Commit 300337cd authored by letaoqin's avatar letaoqin
Browse files

Merge branch 'develop' into jizhan/reduce_threadwise_multi_d

parents f306d02e 02fa2c29
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_weight_bilinear.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::NDHWGC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::NDHWGK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Bilinear = ck::tensor_operation::element_wise::Bilinear;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t G = 32;
static constexpr ck::index_t N = 32; // batch size
static constexpr ck::index_t K = 32; // output channel
static constexpr ck::index_t C = 32; // input channel (per group)
static constexpr ck::index_t Z = 3; // filter D
static constexpr ck::index_t Y = 3; // filter H
static constexpr ck::index_t X = 3; // filter W
static constexpr ck::index_t Di = 14; // input D
static constexpr ck::index_t Hi = 14; // input H
static constexpr ck::index_t Wi = 14; // input W
static constexpr ck::index_t Do = 14; // output D
static constexpr ck::index_t Ho = 14; // output H
static constexpr ck::index_t Wo = 14; // output W
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int execute_conv_bwd_weight_bilinear()
{
constexpr ck::index_t split_k = 2;
std::array<ck::index_t, NumDimSpatial + 3> in_lengths{G, N, C, Di, Hi, Wi};
std::array<ck::index_t, NumDimSpatial + 3> in_strides{
C, Di * Hi * Wi * G * C, 1, Hi * Wi * G * C, Wi * G * C, G * C};
std::array<ck::index_t, NumDimSpatial + 3> wei_lengths{G, K, C, Z, Y, X};
std::array<ck::index_t, NumDimSpatial + 3> wei_strides{
K * Z * Y * X * C, Z * Y * X * C, 1, Y * X * C, X * C, C};
std::array<ck::index_t, NumDimSpatial + 3> out_lengths{G, N, K, Do, Ho, Wo};
std::array<ck::index_t, NumDimSpatial + 3> out_strides{
K, Do * Ho * Wo * G * K, 1, Ho * Wo * G * K, Wo * G * K, G * K};
std::array<ck::index_t, NumDimSpatial> filter_strides{1, 1, 1};
std::array<ck::index_t, NumDimSpatial> filter_dilations{1, 1, 1};
std::array<ck::index_t, NumDimSpatial> input_left_pads{1, 1, 1};
std::array<ck::index_t, NumDimSpatial> input_right_pads{1, 1, 1};
SimpleDeviceMem in(sizeof(InDataType) * G * N * Di * Hi * Wi * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Z * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * G * N * Do * Ho * Wo * K);
using DeviceOp =
ck::tensor_operation::device::DeviceGroupedConvBwdWeightMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
ck::Tuple<WeiLayout>,
InDataType,
WeiDataType,
OutDataType,
ck::Tuple<WeiDataType>,
PassThrough,
Bilinear,
PassThrough>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr =
op_ptr->MakeArgumentPointer(static_cast<InDataType*>(in.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei.GetDeviceBuffer()),
static_cast<OutDataType*>(out.GetDeviceBuffer()),
{wei.GetDeviceBuffer()},
in_lengths,
in_strides,
wei_lengths,
wei_strides,
out_lengths,
out_strides,
{wei_lengths},
{wei_strides},
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
Bilinear{2.f, 2.f},
PassThrough{},
split_k);
SimpleDeviceMem workspace_buf(op_ptr->GetWorkSpaceSize(argument_ptr.get()));
op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace_buf.GetDeviceBuffer());
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop =
std::size_t(2) * G * N * K * C * Do * Ho * Wo * Y * X + 3 * G * K * Z * Y * X * C;
std::size_t num_bytes = sizeof(InDataType) * G * N * Di * Hi * Wi * C +
2 * sizeof(WeiDataType) * G * K * Z * Y * X * C +
sizeof(OutDataType) * G * N * Do * Ho * Wo * K;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cerr << op_name << " does not support this problem" << std::endl;
}
}
if(best_op_id < 0)
{
std::cerr << "no suitable instance" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr =
op_ptr->MakeArgumentPointer(static_cast<InDataType*>(in.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei.GetDeviceBuffer()),
static_cast<OutDataType*>(out.GetDeviceBuffer()),
{wei.GetDeviceBuffer()},
in_lengths,
in_strides,
wei_lengths,
wei_strides,
out_lengths,
out_strides,
{wei_lengths},
{wei_strides},
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
Bilinear{2.f, 2.f},
PassThrough{},
split_k);
SimpleDeviceMem workspace_buf(op_ptr->GetWorkSpaceSize(argument_ptr.get()));
op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace_buf.GetDeviceBuffer());
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
int main() { return execute_conv_bwd_weight_bilinear(); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_weight_scale.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::NDHWGC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::NDHWGK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Scale = ck::tensor_operation::element_wise::Scale;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t G = 32;
static constexpr ck::index_t N = 32; // batch size
static constexpr ck::index_t K = 32; // output channel
static constexpr ck::index_t C = 32; // input channel (per group)
static constexpr ck::index_t Z = 3; // filter D
static constexpr ck::index_t Y = 3; // filter H
static constexpr ck::index_t X = 3; // filter W
static constexpr ck::index_t Di = 14; // input D
static constexpr ck::index_t Hi = 14; // input H
static constexpr ck::index_t Wi = 14; // input W
static constexpr ck::index_t Do = 14; // output D
static constexpr ck::index_t Ho = 14; // output H
static constexpr ck::index_t Wo = 14; // output W
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int execute_conv_bwd_weight_scale()
{
constexpr ck::index_t split_k = 2;
std::array<ck::index_t, NumDimSpatial + 3> in_lengths{G, N, C, Di, Hi, Wi};
std::array<ck::index_t, NumDimSpatial + 3> in_strides{
C, Di * Hi * Wi * G * C, 1, Hi * Wi * G * C, Wi * G * C, G * C};
std::array<ck::index_t, NumDimSpatial + 3> wei_lengths{G, K, C, Z, Y, X};
std::array<ck::index_t, NumDimSpatial + 3> wei_strides{
K * Z * Y * X * C, Z * Y * X * C, 1, Y * X * C, X * C, C};
std::array<ck::index_t, NumDimSpatial + 3> out_lengths{G, N, K, Do, Ho, Wo};
std::array<ck::index_t, NumDimSpatial + 3> out_strides{
K, Do * Ho * Wo * G * K, 1, Ho * Wo * G * K, Wo * G * K, G * K};
std::array<ck::index_t, NumDimSpatial> filter_strides{1, 1, 1};
std::array<ck::index_t, NumDimSpatial> filter_dilations{1, 1, 1};
std::array<ck::index_t, NumDimSpatial> input_left_pads{1, 1, 1};
std::array<ck::index_t, NumDimSpatial> input_right_pads{1, 1, 1};
SimpleDeviceMem in(sizeof(InDataType) * G * N * Di * Hi * Wi * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Z * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * G * N * Do * Ho * Wo * K);
using DeviceOp =
ck::tensor_operation::device::DeviceGroupedConvBwdWeightMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
ck::Tuple<>,
InDataType,
WeiDataType,
OutDataType,
ck::Tuple<>,
PassThrough,
Scale,
PassThrough>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr =
op_ptr->MakeArgumentPointer(static_cast<InDataType*>(in.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei.GetDeviceBuffer()),
static_cast<OutDataType*>(out.GetDeviceBuffer()),
{},
in_lengths,
in_strides,
wei_lengths,
wei_strides,
out_lengths,
out_strides,
{},
{},
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
Scale{2.f},
PassThrough{},
split_k);
SimpleDeviceMem workspace_buf(op_ptr->GetWorkSpaceSize(argument_ptr.get()));
op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace_buf.GetDeviceBuffer());
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop =
std::size_t(2) * G * N * K * C * Do * Ho * Wo * Y * X + G * K * Z * Y * X * C;
std::size_t num_bytes = sizeof(InDataType) * G * N * Di * Hi * Wi * C +
sizeof(WeiDataType) * G * K * Z * Y * X * C +
sizeof(OutDataType) * G * N * Do * Ho * Wo * K;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cerr << op_name << " does not support this problem" << std::endl;
}
}
if(best_op_id < 0)
{
std::cerr << "no suitable instance" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr =
op_ptr->MakeArgumentPointer(static_cast<InDataType*>(in.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei.GetDeviceBuffer()),
static_cast<OutDataType*>(out.GetDeviceBuffer()),
{},
in_lengths,
in_strides,
wei_lengths,
wei_strides,
out_lengths,
out_strides,
{},
{},
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
Scale{2.f},
PassThrough{},
split_k);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
SimpleDeviceMem workspace_buf(op_ptr->GetWorkSpaceSize(argument_ptr.get()));
op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace_buf.GetDeviceBuffer());
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
int main() { return execute_conv_bwd_weight_scale(); }
...@@ -181,4 +181,3 @@ int main(int argc, char* argv[]) ...@@ -181,4 +181,3 @@ int main(int argc, char* argv[])
{1, 1, 1} /*filter_dilations*/); {1, 1, 1} /*filter_dilations*/);
return 0; return 0;
} }
// MI100 Perf: 0.255178 ms, 1698.9 GB/s,
if(GPU_TARGETS MATCHES "gfx9" AND ((DTYPES MATCHES "int8" AND DTYPES MATCHES "bf16") OR NOT DEFINED DTYPES))
add_executable(client_gemm_bias_fastgelu_bf16_i8_bf16 gemm_bias_fastgelu_xdl_bf16_i8.cpp)
target_link_libraries(client_gemm_bias_fastgelu_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations)
add_executable(client_gemm_bias_bf16_i8_bf16 gemm_bias_xdl_bf16_i8.cpp)
target_link_libraries(client_gemm_bias_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations)
add_executable(client_gemm_gelu_bf16_i8_bf16 gemm_xdl_gelu_bf16_i8.cpp)
target_link_libraries(client_gemm_gelu_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations)
add_executable(client_gemm_bf16_i8_bf16 gemm_xdl_bf16_i8.cpp)
target_link_libraries(client_gemm_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations)
add_executable(client_gemm_multiply_bf16_i8_bf16 gemm_xdl_multiply_bf16_i8.cpp)
target_link_libraries(client_gemm_multiply_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations)
endif()
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_multi_abd.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using A0DataType = BF16;
using AsDataType = ck::Tuple<A0DataType>;
using B0DataType = I8;
using B1DataType = BF16;
using BsDataType = ck::Tuple<B0DataType, B1DataType>;
using AccDataType = F32;
using CShuffleDataType = BF16;
using D0DataType = BF16;
using DsDataType = ck::Tuple<D0DataType>;
using EDataType = BF16;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Row;
using B1Layout = B0Layout;
using BsLayout = ck::Tuple<B0Layout, B1Layout>;
using D0Layout = Row;
using DsLayout = ck::Tuple<D0Layout>;
using ELayout = Row;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu;
using AElementOp = PassThrough;
using BElementOp = Multiply;
using CDEElementOp = AddFastGelu;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
// clang-format on
int main(int argc, char* argv[])
{
// GEMM shape
ck::index_t M = 64;
ck::index_t N = 1024;
ck::index_t K = 512;
ck::index_t StrideA = K;
ck::index_t StrideB = K;
ck::index_t StrideD = N;
ck::index_t StrideE = N;
if(argc == 1)
{
// use default case
}
else if(argc == 8)
{
M = std::stoi(argv[1]);
N = std::stoi(argv[2]);
K = std::stoi(argv[3]);
StrideA = std::stoi(argv[4]);
StrideB = std::stoi(argv[5]);
StrideD = std::stoi(argv[6]);
StrideE = std::stoi(argv[7]);
}
else
{
printf("arg1 to 7: M, N, K, StrideA, StrideB, StrideD, StrideE\n");
exit(0);
}
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if constexpr(std::is_same<Layout, Row>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
SimpleDeviceMem a0_device_buf(sizeof(A0DataType) *
f_matrix_space_size(M, K, StrideA, A0Layout{}));
SimpleDeviceMem b0_device_buf(sizeof(B0DataType) *
f_matrix_space_size(K, N, StrideB, B0Layout{}));
SimpleDeviceMem b1_device_buf(sizeof(B1DataType) * f_matrix_space_size(K, N, 0, B1Layout{}));
SimpleDeviceMem d0_device_buf(sizeof(D0DataType) *
f_matrix_space_size(M, N, StrideD, ELayout{}));
SimpleDeviceMem e_device_buf(sizeof(EDataType) * f_matrix_space_size(M, N, StrideE, ELayout{}));
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
constexpr ck::index_t NumATensor = 1;
constexpr ck::index_t NumBTensor = 2;
constexpr ck::index_t NumDTensor = 1;
using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleABD<AsLayout,
BsLayout,
DsLayout,
Row,
AsDataType,
BsDataType,
DsDataType,
BF16,
AElementOp,
BElementOp,
CDEElementOp>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
std::array<const void*, NumATensor>{a0_device_buf.GetDeviceBuffer()},
std::array<const void*, NumBTensor>{b0_device_buf.GetDeviceBuffer(),
b1_device_buf.GetDeviceBuffer()},
std::array<const void*, NumDTensor>{d0_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
std::array<ck::index_t, NumATensor>{StrideA},
std::array<ck::index_t, NumBTensor>{StrideB, 0},
std::array<ck::index_t, NumDTensor>{StrideD},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
if(found)
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(
std::array<const void*, NumATensor>{a0_device_buf.GetDeviceBuffer()},
std::array<const void*, NumBTensor>{b0_device_buf.GetDeviceBuffer(),
b1_device_buf.GetDeviceBuffer()},
std::array<const void*, NumDTensor>{d0_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
std::array<ck::index_t, NumATensor>{StrideA},
std::array<ck::index_t, NumBTensor>{StrideB, 0},
std::array<ck::index_t, NumDTensor>{StrideD},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_multi_abd.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using A0DataType = BF16;
using AsDataType = ck::Tuple<A0DataType>;
using B0DataType = I8;
using B1DataType = BF16;
using BsDataType = ck::Tuple<B0DataType, B1DataType>;
using AccDataType = F32;
using CShuffleDataType = BF16;
using D0DataType = BF16;
using DsDataType = ck::Tuple<D0DataType>;
using EDataType = BF16;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Row;
using B1Layout = B0Layout;
using BsLayout = ck::Tuple<B0Layout, B1Layout>;
using D0Layout = Row;
using DsLayout = ck::Tuple<D0Layout>;
using ELayout = Row;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
using AElementOp = PassThrough;
using BElementOp = Multiply;
using CDEElementOp = Add;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
// clang-format on
int main(int argc, char* argv[])
{
// GEMM shape
ck::index_t M = 64;
ck::index_t N = 1024;
ck::index_t K = 512;
ck::index_t StrideA = M;
ck::index_t StrideB = N;
ck::index_t StrideD = N;
ck::index_t StrideE = N;
if(argc == 1)
{
// use default case
}
else if(argc == 8)
{
M = std::stoi(argv[1]);
N = std::stoi(argv[2]);
K = std::stoi(argv[3]);
StrideA = std::stoi(argv[4]);
StrideB = std::stoi(argv[5]);
StrideD = std::stoi(argv[6]);
StrideE = std::stoi(argv[7]);
}
else
{
printf("arg1 to 7: M, N, K, StrideA, StrideB, StrideD, StrideE\n");
exit(0);
}
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if constexpr(std::is_same<Layout, Row>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
SimpleDeviceMem a0_device_buf(sizeof(A0DataType) *
f_matrix_space_size(M, K, StrideA, A0Layout{}));
SimpleDeviceMem b0_device_buf(sizeof(B0DataType) *
f_matrix_space_size(K, N, StrideB, B0Layout{}));
SimpleDeviceMem b1_device_buf(sizeof(B1DataType) * f_matrix_space_size(K, N, 0, B1Layout{}));
SimpleDeviceMem d0_device_buf(sizeof(D0DataType) *
f_matrix_space_size(M, N, StrideD, ELayout{}));
SimpleDeviceMem e_device_buf(sizeof(EDataType) * f_matrix_space_size(M, N, StrideE, ELayout{}));
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
constexpr ck::index_t NumATensor = 1;
constexpr ck::index_t NumBTensor = 2;
constexpr ck::index_t NumDTensor = 1;
using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleABD<AsLayout,
BsLayout,
DsLayout,
Row,
AsDataType,
BsDataType,
DsDataType,
BF16,
AElementOp,
BElementOp,
CDEElementOp>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
std::array<const void*, NumATensor>{a0_device_buf.GetDeviceBuffer()},
std::array<const void*, NumBTensor>{b0_device_buf.GetDeviceBuffer(),
b1_device_buf.GetDeviceBuffer()},
std::array<const void*, NumDTensor>{d0_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
std::array<ck::index_t, NumATensor>{StrideA},
std::array<ck::index_t, NumBTensor>{StrideB, 0},
std::array<ck::index_t, NumDTensor>{StrideD},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
if(found)
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(
std::array<const void*, NumATensor>{a0_device_buf.GetDeviceBuffer()},
std::array<const void*, NumBTensor>{b0_device_buf.GetDeviceBuffer(),
b1_device_buf.GetDeviceBuffer()},
std::array<const void*, NumDTensor>{d0_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
std::array<ck::index_t, NumATensor>{StrideA},
std::array<ck::index_t, NumBTensor>{StrideB, 0},
std::array<ck::index_t, NumDTensor>{StrideD},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_multi_abd.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using A0DataType = BF16;
using AsDataType = ck::Tuple<A0DataType>;
using B0DataType = I8;
using B1DataType = BF16;
using BsDataType = ck::Tuple<B0DataType, B1DataType>;
using AccDataType = F32;
using CShuffleDataType = BF16;
using DsDataType = ck::Tuple<>;
using EDataType = BF16;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Row;
using B1Layout = B0Layout;
using BsLayout = ck::Tuple<B0Layout, B1Layout>;
using D0Layout = Row;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
using AElementOp = PassThrough;
using BElementOp = Multiply;
using CDEElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
// clang-format on
int main(int argc, char* argv[])
{
// GEMM shape
ck::index_t M = 4096;
ck::index_t N = 768;
ck::index_t K = 6144;
ck::index_t StrideA = K;
ck::index_t StrideB = K;
ck::index_t StrideE = N;
if(argc == 1)
{
// use default case
}
else if(argc == 7)
{
M = std::stoi(argv[1]);
N = std::stoi(argv[2]);
K = std::stoi(argv[3]);
StrideA = std::stoi(argv[4]);
StrideB = std::stoi(argv[5]);
StrideE = std::stoi(argv[6]);
}
else
{
printf("arg1 to 7: M, N, K, StrideA, StrideB, StrideE\n");
exit(0);
}
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if constexpr(std::is_same<Layout, Row>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
SimpleDeviceMem a0_device_buf(sizeof(A0DataType) *
f_matrix_space_size(M, K, StrideA, A0Layout{}));
SimpleDeviceMem b0_device_buf(sizeof(B0DataType) *
f_matrix_space_size(K, N, StrideB, B0Layout{}));
SimpleDeviceMem b1_device_buf(sizeof(B1DataType) * f_matrix_space_size(K, N, 0, B1Layout{}));
SimpleDeviceMem e_device_buf(sizeof(EDataType) * f_matrix_space_size(M, N, StrideE, ELayout{}));
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
constexpr ck::index_t NumATensor = 1;
constexpr ck::index_t NumBTensor = 2;
constexpr ck::index_t NumDTensor = 0;
using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleABD<AsLayout,
BsLayout,
DsLayout,
Row,
AsDataType,
BsDataType,
DsDataType,
BF16,
AElementOp,
BElementOp,
CDEElementOp>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
std::array<const void*, NumATensor>{a0_device_buf.GetDeviceBuffer()},
std::array<const void*, NumBTensor>{b0_device_buf.GetDeviceBuffer(),
b1_device_buf.GetDeviceBuffer()},
std::array<const void*, NumDTensor>{},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
std::array<ck::index_t, NumATensor>{StrideA},
std::array<ck::index_t, NumBTensor>{StrideB, 0},
std::array<ck::index_t, NumDTensor>{},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
if(found)
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(
std::array<const void*, NumATensor>{a0_device_buf.GetDeviceBuffer()},
std::array<const void*, NumBTensor>{b0_device_buf.GetDeviceBuffer(),
b1_device_buf.GetDeviceBuffer()},
std::array<const void*, NumDTensor>{},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
std::array<ck::index_t, NumATensor>{StrideA},
std::array<ck::index_t, NumBTensor>{StrideB, 0},
std::array<ck::index_t, NumDTensor>{},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_multi_abd.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using A0DataType = BF16;
using AsDataType = ck::Tuple<A0DataType>;
using B0DataType = I8;
using B1DataType = BF16;
using BsDataType = ck::Tuple<B0DataType, B1DataType>;
using AccDataType = F32;
using CShuffleDataType = BF16;
using DsDataType = ck::Tuple<>;
using EDataType = BF16;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Row;
using B1Layout = B0Layout;
using BsLayout = ck::Tuple<B0Layout, B1Layout>;
using D0Layout = Row;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using FastGelu = ck::tensor_operation::element_wise::FastGelu;
using AElementOp = PassThrough;
using BElementOp = Multiply;
using CDEElementOp = FastGelu;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
// clang-format on
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 64;
ck::index_t N = 1024;
ck::index_t K = 512;
ck::index_t StrideA = K;
ck::index_t StrideB = N;
ck::index_t StrideE = N;
if(argc == 1)
{
// use default case
}
else if(argc == 7)
{
M = std::stoi(argv[1]);
N = std::stoi(argv[2]);
K = std::stoi(argv[3]);
StrideA = std::stoi(argv[4]);
StrideB = std::stoi(argv[5]);
StrideE = std::stoi(argv[6]);
}
else
{
printf("arg1 to 7: M, N, K, StrideA, StrideB, StrideE\n");
exit(0);
}
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if constexpr(std::is_same<Layout, Row>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
SimpleDeviceMem a0_device_buf(sizeof(A0DataType) *
f_matrix_space_size(M, K, StrideA, A0Layout{}));
SimpleDeviceMem b0_device_buf(sizeof(B0DataType) *
f_matrix_space_size(K, N, StrideB, B0Layout{}));
SimpleDeviceMem b1_device_buf(sizeof(B1DataType) * f_matrix_space_size(K, N, 0, B1Layout{}));
SimpleDeviceMem e_device_buf(sizeof(EDataType) * f_matrix_space_size(M, N, StrideE, ELayout{}));
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
constexpr ck::index_t NumATensor = 1;
constexpr ck::index_t NumBTensor = 2;
constexpr ck::index_t NumDTensor = 0;
using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleABD<AsLayout,
BsLayout,
DsLayout,
Row,
AsDataType,
BsDataType,
DsDataType,
BF16,
AElementOp,
BElementOp,
CDEElementOp>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
std::array<const void*, NumATensor>{a0_device_buf.GetDeviceBuffer()},
std::array<const void*, NumBTensor>{b0_device_buf.GetDeviceBuffer(),
b1_device_buf.GetDeviceBuffer()},
std::array<const void*, NumDTensor>{},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
std::array<ck::index_t, NumATensor>{StrideA},
std::array<ck::index_t, NumBTensor>{StrideB, 0},
std::array<ck::index_t, NumDTensor>{},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
if(found)
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(
std::array<const void*, NumATensor>{a0_device_buf.GetDeviceBuffer()},
std::array<const void*, NumBTensor>{b0_device_buf.GetDeviceBuffer(),
b1_device_buf.GetDeviceBuffer()},
std::array<const void*, NumDTensor>{},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
std::array<ck::index_t, NumATensor>{StrideA},
std::array<ck::index_t, NumBTensor>{StrideB, 0},
std::array<ck::index_t, NumDTensor>{},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_multi_abd.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using A0DataType = BF16;
using AsDataType = ck::Tuple<A0DataType>;
using B0DataType = I8;
using B1DataType = BF16;
using BsDataType = ck::Tuple<B0DataType>;
using AccDataType = F32;
using CShuffleDataType = BF16;
using DsDataType = ck::Tuple<B1DataType>;
using EDataType = BF16;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Row;
using B1Layout = B0Layout;
using BsLayout = ck::Tuple<B0Layout>;
using D0Layout = Row;
using DsLayout = ck::Tuple<B1Layout>;
using ELayout = Row;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = Multiply;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
// clang-format on
int main(int argc, char* argv[])
{
// GEMM shape
ck::index_t M = 4096;
ck::index_t N = 768;
ck::index_t K = 6144;
ck::index_t StrideA = K;
ck::index_t StrideB = K;
ck::index_t StrideE = N;
if(argc == 1)
{
// use default case
}
else if(argc == 7)
{
M = std::stoi(argv[1]);
N = std::stoi(argv[2]);
K = std::stoi(argv[3]);
StrideA = std::stoi(argv[4]);
StrideB = std::stoi(argv[5]);
StrideE = std::stoi(argv[6]);
}
else
{
printf("arg1 to 7: M, N, K, StrideA, StrideB, StrideE\n");
exit(0);
}
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if constexpr(std::is_same<Layout, Row>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
SimpleDeviceMem a0_device_buf(sizeof(A0DataType) *
f_matrix_space_size(M, K, StrideA, A0Layout{}));
SimpleDeviceMem b0_device_buf(sizeof(B0DataType) *
f_matrix_space_size(K, N, StrideB, B0Layout{}));
SimpleDeviceMem b1_device_buf(sizeof(B1DataType) * f_matrix_space_size(K, N, 0, B1Layout{}));
SimpleDeviceMem e_device_buf(sizeof(EDataType) * f_matrix_space_size(M, N, StrideE, ELayout{}));
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
constexpr ck::index_t NumATensor = 1;
constexpr ck::index_t NumBTensor = 1;
constexpr ck::index_t NumDTensor = 1;
using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleABD<AsLayout,
BsLayout,
DsLayout,
Row,
AsDataType,
BsDataType,
DsDataType,
BF16,
AElementOp,
BElementOp,
CDEElementOp>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
std::array<const void*, NumATensor>{a0_device_buf.GetDeviceBuffer()},
std::array<const void*, NumBTensor>{b0_device_buf.GetDeviceBuffer()},
std::array<const void*, NumDTensor>{b1_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
std::array<ck::index_t, NumATensor>{StrideA},
std::array<ck::index_t, NumBTensor>{StrideB},
std::array<ck::index_t, NumDTensor>{0},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return 0;
}
if(GPU_TARGETS MATCHES "gfx9" AND ((DTYPES MATCHES "int8" AND DTYPES MATCHES "bf16") OR NOT DEFINED DTYPES))
add_executable(client_grouped_gemm_bias_fastgelu_bf16_i8_bf16 grouped_gemm_bias_fastgelu_xdl_bf16_i8.cpp)
target_link_libraries(client_grouped_gemm_bias_fastgelu_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations)
add_executable(client_grouped_gemm_fastgelu_bf16_i8_bf16 grouped_gemm_fastgelu_xdl_bf16_i8.cpp)
target_link_libraries(client_grouped_gemm_fastgelu_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations)
add_executable(client_grouped_gemm_multiply_bf16_i8_bf16 grouped_gemm_multiply_xdl_bf16_i8.cpp)
target_link_libraries(client_grouped_gemm_multiply_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations)
add_executable(client_grouped_gemm_multiply_bias_fastgelu_bf16_i8_bf16 grouped_gemm_multiply_bias_fastgelu_xdl_bf16_i8.cpp)
target_link_libraries(client_grouped_gemm_multiply_bias_fastgelu_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations)
add_executable(client_grouped_gemm_bf16_i8_bf16 grouped_gemm_xdl_bf16_i8.cpp)
target_link_libraries(client_grouped_gemm_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations)
endif()
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_multi_abd_fixed_nk.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using A0DataType = BF16;
using AsDataType = ck::Tuple<A0DataType>;
using B0DataType = I8;
using B1DataType = BF16;
using BsDataType = ck::Tuple<B0DataType, B1DataType>;
using AccDataType = F32;
using CShuffleDataType = BF16;
using D0DataType = BF16;
using DsDataType = ck::Tuple<D0DataType>;
using EDataType = BF16;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Row;
using B1Layout = B0Layout;
using BsLayout = ck::Tuple<B0Layout, B1Layout>;
using D0Layout = Row;
using DsLayout = ck::Tuple<D0Layout>;
using ELayout = Row;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu;
using AElementOp = PassThrough;
using BElementOp = Multiply;
using CDEElementOp = AddFastGelu;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
struct ProblemSize final
{
std::vector<ck::index_t> Ms;
std::vector<ck::index_t> Ns;
std::vector<ck::index_t> Ks;
std::vector<ck::index_t> stride_As;
std::vector<ck::index_t> stride_Bs;
std::vector<ck::index_t> stride_Cs;
ck::index_t group_count;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
int k_batch = 1;
};
bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
auto group_count = problem_size.group_count;
// GEMM shape
std::vector<ck::tensor_operation::device::GemmMultiABDDesc> gemm_descs;
gemm_descs.reserve(group_count);
int sum_of_m = 0;
using DeviceMemPtr = std::unique_ptr<SimpleDeviceMem>;
std::vector<DeviceMemPtr> a0_tensors_device, b0_tensors_device, b1_tensors_device,
d0_tensors_device, c_tensors_device;
a0_tensors_device.reserve(group_count);
b0_tensors_device.reserve(group_count);
b1_tensors_device.reserve(group_count);
d0_tensors_device.reserve(group_count);
c_tensors_device.reserve(group_count);
std::size_t flop = 0, num_btype = 0;
for(int i = 0; i < group_count; i++)
{
sum_of_m += problem_size.Ms[i];
}
constexpr ck::index_t NumATensor = 1;
constexpr ck::index_t NumBTensor = 2;
constexpr ck::index_t NumDTensor = 1;
using GroupedGemmKernelArgument = ck::tensor_operation::device::
GroupedGemmMultiABDKernelArgument<NumATensor, NumBTensor, NumDTensor>;
std::vector<GroupedGemmKernelArgument> grouped_gemm_kernel_args_;
grouped_gemm_kernel_args_.reserve(group_count);
for(int i = 0; i < group_count; i++)
{
a0_tensors_device.emplace_back(
std::make_unique<SimpleDeviceMem>(sizeof(A0DataType) * sum_of_m * problem_size.Ks[i]));
b0_tensors_device.emplace_back(std::make_unique<SimpleDeviceMem>(
sizeof(B0DataType) * problem_size.Ns[i] * problem_size.Ks[i]));
b1_tensors_device.emplace_back(
std::make_unique<SimpleDeviceMem>(sizeof(B1DataType) * problem_size.Ns[i]));
d0_tensors_device.emplace_back(
std::make_unique<SimpleDeviceMem>(sizeof(D0DataType) * problem_size.Ns[i]));
c_tensors_device.emplace_back(
std::make_unique<SimpleDeviceMem>(sizeof(EDataType) * sum_of_m * problem_size.Ns[i]));
gemm_descs.push_back(
{sum_of_m, problem_size.Ns[i], problem_size.Ks[i], {1}, {1, 1}, {0}, 1});
grouped_gemm_kernel_args_.push_back(
{std::array<const void*, NumATensor>{a0_tensors_device[i]->GetDeviceBuffer()},
std::array<const void*, NumBTensor>{b0_tensors_device[i]->GetDeviceBuffer(),
b1_tensors_device[i]->GetDeviceBuffer()},
std::array<const void*, NumDTensor>{d0_tensors_device[i]->GetDeviceBuffer()},
c_tensors_device[i]->GetDeviceBuffer(),
problem_size.Ms[i],
problem_size.Ns[i],
problem_size.Ks[i],
std::array<ck::index_t, NumATensor>{problem_size.stride_As[i]},
std::array<ck::index_t, NumBTensor>{problem_size.stride_Bs[i], 0},
std::array<ck::index_t, NumDTensor>{0},
problem_size.stride_Cs[i]});
}
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
using DeviceOp = ck::tensor_operation::device::DeviceGroupedGemmMultiABDFixedNK<AsLayout,
BsLayout,
DsLayout,
Row,
AsDataType,
BsDataType,
DsDataType,
BF16,
AElementOp,
BElementOp,
CDEElementOp>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
std::vector<std::array<const void*, NumATensor>> p_As = {};
std::vector<std::array<const void*, NumBTensor>> p_Bs = {};
std::vector<std::array<const void*, NumDTensor>> p_Ds = {};
std::vector<void*> p_Cs = {};
auto argument_ptr = op_ptr->MakeArgumentPointer(p_As, p_Bs, p_Ds, p_Cs, gemm_descs);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
SimpleDeviceMem gemm_kernel_args_dev(
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()));
hip_check_error(hipMemcpy(gemm_kernel_args_dev.GetDeviceBuffer(),
grouped_gemm_kernel_args_.data(),
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()),
hipMemcpyHostToDevice));
op_ptr->SetDeviceKernelArgs(argument_ptr.get(), gemm_kernel_args_dev.GetDeviceBuffer());
op_ptr->SetElementwiseOps(
argument_ptr.get(), a_element_op, b_element_op, cde_element_op);
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * sum_of_m * problem_size.Ns[0] * problem_size.Ks[0];
std::size_t num_btype = sizeof(A0DataType) * sum_of_m * problem_size.Ks[0] +
sizeof(B0DataType) * problem_size.Ks[0] * problem_size.Ns[0] +
sizeof(EDataType) * sum_of_m * problem_size.Ns[0];
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return true;
}
int main(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
problem_size.group_count = 16;
for(int i = 0; i < problem_size.group_count; i++)
{
problem_size.Ms.push_back(32 + rand() % 32);
problem_size.Ns.push_back(1024);
problem_size.Ks.push_back(512);
problem_size.stride_As.push_back(problem_size.Ks[i]);
problem_size.stride_Bs.push_back(problem_size.Ns[i]);
problem_size.stride_Cs.push_back(problem_size.Ns[i]);
}
return !run_grouped_gemm(problem_size, config);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_multi_abd_fixed_nk.hpp"
#include "ck/host_utility/hip_check_error.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using A0DataType = BF16;
using AsDataType = ck::Tuple<A0DataType>;
using B0DataType = I8;
using B1DataType = BF16;
using BsDataType = ck::Tuple<B0DataType, B1DataType>;
using AccDataType = F32;
using CShuffleDataType = BF16;
using D0DataType = BF16;
using DsDataType = ck::Tuple<>;
using EDataType = BF16;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Row;
using B1Layout = B0Layout;
using BsLayout = ck::Tuple<B0Layout, B1Layout>;
using D0Layout = Row;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using FastGelu = ck::tensor_operation::element_wise::FastGelu;
using AElementOp = PassThrough;
using BElementOp = Multiply;
using CDEElementOp = FastGelu;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
struct ProblemSize final
{
std::vector<ck::index_t> Ms;
std::vector<ck::index_t> Ns;
std::vector<ck::index_t> Ks;
std::vector<ck::index_t> stride_As;
std::vector<ck::index_t> stride_Bs;
std::vector<ck::index_t> stride_Cs;
ck::index_t group_count;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
int k_batch = 1;
};
bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
auto group_count = problem_size.group_count;
// GEMM shape
std::vector<ck::tensor_operation::device::GemmMultiABDDesc> gemm_descs;
gemm_descs.reserve(group_count);
int sum_of_m = 0;
using DeviceMemPtr = std::unique_ptr<SimpleDeviceMem>;
std::vector<DeviceMemPtr> a0_tensors_device, b0_tensors_device, b1_tensors_device,
c_tensors_device;
a0_tensors_device.reserve(group_count);
b0_tensors_device.reserve(group_count);
b1_tensors_device.reserve(group_count);
c_tensors_device.reserve(group_count);
std::size_t flop = 0, num_btype = 0;
for(int i = 0; i < group_count; i++)
{
sum_of_m += problem_size.Ms[i];
}
constexpr ck::index_t NumATensor = 1;
constexpr ck::index_t NumBTensor = 2;
constexpr ck::index_t NumDTensor = 0;
using GroupedGemmKernelArgument = ck::tensor_operation::device::
GroupedGemmMultiABDKernelArgument<NumATensor, NumBTensor, NumDTensor>;
std::vector<GroupedGemmKernelArgument> grouped_gemm_kernel_args_;
grouped_gemm_kernel_args_.reserve(group_count);
for(int i = 0; i < group_count; i++)
{
a0_tensors_device.emplace_back(
std::make_unique<SimpleDeviceMem>(sizeof(A0DataType) * sum_of_m * problem_size.Ks[i]));
b0_tensors_device.emplace_back(std::make_unique<SimpleDeviceMem>(
sizeof(B0DataType) * problem_size.Ns[i] * problem_size.Ks[i]));
b1_tensors_device.emplace_back(
std::make_unique<SimpleDeviceMem>(sizeof(B1DataType) * problem_size.Ns[i]));
c_tensors_device.emplace_back(
std::make_unique<SimpleDeviceMem>(sizeof(EDataType) * sum_of_m * problem_size.Ns[i]));
gemm_descs.push_back(
{sum_of_m, problem_size.Ns[i], problem_size.Ks[i], {1}, {1, 1}, {}, 1});
grouped_gemm_kernel_args_.push_back(
{std::array<const void*, NumATensor>{a0_tensors_device[i]->GetDeviceBuffer()},
std::array<const void*, NumBTensor>{b0_tensors_device[i]->GetDeviceBuffer(),
b1_tensors_device[i]->GetDeviceBuffer()},
std::array<const void*, NumDTensor>{},
c_tensors_device[i]->GetDeviceBuffer(),
problem_size.Ms[i],
problem_size.Ns[i],
problem_size.Ks[i],
std::array<ck::index_t, NumATensor>{problem_size.stride_As[i]},
std::array<ck::index_t, NumBTensor>{problem_size.stride_Bs[i], 0},
std::array<ck::index_t, NumDTensor>{},
problem_size.stride_Cs[i]});
}
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
using DeviceOp = ck::tensor_operation::device::DeviceGroupedGemmMultiABDFixedNK<AsLayout,
BsLayout,
DsLayout,
Row,
AsDataType,
BsDataType,
DsDataType,
BF16,
AElementOp,
BElementOp,
CDEElementOp>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
std::vector<std::array<const void*, NumATensor>> p_As = {};
std::vector<std::array<const void*, NumBTensor>> p_Bs = {};
std::vector<std::array<const void*, NumDTensor>> p_Ds = {};
std::vector<void*> p_Cs = {};
auto argument_ptr = op_ptr->MakeArgumentPointer(p_As, p_Bs, p_Ds, p_Cs, gemm_descs);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
SimpleDeviceMem gemm_kernel_args_dev(
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()));
hip_check_error(hipMemcpy(gemm_kernel_args_dev.GetDeviceBuffer(),
grouped_gemm_kernel_args_.data(),
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()),
hipMemcpyHostToDevice));
op_ptr->SetDeviceKernelArgs(argument_ptr.get(), gemm_kernel_args_dev.GetDeviceBuffer());
op_ptr->SetElementwiseOps(
argument_ptr.get(), a_element_op, b_element_op, cde_element_op);
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * sum_of_m * problem_size.Ns[0] * problem_size.Ks[0];
std::size_t num_btype = sizeof(A0DataType) * sum_of_m * problem_size.Ks[0] +
sizeof(B0DataType) * problem_size.Ks[0] * problem_size.Ns[0] +
sizeof(EDataType) * sum_of_m * problem_size.Ns[0];
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return true;
}
int main(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
problem_size.group_count = 16;
for(int i = 0; i < problem_size.group_count; i++)
{
problem_size.Ms.push_back(32 + rand() % 32);
problem_size.Ns.push_back(1024);
problem_size.Ks.push_back(512);
problem_size.stride_As.push_back(problem_size.Ks[i]);
problem_size.stride_Bs.push_back(problem_size.Ns[i]);
problem_size.stride_Cs.push_back(problem_size.Ns[i]);
}
return !run_grouped_gemm(problem_size, config);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_tile_loop_multply.hpp"
#include "ck/host_utility/hip_check_error.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using A0DataType = BF16;
using B0DataType = I8;
using B1DataType = BF16;
using AccDataType = F32;
using CShuffleDataType = F32;
using D0DataType = BF16;
using DsDataType = ck::Tuple<B1DataType, D0DataType>;
using EDataType = BF16;
using A0Layout = Row;
using B0Layout = Row;
using B1Layout = B0Layout;
using D0Layout = Row;
using DsLayout = ck::Tuple<B0Layout, D0Layout>;
using ELayout = Row;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using MultiplyAddFastGelu = ck::tensor_operation::element_wise::MultiplyAddFastGelu;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = MultiplyAddFastGelu;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
struct ProblemSize final
{
std::vector<ck::index_t> Ms;
std::vector<ck::index_t> Ns;
std::vector<ck::index_t> Ks;
std::vector<ck::index_t> stride_As;
std::vector<ck::index_t> stride_Bs;
std::vector<ck::index_t> stride_Cs;
ck::index_t group_count;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
int k_batch = 1;
};
bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
auto group_count = problem_size.group_count;
// GEMM shape
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
gemm_descs.reserve(group_count);
int sum_of_m = 0;
using DeviceMemPtr = std::unique_ptr<SimpleDeviceMem>;
std::vector<DeviceMemPtr> a0_tensors_device, b0_tensors_device, b1_tensors_device,
d0_tensors_device, c_tensors_device;
a0_tensors_device.reserve(group_count);
b0_tensors_device.reserve(group_count);
b1_tensors_device.reserve(group_count);
d0_tensors_device.reserve(group_count);
c_tensors_device.reserve(group_count);
std::size_t flop = 0, num_btype = 0;
for(int i = 0; i < group_count; i++)
{
sum_of_m += problem_size.Ms[i];
}
constexpr ck::index_t NumDTensor = 2;
using GroupedGemmKernelArgument =
ck::tensor_operation::device::GroupedGemmTileLoopKernelArguments<NumDTensor>;
std::vector<GroupedGemmKernelArgument> grouped_gemm_kernel_args_;
grouped_gemm_kernel_args_.reserve(group_count);
for(int i = 0; i < group_count; i++)
{
a0_tensors_device.emplace_back(std::make_unique<SimpleDeviceMem>(
sizeof(A0DataType) * problem_size.Ms[i] * problem_size.Ks[i]));
b0_tensors_device.emplace_back(std::make_unique<SimpleDeviceMem>(
sizeof(B0DataType) * problem_size.Ns[i] * problem_size.Ks[i]));
b1_tensors_device.emplace_back(
std::make_unique<SimpleDeviceMem>(sizeof(B1DataType) * problem_size.Ns[i]));
c_tensors_device.emplace_back(std::make_unique<SimpleDeviceMem>(
sizeof(EDataType) * problem_size.Ms[i] * problem_size.Ns[i]));
d0_tensors_device.emplace_back(
std::make_unique<SimpleDeviceMem>(sizeof(D0DataType) * problem_size.Ns[i]));
gemm_descs.push_back({problem_size.Ms[i],
problem_size.Ns[i],
problem_size.Ks[i],
problem_size.stride_As[i],
problem_size.stride_Bs[i],
problem_size.stride_Cs[i],
{0, 0}});
grouped_gemm_kernel_args_.push_back(
{a0_tensors_device[i]->GetDeviceBuffer(),
b0_tensors_device[i]->GetDeviceBuffer(),
{b1_tensors_device[i]->GetDeviceBuffer(), d0_tensors_device[i]->GetDeviceBuffer()},
c_tensors_device[i]->GetDeviceBuffer(),
problem_size.Ms[i],
problem_size.Ns[i],
problem_size.Ks[i],
problem_size.stride_As[i],
problem_size.stride_Bs[i],
{0, 0},
problem_size.stride_Cs[i]});
}
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
using DeviceOp = ck::tensor_operation::device::DeviceGroupedGemmTileLoop<A0Layout,
B0Layout,
DsLayout,
ELayout,
A0DataType,
B0DataType,
DsDataType,
EDataType,
AElementOp,
BElementOp,
CDEElementOp>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
std::vector<const void*> p_As = {};
std::vector<const void*> p_Bs = {};
std::vector<std::array<const void*, NumDTensor>> p_Ds = {};
std::vector<void*> p_Cs = {};
auto argument_ptr = op_ptr->MakeArgumentPointer(
p_As, p_Bs, p_Ds, p_Cs, gemm_descs, a_element_op, b_element_op, cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
SimpleDeviceMem gemm_kernel_args_dev(
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()));
hip_check_error(hipMemcpy(gemm_kernel_args_dev.GetDeviceBuffer(),
grouped_gemm_kernel_args_.data(),
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()),
hipMemcpyHostToDevice));
op_ptr->SetDeviceKernelArgs(argument_ptr.get(), gemm_kernel_args_dev.GetDeviceBuffer());
float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true, 0, 20, 50});
std::size_t flop = std::size_t(2) * sum_of_m * problem_size.Ns[0] * problem_size.Ks[0];
std::size_t num_btype = sizeof(A0DataType) * sum_of_m * problem_size.Ks[0] +
sizeof(B0DataType) * problem_size.Ks[0] * problem_size.Ns[0] +
sizeof(EDataType) * sum_of_m * problem_size.Ns[0];
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return true;
}
int main(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
problem_size.group_count = 16;
for(int i = 0; i < problem_size.group_count; i++)
{
problem_size.Ms.push_back(1 + rand() % 1024);
problem_size.Ns.push_back(6144);
problem_size.Ks.push_back(4096);
problem_size.stride_As.push_back(problem_size.Ks[i]);
problem_size.stride_Bs.push_back(problem_size.Ns[i]);
problem_size.stride_Cs.push_back(problem_size.Ns[i]);
std::cout << " M = " << problem_size.Ms[i] << " N = " << problem_size.Ns[i] << " K "
<< problem_size.Ks[i] << std::endl;
}
return !run_grouped_gemm(problem_size, config);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_tile_loop_multply.hpp"
#include "ck/host_utility/hip_check_error.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using A0DataType = BF16;
using B0DataType = I8;
using B1DataType = BF16;
using AccDataType = F32;
using CShuffleDataType = BF16;
using D0DataType = BF16;
using DsDataType = ck::Tuple<B1DataType>;
using EDataType = BF16;
using A0Layout = Row;
using B0Layout = Row;
using B1Layout = B0Layout;
using D0Layout = Row;
using DsLayout = ck::Tuple<B1Layout>;
using ELayout = Row;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = Multiply;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
struct ProblemSize final
{
std::vector<ck::index_t> Ms;
std::vector<ck::index_t> Ns;
std::vector<ck::index_t> Ks;
std::vector<ck::index_t> stride_As;
std::vector<ck::index_t> stride_Bs;
std::vector<ck::index_t> stride_Cs;
ck::index_t group_count;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
int k_batch = 1;
};
bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
auto group_count = problem_size.group_count;
// GEMM shape
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
gemm_descs.reserve(group_count);
int sum_of_m = 0;
using DeviceMemPtr = std::unique_ptr<SimpleDeviceMem>;
std::vector<DeviceMemPtr> a0_tensors_device, b0_tensors_device, b1_tensors_device,
c_tensors_device;
a0_tensors_device.reserve(group_count);
b0_tensors_device.reserve(group_count);
b1_tensors_device.reserve(group_count);
c_tensors_device.reserve(group_count);
std::size_t flop = 0, num_btype = 0;
for(int i = 0; i < group_count; i++)
{
sum_of_m += problem_size.Ms[i];
}
constexpr ck::index_t NumDTensor = 1;
using GroupedGemmKernelArgument =
ck::tensor_operation::device::GroupedGemmTileLoopKernelArguments<NumDTensor>;
std::vector<GroupedGemmKernelArgument> grouped_gemm_kernel_args_;
grouped_gemm_kernel_args_.reserve(group_count);
for(int i = 0; i < group_count; i++)
{
a0_tensors_device.emplace_back(std::make_unique<SimpleDeviceMem>(
sizeof(A0DataType) * problem_size.Ms[i] * problem_size.Ks[i]));
b0_tensors_device.emplace_back(std::make_unique<SimpleDeviceMem>(
sizeof(B0DataType) * problem_size.Ns[i] * problem_size.Ks[i]));
b1_tensors_device.emplace_back(
std::make_unique<SimpleDeviceMem>(sizeof(B1DataType) * problem_size.Ns[i]));
c_tensors_device.emplace_back(std::make_unique<SimpleDeviceMem>(
sizeof(EDataType) * problem_size.Ms[i] * problem_size.Ns[i]));
gemm_descs.push_back({problem_size.Ms[i],
problem_size.Ns[i],
problem_size.Ks[i],
problem_size.stride_As[i],
problem_size.stride_Bs[i],
problem_size.stride_Cs[i],
{0}});
grouped_gemm_kernel_args_.push_back({a0_tensors_device[i]->GetDeviceBuffer(),
b0_tensors_device[i]->GetDeviceBuffer(),
{b1_tensors_device[i]->GetDeviceBuffer()},
c_tensors_device[i]->GetDeviceBuffer(),
problem_size.Ms[i],
problem_size.Ns[i],
problem_size.Ks[i],
problem_size.stride_As[i],
problem_size.stride_Bs[i],
{0},
problem_size.stride_Cs[i]});
}
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
using DeviceOp = ck::tensor_operation::device::DeviceGroupedGemmTileLoop<A0Layout,
B0Layout,
DsLayout,
ELayout,
A0DataType,
B0DataType,
DsDataType,
EDataType,
AElementOp,
BElementOp,
CDEElementOp>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
std::vector<const void*> p_As = {};
std::vector<const void*> p_Bs = {};
std::vector<std::array<const void*, NumDTensor>> p_Ds = {};
std::vector<void*> p_Cs = {};
auto argument_ptr = op_ptr->MakeArgumentPointer(
p_As, p_Bs, p_Ds, p_Cs, gemm_descs, a_element_op, b_element_op, cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
SimpleDeviceMem gemm_kernel_args_dev(
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()));
hip_check_error(hipMemcpy(gemm_kernel_args_dev.GetDeviceBuffer(),
grouped_gemm_kernel_args_.data(),
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()),
hipMemcpyHostToDevice));
op_ptr->SetDeviceKernelArgs(argument_ptr.get(), gemm_kernel_args_dev.GetDeviceBuffer());
float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true, 0, 20, 50});
std::size_t flop = std::size_t(2) * sum_of_m * problem_size.Ns[0] * problem_size.Ks[0];
std::size_t num_btype = sizeof(A0DataType) * sum_of_m * problem_size.Ks[0] +
sizeof(B0DataType) * problem_size.Ks[0] * problem_size.Ns[0] +
sizeof(EDataType) * sum_of_m * problem_size.Ns[0];
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return true;
}
int main(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
problem_size.group_count = 16;
for(int i = 0; i < problem_size.group_count; i++)
{
problem_size.Ms.push_back(1 + rand() % 1024);
problem_size.Ns.push_back(4096);
problem_size.Ks.push_back(4096);
problem_size.stride_As.push_back(problem_size.Ks[i]);
problem_size.stride_Bs.push_back(problem_size.Ns[i]);
problem_size.stride_Cs.push_back(problem_size.Ns[i]);
std::cout << " M = " << problem_size.Ms[i] << " N = " << problem_size.Ns[i] << " K "
<< problem_size.Ks[i] << std::endl;
}
return !run_grouped_gemm(problem_size, config);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_multi_abd_fixed_nk.hpp"
#include "ck/host_utility/hip_check_error.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using A0DataType = BF16;
using AsDataType = ck::Tuple<A0DataType>;
using B0DataType = I8;
using B1DataType = BF16;
using BsDataType = ck::Tuple<B0DataType, B1DataType>;
using AccDataType = F32;
using CShuffleDataType = BF16;
using D0DataType = BF16;
using DsDataType = ck::Tuple<>;
using EDataType = BF16;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Row;
using B1Layout = B0Layout;
using BsLayout = ck::Tuple<B0Layout, B1Layout>;
using D0Layout = Row;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AElementOp = PassThrough;
using BElementOp = Multiply;
using CDEElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
struct ProblemSize final
{
std::vector<ck::index_t> Ms;
std::vector<ck::index_t> Ns;
std::vector<ck::index_t> Ks;
std::vector<ck::index_t> stride_As;
std::vector<ck::index_t> stride_Bs;
std::vector<ck::index_t> stride_Cs;
ck::index_t group_count;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
int k_batch = 1;
};
bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
auto group_count = problem_size.group_count;
// GEMM shape
std::vector<ck::tensor_operation::device::GemmMultiABDDesc> gemm_descs;
gemm_descs.reserve(group_count);
int sum_of_m = 0;
using DeviceMemPtr = std::unique_ptr<SimpleDeviceMem>;
std::vector<DeviceMemPtr> a0_tensors_device, b0_tensors_device, b1_tensors_device,
c_tensors_device;
a0_tensors_device.reserve(group_count);
b0_tensors_device.reserve(group_count);
b1_tensors_device.reserve(group_count);
c_tensors_device.reserve(group_count);
std::size_t flop = 0, num_btype = 0;
for(int i = 0; i < group_count; i++)
{
sum_of_m += problem_size.Ms[i];
}
constexpr ck::index_t NumATensor = 1;
constexpr ck::index_t NumBTensor = 2;
constexpr ck::index_t NumDTensor = 0;
using GroupedGemmKernelArgument = ck::tensor_operation::device::
GroupedGemmMultiABDKernelArgument<NumATensor, NumBTensor, NumDTensor>;
std::vector<GroupedGemmKernelArgument> grouped_gemm_kernel_args_;
grouped_gemm_kernel_args_.reserve(group_count);
for(int i = 0; i < group_count; i++)
{
a0_tensors_device.emplace_back(
std::make_unique<SimpleDeviceMem>(sizeof(A0DataType) * sum_of_m * problem_size.Ks[i]));
b0_tensors_device.emplace_back(std::make_unique<SimpleDeviceMem>(
sizeof(B0DataType) * problem_size.Ns[i] * problem_size.Ks[i]));
b1_tensors_device.emplace_back(
std::make_unique<SimpleDeviceMem>(sizeof(B1DataType) * problem_size.Ns[i]));
c_tensors_device.emplace_back(
std::make_unique<SimpleDeviceMem>(sizeof(EDataType) * sum_of_m * problem_size.Ns[i]));
gemm_descs.push_back(
{sum_of_m, problem_size.Ns[i], problem_size.Ks[i], {1}, {1, 1}, {}, 1});
grouped_gemm_kernel_args_.push_back(
{std::array<const void*, NumATensor>{a0_tensors_device[i]->GetDeviceBuffer()},
std::array<const void*, NumBTensor>{b0_tensors_device[i]->GetDeviceBuffer(),
b1_tensors_device[i]->GetDeviceBuffer()},
std::array<const void*, NumDTensor>{},
c_tensors_device[i]->GetDeviceBuffer(),
problem_size.Ms[i],
problem_size.Ns[i],
problem_size.Ks[i],
std::array<ck::index_t, NumATensor>{problem_size.stride_As[i]},
std::array<ck::index_t, NumBTensor>{problem_size.stride_Bs[i], 0},
std::array<ck::index_t, NumDTensor>{},
problem_size.stride_Cs[i]});
}
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
using DeviceOp = ck::tensor_operation::device::DeviceGroupedGemmMultiABDFixedNK<AsLayout,
BsLayout,
DsLayout,
Row,
AsDataType,
BsDataType,
DsDataType,
BF16,
AElementOp,
BElementOp,
CDEElementOp>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
std::vector<std::array<const void*, NumATensor>> p_As = {};
std::vector<std::array<const void*, NumBTensor>> p_Bs = {};
std::vector<std::array<const void*, NumDTensor>> p_Ds = {};
std::vector<void*> p_Cs = {};
auto argument_ptr = op_ptr->MakeArgumentPointer(p_As, p_Bs, p_Ds, p_Cs, gemm_descs);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
SimpleDeviceMem gemm_kernel_args_dev(
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()));
hip_check_error(hipMemcpy(gemm_kernel_args_dev.GetDeviceBuffer(),
grouped_gemm_kernel_args_.data(),
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()),
hipMemcpyHostToDevice));
op_ptr->SetDeviceKernelArgs(argument_ptr.get(), gemm_kernel_args_dev.GetDeviceBuffer());
op_ptr->SetElementwiseOps(
argument_ptr.get(), a_element_op, b_element_op, cde_element_op);
float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true, 0, 20, 50});
std::size_t flop = std::size_t(2) * sum_of_m * problem_size.Ns[0] * problem_size.Ks[0];
std::size_t num_btype = sizeof(A0DataType) * sum_of_m * problem_size.Ks[0] +
sizeof(B0DataType) * problem_size.Ks[0] * problem_size.Ns[0] +
sizeof(EDataType) * sum_of_m * problem_size.Ns[0];
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return true;
}
int main(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
problem_size.group_count = 16;
for(int i = 0; i < problem_size.group_count; i++)
{
problem_size.Ms.push_back(1 + rand() % 1024);
problem_size.Ns.push_back(4096);
problem_size.Ks.push_back(4096);
problem_size.stride_As.push_back(problem_size.Ks[i]);
problem_size.stride_Bs.push_back(problem_size.Ns[i]);
problem_size.stride_Cs.push_back(problem_size.Ns[i]);
std::cout << " M = " << problem_size.Ms[i] << " N = " << problem_size.Ns[i] << " K "
<< problem_size.Ks[i] << std::endl;
}
return !run_grouped_gemm(problem_size, config);
}
...@@ -48,6 +48,21 @@ else() ...@@ -48,6 +48,21 @@ else()
endif() endif()
endif() endif()
if (GPU_TARGETS)
if (GPU_TARGETS MATCHES "gfx9")
add_definitions(-DCK_USE_XDL)
set(CK_USE_XDL "ON")
endif()
if (GPU_TARGETS MATCHES "gfx11")
add_definitions(-DCK_USE_WMMA)
set(CK_USE_WMMA "ON")
endif()
else()
add_definitions(-DCK_USE_WMMA -DCK_USE_XDL)
set(CK_USE_XDL "ON")
set(CK_USE_WMMA "ON")
endif()
find_package(composable_kernel COMPONENTS device_other_operations device_gemm_operations device_conv_operations device_reduction_operations) find_package(composable_kernel COMPONENTS device_other_operations device_gemm_operations device_conv_operations device_reduction_operations)
if(GPU_TARGETS MATCHES "gfx9") if(GPU_TARGETS MATCHES "gfx9")
find_package(composable_kernel COMPONENTS device_contraction_operations) find_package(composable_kernel COMPONENTS device_contraction_operations)
......
...@@ -95,6 +95,7 @@ else() ...@@ -95,6 +95,7 @@ else()
-Wno-weak-vtables -Wno-weak-vtables
-Wno-covered-switch-default -Wno-covered-switch-default
-Wno-unsafe-buffer-usage -Wno-unsafe-buffer-usage
-Wno-unused-lambda-capture
) )
else() else()
if (CMAKE_${COMPILER}_COMPILER_ID MATCHES "GNU" AND ${COMPILER} MATCHES "CXX") if (CMAKE_${COMPILER}_COMPILER_ID MATCHES "GNU" AND ${COMPILER} MATCHES "CXX")
......
...@@ -33,6 +33,6 @@ The CK documentation is structured as follows: ...@@ -33,6 +33,6 @@ The CK documentation is structured as follows:
* :ref:`hello-world` * :ref:`hello-world`
To contribute to the documentation refer to `Contributing to ROCm <https://rocm.docs.amd.com/en/latest/contribute/index.html>`_. To contribute to the documentation refer to `Contributing to ROCm <https://rocm.docs.amd.com/en/latest/contribute/contributing.html>`_.
You can find licensing information on the `Licensing <https://rocm.docs.amd.com/en/latest/about/license.html>`_ page. You can find licensing information on the `Licensing <https://rocm.docs.amd.com/en/latest/about/license.html>`_ page.
rocm-docs-core==0.38.0 rocm-docs-core==1.1.3
sphinxcontrib-bibtex==2.6.2 sphinxcontrib-bibtex==2.6.2
# #
# This file is autogenerated by pip-compile with Python 3.8 # This file is autogenerated by pip-compile with Python 3.10
# by the following command: # by the following command:
# #
# pip-compile requirements.in # pip-compile requirements.in
...@@ -48,12 +48,6 @@ idna==3.4 ...@@ -48,12 +48,6 @@ idna==3.4
# via requests # via requests
imagesize==1.4.1 imagesize==1.4.1
# via sphinx # via sphinx
importlib-metadata==6.8.0
# via
# sphinx
# sphinxcontrib-bibtex
importlib-resources==6.1.0
# via rocm-docs-core
jinja2==3.1.2 jinja2==3.1.2
# via # via
# myst-parser # myst-parser
...@@ -99,8 +93,6 @@ pyjwt[crypto]==2.6.0 ...@@ -99,8 +93,6 @@ pyjwt[crypto]==2.6.0
# via pygithub # via pygithub
pynacl==1.5.0 pynacl==1.5.0
# via pygithub # via pygithub
pytz==2023.3.post1
# via babel
pyyaml==6.0 pyyaml==6.0
# via # via
# myst-parser # myst-parser
...@@ -111,7 +103,7 @@ requests==2.31.0 ...@@ -111,7 +103,7 @@ requests==2.31.0
# via # via
# pygithub # pygithub
# sphinx # sphinx
rocm-docs-core==0.38.0 rocm-docs-core==1.1.3
# via -r requirements.in # via -r requirements.in
six==1.16.0 six==1.16.0
# via # via
...@@ -165,7 +157,3 @@ urllib3==1.26.18 ...@@ -165,7 +157,3 @@ urllib3==1.26.18
# via requests # via requests
wrapt==1.15.0 wrapt==1.15.0
# via deprecated # via deprecated
zipp==3.17.0
# via
# importlib-metadata
# importlib-resources
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment