"vscode:/vscode.git/clone" did not exist on "589ac399f0777c0c9e71a8a9bdb2b019cefeb536"
Unverified Commit 31ea132a authored by zjing14's avatar zjing14 Committed by GitHub
Browse files

Fp16/fp8 mixed-precision Gemm with multiply+add fusion (#865)



* add compute_type

* add multiply_add ckProfiler

* add f8_fp16 support

* clean

* clean

* fixed lds size calc

* format

---------
Co-authored-by: default avatarJing Zhang <jizha@amd.com>
parent c8a8385f
...@@ -5,6 +5,7 @@ set(PROFILER_SOURCES ...@@ -5,6 +5,7 @@ set(PROFILER_SOURCES
profile_gemm_splitk.cpp profile_gemm_splitk.cpp
profile_gemm_bias_add_reduce.cpp profile_gemm_bias_add_reduce.cpp
profile_gemm_add_multiply.cpp profile_gemm_add_multiply.cpp
profile_gemm_multiply_add.cpp
profile_gemm_reduce.cpp profile_gemm_reduce.cpp
profile_batched_gemm.cpp profile_batched_gemm.cpp
profile_batched_gemm_reduce.cpp profile_batched_gemm_reduce.cpp
...@@ -51,6 +52,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE utility) ...@@ -51,6 +52,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE utility)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_multiply_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_multiply_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_multiply_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_reduce_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bias_add_reduce_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bias_add_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_instance)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_gemm_multiply_add_impl.hpp"
#include "profiler_operation_registry.hpp"
#define OP_NAME "gemm_multiply_add"
#define OP_DESC "GEMM+MULTIPLY+ADD"
int profile_gemm_multiply_add(int argc, char* argv[])
{
enum struct MatrixLayout
{
MK_KN_MN_MN_MN, // 0
MK_NK_MN_MN_MN, // 1
};
enum struct MatrixDataType
{
F16_F16_F16_F16_F16, // 0
F16_F8_F32_F32_F16, // 1
};
if(argc != 16)
{
// clang-format off
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (0: fp16; 1: fp16Afp8B)\n");
printf("arg3: matrix layout (0: E[m, n] = Multiply_Add((A[m, k] * B[k, n]) x D1[m, n] + D0[m, n]);\n");
printf(" 1: E[m, n] = Multiply_Add((A[m, k] * B[n, k]) x D1[m, n] + D0[m, n]);\n");
printf("arg4: verification (0: no; 1: yes)\n");
printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg6: print tensor value (0: no; 1: yes)\n");
printf("arg7: time kernel (0=no, 1=yes)\n");
printf("arg8 to 15: M, N, K, StrideA, StrideB, StrideD0, StrideD1, StrideE\n");
// clang-format on
exit(1);
}
const auto data_type = static_cast<MatrixDataType>(std::stoi(argv[2]));
const auto layout = static_cast<MatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const bool time_kernel = std::stoi(argv[7]);
const int M = std::stoi(argv[8]);
const int N = std::stoi(argv[9]);
const int K = std::stoi(argv[10]);
const int StrideA = std::stoi(argv[11]);
const int StrideB = std::stoi(argv[12]);
const int StrideD0 = std::stoi(argv[13]);
const int StrideD1 = std::stoi(argv[14]);
const int StrideE = std::stoi(argv[15]);
using F8 = ck::f8_t;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
auto profile = [&](auto a_type,
auto b_type,
auto acc_type,
auto d0_type,
auto d1_type,
auto e_type,
auto a_layout,
auto b_layout,
auto d0_layout,
auto d1_layout,
auto e_layout) {
using ADataType = decltype(a_type);
using BDataType = decltype(b_type);
using AccDataType = decltype(acc_type);
using D0DataType = decltype(d0_type);
using D1DataType = decltype(d1_type);
using EDataType = decltype(e_type);
using ALayout = decltype(a_layout);
using BLayout = decltype(b_layout);
using D0Layout = decltype(d0_layout);
using D1Layout = decltype(d1_layout);
using ELayout = decltype(e_layout);
const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int DefaultStrideB = ck::is_same_v<BLayout, Row> ? N : K;
const int DefaultStrideD0 = ck::is_same_v<D0Layout, Row> ? N : M;
const int DefaultStrideD1 = ck::is_same_v<D1Layout, Row> ? N : M;
const int DefaultStrideE = ck::is_same_v<ELayout, Row> ? N : M;
bool pass = ck::profiler::profile_gemm_multiply_add_impl<ADataType,
BDataType,
AccDataType,
D0DataType,
D1DataType,
EDataType,
ALayout,
BLayout,
D0Layout,
D1Layout,
ELayout>(
do_verification,
init_method,
do_log,
time_kernel,
M,
N,
K,
(StrideA < 0) ? DefaultStrideA : StrideA,
(StrideB < 0) ? DefaultStrideB : StrideB,
(StrideD0 < 0) ? DefaultStrideD0 : StrideD0,
(StrideD1 < 0) ? DefaultStrideD1 : StrideD1,
(StrideE < 0) ? DefaultStrideE : StrideE);
return pass ? 0 : 1;
};
if(data_type == MatrixDataType::F16_F16_F16_F16_F16 && layout == MatrixLayout::MK_KN_MN_MN_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, F16{}, Row{}, Row{}, Row{}, Row{}, Row{});
}
else if(data_type == MatrixDataType::F16_F16_F16_F16_F16 &&
layout == MatrixLayout::MK_NK_MN_MN_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, F16{}, Row{}, Col{}, Row{}, Row{}, Row{});
}
else if(data_type == MatrixDataType::F16_F8_F32_F32_F16 &&
layout == MatrixLayout::MK_KN_MN_MN_MN)
{
return profile(F16{}, F8{}, F32{}, F32{}, F32{}, F16{}, Row{}, Row{}, Row{}, Row{}, Row{});
}
else if(data_type == MatrixDataType::F16_F8_F32_F32_F16 &&
layout == MatrixLayout::MK_NK_MN_MN_MN)
{
return profile(F16{}, F8{}, F32{}, F32{}, F32{}, F16{}, Row{}, Col{}, Row{}, Row{}, Row{});
}
else
{
std::cout << "this data_type & layout is not implemented" << std::endl;
return 1;
}
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_gemm_multiply_add);
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment