Unverified Commit 31ea132a authored by zjing14's avatar zjing14 Committed by GitHub
Browse files

Fp16/fp8 mixed-precision Gemm with multiply+add fusion (#865)



* add compute_type

* add multiply_add ckProfiler

* add f8_fp16 support

* clean

* clean

* fixed lds size calc

* format

---------
Co-authored-by: default avatarJing Zhang <jizha@amd.com>
parent c8a8385f
...@@ -543,9 +543,13 @@ struct DeviceBatchedContractionMultipleD_Xdl_CShuffle ...@@ -543,9 +543,13 @@ struct DeviceBatchedContractionMultipleD_Xdl_CShuffle
EGridDesc_G_M_N e_grid_desc_g_m_n_; EGridDesc_G_M_N e_grid_desc_g_m_n_;
}; };
using ComputeDataType = ADataType;
// GridwiseGemm // GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle< using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle<
ADataType, // TODO: distinguish A/B datatype ADataType,
BDataType,
ComputeDataType,
AccDataType, AccDataType,
CShuffleDataType, CShuffleDataType,
DsDataType, DsDataType,
......
...@@ -331,8 +331,13 @@ struct DeviceBatchedGemmEPermuteXdl : public DeviceBatchedGemmEPermute<ALayout, ...@@ -331,8 +331,13 @@ struct DeviceBatchedGemmEPermuteXdl : public DeviceBatchedGemmEPermute<ALayout,
EGridDesc_G0_G1_M_N e_grid_desc_g0_g1_m_n_; EGridDesc_G0_G1_M_N e_grid_desc_g0_g1_m_n_;
}; };
using ComputeDataType = ADataType;
// GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle< using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle<
ADataType, // TODO: distinguish A/B datatype ADataType,
BDataType,
ComputeDataType,
AccDataType, AccDataType,
CShuffleDataType, CShuffleDataType,
ck::Tuple<>, // DsDataType, ck::Tuple<>, // DsDataType,
......
...@@ -324,8 +324,12 @@ struct DeviceBatchedGemmMultiD_Xdl : public DeviceBatchedGemmMultiD<ALayout, ...@@ -324,8 +324,12 @@ struct DeviceBatchedGemmMultiD_Xdl : public DeviceBatchedGemmMultiD<ALayout,
index_t BatchStrideE_; index_t BatchStrideE_;
}; };
using ComputeDataType = ADataType;
using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle< using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle<
ADataType, // TODO: distinguish A/B datatype ADataType, // TODO: distinguish A/B datatype
BDataType,
ComputeDataType,
AccDataType, AccDataType,
CShuffleDataType, CShuffleDataType,
DsDataType, DsDataType,
......
...@@ -310,9 +310,13 @@ struct DeviceContractionMultipleD_Xdl_CShuffle ...@@ -310,9 +310,13 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({{}}, {{}}))>; using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({{}}, {{}}))>;
using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N({}, {})); using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N({}, {}));
using ComputeDataType = ADataType;
// GridwiseGemm // GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle< using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle<
ADataType, // TODO: distinguish A/B datatype ADataType, // TODO: distinguish A/B datatype
BDataType,
ComputeDataType,
AccDataType, AccDataType,
CShuffleDataType, CShuffleDataType,
DsDataType, DsDataType,
......
...@@ -20,7 +20,8 @@ ...@@ -20,7 +20,8 @@
namespace ck { namespace ck {
template <typename GridwiseGemm, template <typename GridwiseGemm,
typename ABDataType, typename ADataType,
typename BDataType,
typename DsPointer, typename DsPointer,
typename EDataType, typename EDataType,
typename AElementwiseOperation, typename AElementwiseOperation,
...@@ -36,8 +37,8 @@ __global__ void ...@@ -36,8 +37,8 @@ __global__ void
#if CK_USE_LAUNCH_BOUNDS #if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU) __launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif #endif
kernel_gemm_multiple_d_xdl_cshuffle(const ABDataType* __restrict__ p_a_grid, kernel_gemm_multiple_d_xdl_cshuffle(const ADataType* __restrict__ p_a_grid,
const ABDataType* __restrict__ p_b_grid, const BDataType* __restrict__ p_b_grid,
DsPointer p_ds_grid, DsPointer p_ds_grid,
EDataType* __restrict__ p_e_grid, EDataType* __restrict__ p_e_grid,
const AElementwiseOperation a_element_op, const AElementwiseOperation a_element_op,
...@@ -242,9 +243,13 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout, ...@@ -242,9 +243,13 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({}, {}, {}))>; using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({}, {}, {}))>;
using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N<ELayout>(1, 1, 1)); using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N<ELayout>(1, 1, 1));
using ComputeDataType = EDataType;
// GridwiseGemm // GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle< using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle<
ADataType, // TODO: distinguish A/B datatype ADataType, // TODO: distinguish A/B datatype
BDataType,
ComputeDataType,
AccDataType, AccDataType,
CShuffleDataType, CShuffleDataType,
DsDataType, DsDataType,
...@@ -442,6 +447,7 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout, ...@@ -442,6 +447,7 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
const auto kernel = kernel_gemm_multiple_d_xdl_cshuffle< const auto kernel = kernel_gemm_multiple_d_xdl_cshuffle<
GridwiseGemm, GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype ADataType, // TODO: distiguish A/B datatype
BDataType, // TODO: distiguish A/B datatype
typename GridwiseGemm::DsGridPointer, typename GridwiseGemm::DsGridPointer,
EDataType, EDataType,
AElementwiseOperation, AElementwiseOperation,
......
...@@ -355,9 +355,13 @@ struct DeviceGroupedContractionMultipleD_Xdl_CShuffle ...@@ -355,9 +355,13 @@ struct DeviceGroupedContractionMultipleD_Xdl_CShuffle
using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({{}}, {{}}))>; using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({{}}, {{}}))>;
using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N({}, {})); using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N({}, {}));
using ComputeDataType = ADataType;
// GridwiseGemm // GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle< using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle<
ADataType, // TODO: distinguish A/B datatype ADataType, // TODO: distinguish A/B datatype
BDataType,
ComputeDataType,
AccDataType, AccDataType,
CShuffleDataType, CShuffleDataType,
DsDataType, DsDataType,
......
...@@ -355,6 +355,8 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1 ...@@ -355,6 +355,8 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
// GridwiseGemm // GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle< using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle<
ABDataType, // TODO: distinguish A/B datatype
ABDataType, // TODO: distinguish A/B datatype
ABDataType, // TODO: distinguish A/B datatype ABDataType, // TODO: distinguish A/B datatype
AccDataType, AccDataType,
CShuffleDataType, CShuffleDataType,
......
...@@ -367,9 +367,13 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle ...@@ -367,9 +367,13 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({}, {}))>; using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({}, {}))>;
using EGridDesc_M_N = remove_cvref_t<decltype(MakeEGridDescriptor_M_N<ELayout>({}, {}))>; using EGridDesc_M_N = remove_cvref_t<decltype(MakeEGridDescriptor_M_N<ELayout>({}, {}))>;
using ComputeDataType = ADataType;
// GridwiseGemm // GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle< using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle<
ADataType, // TODO: distinguish A/B datatype ADataType, // TODO: distinguish A/B datatype
BDataType,
ComputeDataType,
AccDataType, AccDataType,
CShuffleDataType, CShuffleDataType,
DsDataType, DsDataType,
......
...@@ -228,9 +228,13 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout, ...@@ -228,9 +228,13 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({}, {}, {}))>; using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({}, {}, {}))>;
using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N<ELayout>(1, 1, 1)); using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N<ELayout>(1, 1, 1));
using ComputeDataType = ADataType;
// GridwiseGemm // GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle< using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle<
ADataType, // TODO: distinguish A/B datatype ADataType, // TODO: distinguish A/B datatype
BDataType,
ComputeDataType,
AccDataType, AccDataType,
CShuffleDataType, CShuffleDataType,
DsDataType, DsDataType,
......
...@@ -195,6 +195,51 @@ struct AddMultiply ...@@ -195,6 +195,51 @@ struct AddMultiply
} }
}; };
// C = A * B
// E = C x D0 + D1
struct MultiplyAdd
{
template <typename E, typename C, typename D0, typename D1>
__host__ __device__ void operator()(E& e, const C& c, const D0& d0, const D1& d1) const;
template <>
__host__ __device__ void operator()<half_t, half_t, half_t, half_t>(half_t& e,
const half_t& c,
const half_t& d0,
const half_t& d1) const
{
const half_t y = (c * d0) + d1;
e = y;
}
template <>
__host__ __device__ void operator()<half_t, float, half_t, half_t>(half_t& e,
const float& c,
const half_t& d0,
const half_t& d1) const
{
const half_t y = type_convert<half_t>(c) * d0 + d1;
e = y;
}
template <>
__host__ __device__ void operator()<float, float, half_t, half_t>(float& e,
const float& c,
const half_t& d0,
const half_t& d1) const
{
const float y = c * d0 + d1;
e = y;
}
template <>
__host__ __device__ void operator()<half_t, float, float, float>(half_t& e,
const float& c,
const float& d0,
const float& d1) const
{
const float y = c * d0 + d1;
e = y;
}
};
// E = FastGelu(C + D0 + D1) // E = FastGelu(C + D0 + D1)
struct AddAddFastGelu struct AddAddFastGelu
{ {
......
...@@ -26,7 +26,9 @@ namespace ck { ...@@ -26,7 +26,9 @@ namespace ck {
// E = cde_op(C, D0, D1, ...) // E = cde_op(C, D0, D1, ...)
// Assume: // Assume:
// D0, D1, ... and E have the same layout // D0, D1, ... and E have the same layout
template <typename ABDataType, // FIXME: don't assume A/B have same datatype template <typename ADataType,
typename BDataType,
typename ComputeDataType_,
typename AccDataType, typename AccDataType,
typename CShuffleDataType, typename CShuffleDataType,
typename DsDataType, typename DsDataType,
...@@ -92,15 +94,11 @@ struct GridwiseGemmMultipleD_xdl_cshuffle ...@@ -92,15 +94,11 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
using GridwiseGemmPipe = remove_cvref_t< using GridwiseGemmPipe = remove_cvref_t<
decltype(GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>())>; decltype(GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>())>;
// denorm test fix, required to work around fp16 mfma issue
// we convert fp16->fp32->bf16 and execute bf16 mfma instruction
// when mfma if fixed, remove this section and update
// ABDataTypeAdjusted -> ABDataType throughout this file
#if CK_WORKAROUND_DENORM_FIX #if CK_WORKAROUND_DENORM_FIX
using ABDataTypeAdjusted = using ComputeDataType =
conditional_t<is_same_v<ABDataType, ck::half_t>, ck::bhalf_t, ABDataType>; conditional_t<is_same_v<ComputeDataType_, ck::half_t>, ck::bhalf_t, ComputeDataType_>;
#else #else
using ABDataTypeAdjusted = ABDataType; using ComputeDataType = ComputeDataType_;
#endif #endif
__host__ __device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1() __host__ __device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()
...@@ -170,7 +168,7 @@ struct GridwiseGemmMultipleD_xdl_cshuffle ...@@ -170,7 +168,7 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize(); c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
return math::max((a_block_space_size_aligned + b_block_space_size_aligned) * return math::max((a_block_space_size_aligned + b_block_space_size_aligned) *
sizeof(ABDataType), sizeof(ComputeDataType),
c_block_size * sizeof(CShuffleDataType)); c_block_size * sizeof(CShuffleDataType));
} }
...@@ -313,8 +311,8 @@ struct GridwiseGemmMultipleD_xdl_cshuffle ...@@ -313,8 +311,8 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
// check tensor size: cannot be larger than 2GB each // check tensor size: cannot be larger than 2GB each
constexpr long_index_t TwoGB = (long_index_t{1} << 31); constexpr long_index_t TwoGB = (long_index_t{1} << 31);
if(!(a_grid_desc_m_k.GetElementSpaceSize() * sizeof(ABDataType) <= TwoGB && if(!(a_grid_desc_m_k.GetElementSpaceSize() * sizeof(ADataType) <= TwoGB &&
b_grid_desc_n_k.GetElementSpaceSize() * sizeof(ABDataType) <= TwoGB && b_grid_desc_n_k.GetElementSpaceSize() * sizeof(BDataType) <= TwoGB &&
e_grid_desc_m_n.GetElementSpaceSize() * sizeof(EDataType) <= TwoGB)) e_grid_desc_m_n.GetElementSpaceSize() * sizeof(EDataType) <= TwoGB))
{ {
return false; return false;
...@@ -338,8 +336,8 @@ struct GridwiseGemmMultipleD_xdl_cshuffle ...@@ -338,8 +336,8 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
typename DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock, typename DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock, typename EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename Block2ETileMap> typename Block2ETileMap>
__device__ static void Run(const ABDataType* __restrict__ p_a_grid, __device__ static void Run(const ADataType* __restrict__ p_a_grid,
const ABDataType* __restrict__ p_b_grid, const BDataType* __restrict__ p_b_grid,
DsGridPointer p_ds_grid, DsGridPointer p_ds_grid,
EDataType* __restrict__ p_e_grid, EDataType* __restrict__ p_e_grid,
void* __restrict__ p_shared, void* __restrict__ p_shared,
...@@ -408,8 +406,8 @@ struct GridwiseGemmMultipleD_xdl_cshuffle ...@@ -408,8 +406,8 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
Sequence<AK0PerBlock, MPerBlock, AK1>, Sequence<AK0PerBlock, MPerBlock, AK1>,
ABlockTransferThreadClusterLengths_AK0_M_AK1, ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder, ABlockTransferThreadClusterArrangeOrder,
ABDataType, ADataType,
ABDataTypeAdjusted, ComputeDataType,
decltype(a_grid_desc_ak0_m_ak1), decltype(a_grid_desc_ak0_m_ak1),
decltype(a_block_desc_ak0_m_ak1), decltype(a_block_desc_ak0_m_ak1),
ABlockTransferSrcAccessOrder, ABlockTransferSrcAccessOrder,
...@@ -439,8 +437,8 @@ struct GridwiseGemmMultipleD_xdl_cshuffle ...@@ -439,8 +437,8 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
Sequence<BK0PerBlock, NPerBlock, BK1>, Sequence<BK0PerBlock, NPerBlock, BK1>,
BBlockTransferThreadClusterLengths_BK0_N_BK1, BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder, BBlockTransferThreadClusterArrangeOrder,
ABDataType, BDataType,
ABDataTypeAdjusted, ComputeDataType,
decltype(b_grid_desc_bk0_n_bk1), decltype(b_grid_desc_bk0_n_bk1),
decltype(b_block_desc_bk0_n_bk1), decltype(b_block_desc_bk0_n_bk1),
BBlockTransferSrcAccessOrder, BBlockTransferSrcAccessOrder,
...@@ -470,11 +468,11 @@ struct GridwiseGemmMultipleD_xdl_cshuffle ...@@ -470,11 +468,11 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
// sanity check // sanity check
constexpr index_t KPack = constexpr index_t KPack =
math::max(math::lcm(AK1, BK1), math::max(math::lcm(AK1, BK1),
MfmaSelector<ABDataTypeAdjusted, MPerXdl, NPerXdl>::selected_mfma.k_per_blk); MfmaSelector<ComputeDataType, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector< auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
BlockSize, BlockSize,
ABDataTypeAdjusted, ComputeDataType,
AccDataType, AccDataType,
decltype(a_block_desc_ak0_m_ak1), decltype(a_block_desc_ak0_m_ak1),
decltype(b_block_desc_bk0_n_bk1), decltype(b_block_desc_bk0_n_bk1),
...@@ -492,11 +490,10 @@ struct GridwiseGemmMultipleD_xdl_cshuffle ...@@ -492,11 +490,10 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align); a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>( auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ABDataTypeAdjusted*>(p_shared), static_cast<ComputeDataType*>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>( auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ABDataTypeAdjusted*>(p_shared) + a_block_space_size_aligned, static_cast<ComputeDataType*>(p_shared) + a_block_space_size_aligned,
b_block_desc_bk0_n_bk1.GetElementSpaceSize()); b_block_desc_bk0_n_bk1.GetElementSpaceSize());
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock / AK1, 0, 0); constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock / AK1, 0, 0);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
namespace ck {
// GEMM:
// input : A[M, K]
// input : B[N, K]
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// D0, D1, ... and E have the same layout
template <typename ADataType, // FIXME: don't assume A/B have same datatype
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename ComputeType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1Value,
index_t BK1Value,
index_t MPerXdl,
index_t NPerXdl,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_KBatch_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool AThreadTransferSrcResetCoordinateAfterRun,
index_t ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_KBatch_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BThreadTransferSrcResetCoordinateAfterRun,
index_t BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEShuffleBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched,
PipelineVersion PipelineVer = PipelineVersion::v1>
struct GridwiseGemmMultipleD_xdl_splitk_cshuffle
{
static constexpr index_t NumDTensor = DsDataType::Size();
using GemmSpecialization = ck::tensor_operation::device::GemmSpecialization;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
static constexpr auto I7 = Number<7>{};
// K1 should be Number<...>
static constexpr auto AK1 = Number<AK1Value>{};
static constexpr auto BK1 = Number<BK1Value>{};
static constexpr auto AK0PerBlock = Number<KPerBlock / AK1Value>{};
static constexpr auto BK0PerBlock = Number<KPerBlock / BK1Value>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
using GridwiseGemmPipe = remove_cvref_t<
decltype(GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>())>;
__host__ __device__ static constexpr auto GetABlockDescriptor_KBatch_AK0PerBlock_MPerBlock_AK1()
{
// A matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(I1, AK0PerBlock, Number<MPerBlock>{}, AK1),
make_tuple(AK0PerBlock * Number<MPerBlock + ABlockLdsExtraM>{} * AK1,
Number<MPerBlock + ABlockLdsExtraM>{} * AK1,
AK1,
I1));
}
__host__ __device__ static constexpr auto GetBBlockDescriptor_KBatch_BK0PerBlock_NPerBlock_BK1()
{
// B matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(I1, BK0PerBlock, Number<NPerBlock>{}, BK1),
make_tuple(BK0PerBlock * Number<NPerBlock + BBlockLdsExtraN>{} * BK1,
Number<NPerBlock + BBlockLdsExtraN>{} * BK1,
BK1,
I1));
}
__host__ __device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()
{
// A matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(AK0PerBlock, Number<MPerBlock>{}, AK1),
make_tuple(Number<MPerBlock + ABlockLdsExtraM>{} * AK1, AK1, I1));
}
__host__ __device__ static constexpr auto GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1()
{
// B matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(BK0PerBlock, Number<NPerBlock>{}, BK1),
make_tuple(Number<NPerBlock + BBlockLdsExtraN>{} * BK1, BK1, I1));
}
__host__ __device__ static constexpr auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock()
{
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl>{},
I1,
Number<CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>{}));
return c_shuffle_block_desc_mblock_mperblock_nblock_nperblock;
}
// ck::Tuple<const D0DataType*, const D1DataType*, ...>
static constexpr auto MakeDsGridPointer()
{
return generate_tuple(
[&](auto i) {
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
return static_cast<const DDataType*>(nullptr);
},
Number<NumDTensor>{});
}
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1, BK1);
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size_aligned = math::integer_least_multiple(
b_block_desc_bk0_n_bk1.GetElementSpaceSize(), max_lds_align);
// LDS allocation for C shuffle in LDS
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
constexpr auto c_block_size =
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
return math::max(a_block_space_size_aligned * sizeof(ADataType) +
b_block_space_size_aligned * sizeof(BDataType),
c_block_size * sizeof(CShuffleDataType));
}
__host__ __device__ static auto CalculateMPadded(index_t M)
{
return math::integer_least_multiple(M, MPerBlock);
}
__host__ __device__ static auto CalculateNPadded(index_t N)
{
return math::integer_least_multiple(N, NPerBlock);
}
__host__ __device__ static auto CalculateKPadded(index_t K, index_t K_Batch)
{
return math::integer_least_multiple(K, KPerBlock * K_Batch);
}
template <typename ALayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeAGridDescriptor_KBatch_AK0_M_AK1(index_t M, index_t K, index_t StrideA, index_t KBatch)
{
const auto a_grid_desc_m_k = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
}
}();
const auto MPad = CalculateMPadded(M);
const auto KPad = CalculateKPadded(K, KBatch);
const auto a_grid_desc_m_kpad = transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_pass_through_transform(M), make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto AK0 = KPad / (KBatch * AK1);
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding)
{
// const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return transform_tensor_descriptor(
a_grid_desc_m_kpad,
make_tuple(make_unmerge_transform(make_tuple(KBatch, AK0, AK1)),
make_right_pad_transform(M, MPad - M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else
{
return transform_tensor_descriptor(
a_grid_desc_m_kpad,
make_tuple(make_unmerge_transform(make_tuple(KBatch, AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
}
template <typename BLayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeBGridDescriptor_KBatch_BK0_N_BK1(index_t K, index_t N, index_t StrideB, index_t KBatch)
{
const auto b_grid_desc_k_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
}
}();
const auto NPad = CalculateNPadded(N);
const auto KPad = CalculateKPadded(K, KBatch);
const auto b_grid_desc_kpad_n = transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_right_pad_transform(K, KPad - K), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto BK0 = KPad / (KBatch * BK1);
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::NPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::NKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding)
{
// const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
b_grid_desc_kpad_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, BK0, BK1)),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else
{
return transform_tensor_descriptor(
b_grid_desc_kpad_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
}
// E desc for destination in blockwise copy
template <typename EGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(const EGridDesc_M_N& e_grid_desc_m_n)
{
const auto M = e_grid_desc_m_n.GetLength(I0);
const auto N = e_grid_desc_m_n.GetLength(I1);
const auto MBlock = M / MPerBlock;
const auto NBlock = N / NPerBlock;
const auto e_grid_desc_mblock_mperblock_nblock_nperblock = transform_tensor_descriptor(
e_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(MBlock, Number<MPerBlock>{})),
make_unmerge_transform(make_tuple(NBlock, Number<NPerBlock>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2, 3>{}));
return e_grid_desc_mblock_mperblock_nblock_nperblock;
}
// Ds desc for source in blockwise copy
template <typename DsGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(const DsGridDesc_M_N& ds_grid_desc_m_n)
{
return generate_tuple(
[&](auto i) {
return MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(ds_grid_desc_m_n[i]);
},
Number<NumDTensor>{});
}
// return block_id to E matrix tile idx (m0, n0) mapping
template <typename EGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeDefaultBlock2ETileMap(const EGridDesc_M_N& e_grid_desc_m_n)
{
return BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, EGridDesc_M_N>(
e_grid_desc_m_n);
}
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
GemmSpecialization GemmSpec>
__host__ __device__ static constexpr bool
CheckValidity(const index_t M,
const index_t N,
const index_t K,
const index_t StrideA,
const index_t StrideB,
const std::array<index_t, NumDTensor> StrideDs,
const index_t StrideE,
const index_t KBatch)
{
const auto a_grid_desc_kbatch_ak0_m_ak1 =
MakeAGridDescriptor_KBatch_AK0_M_AK1<ALayout, GemmSpec>(M, K, StrideA, KBatch);
const auto b_grid_desc_kbatch_bk0_n_bk1 =
MakeBGridDescriptor_KBatch_BK0_N_BK1<BLayout, GemmSpec>(K, N, StrideB, KBatch);
ignore = StrideDs;
const auto e_grid_desc_m_n = MakeEGridDescriptor_M_N<ELayout, GemmSpec>(M, N, StrideE);
#if 0
// check tile size
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K % KPerBlock == 0))
{
return false;
}
#endif
// check gridwise gemm pipeline
const auto num_k_loop = K / KPerBlock;
if(!GridwiseGemmPipe::IsSupported(num_k_loop))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
// check tensor size: cannot be larger than 2GB each
constexpr long_index_t TwoGB = (long_index_t{1} << 31);
if(!(a_grid_desc_kbatch_ak0_m_ak1.GetElementSpaceSize() * sizeof(ADataType) <= TwoGB &&
b_grid_desc_kbatch_bk0_n_bk1.GetElementSpaceSize() * sizeof(BDataType) <= TwoGB &&
e_grid_desc_m_n.GetElementSpaceSize() * sizeof(EDataType) <= TwoGB))
{
return false;
}
return true;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / KPerBlock;
return GridwiseGemmPipe::CalculateHasMainLoop(num_loop);
}
using DsGridPointer = decltype(MakeDsGridPointer());
template <typename ELayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeEGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideE)
{
constexpr auto matrix_padder =
ck::tensor_operation::device::MatrixPadder<GemmSpec, index_t, index_t, index_t>{
MPerBlock, NPerBlock, KPerBlock};
const auto e_grid_desc_mraw_nraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ELayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(StrideE, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ELayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(I1, StrideE));
}
}();
return matrix_padder.PadCDescriptor_M_N(e_grid_desc_mraw_nraw);
}
template <typename DsLayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeDsGridDescriptor_M_N(const std::array<index_t, NumDTensor>& MRaws,
const std::array<index_t, NumDTensor>& NRaws,
const std::array<index_t, NumDTensor>& DsStride)
{
return generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return MakeEGridDescriptor_M_N<DLayout, GemmSpec>(MRaws[i], NRaws[i], DsStride[i]);
},
Number<NumDTensor>{});
}
__device__ __host__ static constexpr auto GetMPerBlock() { return MPerBlock; }
template <bool HasMainKBlockLoop,
InMemoryDataOperationEnum EGlobalMemoryDataOperation,
index_t NumDTensor_,
typename DsDataType_,
typename AGridDesc_KBatch_AK0_M_AK1,
typename BGridDesc_KBatch_BK0_N_BK1,
typename DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename CDEElementwiseOperation_,
typename Block2ETileMap>
__device__ static void Run(const ADataType* __restrict__ p_a_grid,
const BDataType* __restrict__ p_b_grid,
DsGridPointer p_ds_grid,
EDataType* __restrict__ p_e_grid,
void* __restrict__ p_shared,
uint32_t* barrier_count_finished,
const index_t KBatch,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation_& cde_element_op,
const AGridDesc_KBatch_AK0_M_AK1& a_grid_desc_kbatch_ak0_m_ak1,
const BGridDesc_KBatch_BK0_N_BK1& b_grid_desc_kbatch_bk0_n_bk1,
const DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock&
ds_grid_desc_mblock_mperblock_nblock_nperblock,
const EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock&
e_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2ETileMap& block_2_etile_map)
{
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_kbatch_ak0_m_ak1.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_kbatch_bk0_n_bk1.GetElementSpaceSize());
const auto ds_grid_buf = generate_tuple(
[&](auto i) {
return make_dynamic_buffer<AddressSpaceEnum::Global>(
p_ds_grid[i],
ds_grid_desc_mblock_mperblock_nblock_nperblock[i].GetElementSpaceSize());
},
Number<NumDTensor_>{});
auto e_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_e_grid, e_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
// divide block work by [M, N]
const auto block_work_idx =
block_2_etile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t kbatch_id = __builtin_amdgcn_readfirstlane(block_work_idx[I0]);
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I1] * MPerBlock);
const index_t n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I2] * NPerBlock);
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1, BK1);
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_kbatch_ak0_m_ak1 =
GetABlockDescriptor_KBatch_AK0PerBlock_MPerBlock_AK1();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_kbatch_bk0_n_bk1 =
GetBBlockDescriptor_KBatch_BK0PerBlock_NPerBlock_BK1();
// A matrix blockwise copy
auto a_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
AElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<1, AK0PerBlock, MPerBlock, AK1>,
ABlockTransferThreadClusterLengths_KBatch_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ADataType,
ComputeType,
decltype(a_grid_desc_kbatch_ak0_m_ak1),
decltype(a_block_desc_kbatch_ak0_m_ak1),
ABlockTransferSrcAccessOrder,
Sequence<2, 0, 1, 3>,
ABlockTransferSrcVectorDim,
3,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
1,
1,
AThreadTransferSrcResetCoordinateAfterRun,
true,
NumGemmKPrefetchStage>(
a_grid_desc_kbatch_ak0_m_ak1,
make_multi_index(kbatch_id, 0, m_block_data_idx_on_grid, 0),
a_element_op,
a_block_desc_kbatch_ak0_m_ak1,
make_multi_index(0, 0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// B matrix blockwise copy
auto b_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<1, BK0PerBlock, NPerBlock, BK1>,
BBlockTransferThreadClusterLengths_KBatch_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BDataType,
ComputeType,
decltype(b_grid_desc_kbatch_bk0_n_bk1),
decltype(b_block_desc_kbatch_bk0_n_bk1),
BBlockTransferSrcAccessOrder,
Sequence<2, 0, 1, 3>,
BBlockTransferSrcVectorDim,
3,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true,
NumGemmKPrefetchStage>(
b_grid_desc_kbatch_bk0_n_bk1,
make_multi_index(kbatch_id, 0, n_block_data_idx_on_grid, 0),
b_element_op,
b_block_desc_kbatch_bk0_n_bk1,
make_multi_index(0, 0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[K0PerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr index_t KPack =
math::max(math::lcm(AK1, BK1),
MfmaSelector<ComputeType, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
BlockSize,
ComputeType,
AccDataType,
decltype(a_block_desc_ak0_m_ak1),
decltype(b_block_desc_bk0_n_bk1),
MPerXdl,
NPerXdl,
MXdlPerWave,
NXdlPerWave,
KPack,
LoopSched>();
#if 1
if(block_work_idx[I0] == 0)
{
const index_t nThreadSize = CDEShuffleBlockTransferScalarPerVector_NPerBlock;
const index_t numNThreads = NPerBlock / nThreadSize;
const index_t numMThreads = BlockSize / numNThreads;
const index_t mThreadSize = MPerBlock / numMThreads;
const index_t m_tid = get_thread_local_1d_id() / numNThreads;
const index_t n_tid = get_thread_local_1d_id() % numNThreads;
auto c_thread_desc_mblock_mperblock_nblock_nperblock =
make_naive_tensor_descriptor_packed(
make_tuple(I1, Number<mThreadSize>{}, I1, Number<nThreadSize>{}));
StaticBuffer<AddressSpaceEnum::Vgpr,
EDataType,
c_thread_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize(),
true>
e_thread_zero_buf;
auto c_thread_copy = ThreadwiseTensorSliceTransfer_v1r3<
EDataType,
EDataType,
decltype(c_thread_desc_mblock_mperblock_nblock_nperblock),
decltype(e_grid_desc_mblock_mperblock_nblock_nperblock),
ck::tensor_operation::element_wise::PassThrough,
Sequence<1, mThreadSize, 1, nThreadSize>,
Sequence<0, 1, 2, 3>,
3,
CDEShuffleBlockTransferScalarPerVector_NPerBlock,
InMemoryDataOperationEnum::Set,
1,
true>{e_grid_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(block_work_idx[I1],
m_tid * mThreadSize,
block_work_idx[I2],
n_tid * nThreadSize),
ck::tensor_operation::element_wise::PassThrough{}};
c_thread_copy.Run(c_thread_desc_mblock_mperblock_nblock_nperblock,
make_tuple(I0, I0, I0, I0),
e_thread_zero_buf,
e_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_buf);
__syncthreads();
if(threadIdx.x == 0)
{
atomicAdd(barrier_count_finished, 1);
}
}
#endif
auto c_thread_buf = blockwise_gemm.GetCThreadBuffer();
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ComputeType*>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ComputeType*>(p_shared) + a_block_space_size_aligned,
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
constexpr auto a_block_slice_copy_step = make_multi_index(0, KPerBlock / AK1, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(0, KPerBlock / BK1, 0, 0);
// gridwise GEMM pipeline
const auto gridwise_gemm_pipeline =
GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>();
const index_t num_k_block_main_loop =
__builtin_amdgcn_readfirstlane((a_grid_desc_kbatch_ak0_m_ak1.GetLength(I1) *
a_grid_desc_kbatch_ak0_m_ak1.GetLength(I3)) /
KPerBlock);
gridwise_gemm_pipeline.template Run<HasMainKBlockLoop>(a_grid_desc_kbatch_ak0_m_ak1,
a_block_desc_kbatch_ak0_m_ak1,
a_blockwise_copy,
a_grid_buf,
a_block_buf,
a_block_slice_copy_step,
b_grid_desc_kbatch_bk0_n_bk1,
b_block_desc_kbatch_bk0_n_bk1,
b_blockwise_copy,
b_grid_buf,
b_block_buf,
b_block_slice_copy_step,
blockwise_gemm,
c_thread_buf,
num_k_block_main_loop);
// shuffle C and write out
{
if(threadIdx.x == 0)
{
while(__atomic_load_n(barrier_count_finished, __ATOMIC_RELAXED) == 0) {}
}
__syncthreads();
static_assert(MXdlPerWave % CShuffleMXdlPerWavePerShuffle == 0 &&
NXdlPerWave % CShuffleNXdlPerWavePerShuffle == 0,
"wrong!");
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
// TODO: hacky, fix it!
constexpr auto c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2 =
blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp =
blockwise_gemm.GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
constexpr auto M0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I0);
constexpr auto N0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I1);
constexpr auto M1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I2);
constexpr auto N1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I3);
constexpr auto M2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I4);
constexpr auto M3 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I5);
constexpr auto M4 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I6);
constexpr auto N2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I7);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
auto c_shuffle_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<CShuffleDataType*>(p_shared),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2 = transform_tensor_descriptor(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
make_tuple(
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleMXdlPerWavePerShuffle>{}, // M0 (MXdlPerWave) per shuffle
M1, // M1 = MWave
M2, // M2 * M3 * M4 = MPerXdl
M3,
M4)),
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleNXdlPerWavePerShuffle>{}, // N0 (NXdlPerWave) per shuffle
N1, // N1 = NWave
N2))), // N2 = NPerXdl
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(
Sequence<>{}, Sequence<0, 2, 4, 5, 6>{}, Sequence<>{}, Sequence<1, 3, 7>{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const index_t m_thread_data_on_block = c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_block = c_thread_mtx_on_block[I1];
const auto m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M0, M1, M2, M3, M4))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto m_thread_data_on_block_idx =
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor.CalculateBottomIndex(
make_multi_index(m_thread_data_on_block));
const auto n_thread_data_on_block_to_n0_n1_n2_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(N0, N1, N2))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
const auto n_thread_data_on_block_idx =
n_thread_data_on_block_to_n0_n1_n2_adaptor.CalculateBottomIndex(
make_multi_index(n_thread_data_on_block));
// shuffle: threadwise copy C from VGPR to LDS
auto c_thread_copy_vgpr_to_lds =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
CShuffleDataType,
decltype(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2),
decltype(c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2),
ck::tensor_operation::element_wise::PassThrough,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
I1,
I1,
M2,
I1,
M4,
I1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
7,
1,
InMemoryDataOperationEnum::Set,
1,
true>{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
make_multi_index(0,
0,
m_thread_data_on_block_idx[I1],
n_thread_data_on_block_idx[I1],
m_thread_data_on_block_idx[I2],
m_thread_data_on_block_idx[I3],
m_thread_data_on_block_idx[I4],
n_thread_data_on_block_idx[I2]),
ck::tensor_operation::element_wise::PassThrough{}};
// tuple of reference to C/Ds tensor descriptors
const auto c_ds_desc_refs = concat_tuple_of_reference(
tie(c_shuffle_block_desc_mblock_mperblock_nblock_nperblock),
generate_tie(
[&](auto i) -> const auto& // return type should be reference
{ return ds_grid_desc_mblock_mperblock_nblock_nperblock[i]; },
Number<NumDTensor_>{}));
// tuple of reference to C/Ds tensor descriptors
const auto c_ds_buf_refs = concat_tuple_of_reference(
tie(c_shuffle_block_buf),
generate_tie(
[&](auto i) -> const auto& // return type should be reference
{ return ds_grid_buf[i]; },
Number<NumDTensor_>{}));
// tuple of starting index of C/Ds blockwise copy
const auto idx_c_ds_block_begin = container_concat(
make_tuple(make_multi_index(0, 0, 0, 0)),
generate_tuple(
[&](auto) {
return make_multi_index(block_work_idx[I1], 0, block_work_idx[I2], 0);
},
Number<NumDTensor_>{}));
// space filling curve for threadwise C in VGPR before shuffle
constexpr auto sfc_c_vgpr =
SpaceFillingCurve<Sequence<MXdlPerWave, NXdlPerWave, 1, 1, M2, 1, M4, 1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
1,
1,
M2,
1,
M4,
1>>{};
// space filling curve for shuffled blockwise C/D/E
constexpr auto sfc_cde_block =
SpaceFillingCurve<Sequence<1, MPerBlock, 1, NPerBlock>,
Sequence<0, 2, 1, 3>,
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>>{};
constexpr index_t num_access = sfc_c_vgpr.GetNumOfAccess();
static_assert(num_access == sfc_cde_block.GetNumOfAccess(), "wrong!");
// blockwise copy C/D/E between LDS and global
auto cde_block_copy_lds_and_global = ThreadGroupTensorSliceTransfer_v7<
ThisThreadBlock,
decltype(container_concat(make_tuple(CShuffleDataType{}), DsDataType_{})),
Tuple<EDataType>,
decltype(c_ds_desc_refs),
decltype(tie(e_grid_desc_mblock_mperblock_nblock_nperblock)),
CDEElementwiseOperation_,
Sequence<static_cast<index_t>(EGlobalMemoryDataOperation)>, // FIXME: make
// Sequence support
// arbitray type
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>, // BlockSliceLengths,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
Sequence<0, 1, 2, 3>, // typename ThreadClusterArrangeOrder,
Sequence<0, 1, 2, 3>, // typename DimAccessOrder,
3, // index_t VectorDim,
CDEShuffleBlockTransferScalarPerVector_NPerBlock,
sequence_merge_t<
Sequence<true>,
uniform_sequence_gen_t<NumDTensor_,
false>>, // ThreadTransferSrcResetCoordinateAfterRunFlags
Sequence<false>> // ThreadTransferDstResetCoordinateAfterRunFlags
{c_ds_desc_refs,
idx_c_ds_block_begin,
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
make_tuple(make_multi_index(block_work_idx[I1], 0, block_work_idx[I2], 0)),
cde_element_op};
static_for<0, num_access, 1>{}([&](auto access_id) {
// make sure it's safe to write to LDS
block_sync_lds();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2,
sfc_c_vgpr.GetIndexTupleOfNumber(access_id),
c_thread_buf,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
c_shuffle_block_buf);
// make sure it's safe to read from LDS
block_sync_lds();
// each block copy its data from LDS to global
cde_block_copy_lds_and_global.Run(
c_ds_desc_refs,
c_ds_buf_refs,
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
tie(e_grid_buf));
if constexpr(access_id < num_access - 1)
{
constexpr auto cde_lds_and_global_step =
sfc_cde_block.GetForwardStep(access_id);
// move on Ds
static_for<0, NumDTensor_, 1>{}([&](auto i) {
cde_block_copy_lds_and_global.MoveSrcSliceWindow(
c_ds_desc_refs, i + I1, cde_lds_and_global_step);
});
// move on E
cde_block_copy_lds_and_global.MoveDstSliceWindow(
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
I0,
cde_lds_and_global_step);
}
});
if(threadIdx.x == 0)
{
index_t k_id_finished_t = atomicAdd(barrier_count_finished, 1);
if(k_id_finished_t == KBatch)
{
*barrier_count_finished = 0;
}
}
}
}
template <bool HasMainKBlockLoop,
InMemoryDataOperationEnum EGlobalMemoryDataOperation,
GemmSpecialization GemmSpec,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename Block2ETileMap>
__device__ static void Run(const void* __restrict__ p_a_grid_,
const void* __restrict__ p_b_grid_,
DsGridPointer p_ds_grid,
void* __restrict__ p_e_grid_,
void* __restrict__ p_shared,
uint32_t* barrier_count_finished,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op,
const index_t M,
const index_t N,
const index_t K,
const index_t StrideA,
const index_t StrideB,
const std::array<index_t, NumDTensor> StrideDs,
const index_t StrideE,
const index_t KBatch,
const Block2ETileMap& block_2_etile_map)
{
const auto p_a_grid = reinterpret_cast<const ADataType*>(p_a_grid_);
const auto p_b_grid = reinterpret_cast<const BDataType*>(p_b_grid_);
const auto p_e_grid = reinterpret_cast<EDataType*>(p_e_grid_);
using DsGridDesc_M_N =
remove_cvref_t<decltype(MakeDsGridDescriptor_M_N<DsLayout, GemmSpec>({}, {}, {}))>;
DsGridDesc_M_N ds_grid_desc_m_n;
static_for<0, NumDTensor, 1>{}([&](auto j) {
using DLayout = remove_cvref_t<tuple_element_t<j.value, DsLayout>>;
ds_grid_desc_m_n(j) = MakeEGridDescriptor_M_N<DLayout, GemmSpec>(M, N, StrideDs[j]);
});
const auto e_grid_desc_m_n = MakeEGridDescriptor_M_N<ELayout, GemmSpec>(M, N, StrideE);
// tensor descriptors for block/thread-wise copy
const auto a_grid_desc_kbatch_ak0_m_ak1 =
MakeAGridDescriptor_KBatch_AK0_M_AK1<ALayout, GemmSpec>(M, K, StrideA, KBatch);
const auto b_grid_desc_kbatch_bk0_n_bk1 =
MakeBGridDescriptor_KBatch_BK0_N_BK1<BLayout, GemmSpec>(K, N, StrideB, KBatch);
using DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
remove_cvref_t<decltype(MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
DsGridDesc_M_N{}))>;
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock ds_grid_desc_mblock_mperblock_nblock_nperblock;
static_for<0, NumDTensor, 1>{}([&](auto j) {
ds_grid_desc_mblock_mperblock_nblock_nperblock(j) =
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(ds_grid_desc_m_n[j]);
});
const auto e_grid_desc_mblock_mperblock_nblock_nperblock =
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(e_grid_desc_m_n);
const auto block_work_idx =
block_2_etile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
const index_t kbatch_id = __builtin_amdgcn_readfirstlane(block_work_idx[I0]);
if(kbatch_id == KBatch - 1)
{
Run<HasMainKBlockLoop, EGlobalMemoryDataOperation, NumDTensor, DsDataType>(
p_a_grid,
p_b_grid,
p_ds_grid,
p_e_grid,
p_shared,
barrier_count_finished,
KBatch,
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_kbatch_ak0_m_ak1,
b_grid_desc_kbatch_bk0_n_bk1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_etile_map);
}
else
{
Run<HasMainKBlockLoop, EGlobalMemoryDataOperation, 0, Tuple<>>(
p_a_grid,
p_b_grid,
p_ds_grid,
p_e_grid,
p_shared,
barrier_count_finished,
KBatch,
a_element_op,
b_element_op,
ck::tensor_operation::element_wise::PassThrough{},
a_grid_desc_kbatch_ak0_m_ak1,
b_grid_desc_kbatch_bk0_n_bk1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_etile_map);
}
}
};
} // namespace ck
...@@ -32,6 +32,8 @@ using F32_Tuple = ck::Tuple<F32>; ...@@ -32,6 +32,8 @@ using F32_Tuple = ck::Tuple<F32>;
using I32_Tuple = ck::Tuple<I32>; using I32_Tuple = ck::Tuple<I32>;
using I32_F32_Tuple = ck::Tuple<I32, F32>; using I32_F32_Tuple = ck::Tuple<I32, F32>;
using F32_F32_Tuple = ck::Tuple<F32, F32>;
// GEMM layout // GEMM layout
using Row = ck::tensor_layout::gemm::RowMajor; using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor; using Col = ck::tensor_layout::gemm::ColumnMajor;
...@@ -95,6 +97,7 @@ using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu; ...@@ -95,6 +97,7 @@ using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu;
using AddReluAdd = ck::tensor_operation::element_wise::AddReluAdd; using AddReluAdd = ck::tensor_operation::element_wise::AddReluAdd;
using FastGelu = ck::tensor_operation::element_wise::FastGelu; using FastGelu = ck::tensor_operation::element_wise::FastGelu;
using AddMultiply = ck::tensor_operation::element_wise::AddMultiply; using AddMultiply = ck::tensor_operation::element_wise::AddMultiply;
using MultiplyAdd = ck::tensor_operation::element_wise::MultiplyAdd;
using ScaleAdd = ck::tensor_operation::element_wise::ScaleAdd; using ScaleAdd = ck::tensor_operation::element_wise::ScaleAdd;
using Gelu = ck::tensor_operation::element_wise::Gelu; using Gelu = ck::tensor_operation::element_wise::Gelu;
using Swish = ck::tensor_operation::element_wise::Swish; using Swish = ck::tensor_operation::element_wise::Swish;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Row_Tuple,
Row,
F16,
F16,
F16_F16_Tuple,
F16,
PassThrough,
PassThrough,
MultiplyAdd>>>&);
void add_device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Row_Row_Tuple,
Row,
F16,
F16,
F16_F16_Tuple,
F16,
PassThrough,
PassThrough,
MultiplyAdd>>>&);
void add_device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_kn_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Row_Tuple,
Row,
F16,
F8,
F32_F32_Tuple,
F16,
PassThrough,
PassThrough,
MultiplyAdd>>>&);
void add_device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_nk_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Row_Row_Tuple,
Row,
F16,
F8,
F32_F32_Tuple,
F16,
PassThrough,
PassThrough,
MultiplyAdd>>>&);
// GEMM + Multiply + Add
template <typename ALayout,
typename BLayout,
typename D0Layout,
typename D1Layout,
typename ELayout,
typename ADataType,
typename BDataType,
typename D0DataType,
typename D1DataType,
typename EDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMultipleD<
ALayout,
BLayout,
ck::Tuple<D0Layout, D1Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType, D1DataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::MultiplyAdd>>
{
using DeviceOp = DeviceGemmMultipleD<ALayout,
BLayout,
ck::Tuple<D0Layout, D1Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType, D1DataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::MultiplyAdd>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<D0DataType, half_t> && is_same_v<D1DataType, half_t> &&
is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<D0Layout, Row> && is_same_v<D1Layout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<D0Layout, Row> && is_same_v<D1Layout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instances(
op_ptrs);
}
}
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, f8_t> &&
is_same_v<D0DataType, float> && is_same_v<D1DataType, float> &&
is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<D0Layout, Row> && is_same_v<D1Layout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_kn_mn_mn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<D0Layout, Row> && is_same_v<D1Layout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_nk_mn_mn_mn_instances(
op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
add_instance_library(device_gemm_multiply_add_instance
device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instance.cpp
device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instance.cpp
device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_kn_mn_mn_mn_instance.cpp
device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_nk_mn_mn_mn_instance.cpp
)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using F16_Tuple = ck::Tuple<F16, F16>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using Row_Tuple = ck::Tuple<Row, Row>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using MultiplyAdd = ck::tensor_operation::element_wise::MultiplyAdd;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instances =
std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 2, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 2, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 2, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>
// clang-format on
>;
void add_device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
F16,
F16,
F16_Tuple,
F16,
PassThrough,
PassThrough,
MultiplyAdd>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using F16_Tuple = ck::Tuple<F16, F16>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using Row_Tuple = ck::Tuple<Row, Row>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using MultiplyAdd = ck::tensor_operation::element_wise::MultiplyAdd;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instances =
std::tuple<
// clang-format off
// M/N/K padding
// N % 8 == 0 && K % 1 == 0
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 32>, 1>
// clang-format on
>;
void add_device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Row_Tuple,
Row,
F16,
F16,
F16_Tuple,
F16,
PassThrough,
PassThrough,
MultiplyAdd>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F8 = ck::f8_t;
using F16 = ck::half_t;
using F32 = float;
using F32_Tuple = ck::Tuple<F32, F32>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using Row_Tuple = ck::Tuple<Row, Row>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using MultiplyAdd = ck::tensor_operation::element_wise::MultiplyAdd;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_kn_mn_mn_mn_instances =
std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 2, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 2, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 2, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>
// clang-format on
>;
void add_device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_kn_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
F16,
F8,
F32_Tuple,
F16,
PassThrough,
PassThrough,
MultiplyAdd>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_kn_mn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F8 = ck::f8_t;
using F16 = ck::half_t;
using F32 = float;
using F32_Tuple = ck::Tuple<F32, F32>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using Row_Tuple = ck::Tuple<Row, Row>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using MultiplyAdd = ck::tensor_operation::element_wise::MultiplyAdd;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_nk_mn_mn_mn_instances =
std::tuple<
// clang-format off
// M/N/K padding
// N % 8 == 0 && K % 1 == 0
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 32>, 1>
// clang-format on
>;
void add_device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_nk_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Row_Tuple,
Row,
F16,
F8,
F32_Tuple,
F16,
PassThrough,
PassThrough,
MultiplyAdd>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_nk_mn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_multiply_add.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename D0DataType,
typename D1DataType,
typename EDataType,
typename ALayout,
typename BLayout,
typename D0Layout,
typename D1Layout,
typename ELayout>
bool profile_gemm_multiply_add_impl(int do_verification,
int init_method,
bool /*do_log*/,
bool time_kernel,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideD0,
int StrideD1,
int StrideE)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<D0DataType> d0_m_n(f_host_tensor_descriptor(M, N, StrideD0, D0Layout{}));
Tensor<D1DataType> d1_m_n(f_host_tensor_descriptor(M, N, StrideD1, D1Layout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "d0_m_n: " << d0_m_n.mDesc << std::endl;
std::cout << "d1_m_n: " << d1_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_device_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d0_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-5, 5});
d1_m_n.GenerateTensorValue(GeneratorTensor_2<D1DataType>{-1, 1});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d0_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{0.0, 1.0});
d1_m_n.GenerateTensorValue(GeneratorTensor_3<D1DataType>{0.0, 1.0});
}
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using MultiplyAdd = ck::tensor_operation::element_wise::MultiplyAdd;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = MultiplyAdd;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{};
using DeviceOp =
ck::tensor_operation::device::DeviceGemmMultipleD<ALayout,
BLayout,
ck::Tuple<D0Layout, D1Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType, D1DataType>,
EDataType,
PassThrough,
PassThrough,
CDEElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
// run reference
if(do_verification)
{
Tensor<AccDataType> c_m_n({M, N});
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d0_m_n(m, n), d1_m_n(m, n));
}
}
}
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem d0_m_n_device_buf(sizeof(D0DataType) * d0_m_n.mDesc.GetElementSpaceSize());
DeviceMem d1_m_n_device_buf(sizeof(D1DataType) * d1_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
d0_m_n_device_buf.ToDevice(d0_m_n.mData.data());
d1_m_n_device_buf.ToDevice(d1_m_n.mData.data());
std::string best_op_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
bool pass = true;
// profile device operation instances
for(auto& op_ptr : op_ptrs)
{
auto argument_ptr = op_ptr->MakeArgumentPointer(
a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 2>{d0_m_n_device_buf.GetDeviceBuffer(),
d1_m_n_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, 2>{StrideD0, StrideD1},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
// re-init E to zero before profiling a kernel
e_device_buf.SetZero();
float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
pass = pass && ck::utils::check_err(e_m_n_device_result, e_m_n_host_result);
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return pass;
}
} // namespace profiler
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment