast
<
EDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
std
::
array
<
ck
::
index_t
,
0
>
{},
StrideE
,
a1_device_buf
.
GetDeviceBuffer
(),
b1_device_buf
.
GetDeviceBuffer
(),
a_element_op
,
b_element_op
,
c_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init C to zero before profiling next kernel
c_device_buf
.
SetZero
();
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
,
0
,
n_warmup
,
n_iter
});
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
#if defined CK_ENABLE_FP8
// set softer tolerances for fp8
if
constexpr
(
is_same_v
<
A0DataType
,
f8_t
>
||
is_same_v
<
B0DataType
,
f8_t
>
||
is_same_v
<
EDataType
,
f8_t
>
)
{
std
::
string
msg
=
"Error: Incorrect results!"
;
double
rtol
=
5e-2
;
double
atol
=
5e-2
;
pass
=
pass
&
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
,
msg
,
rtol
,
atol
);
}
else
{
#endif
pass
=
pass
&
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
);
#if defined CK_ENABLE_FP8
}
#endif
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a0_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b0_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
e_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
e_m_n_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
0
,
n_warmup
,
n_iter
,
rotating_count
>
1
,
rotating_count
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
constexpr
(
is_same
<
EDataType
,
float
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f32"
;
}
else
if
constexpr
(
is_same
<
EDataType
,
half_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f16"
;
}
else
if
constexpr
(
is_same
<
EDataType
,
bhalf_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = bf16"
;
}
else
if
constexpr
(
is_same
<
EDataType
,
int8_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = int8"
;
}
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" ALayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" ALayout = ColumnMajor"
;
}
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" BLayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" BLayout = ColumnMajor"
;
}
std
::
cout
<<
" M = "
<<
M
<<
" N = "
<<
N
<<
" K = "
<<
K
<<
" StrideA = "
<<
StrideA
<<
" StrideB = "
<<
StrideB
<<
" StrideE = "
<<
StrideE
<<
" : "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profiler/profile_gemm_multiply_multiply_impl.hpp
0 → 100644
View file @
3552041a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_multiply_multiply.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
ComputeDataType
,
typename
AccDataType
,
typename
D0DataType
,
typename
D1DataType
,
typename
EDataType
,
typename
ALayout
,
typename
BLayout
,
typename
D0Layout
,
typename
D1Layout
,
typename
ELayout
>
bool
profile_gemm_multiply_multiply_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideD0
,
int
StrideD1
,
int
StrideE
,
int
n_warmup
,
int
n_iter
,
uint64_t
rotating
=
0
)
{
bool
pass
=
true
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
D0DataType
>
d0_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD0
,
D0Layout
{}));
Tensor
<
D1DataType
>
d1_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD1
,
D1Layout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
int
total_gemm_needed
=
a_m_k
.
GetElementSpaceSizeInBytes
()
+
b_k_n
.
GetElementSpaceSizeInBytes
()
+
d0_m_n
.
GetElementSpaceSizeInBytes
()
+
d1_m_n
.
GetElementSpaceSizeInBytes
();
int
rotating_count
=
std
::
max
(
1
,
std
::
min
(
n_iter
,
static_cast
<
int
>
(
std
::
ceil
(
static_cast
<
double
>
(
rotating
)
/
total_gemm_needed
))));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_m_n: "
<<
d0_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_m_n: "
<<
d1_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_device_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"rotating count: "
<<
rotating_count
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
1
,
2
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
1
,
2
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
5
,
5
});
d1_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D1DataType
>
{
-
1
,
1
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
d1_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
0.0
,
1.0
});
}
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
MultiplyMultiply
=
ck
::
tensor_operation
::
element_wise
::
MultiplyMultiply
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
MultiplyMultiply
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
d0_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_m_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_m_n
.
mData
.
data
());
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
,
D1Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
,
D1DataType
>
,
EDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
// Run reference GEMM
if
(
do_verification
)
{
Tensor
<
AccDataType
>
c_m_n
({
M
,
N
});
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
AccDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
,
ComputeDataType
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
c_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d0_m_n
(
m
,
n
),
d1_m_n
(
m
,
n
));
}
}
}
std
::
string
best_op_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device GEMM instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
std
::
array
<
const
void
*
,
2
>
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
static_cast
<
EDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
std
::
array
<
ck
::
index_t
,
2
>
{
StrideD0
,
StrideD1
},
StrideE
,
a_element_op
,
b_element_op
,
c_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init C to zero before profiling next kernel
c_device_buf
.
SetZero
();
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
,
0
,
n_warmup
,
n_iter
});
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
e_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
e_m_n_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
0
,
n_warmup
,
n_iter
,
rotating_count
>
1
,
rotating_count
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
#if defined CK_ENABLE_FP8
// set softer tolerances for fp8
if
constexpr
(
is_same_v
<
ADataType
,
f8_t
>
||
is_same_v
<
BDataType
,
f8_t
>
||
is_same_v
<
EDataType
,
f8_t
>
)
{
std
::
string
msg
=
"Error: Incorrect results!"
;
double
rtol
=
1e-1
;
double
atol
=
1e-1
;
pass
=
pass
&
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
,
msg
,
rtol
,
atol
);
}
else
{
#endif
pass
=
pass
&
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
);
#if defined CK_ENABLE_FP8
}
#endif
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
constexpr
(
is_same
<
EDataType
,
float
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f32"
;
}
else
if
constexpr
(
is_same
<
EDataType
,
half_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f16"
;
}
else
if
constexpr
(
is_same
<
EDataType
,
bhalf_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = bf16"
;
}
else
if
constexpr
(
is_same
<
EDataType
,
int8_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = int8"
;
}
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" ALayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" ALayout = ColumnMajor"
;
}
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" BLayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" BLayout = ColumnMajor"
;
}
std
::
cout
<<
" M = "
<<
M
<<
" N = "
<<
N
<<
" K = "
<<
K
<<
" StrideA = "
<<
StrideA
<<
" StrideB = "
<<
StrideB
<<
" StrideE = "
<<
StrideE
<<
" : "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profiler/profile_gemm_universal_impl.hpp
View file @
3552041a
// SPDX-License-Identifier: MIT
// Copyright (c) 20
18
-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 20
23
-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -26,6 +26,7 @@ namespace profiler {
template
<
typename
ADataType
,
typename
BDataType
,
typename
ComputeDataType
,
typename
AccDataType
,
typename
CDataType
,
typename
ALayout
,
...
...
@@ -130,7 +131,8 @@ bool profile_gemm_universal_impl(int do_verification,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
CElementOp
,
ComputeDataType
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
...
...
@@ -191,7 +193,24 @@ bool profile_gemm_universal_impl(int do_verification,
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
#if defined CK_ENABLE_FP8
// set softer tolerances for fp8
if
constexpr
(
is_same_v
<
ADataType
,
f8_t
>
||
is_same_v
<
BDataType
,
f8_t
>
||
is_same_v
<
CDataType
,
f8_t
>
)
{
std
::
string
msg
=
"Error: Incorrect results!"
;
double
rtol
=
1e-1
;
double
atol
=
1e-1
;
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
,
msg
,
rtol
,
atol
);
}
else
{
#endif
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
#if defined CK_ENABLE_FP8
}
#endif
if
(
do_log
)
{
...
...
@@ -230,25 +249,6 @@ bool profile_gemm_universal_impl(int do_verification,
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
", KBatch "
<<
kbatch_curr
<<
std
::
endl
;
#if defined CK_ENABLE_FP8
// set softer tolerances for fp8
if
constexpr
(
is_same_v
<
ADataType
,
f8_t
>
||
is_same_v
<
BDataType
,
f8_t
>
||
is_same_v
<
CDataType
,
f8_t
>
)
{
std
::
string
msg
=
"Error: Incorrect results!"
;
double
rtol
=
1e-1
;
double
atol
=
1e-1
;
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
,
msg
,
rtol
,
atol
);
}
else
{
#endif
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
#if defined CK_ENABLE_FP8
}
#endif
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
...
...
profiler/include/profiler/profile_gemm_universal_reduce_impl.hpp
0 → 100644
View file @
3552041a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3r1.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_universal_reduce.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
AccDataType
,
typename
CDataType
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
CLayout
>
bool
profile_gemm_universal_reduce_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideC
,
int
KBatch
,
int
n_warmup
,
int
n_iter
,
uint64_t
rotating
=
0
)
{
bool
pass
=
true
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
int
total_gemm_needed
=
a_m_k
.
GetElementSpaceSizeInBytes
()
+
b_k_n
.
GetElementSpaceSizeInBytes
();
int
rotating_count
=
std
::
max
(
1
,
std
::
min
(
n_iter
,
static_cast
<
int
>
(
std
::
ceil
(
static_cast
<
double
>
(
rotating
)
/
total_gemm_needed
))));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_device_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"rotating count: "
<<
rotating_count
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
1
,
2
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
1
,
2
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
}
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmV2R1
<
ALayout
,
BLayout
,
DsLayout
,
CLayout
,
ADataType
,
BDataType
,
DsDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
// Run reference GEMM
if
(
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
}
std
::
string
best_op_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
float
best_kbatch
=
0
;
// profile device GEMM instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
std
::
vector
<
int
>
kbatch_list
=
{
1
,
2
,
4
,
8
,
12
,
16
,
19
,
20
,
32
,
38
};
if
(
KBatch
>
0
)
{
kbatch_list
=
{
KBatch
};
}
for
(
std
::
size_t
i
=
0
;
i
<
kbatch_list
.
size
();
i
++
)
{
auto
kbatch_curr
=
kbatch_list
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
{},
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideC
,
kbatch_curr
,
a_element_op
,
b_element_op
,
c_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
DeviceMem
gemm_workspace_dev
(
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
()));
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
gemm_workspace_dev
.
GetDeviceBuffer
(),
StreamConfig
{});
// re-init C to zero before profiling next kernel
c_device_buf
.
SetZero
();
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
,
0
,
n_warmup
,
n_iter
});
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
c_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
0
,
n_warmup
,
n_iter
,
rotating_count
>
1
,
rotating_count
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
", KBatch "
<<
kbatch_curr
<<
std
::
endl
;
#if defined CK_ENABLE_FP8
// set softer tolerances for fp8
if
constexpr
(
is_same_v
<
ADataType
,
f8_t
>
||
is_same_v
<
BDataType
,
f8_t
>
||
is_same_v
<
CDataType
,
f8_t
>
)
{
std
::
string
msg
=
"Error: Incorrect results!"
;
double
rtol
=
1e-1
;
double
atol
=
1e-1
;
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
,
msg
,
rtol
,
atol
);
}
else
{
#endif
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
#if defined CK_ENABLE_FP8
}
#endif
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
best_kbatch
=
kbatch_curr
;
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
}
if
constexpr
(
is_same
<
CDataType
,
float
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f32"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
half_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
bhalf_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = bf16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
int8_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = int8"
;
}
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" ALayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" ALayout = ColumnMajor"
;
}
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" BLayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" BLayout = ColumnMajor"
;
}
std
::
cout
<<
" M = "
<<
M
<<
" N = "
<<
N
<<
" K = "
<<
K
<<
" StrideA = "
<<
StrideA
<<
" StrideB = "
<<
StrideB
<<
" StrideC = "
<<
StrideC
<<
" KBatch = "
<<
best_kbatch
<<
" : "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profiler/profile_gemm_universal_streamk_impl.hpp
0 → 100644
View file @
3552041a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_universal_streamk.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
>
bool
profile_gemm_universal_streamk_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideC
,
int
Streamk_sel
,
int
Grid_size
,
int
n_warmup
,
int
n_iter
,
uint64_t
rotating
=
0
)
{
bool
pass
=
true
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
int
total_gemm_needed
=
a_m_k
.
GetElementSpaceSizeInBytes
()
+
b_k_n
.
GetElementSpaceSizeInBytes
();
int
rotating_count
=
std
::
max
(
1
,
std
::
min
(
n_iter
,
static_cast
<
int
>
(
std
::
ceil
(
static_cast
<
double
>
(
rotating
)
/
total_gemm_needed
))));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_device_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"rotating count: "
<<
rotating_count
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
1
,
2
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
1
,
2
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
}
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Streamk_V2
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
// Run reference GEMM
if
(
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
}
std
::
string
best_op_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
float
best_grid_size
=
0
;
float
best_streamk_sel
=
0
;
// profile device GEMM instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
std
::
vector
<
int
>
grid_size_list
=
{
38
,
76
,
114
,
152
,
190
,
228
,
266
,
304
,
342
,
380
};
std
::
vector
<
int
>
streamk_sel_list
=
{
0
,
1
,
2
,
3
,
4
};
// 0: Data Parallel (DP) mode (Stream-K OFF), 1: 1-tile Stream-K+ DP,
// 2:2-tile Stream-K + DP
if
(
Grid_size
==
-
1
)
{
grid_size_list
=
{
Grid_size
};
}
if
(
Streamk_sel
!=
-
1
)
{
streamk_sel_list
=
{
Streamk_sel
};
}
for
(
std
::
size_t
j
=
0
;
j
<
streamk_sel_list
.
size
();
j
++
)
{
for
(
std
::
size_t
i
=
0
;
i
<
grid_size_list
.
size
();
i
++
)
{
auto
grid_size_curr
=
grid_size_list
[
i
];
index_t
streamk_sel_curr
=
streamk_sel_list
[
j
];
printf
(
"streamk_sel_curr=%0d
\n
"
,
streamk_sel_curr
);
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
streamk_sel_curr
,
grid_size_curr
,
a_element_op
,
b_element_op
,
c_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init C to zero before profiling next kernel
c_device_buf
.
SetZero
();
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
,
0
,
n_warmup
,
n_iter
});
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
c_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
0
,
n_warmup
,
n_iter
,
rotating_count
>
1
,
rotating_count
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
", Grid_size "
<<
grid_size_curr
<<
", streamk selection strategy"
<<
streamk_sel_curr
<<
std
::
endl
;
#if defined CK_ENABLE_FP8
// set softer tolerances for fp8
if
constexpr
(
is_same_v
<
ADataType
,
f8_t
>
||
is_same_v
<
BDataType
,
f8_t
>
||
is_same_v
<
CDataType
,
f8_t
>
)
{
std
::
string
msg
=
"Error: Incorrect results!"
;
double
rtol
=
1e-1
;
double
atol
=
1e-1
;
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
,
msg
,
rtol
,
atol
);
}
else
{
#endif
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
#if defined CK_ENABLE_FP8
}
#endif
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
best_grid_size
=
grid_size_curr
;
best_streamk_sel
=
streamk_sel_curr
;
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
}
}
if
constexpr
(
is_same
<
CDataType
,
float
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f32"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
half_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
bhalf_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = bf16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
int8_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = int8"
;
}
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" ALayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" ALayout = ColumnMajor"
;
}
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" BLayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" BLayout = ColumnMajor"
;
}
std
::
cout
<<
" M = "
<<
M
<<
" N = "
<<
N
<<
" K = "
<<
K
<<
" StrideA = "
<<
StrideA
<<
" StrideB = "
<<
StrideB
<<
" StrideC = "
<<
StrideC
<<
" Grid_size = "
<<
best_grid_size
<<
" Stream-K selection strategy = "
<<
best_streamk_sel
<<
" : "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profiler/profile_grouped_conv_fwd_outelementop_impl.hpp
0 → 100644
View file @
3552041a
#pragma once
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convscale.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convinvscale.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
DataType
>
inline
constexpr
double
get_rtol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1e-6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5e-2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
1e-1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
1.5e-1
;
// 57344 and 49152 are acceptable
}
else
{
return
1e-3
;
}
}
template
<
typename
DataType
>
inline
constexpr
double
get_atol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1e-6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5e-2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
16.1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
8192.1
;
// 57344 and 49152 are acceptable
}
else
{
return
1e-3
;
}
}
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
OutElementOp
,
typename
AComputeType
=
InDataType
,
typename
BComputeType
=
AComputeType
>
bool
profile_grouped_conv_fwd_outelementop_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
{
auto
pass
=
true
;
// return status
using
CShuffleDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
Tensor
<
InDataType
>
input
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
weight
(
wei_g_k_c_xs_desc
);
Tensor
<
CShuffleDataType
>
c
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
host_output
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
device_output
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"input: "
<<
input
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"weight: "
<<
weight
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
host_output
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
input
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
weight
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
1
,
1
});
break
;
default:
input
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
5.0
,
5.0
});
weight
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
1.0
,
1.0
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
input
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
weight
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
device_output
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
input
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
weight
.
mData
.
data
());
// random scale values
auto
scale_in
=
type_convert
<
float
>
(
type_convert
<
f8_t
>
(
2.0
f
*
float
(
RAND_MAX
/
2
-
std
::
rand
())
/
float
(
RAND_MAX
)));
auto
scale_wei
=
type_convert
<
float
>
(
type_convert
<
f8_t
>
(
2.0
f
*
float
(
RAND_MAX
/
2
-
std
::
rand
())
/
float
(
RAND_MAX
)));
auto
scale_out
=
type_convert
<
float
>
(
type_convert
<
f8_t
>
(
2.0
f
*
float
(
RAND_MAX
/
2
-
std
::
rand
())
/
float
(
RAND_MAX
)));
// initialize out_element_op for each iteration
const
auto
out_element_op
=
OutElementOp
{
scale_in
,
scale_wei
,
scale_out
};
std
::
cout
<<
"scale_in: "
<<
scale_in
<<
std
::
endl
;
std
::
cout
<<
"scale_wei: "
<<
scale_wei
<<
std
::
endl
;
std
::
cout
<<
"scale_out: "
<<
scale_out
<<
std
::
endl
;
// run reference op
if
(
do_verification
)
{
std
::
cout
<<
"
\n
Verifying algorithm against reference convolution..."
<<
std
::
endl
;
std
::
cout
<<
"
\t
Using (rel_tol,abs_tol) = ("
<<
std
::
setprecision
(
7
)
<<
get_rtol
<
OutDataType
>
()
<<
", "
<<
get_atol
<
OutDataType
>
()
<<
")"
<<
std
::
endl
;
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
CShuffleDataType
,
InElementOp
,
WeiElementOp
,
PassThrough
>
{};
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
input
,
weight
,
c
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
PassThrough
{});
c
.
SetZero
();
ref_invoker
.
Run
(
ref_argument
);
host_output
.
ForEach
([
&
](
auto
&
,
auto
idx
)
{
out_element_op
(
host_output
(
idx
),
c
(
idx
));
});
}
std
::
string
best_op_name
;
float
best_avg_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
auto
run_impl
=
[
&
](
auto
&
op_ptr
,
auto
&
argument_ptr
)
{
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init output to zero before profiling next kernel
out_device_buf
.
SetZero
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
out_device_buf
.
FromDevice
(
device_output
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
device_output
,
host_output
,
"Error: Device and Host results do not match!"
,
get_rtol
<
OutDataType
>
(),
get_atol
<
OutDataType
>
());
if
(
do_log
)
{
LogRangeAsType
<
InDataType
>
(
std
::
cout
<<
"input : "
,
input
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
WeiDataType
>
(
std
::
cout
<<
"weight: "
,
weight
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
OutDataType
>
(
std
::
cout
<<
"host_output : "
,
host_output
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
OutDataType
>
(
std
::
cout
<<
"device_output: "
,
device_output
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
};
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
AComputeType
,
BComputeType
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"ckProfiler found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
{},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
{},
{},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
run_impl
(
op_ptr
,
argument_ptr
);
}
std
::
cout
<<
"Best configuration parameters:"
<<
"
\n
name: "
<<
best_op_name
<<
"
\n
avg_time: "
<<
best_avg_time
<<
"
\n
tflops: "
<<
best_tflops
<<
"
\n
GB/s: "
<<
best_gb_per_sec
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/src/CMakeLists.txt
100644 → 100755
View file @
3552041a
...
...
@@ -46,16 +46,21 @@ if(GPU_TARGETS MATCHES "gfx9")
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_multiply_tile_loop.cpp
)
endif
()
list
(
APPEND PROFILER_SOURCES profile_gemm_multiply_add.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_multiply_multiply.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_ab_scale.cpp
)
list
(
APPEND PROFILER_SOURCES profile_batched_gemm.cpp
)
list
(
APPEND PROFILER_SOURCES profile_batched_gemm_reduce.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_add_multiply.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_bias_add_reduce.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_splitk.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_universal.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_universal_reduce.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_universal_streamk.cpp
)
list
(
APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu.cpp
)
list
(
APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu_add.cpp
)
list
(
APPEND PROFILER_SOURCES profile_conv_bwd_data.cpp
)
list
(
APPEND PROFILER_SOURCES profile_conv_fwd.cpp
)
list
(
APPEND PROFILER_SOURCES profile_grouped_conv_fwd_outelementop.cpp
)
endif
()
...
...
@@ -118,8 +123,12 @@ if(GPU_TARGETS MATCHES "gfx9")
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_multiply_add_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_multiply_multiply_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_ab_scale_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_splitk_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_universal_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_universal_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_universal_streamk_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_add_multiply_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_bias_add_reduce_instance
)
...
...
@@ -132,6 +141,8 @@ if(GPU_TARGETS MATCHES "gfx9")
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_conv2d_bwd_data_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv1d_bwd_weight_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv2d_bwd_weight_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv3d_fwd_convscale_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv3d_fwd_convinvscale_instance
)
endif
()
if
(
GPU_TARGETS MATCHES
"gfx9"
OR GPU_TARGETS MATCHES
"gfx11"
OR GPU_TARGETS MATCHES
"gfx12"
)
...
...
profiler/src/profile_gemm_ab_scale.cpp
0 → 100644
View file @
3552041a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_gemm_ab_scale_impl.hpp"
#include "profiler_operation_registry.hpp"
enum
struct
GemmMatrixLayout
{
MK_KN_MN
,
// 0
MK_NK_MN
,
// 1
KM_KN_MN
,
// 2
KM_NK_MN
,
// 3
};
enum
struct
GemmDataType
{
F32_F32_F32
,
// 0
F16_F16_F16
,
// 1
BF16_BF16_BF16
,
// 2
INT8_INT8_INT8
,
// 3
F8_F16_F16
,
// 4
F16_F8_F16
,
// 5
F16_F16_F16_F8
,
// 6
F8_F8_BF16
,
// 7
};
enum
struct
ScaleBlockTile
{
Tile_128_128_128
,
// 0
};
#define OP_NAME "gemm_ab_scale"
#define OP_DESC "GEMM_AB_Scale"
int
profile_gemm_ab_scale
(
int
argc
,
char
*
argv
[])
{
if
(
argc
!=
15
&&
argc
!=
18
)
{
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f8@f16; 5: f16@f8; 6: "
"f16->f8; 7: f8->bf16, "
"comp f8)
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
);
printf
(
" 2: A[k, m] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 3: A[k, m] * B[n, k] = C[m, n])
\n
"
);
printf
(
"arg4: scale block tile (0: ScaleBlockM/N/K = [128, 128, 128];
\n
"
);
printf
(
"arg5: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg6: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg7: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg8: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg9 to 14: M, N, K, StrideA, StrideB, StrideE
\n
"
);
printf
(
"optional:
\n
"
);
printf
(
"arg15: number of warm-up cycles (default 1)
\n
"
);
printf
(
"arg16: number of iterations (default 10)
\n
"
);
printf
(
"arg17: memory for rotating buffer (default 0, size in MB)
\n
"
);
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
GemmDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
GemmMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
auto
scale_block_tile
=
static_cast
<
ScaleBlockTile
>
(
std
::
stoi
(
argv
[
4
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
5
]);
const
int
init_method
=
std
::
stoi
(
argv
[
6
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
7
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
8
]);
const
int
M
=
std
::
stoi
(
argv
[
9
]);
const
int
N
=
std
::
stoi
(
argv
[
10
]);
const
int
K
=
std
::
stoi
(
argv
[
11
]);
const
int
StrideA
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
13
]);
const
int
StrideE
=
std
::
stoi
(
argv
[
14
]);
int
n_warmup
=
1
;
int
n_iter
=
10
;
uint64_t
rotating
=
0
;
if
(
argc
==
18
)
{
n_warmup
=
std
::
stoi
(
argv
[
15
]);
n_iter
=
std
::
stoi
(
argv
[
16
]);
rotating
=
std
::
stoull
(
argv
[
17
])
*
1024
*
1024
;
}
using
F32
=
float
;
using
BF16
=
ck
::
bhalf_t
;
using
F8
=
ck
::
f8_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
auto
profile
=
[
&
](
auto
a0_type
,
auto
a1_type
,
auto
b0_type
,
auto
b1_type
,
auto
comp_type
,
auto
acc_type
,
auto
c_type
,
auto
scale_block_m
,
auto
scale_block_n
,
auto
scale_block_k
,
auto
a_layout
,
auto
b_layout
,
auto
e_layout
)
{
using
A0DataType
=
decltype
(
a0_type
);
using
A1DataType
=
decltype
(
a1_type
);
using
B0DataType
=
decltype
(
b0_type
);
using
B1DataType
=
decltype
(
b1_type
);
using
ComputeDataType
=
decltype
(
comp_type
);
using
AccDataType
=
decltype
(
acc_type
);
using
EDataType
=
decltype
(
c_type
);
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
ELayout
=
decltype
(
e_layout
);
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB
=
ck
::
is_same_v
<
BLayout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideE
=
ck
::
is_same_v
<
ELayout
,
Row
>
?
N
:
M
;
bool
pass
=
ck
::
profiler
::
profile_gemm_ab_scale_impl
<
A0DataType
,
A1DataType
,
B0DataType
,
B1DataType
,
ComputeDataType
,
AccDataType
,
EDataType
,
scale_block_m
,
scale_block_n
,
scale_block_k
,
ALayout
,
BLayout
,
ELayout
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
,
(
StrideB
<
0
)
?
DefaultStrideB
:
StrideB
,
(
StrideE
<
0
)
?
DefaultStrideE
:
StrideE
,
n_warmup
,
n_iter
,
rotating
);
return
pass
?
0
:
1
;
};
if
(
data_type
==
GemmDataType
::
F8_F8_BF16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
&&
scale_block_tile
==
ScaleBlockTile
::
Tile_128_128_128
)
{
return
profile
(
F8
{},
F32
{},
F8
{},
F32
{},
F8
{},
F32
{},
BF16
{},
ck
::
Number
<
128
>
{},
ck
::
Number
<
128
>
{},
ck
::
Number
<
128
>
{},
Row
{},
Col
{},
Row
{});
}
else
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_gemm_ab_scale
);
profiler/src/profile_gemm_multiply_multiply.cpp
0 → 100644
View file @
3552041a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_gemm_multiply_multiply_impl.hpp"
#include "profiler_operation_registry.hpp"
enum
struct
GemmMatrixLayout
{
MK_KN_MN
,
// 0
MK_NK_MN
,
// 1
KM_KN_MN
,
// 2
KM_NK_MN
,
// 3
};
enum
struct
GemmDataType
{
F32_F32_F32
,
// 0
F16_F16_F16
,
// 1
BF16_BF16_BF16
,
// 2
INT8_INT8_INT8
,
// 3
F8_F16_F16
,
// 4
F16_F8_F16
,
// 5
F16_F16_F16_F8
,
// 6
F8_F8_BF16
,
// 7
};
#define OP_NAME "gemm_multiply_multiply"
#define OP_DESC "GEMM_Multiply_Multiply"
int
profile_gemm_multiply_multiply
(
int
argc
,
char
*
argv
[])
{
if
(
argc
!=
16
&&
argc
!=
19
)
{
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f8@f16; 5: f16@f8; 6: "
"f16->f8; 7: f8->bf16, "
"comp f8)
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
);
printf
(
" 2: A[k, m] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 3: A[k, m] * B[n, k] = C[m, n])
\n
"
);
printf
(
"arg4: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg6: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg8 to 15: M, N, K, StrideA, StrideB, StrideD0, StrideD1, StrideE
\n
"
);
printf
(
"optional:
\n
"
);
printf
(
"arg16: number of warm-up cycles (default 1)
\n
"
);
printf
(
"arg17: number of iterations (default 10)
\n
"
);
printf
(
"arg18: memory for rotating buffer (default 0, size in MB)
\n
"
);
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
GemmDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
GemmMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
M
=
std
::
stoi
(
argv
[
8
]);
const
int
N
=
std
::
stoi
(
argv
[
9
]);
const
int
K
=
std
::
stoi
(
argv
[
10
]);
const
int
StrideA
=
std
::
stoi
(
argv
[
11
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideD0
=
std
::
stoi
(
argv
[
13
]);
const
int
StrideD1
=
std
::
stoi
(
argv
[
14
]);
const
int
StrideE
=
std
::
stoi
(
argv
[
15
]);
int
n_warmup
=
1
;
int
n_iter
=
10
;
uint64_t
rotating
=
0
;
if
(
argc
==
18
)
{
n_warmup
=
std
::
stoi
(
argv
[
16
]);
n_iter
=
std
::
stoi
(
argv
[
17
]);
rotating
=
std
::
stoull
(
argv
[
18
])
*
1024
*
1024
;
}
using
F32
=
float
;
using
BF16
=
ck
::
bhalf_t
;
using
F8
=
ck
::
f8_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
auto
profile
=
[
&
](
auto
a_type
,
auto
b_type
,
auto
comp_type
,
auto
acc_type
,
auto
d0_type
,
auto
d1_type
,
auto
c_type
,
auto
a_layout
,
auto
b_layout
,
auto
d0_layout
,
auto
d1_layout
,
auto
e_layout
)
{
using
ADataType
=
decltype
(
a_type
);
using
BDataType
=
decltype
(
b_type
);
using
ComputeDataType
=
decltype
(
comp_type
);
using
D0DataType
=
decltype
(
d0_type
);
using
D1DataType
=
decltype
(
d1_type
);
using
AccDataType
=
decltype
(
acc_type
);
using
EDataType
=
decltype
(
c_type
);
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
D0Layout
=
decltype
(
d0_layout
);
using
D1Layout
=
decltype
(
d1_layout
);
using
ELayout
=
decltype
(
e_layout
);
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB
=
ck
::
is_same_v
<
BLayout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideD0
=
ck
::
is_same_v
<
D0Layout
,
Row
>
?
N
:
M
;
const
int
DefaultStrideD1
=
ck
::
is_same_v
<
D1Layout
,
Row
>
?
N
:
M
;
const
int
DefaultStrideE
=
ck
::
is_same_v
<
ELayout
,
Row
>
?
N
:
M
;
bool
pass
=
ck
::
profiler
::
profile_gemm_multiply_multiply_impl
<
ADataType
,
BDataType
,
ComputeDataType
,
AccDataType
,
D0DataType
,
D1DataType
,
EDataType
,
ALayout
,
BLayout
,
D0Layout
,
D1Layout
,
ELayout
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
,
(
StrideB
<
0
)
?
DefaultStrideB
:
StrideB
,
(
StrideD0
<
0
)
?
DefaultStrideD0
:
StrideD0
,
(
StrideD1
<
0
)
?
DefaultStrideD1
:
StrideD1
,
(
StrideE
<
0
)
?
DefaultStrideE
:
StrideE
,
n_warmup
,
n_iter
,
rotating
);
return
pass
?
0
:
1
;
};
if
(
data_type
==
GemmDataType
::
F8_F8_BF16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
F8
{},
F8
{},
F8
{},
F32
{},
F32
{},
F32
{},
BF16
{},
Row
{},
Col
{},
Row
{},
Col
{},
Row
{});
}
else
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_gemm_multiply_multiply
);
profiler/src/profile_gemm_universal.cpp
View file @
3552041a
// SPDX-License-Identifier: MIT
// Copyright (c) 20
18
-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 20
23
-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
@@ -26,6 +26,7 @@ enum struct GemmDataType
F8_F16_F16
,
// 4
F16_F8_F16
,
// 5
F16_F16_F16_F8
,
// 6
F8_F8_BF16
,
// 7
};
#define OP_NAME "gemm_universal"
...
...
@@ -36,7 +37,8 @@ int profile_gemm_universal(int argc, char* argv[])
if
(
argc
!=
15
&&
argc
!=
18
)
{
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f8@f16; 5: f16@f8; 6: f16, "
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f8@f16; 5: f16@f8; 6: "
"f16->f8; 7: f8->bf16, "
"comp f8)
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
);
...
...
@@ -91,15 +93,17 @@ int profile_gemm_universal(int argc, char* argv[])
auto
profile
=
[
&
](
auto
a_type
,
auto
b_type
,
auto
comp_type
,
auto
acc_type
,
auto
c_type
,
auto
a_layout
,
auto
b_layout
,
auto
c_layout
)
{
using
ADataType
=
decltype
(
a_type
);
using
BDataType
=
decltype
(
b_type
);
using
AccDataType
=
decltype
(
acc_type
);
using
CDataType
=
decltype
(
c_type
);
using
ADataType
=
decltype
(
a_type
);
using
BDataType
=
decltype
(
b_type
);
using
ComputeDataType
=
decltype
(
comp_type
);
using
AccDataType
=
decltype
(
acc_type
);
using
CDataType
=
decltype
(
c_type
);
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
...
...
@@ -111,6 +115,7 @@ int profile_gemm_universal(int argc, char* argv[])
bool
pass
=
ck
::
profiler
::
profile_gemm_universal_impl
<
ADataType
,
BDataType
,
ComputeDataType
,
AccDataType
,
CDataType
,
ALayout
,
...
...
@@ -136,35 +141,39 @@ int profile_gemm_universal(int argc, char* argv[])
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{});
return
profile
(
F16
{},
F16
{},
F16
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
Row
{},
Col
{},
Row
{});
return
profile
(
F16
{},
F16
{},
F16
{},
F32
{},
F16
{},
Row
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F8_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
F16
{},
F8
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{});
return
profile
(
F16
{},
F8
{},
F16
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F8_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
F16
{},
F8
{},
F32
{},
F16
{},
Row
{},
Col
{},
Row
{});
return
profile
(
F16
{},
F8
{},
F16
{},
F32
{},
F16
{},
Row
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F8_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
F8
{},
F16
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{});
return
profile
(
F8
{},
F16
{},
F16
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F8_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
F8
{},
F16
{},
F32
{},
F16
{},
Row
{},
Col
{},
Row
{});
return
profile
(
F8
{},
F16
{},
F16
{},
F32
{},
F16
{},
Row
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
BF16_BF16_BF16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
BF16
{},
BF16
{},
F32
{},
BF16
{},
Row
{},
Row
{},
Row
{});
return
profile
(
BF16
{},
BF16
{},
BF16
{},
F32
{},
BF16
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
BF16_BF16_BF16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
BF16
{},
BF16
{},
F32
{},
BF16
{},
Row
{},
Col
{},
Row
{});
return
profile
(
BF16
{},
BF16
{},
BF16
{},
F32
{},
BF16
{},
Row
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F8_F8_BF16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
F8
{},
F8
{},
F8
{},
F32
{},
BF16
{},
Row
{},
Col
{},
Row
{});
}
else
{
...
...
profiler/src/profile_gemm_universal_reduce.cpp
0 → 100644
View file @
3552041a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_gemm_universal_reduce_impl.hpp"
#include "profiler_operation_registry.hpp"
enum
struct
GemmMatrixLayout
{
MK_KN_MN
,
// 0
MK_NK_MN
,
// 1
KM_KN_MN
,
// 2
KM_NK_MN
,
// 3
};
enum
struct
GemmDataType
{
F32_F32_F32
,
// 0
F16_F16_F16
,
// 1
BF16_BF16_BF16
,
// 2
INT8_INT8_INT8
,
// 3
F8_F16_F16
,
// 4
BF16_I8_BF16
,
// 5
F16_F16_F16_F8
,
// 6
};
#define OP_NAME "gemm_universal_reduce"
#define OP_DESC "Universal GEMM"
int
profile_gemm_universal_reduce
(
int
argc
,
char
*
argv
[])
{
if
(
argc
!=
15
&&
argc
!=
18
)
{
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f8@f16; 5: f16@i8; 6: f16, "
"comp f8)
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
"arg4: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg6: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg8 to 13: M, N, K, StrideA, StrideB, StrideC
\n
"
);
printf
(
"arg14: split k into mulitiple batch
\n
"
);
printf
(
"optional:
\n
"
);
printf
(
"arg15: number of warm-up cycles (default 1)
\n
"
);
printf
(
"arg16: number of iterations (default 10)
\n
"
);
printf
(
"arg17: memory for rotating buffer (default 0, size in MB)
\n
"
);
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
GemmDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
GemmMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
M
=
std
::
stoi
(
argv
[
8
]);
const
int
N
=
std
::
stoi
(
argv
[
9
]);
const
int
K
=
std
::
stoi
(
argv
[
10
]);
const
int
StrideA
=
std
::
stoi
(
argv
[
11
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideC
=
std
::
stoi
(
argv
[
13
]);
const
int
KBatch
=
std
::
stoi
(
argv
[
14
]);
int
n_warmup
=
1
;
int
n_iter
=
10
;
uint64_t
rotating
=
0
;
if
(
argc
==
18
)
{
n_warmup
=
std
::
stoi
(
argv
[
15
]);
n_iter
=
std
::
stoi
(
argv
[
16
]);
rotating
=
std
::
stoull
(
argv
[
17
])
*
1024
*
1024
;
}
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
DsLayout
=
ck
::
Tuple
<>
;
auto
profile
=
[
&
](
auto
a_type
,
auto
b_type
,
auto
acc_type
,
auto
c_type
,
auto
a_layout
,
auto
b_layout
,
auto
c_layout
)
{
using
ADataType
=
decltype
(
a_type
);
using
BDataType
=
decltype
(
b_type
);
using
AccDataType
=
decltype
(
acc_type
);
using
CDataType
=
decltype
(
c_type
);
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
CLayout
=
decltype
(
c_layout
);
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB
=
ck
::
is_same_v
<
BLayout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideC
=
ck
::
is_same_v
<
CLayout
,
Row
>
?
N
:
M
;
bool
pass
=
ck
::
profiler
::
profile_gemm_universal_reduce_impl
<
ADataType
,
BDataType
,
DsDataType
,
AccDataType
,
CDataType
,
ALayout
,
BLayout
,
DsLayout
,
CLayout
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
,
(
StrideB
<
0
)
?
DefaultStrideB
:
StrideB
,
(
StrideC
<
0
)
?
DefaultStrideC
:
StrideC
,
KBatch
,
n_warmup
,
n_iter
,
rotating
);
return
pass
?
0
:
1
;
};
if
(
data_type
==
GemmDataType
::
BF16_I8_BF16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
BF16
{},
I8
{},
F32
{},
BF16
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
BF16_BF16_BF16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
BF16
{},
BF16
{},
F32
{},
BF16
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{});
}
else
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_gemm_universal_reduce
);
Prev
1
…
9
10
11
12
13
14
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment