"include/ck/utility/sequence.hpp" did not exist on "33d1e0e2e54bed6f155dda50bd8d8796b5f20adf"
Commit 2fd6c6d4 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents c32d3448 6651a124
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#error Should compile this file with ck::int4_t support
#endif
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#define BUILD_INT4_EXAMPLE
......@@ -24,3 +22,4 @@ using RsDataType = ck::Tuple<R0DataType>;
#include "run_convnd_fwd_max_example.inc"
int main(int argc, char* argv[]) { return !run_convnd_fwd_max_example(argc, argv); }
#endif
......@@ -272,15 +272,14 @@ int main(int argc, char* argv[])
{
for(int m = 0; m < M; ++m)
{
auto reduce0_acc = reduce0_op.GetIdentityValue<ReduceAccDataType>();
auto reduce1_acc = reduce1_op.GetIdentityValue<ReduceAccDataType>();
auto reduce0_acc = reduce0_op.GetIdentityValue<ReduceAccDataType>();
auto reduce1_acc = reduce1_op.GetIdentityValue<ReduceAccDataType>();
ReduceAccDataType d0_val = 0;
ReduceAccDataType d1_val = 0;
for(int n = 0; n < N; ++n)
{
auto c_val =
ck::type_convert<ReduceAccDataType>(c_g_m_n_host_result(batch, m, n));
ReduceAccDataType d0_val;
ReduceAccDataType d1_val;
UnaryIdenticElementOp{}(d0_val, c_val);
UnarySquareElementOp{}(d1_val, c_val);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#error Should compile this file with ck::int4_t support
#endif
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#include "common.hpp"
......@@ -29,3 +27,4 @@ using OutElementOp = ck::tensor_operation::element_wise::AddReluAdd;
#include "run_grouped_conv_fwd_bias_relu_add_example.inc"
int main(int argc, char* argv[]) { return !run_grouped_conv_fwd_bias_relu_add_example(argc, argv); }
#endif
......@@ -9,9 +9,7 @@ Gemm + Gemm fused operation. Computes C_m_o = A_m_k * B0_k_n * B1_n_o
Gemm1
*/
#ifndef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#error Should compile this file with ck::int4_t support
#endif
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#include <iostream>
#include <numeric>
......@@ -144,3 +142,4 @@ static_assert(sizeof(ck::int4_t) == sizeof(int8_t));
#endif
int main(int argc, char* argv[]) { return run_batched_gemm_gemm_example(argc, argv) ? 0 : 1; }
#endif
......@@ -157,7 +157,7 @@ bool run_splitK_gemm(const ProblemSize& problem_size, const ExecutionConfig& con
if(config.time_kernel)
{
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel, 1});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
......
......@@ -42,7 +42,7 @@ using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::KPadding;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdlSplitKCShuffle
// clang-format off
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#error Should compile this file with ck::int4_t support
#endif
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#include <cstdlib>
#include <iostream>
......@@ -120,3 +118,4 @@ static_assert(sizeof(ck::int4_t) == sizeof(int8_t));
#endif
int main(int argc, char* argv[]) { return run_grouped_conv_conv_fwd_example(argc, argv) ? 0 : 1; }
#endif
......@@ -32,6 +32,8 @@ std::vector<ck::index_t> f_tensor_strides_ncdhw(ck::index_t N_,
return {C_ * D * H * W, D * H * W, H * W, W, 1_uz};
else if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NDHWC>::value)
return {D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_};
throw std::runtime_error("Pool3d_fwd: problem with layout. ");
return {0, 0, 0, 0, 0};
};
template <typename TensorLayout>
......@@ -53,6 +55,8 @@ HostTensorDescriptor f_host_tensor_descriptor(std::size_t N_,
return HostTensorDescriptor({N_, C_, D, H, W},
{D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_});
}
throw std::runtime_error("Pool3d_fwd: problem with layout. ");
return HostTensorDescriptor({0, 0, 0, 0, 0}, {0, 0, 0, 0, 0});
};
template <typename DevicePoolFwdInstance,
......
......@@ -26,6 +26,8 @@ std::vector<ck::index_t> f_tensor_strides_ncdhw(ck::index_t N_,
return {C_ * D * H * W, D * H * W, H * W, W, 1_uz};
else if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NDHWC>::value)
return {D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_};
throw std::runtime_error("Avgpool3d_bwd: problem with layout. ");
return {0, 0, 0, 0, 0};
};
template <typename TensorLayout>
......@@ -47,6 +49,8 @@ HostTensorDescriptor f_host_tensor_descriptor(std::size_t N_,
return HostTensorDescriptor({N_, C_, D, H, W},
{D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_});
}
throw std::runtime_error("Avgpool3d_bwd: problem with layout. ");
return HostTensorDescriptor({0, 0, 0, 0, 0}, {0, 0, 0, 0, 0});
};
template <typename DevicePoolBwdInstance,
......
......@@ -11,6 +11,6 @@ struct StreamConfig
hipStream_t stream_id_ = nullptr;
bool time_kernel_ = false;
int log_level_ = 0;
int cold_niters_ = 1;
int nrepeat_ = 10;
int cold_niters_ = 5;
int nrepeat_ = 50;
};
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v2.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// Note: inter-wave loop scheduler is rolled out to c-shuffle version first. Becuase non c-shuffle
// version currently has compiler issues with register spill which further causes validation
// failures.
template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename CDataType,
typename GemmAccDataType,
typename CShuffleDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1,
index_t BK1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched = make_default_loop_scheduler(),
PipelineVersion PipelineVer = PipelineVersion::v1,
typename ComputeTypeA = CDataType,
typename ComputeTypeB = ComputeTypeA>
struct DeviceGemm_Xdl_CShuffleV2 : public DeviceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>
{
using DeviceOp = DeviceGemm_Xdl_CShuffleV2;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_xdl_cshuffle_v2<
ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
GemmAccDataType,
CShuffleDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
GemmSpec,
InMemoryDataOperationEnum::Set,
NumGemmKPrefetchStage,
BlockSize,
MPerBlock,
NPerBlock,
KPerBlock,
AK1,
BK1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
false,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
false,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock,
LoopSched,
PipelineVer,
ComputeTypeA,
ComputeTypeB>;
using Argument = typename GridwiseGemm::Argument;
// Invoker
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(stream_config.log_level_ > 0)
{
arg.Print();
}
if(!GridwiseGemm::CheckValidity(arg))
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
index_t gdx, gdy, gdz;
std::tie(gdx, gdy, gdz) = GridwiseGemm::CalculateGridSize(arg.M, arg.N);
float ave_time = 0;
const auto K = GridwiseGemm::CalculateAK0(arg.K) * AK1;
if(GridwiseGemm::CalculateKBlockLoopTailNum(K) == 3)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v2<GridwiseGemm, true>;
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(gdx, gdy, gdz), dim3(BlockSize), 0, arg);
}
else
{
const auto kernel = kernel_gemm_xdl_cshuffle_v2<GridwiseGemm, true, 2>;
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(gdx, gdy, gdz), dim3(BlockSize), 0, arg);
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
if(!ck::is_xdl_supported())
{
return false;
}
if((arg.K % AK1 != 0 || arg.K % BK1 != 0) && !(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding ||
GemmSpec == GemmSpecialization::KPadding))
{
return false;
}
return GridwiseGemm::CheckValidity(arg);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const ADataType* p_a,
const BDataType* p_b,
CDataType* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation)
{
return Argument{p_a, p_b, p_c, M, N, K, StrideA, StrideB, StrideC};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c),
M,
N,
K,
StrideA,
StrideB,
StrideC);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
std::map<LoopScheduler, std::string> LoopSchedToString{
{LoopScheduler::Default, "Default"}, {LoopScheduler::Interwave, "Interwave"}};
std::map<PipelineVersion, std::string> PipelineVersionToString{{PipelineVersion::v1, "v1"},
{PipelineVersion::v2, "v2"}};
// clang-format off
str << "DeviceGemm_Xdl_CShuffleV2"
<< "<"
<< getGemmSpecializationString(GemmSpec) << ", "
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1 << ", "
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle
<< ">"
<< " LoopScheduler: "
<< LoopSchedToString[LoopSched] << ", "
<< "PipelineVersion: "
<< PipelineVersionToString[PipelineVer];
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -134,6 +134,11 @@ struct BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, void>
__host__ __device__ BlockToCTileMap_M00_N0_M01Adapt(index_t M, index_t N, index_t M01 = 8)
: M_(M), N_(N), M01_(M01)
{
#if 0
if(get_thread_global_1d_id()==0){
printf("Ctor called, M= %d, N= %d, M01 = %d\n", M_, N_, M01_);
}
#endif
}
template <typename CGridDesc_M_N>
......@@ -252,6 +257,302 @@ struct BlockToCTileMap_M00_N0_M01Adapt : BlockToCTileMap_M00_N0_M01Adapt<MPerBlo
BlockToCTileMap_M00_N0_M01Adapt;
};
// Rows of column-vectors
// This C-tile map dynamically adjusts M01 when C-tile index is out of range
template <index_t GroupNum, index_t MPerBlock, index_t NPerBlock, typename CGridDesc_M_N = void>
struct BlockToCTileMap_Grouped_M00_N0_M01Adapt;
template <index_t GroupNum, index_t MPerBlock, index_t NPerBlock>
struct BlockToCTileMap_Grouped_M00_N0_M01Adapt<GroupNum, MPerBlock, NPerBlock, void>
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
__host__ __device__ BlockToCTileMap_Grouped_M00_N0_M01Adapt() = default;
__host__ __device__ BlockToCTileMap_Grouped_M00_N0_M01Adapt(
const BlockToCTileMap_Grouped_M00_N0_M01Adapt&) = default;
__host__ __device__
BlockToCTileMap_Grouped_M00_N0_M01Adapt(BlockToCTileMap_Grouped_M00_N0_M01Adapt&&) = default;
__host__ __device__ BlockToCTileMap_Grouped_M00_N0_M01Adapt&
operator=(const BlockToCTileMap_Grouped_M00_N0_M01Adapt&) = default;
__host__ __device__ BlockToCTileMap_Grouped_M00_N0_M01Adapt&
operator=(BlockToCTileMap_Grouped_M00_N0_M01Adapt&&) = default;
__host__ __device__ BlockToCTileMap_Grouped_M00_N0_M01Adapt(index_t M,
index_t N,
index_t M01 = 8)
: M_(M), N_(N), M01_(M01)
{
#if 0
if(get_thread_global_1d_id()==0){
printf("Ctor called, M= %d, N= %d, M01 = %d\n", M_, N_, M01_);
}
#endif
}
template <typename CGridDesc_M_N>
__host__ __device__
BlockToCTileMap_Grouped_M00_N0_M01Adapt(const CGridDesc_M_N& c_grid_desc_m_n, index_t M01 = 8)
: BlockToCTileMap_Grouped_M00_N0_M01Adapt(
c_grid_desc_m_n.GetLength(I0), c_grid_desc_m_n.GetLength(I1), M01)
{
}
__host__ static constexpr index_t CalculateGridSize(index_t M, index_t N)
{
const auto M0 = math::integer_divide_ceil(M, MPerBlock);
const auto N0 = math::integer_divide_ceil(N, NPerBlock);
return M0 * N0;
}
template <typename CGridDesc_M_N>
__host__ static constexpr index_t CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n)
{
return CalculateGridSize(c_grid_desc_m_n.GetLength(I0), c_grid_desc_m_n.GetLength(I1));
}
template <typename CGridDesc_M_N>
__host__ bool CheckValidity(const CGridDesc_M_N& /* c_grid_desc_m_n */) const
{
return true;
}
template <typename TopIdx>
__host__ __device__ constexpr auto CalculateBottomIndex(const TopIdx& idx_top) const
{
auto block_1d_id = idx_top[I0];
const auto M0 = math::integer_divide_ceil(M_, MPerBlock);
const auto N0 = math::integer_divide_ceil(N_, NPerBlock);
block_1d_id = block_1d_id % (M0 * N0); // swallow batch index
const auto group_size = math::integer_divide_ceil(M0 * N0, GroupNum);
auto group_id = block_1d_id % GroupNum;
auto remap_block_1d_id = group_id * group_size + block_1d_id / GroupNum;
index_t idx_N0 = remap_block_1d_id % N0;
index_t idx_M0 = remap_block_1d_id / N0;
const auto M01_adapt = (idx_M0 < M0 - M0 % M01_) ? M01_ : M0 % M01_;
index_t idx_M00 = idx_M0 / M01_;
index_t idx_M01 = idx_M0 % M01_;
index_t idx_N0_M01_local = idx_N0 + idx_M01 * N0;
/**
* idxN0
*
* |< mtx N >|
*
* NPerBlock NPerBlock NPerBlock NPerBlock
* N_0 N_1 N_2 N_3
* - |-----------|-----------|-----------|-----|-----|-
* ^ | - - 0 |/----> 2 | | | |
* | | | / | | | | | M_0 MPerBlock
* | M | /| | | | | |
* |-0---|---/-|-----|-----|-----------|-----|-----|-
* | 1 | / | | | blockid | | |
* idxM0 | | | / | V | 5 | | | M_1 MPerBlock
* | - V 1 | - 3 | | | |
* |-----------|-----------|-----------|-----|-----|-
* mtx M | | | | | |
* | | | | | | M_2 MPerBlock
* | | | | | |
* |-----------|-----------|-----------|-----|-----|-
* | | | | | |
* | | | | | | M_3 MPerBlock
* | | | | | |
* |-----------|-----------|-----------|-----|-----|-
* V | | | | | |
* - |-----------|-----------|-----------|-----|-----|- M_4 MPerBlock
* | | | | | |
* |-----------|-----------|-----------|-----|-----|-
* Example:
* assume:
* M0 = 5
* N0 = 4
* block_1d_id = 5
* M01 = 2
*
* idx_N0 = 1
* idx_M0 = 1
* M01_adapt = 2
* idx_M00 = 0
* idx_M01 = 1
* idx_N0_M01_local = 5
* output {1, 2}
*/
return make_tuple(idx_N0_M01_local % M01_adapt + idx_M00 * M01_,
idx_N0_M01_local / M01_adapt);
}
template <typename CTileIdx, typename CTileDim>
__host__ __device__ bool ValidCTileIndex(const CTileIdx& /* c_tile_idx */,
const CTileDim& /* c_tile_dim */) const
{
return true; // always valid provided that user gets grid size from CalculateGridSize()
}
private:
index_t M_;
index_t N_;
index_t M01_;
};
// keep the redundant type argument for backward compatibility
template <index_t GroupNum, index_t MPerBlock, index_t NPerBlock, typename CGridDesc_M_N>
struct BlockToCTileMap_Grouped_M00_N0_M01Adapt
: BlockToCTileMap_Grouped_M00_N0_M01Adapt<GroupNum, MPerBlock, NPerBlock, void>
{
using BlockToCTileMap_Grouped_M00_N0_M01Adapt<GroupNum, MPerBlock, NPerBlock, void>::
BlockToCTileMap_Grouped_M00_N0_M01Adapt;
};
// columns of row-vectors
// This C-tile map dynamically adjusts N01 when C-tile index is out of range
template <index_t MPerBlock, index_t NPerBlock, typename CGridDesc_M_N = void>
struct BlockToCTileMap_N00_M0_N01Adapt;
template <index_t MPerBlock, index_t NPerBlock>
struct BlockToCTileMap_N00_M0_N01Adapt<MPerBlock, NPerBlock, void>
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
__host__ __device__ BlockToCTileMap_N00_M0_N01Adapt() = default;
__host__ __device__ BlockToCTileMap_N00_M0_N01Adapt(const BlockToCTileMap_N00_M0_N01Adapt&) =
default;
__host__ __device__ BlockToCTileMap_N00_M0_N01Adapt(BlockToCTileMap_N00_M0_N01Adapt&&) =
default;
__host__ __device__ BlockToCTileMap_N00_M0_N01Adapt&
operator=(const BlockToCTileMap_N00_M0_N01Adapt&) = default;
__host__ __device__ BlockToCTileMap_N00_M0_N01Adapt&
operator=(BlockToCTileMap_N00_M0_N01Adapt&&) = default;
__host__ __device__ BlockToCTileMap_N00_M0_N01Adapt(index_t M, index_t N, index_t N01 = 8)
: M_(M), N_(N), N01_(N01)
{
#if 0
if(get_thread_global_1d_id()==0){
printf("Ctor called, M= %d, N= %d, N01 = %d\n", M_, N_, N01_);
}
#endif
}
template <typename CGridDesc_M_N>
__host__ __device__ BlockToCTileMap_N00_M0_N01Adapt(const CGridDesc_M_N& c_grid_desc_m_n,
index_t N01 = 8)
: BlockToCTileMap_N00_M0_N01Adapt(
c_grid_desc_m_n.GetLength(I0), c_grid_desc_m_n.GetLength(I1), N01)
{
}
__host__ static constexpr index_t CalculateGridSize(index_t M, index_t N)
{
const auto M0 = math::integer_divide_ceil(M, MPerBlock);
const auto N0 = math::integer_divide_ceil(N, NPerBlock);
return M0 * N0;
}
template <typename CGridDesc_M_N>
__host__ static constexpr index_t CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n)
{
return CalculateGridSize(c_grid_desc_m_n.GetLength(I0), c_grid_desc_m_n.GetLength(I1));
}
template <typename CGridDesc_M_N>
__host__ bool CheckValidity(const CGridDesc_M_N& /* c_grid_desc_m_n */) const
{
return true;
}
template <typename TopIdx>
__host__ __device__ constexpr auto CalculateBottomIndex(const TopIdx& idx_top) const
{
auto block_1d_id = idx_top[I0];
const auto M0 = math::integer_divide_ceil(M_, MPerBlock);
const auto N0 = math::integer_divide_ceil(N_, NPerBlock);
block_1d_id = block_1d_id % (M0 * N0); // swallow batch index
index_t idx_M0 = block_1d_id % M0;
index_t idx_N0 = block_1d_id / M0;
const auto N01_adapt = (idx_N0 < N0 - N0 % N01_) ? N01_ : N0 % N01_;
index_t idx_N00 = idx_N0 / N01_;
index_t idx_N01 = idx_N0 % N01_;
index_t idx_M0_N01_local = idx_M0 + idx_N01 * M0;
/**
* idxN0
*
* |< mtx N >|
*
* |<---N01--->|
* - |-----------|-----------|-----------|-----|-----|-
* ^ | 0 ----------> 1 | | | |
* | | / | | | | M_0 MPerBlock
* | / | | | |
* |------/----------------|-----------|-----|-----|-
* | | | | | | |
* idxM0 | V | | | | | M_1 MPerBlock
* | 2 ----------> 3 | | | |
* |-----------|-----------|-----------|-----|-----|-
* mtx M | | blockid | | | |
* | | 5 | | | | M_2 MPerBlock
* | | | | | |
* |-----------|-----------|-----------|-----|-----|-
* | | | | | |
* | | | | | | M_3 MPerBlock
* | | | | | |
* |-----------|-----------|-----------|-----|-----|-
* V | | | | | |
* - |-----------|-----------|-----------|-----|-----|- M_4 MPerBlock
* | | | | | |
* |-----------|-----------|-----------|-----|-----|-
* NPerBlock NPerBlock NPerBlock NPerBlock
* N_0 N_1 N_2 N_3
* Example:
* assume:
* N0 = 5
* M0 = 4
* block_1d_id = 5
* N01 = 2
*
* idx_M0 = 1
* idx_N0 = 1
* N01_adapt = 2
* idx_N00 = 0
* idx_N01 = 1
* idx_M0_N01_local = 5
* output {2, 1}
*/
return make_tuple(idx_M0_N01_local / N01_adapt,
idx_M0_N01_local % N01_adapt + idx_N00 * N01_);
}
template <typename CTileIdx, typename CTileDim>
__host__ __device__ bool ValidCTileIndex(const CTileIdx& /* c_tile_idx */,
const CTileDim& /* c_tile_dim */) const
{
return true; // always valid provided that user gets grid size from CalculateGridSize()
}
private:
index_t M_;
index_t N_;
index_t N01_;
};
// 2D slices of column-vectors in 3D space
// This C-tile map dynamically adjusts M01 when C-tile index is out of range
template <index_t MPerBlock, index_t NPerBlock, typename CGridDesc_M_N>
......
......@@ -268,6 +268,21 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::KPadding)
{
const auto a_grid_desc_m_kpad = transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_pass_through_transform(M), make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return transform_tensor_descriptor(
a_grid_desc_m_kpad,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0Padded, K1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else
{
return transform_tensor_descriptor(
......@@ -329,6 +344,21 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::KPadding)
{
const auto b_grid_desc_kpad_n = transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_right_pad_transform(K, KPad - K), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return transform_tensor_descriptor(
b_grid_desc_kpad_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0Padded, K1)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else
{
return transform_tensor_descriptor(
......
......@@ -189,6 +189,7 @@ struct vector_type<T, 1>
}
};
int static err = 0;
template <typename T>
struct vector_type<T, 2>
{
......@@ -221,6 +222,10 @@ struct vector_type<T, 2>
{
return data_.d2x1_;
}
else
{
return err;
}
}
template <typename X>
......@@ -236,6 +241,10 @@ struct vector_type<T, 2>
{
return data_.d2x1_;
}
else
{
return err;
}
}
};
......@@ -278,6 +287,10 @@ struct vector_type<T, 4>
{
return data_.d4x1_;
}
else
{
return err;
}
}
template <typename X>
......@@ -298,6 +311,10 @@ struct vector_type<T, 4>
{
return data_.d4x1_;
}
else
{
return err;
}
}
};
......@@ -347,6 +364,10 @@ struct vector_type<T, 8>
{
return data_.d8x1_;
}
else
{
return err;
}
}
template <typename X>
......@@ -372,6 +393,10 @@ struct vector_type<T, 8>
{
return data_.d8x1_;
}
else
{
return err;
}
}
};
......@@ -428,6 +453,10 @@ struct vector_type<T, 16>
{
return data_.d16x1_;
}
else
{
return err;
}
}
template <typename X>
......@@ -458,6 +487,10 @@ struct vector_type<T, 16>
{
return data_.d16x1_;
}
else
{
return err;
}
}
};
......@@ -520,6 +553,10 @@ struct vector_type<T, 32>
{
return data_.d32x1_;
}
else
{
return err;
}
}
template <typename X>
......@@ -554,6 +591,10 @@ struct vector_type<T, 32>
{
return data_.d32x1_;
}
else
{
return err;
}
}
};
......@@ -623,6 +664,10 @@ struct vector_type<T, 64>
{
return data_.d64x1_;
}
else
{
return err;
}
}
template <typename X>
......@@ -662,6 +707,10 @@ struct vector_type<T, 64>
{
return data_.d64x1_;
}
else
{
return err;
}
}
};
......@@ -737,6 +786,10 @@ struct vector_type<T, 128>
{
return data_.d128x1_;
}
else
{
return err;
}
}
template <typename X>
......@@ -780,6 +833,10 @@ struct vector_type<T, 128>
{
return data_.d128x1_;
}
else
{
return err;
}
}
};
......@@ -861,6 +918,10 @@ struct vector_type<T, 256>
{
return data_.d256x1_;
}
else
{
return err;
}
}
template <typename X>
......@@ -908,6 +969,10 @@ struct vector_type<T, 256>
{
return data_.d256x1_;
}
else
{
return err;
}
}
};
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -19,6 +19,12 @@ struct is_known_at_compile_time<index_t>
static constexpr bool value = false;
};
template <>
struct is_known_at_compile_time<unsigned int>
{
static constexpr bool value = false;
};
template <>
struct is_known_at_compile_time<long_index_t>
{
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -14,22 +14,28 @@ namespace wrapper {
* \tparam Shape Tuple of Number<> (for compile-time layout) or index_t
* (dynamic layout). It is possible to pass nested shapes
* (e.g. ((4, 2), 2)), nested dimensions are merged.
* \tparam UnnestedDescriptorType Tensor descriptor for unnested shape dims.
* \tparam UnrolledDescriptorType Tensor descriptor for unnested shape dims.
*/
template <typename Shape, typename UnnestedDescriptorType>
template <typename Shape, typename UnrolledDescriptorType>
struct Layout
{
private:
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
// Generate default idxs tuple (idx with all merged nested shapes)
/**
* \brief Generate default indices tuple (idx with all merged nested shapes)
*
* \param shape Shape to align.
* \return Multi idx tuple with zeros.
*/
template <typename... Ts>
__host__ __device__ constexpr static auto GenerateDefaultIdxsTuple(const Tuple<Ts...>&)
__host__ __device__ constexpr static auto
GenerateDefaultIdxsTuple([[maybe_unused]] const Tuple<Ts...>& shape)
{
return generate_tuple(
[&](auto) {
if constexpr(!UnnestedDescriptorType::IsKnownAtCompileTime())
if constexpr(!remove_cvref_t<UnrolledDescriptorType>::IsKnownAtCompileTime())
{
// runtime layout
return index_t(0);
......@@ -43,11 +49,18 @@ struct Layout
Number<Tuple<Ts...>::Size()>{});
}
// Generate LowerDims in Compile-time for MergeTrasform using passed Type
// If element of Tuple<Ts...> is also tuple, then merge (generate sequence for merge)
// If tuple is element, then pass through (sequence with one element)
/**
* \brief Generate lower dims in compile-time for the Merge transform using
* provided type. If element of nested Tuple<Ts...> is also a tuple, then
* merge (generate sequence for merge). If tuple is element, then pass
* through (sequence with one element).
*
* \param shape Shape to align.
* \return LowerDims for MergeTrasform.
*/
template <typename Idx, typename... Ts>
__host__ __device__ constexpr static auto GenerateLowerDim(const Tuple<Ts...>&)
__host__ __device__ constexpr static auto
GenerateLowerDim([[maybe_unused]] const Tuple<Ts...>& shape)
{
if constexpr(Idx::value == 0)
{
......@@ -87,11 +100,17 @@ struct Layout
}
}
// Iterate over nested tuples in shape
// Unroll nested tuples to align Tuple<ShapeDims...> to Tuple<IdxDims...>
// Example idx: (1, 1), 1, 1
// Example shape: (2, (2, 2)), 2, (2, 2)
// Unrolled shape: 2, (2, 2), 2, (2, 2)
/**
* \brief Iterate over the nested tuples in the shape.
* Unroll nested tuples to align Tuple<ShapeDims...> to Tuple<IdxDims...>
* Example idx: (1, 1), 1, 1
* Example shape: (2, (2, 2)), 2, (2, 2)
* Unrolled shape: 2, (2, 2), 2, (2, 2)
*
* \param shape Layout shape.
* \param idx Idx to align.
* \return Algined shape.
*/
template <typename... ShapeDims, typename... IdxDims>
__host__ __device__ constexpr static auto AlignShapeToIdx(const Tuple<ShapeDims...>& shape,
const Tuple<IdxDims...>& idx)
......@@ -126,6 +145,13 @@ struct Layout
}
}
/**
* \brief Merge descriptor to 1D.
*
* \param shape Layout shape.
* \param desc Descriptor to merge.
* \return 1D descriptor.
*/
template <typename... ShapeDims, typename DescriptorToMerge>
__host__ __device__ constexpr static auto MakeMerge1d(const Tuple<ShapeDims...>& shape,
const DescriptorToMerge& desc)
......@@ -137,18 +163,41 @@ struct Layout
const auto lower_dims = make_tuple(MergeElemsSequence::Reverse());
const auto upper_dims = make_tuple(Sequence<0>{});
// Merge to 1d
return transform_tensor_descriptor(
desc, make_tuple(make_merge_transform(merge_elems)), lower_dims, upper_dims);
if constexpr(!remove_cvref_t<UnrolledDescriptorType>::IsKnownAtCompileTime())
{
return transform_tensor_descriptor(
desc, make_tuple(make_merge_transform(merge_elems)), lower_dims, upper_dims);
}
else
{
// If the descriptor is known at the compilation time,
// use `make_merge_transform_v1_carry_check` because it doesn't use
// memcpy.
return transform_tensor_descriptor(
desc,
make_tuple(make_merge_transform_v1_carry_check(merge_elems)),
lower_dims,
upper_dims);
}
}
// Merge nested shape dims when corresponding index is also nested.
// Input desc shape: 2, 2, 2, 2, 2, 2
// Example idx: 1, 1, 1, 1
// Example shape: 2, (2, 2), 2, (2, 2)
// Merged shape: 2, 4, 2, 4
/**
* \brief Merge nested shape dims when corresponding index is also merged.
* Input desc shape: 2, 2, 2, 2, 2, 2
* Example idx: 1, 1, 1, (1, 1)
* Example shape: 2, (2, 2), 2, (2, 2)
* Merged shape: 2, 4, 2, 2, 2
*
* \param shape Layout shape.
* \param idxs Indexes to align descriptor.
* \param desc Descriptor to merge.
* \return Aligned descriptor to idx.
*/
template <typename... ShapeDims, typename... IdxDims, typename DescriptorToMerge>
__host__ __device__ constexpr static auto CreateMergedDescriptor(
const Tuple<ShapeDims...>& shape, const Tuple<IdxDims...>&, DescriptorToMerge& desc)
__host__ __device__ constexpr static auto
CreateMergedDescriptor(const Tuple<ShapeDims...>& shape,
[[maybe_unused]] const Tuple<IdxDims...>& idxs,
DescriptorToMerge& desc)
{
const auto transforms = generate_tuple(
[&](auto i) {
......@@ -160,7 +209,17 @@ struct Layout
// If shape element is tuple and idx element is Number, then merge
// Unroll and reverse tuple to traverse column-major
const auto merge_elems = TupleReverse(UnrollNestedTuple(shape.At(i)));
return make_merge_transform(merge_elems);
if constexpr(!remove_cvref_t<UnrolledDescriptorType>::IsKnownAtCompileTime())
{
return make_merge_transform(merge_elems);
}
else
{
// If the descriptor is known at the compilation time,
// use `make_merge_transform_v1_carry_check` because
// it doesn't use memcpy.
return make_merge_transform_v1_carry_check(merge_elems);
}
}
else
{
......@@ -185,14 +244,23 @@ struct Layout
}
using Descriptor1dType =
remove_cvref_t<decltype(MakeMerge1d(Shape{}, UnnestedDescriptorType{}))>;
remove_cvref_t<decltype(MakeMerge1d(Shape{}, UnrolledDescriptorType{}))>;
using DefaultIdxsTupleType = remove_cvref_t<decltype(GenerateDefaultIdxsTuple(Shape{}))>;
public:
/**
* \brief Transform descriptor to align to passed indexes.
*
* \param shape Layout shape.
* \param idxs Indexes to align descriptor.
* \param naive_descriptor Descriptor to merge.
* \return Aligned descriptor to idx.
*/
template <typename... ShapeDims, typename... IdxDims>
__host__ __device__ constexpr static auto
TransformDesc(const Tuple<ShapeDims...>& shape,
const Tuple<IdxDims...>& idx,
const UnnestedDescriptorType& naive_descriptor)
const Tuple<IdxDims...>& idxs,
const UnrolledDescriptorType& naive_descriptor)
{
if constexpr(Tuple<IdxDims...>::Size() == I1)
{
......@@ -208,19 +276,18 @@ struct Layout
static_assert(Tuple<ShapeDims...>::Size() == Tuple<IdxDims...>::Size(),
"Idx rank and Shape rank must be the same (except 1d).");
// Unroll while IdxDims is nested
const auto aligned_shape = AlignShapeToIdx(shape, idx);
const auto aligned_shape = AlignShapeToIdx(shape, idxs);
// Transform correct form of shape
return CreateMergedDescriptor(aligned_shape, UnrollNestedTuple(idx), naive_descriptor);
return CreateMergedDescriptor(aligned_shape, UnrollNestedTuple(idxs), naive_descriptor);
}
}
using MergedNestsDescriptorType = remove_cvref_t<decltype(TransformDesc(
Shape{}, DefaultIdxsTupleType{}, UnnestedDescriptorType{}))>;
Shape{}, DefaultIdxsTupleType{}, UnrolledDescriptorType{}))>;
public:
__host__ __device__ constexpr auto GetElementSpaceSize() const
{
return unnested_descriptor_.GetElementSpaceSize();
return unrolled_descriptor_.GetElementSpaceSize();
}
__host__ __device__ Layout() = delete;
......@@ -232,16 +299,15 @@ struct Layout
* \param unnested_descriptor Descriptor
*/
__host__ __device__ constexpr Layout(const Shape& shape,
const UnnestedDescriptorType& unnested_descriptor)
: shape_(shape)
const UnrolledDescriptorType& unnested_descriptor)
: unrolled_descriptor_(unnested_descriptor), shape_(shape)
{
// Construct if runtime mode
if constexpr(!UnnestedDescriptorType::IsKnownAtCompileTime())
if constexpr(!remove_cvref_t<UnrolledDescriptorType>::IsKnownAtCompileTime())
{
unnested_descriptor_ = unnested_descriptor;
descriptor_1d_ = MakeMerge1d(shape_, unnested_descriptor_);
descriptor_1d_ = MakeMerge1d(shape_, unrolled_descriptor_);
merged_nests_descriptor_ =
TransformDesc(shape_, DefaultIdxsTupleType{}, unnested_descriptor_);
TransformDesc(shape_, DefaultIdxsTupleType{}, unrolled_descriptor_);
}
}
......@@ -254,9 +320,9 @@ struct Layout
template <typename Idxs>
__host__ __device__ constexpr index_t operator()() const
{
static_assert(UnnestedDescriptorType::IsKnownAtCompileTime(),
static_assert(remove_cvref_t<UnrolledDescriptorType>::IsKnownAtCompileTime(),
"Compiletime operator used on runtime layout.");
using TransformedDesc = decltype(TransformDesc(Shape{}, Idxs{}, UnnestedDescriptorType{}));
using TransformedDesc = decltype(TransformDesc(Shape{}, Idxs{}, UnrolledDescriptorType{}));
using UnrolledIdx = decltype(UnrollNestedTuple(Idxs{}));
return TransformedDesc{}.CalculateOffset(UnrolledIdx{});
}
......@@ -283,7 +349,7 @@ struct Layout
else
{
// Custom index, need to transform descriptor
const auto transformed_desc = TransformDesc(shape_, Idx, unnested_descriptor_);
const auto transformed_desc = TransformDesc(shape_, Idx, unrolled_descriptor_);
return transformed_desc.CalculateOffset(UnrollNestedTuple(Idx));
}
}
......@@ -350,29 +416,55 @@ struct Layout
}
/**
* \brief Get default descriptor (with the same size as Shape)
* \brief Get descriptor with all nested dimensions merged.
* Example, shape: ((2, 2), 2)
* Descriptor lengths: (4, 2)
*
* \return Default descriptor.
* \note The size of merged descriptor is the same as Layout's shape.
*
* \return Merged nests descriptor.
*/
__host__ __device__ constexpr const MergedNestsDescriptorType& GetDefaultDescriptor() const
__host__ __device__ constexpr const MergedNestsDescriptorType&
GetMergedNestingDescriptor() const
{
return merged_nests_descriptor_;
}
/**
* \brief Get descriptor with all dimensions are merged (1D).
* Example, shape: ((2, 2), 2)
* Descriptor lengths: (8)
*
* \return 1D descriptor.
*/
__host__ __device__ constexpr const Descriptor1dType& Get1DDescriptor() const
{
return descriptor_1d_;
}
/**
* \brief Get unnested descriptor (with unrolled dims)
* Example, shape: ((2, 2), 2)
* Descriptor lengths: (2, 2, 2)
*
* \return Flatten descriptor.
* \return Flattened descriptor.
*/
__host__ __device__ constexpr const UnnestedDescriptorType& GetUnnestedDescriptor() const
__host__ __device__ constexpr const UnrolledDescriptorType& GetUnrolledDescriptor() const
{
return unnested_descriptor_;
return unrolled_descriptor_;
}
private:
UnnestedDescriptorType unnested_descriptor_;
// All dimensions are unrolled
UnrolledDescriptorType unrolled_descriptor_;
// 1D descriptor
Descriptor1dType descriptor_1d_;
// All nesting are merged
MergedNestsDescriptorType merged_nests_descriptor_;
// Example, shape: ((2, 2), 2)
// UnrolledDescriptorType lengths: (2, 2, 2)
// Descriptor1dType lengths: (8)
// MergedNestsDescriptorType lengths: (4, 2)
const Shape shape_;
};
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "../utils/tensor_utils.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v7.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace ck {
namespace wrapper {
/**
* \brief Perform generic copy between two tensors. Tensors must have the
* same size.
* \brief Perform generic copy between two tensors partitions (threadwise copy).
* Tensors must have the same size.
*
* \param src_tensor Source tensor.
* \param dst_tensor Destination tensor.
......@@ -37,5 +42,134 @@ __host__ __device__ void copy(const SrcTensorType& src_tensor, DstTensorType& ds
}
}
/**
* \brief Perform optimized copy between two tensors partitions (threadwise copy).
* Tensors must have the same size.
*
* \tparam DimAccessOrderTuple Tuple with dimension access order.
* \tparam VectorDim Dimension for vectorized read and write.
* \tparam ScalarPerVector Number of scalar per vectorized read and write.
* \param src_tensor Source tensor.
* \param dst_tensor Destination tensor.
*/
template <typename DimAccessOrderTuple,
index_t VectorDim,
index_t ScalarPerVector,
typename SrcTensorType,
typename DstTensorType>
__device__ void copy(const SrcTensorType& src_tensor, DstTensorType& dst_tensor)
{
static_assert(is_detected<is_tuple, DimAccessOrderTuple>::value);
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
const auto& in_grid_desc = layout(src_tensor).GetUnrolledDescriptor();
const auto& out_grid_desc = layout(dst_tensor).GetUnrolledDescriptor();
using SrcShapeType = remove_cvref_t<decltype(shape(src_tensor))>;
constexpr index_t num_dims = SrcShapeType::Size();
constexpr auto thread_slice_lengths =
generate_sequence_v2([](auto I) { return size(SrcShapeType{}.At(I)); }, Number<num_dims>{});
constexpr auto dim_access_order = generate_sequence_v2(
[](auto I) { return DimAccessOrderTuple{}.At(I); }, Number<num_dims>{});
if constexpr(SrcTensorType::IsDynamicBuffer && DstTensorType::IsDynamicBuffer)
{
// Perform a copy between DynamicBuffers
auto transfer = ThreadwiseTensorSliceTransfer_v7<
Tuple<typename SrcTensorType::TensorElementType>,
Tuple<typename DstTensorType::TensorElementType>,
decltype(tie(in_grid_desc)),
decltype(tie(out_grid_desc)),
tensor_operation::element_wise::PassThrough,
Sequence<static_cast<index_t>(InMemoryDataOperationEnum::Set)>,
decltype(thread_slice_lengths),
decltype(dim_access_order),
VectorDim,
ScalarPerVector,
Sequence<false>,
Sequence<false>>{in_grid_desc,
make_tuple(src_tensor.GetMultiIdxOffsets()),
out_grid_desc,
make_tuple(dst_tensor.GetMultiIdxOffsets()),
tensor_operation::element_wise::PassThrough{}};
transfer.Run(tie(in_grid_desc),
tie(src_tensor.GetBuffer()),
tie(out_grid_desc),
tie(dst_tensor.GetBuffer()));
}
else if constexpr(!SrcTensorType::IsDynamicBuffer && DstTensorType::IsDynamicBuffer)
{
// Perform copy from StaticBuffer to DynamicBuffer
const auto src_slice_origin_idxs =
generate_tuple([&](auto) { return I0; }, Number<num_dims>{});
auto transfer =
ThreadwiseTensorSliceTransfer_v1r3<typename SrcTensorType::TensorElementType,
typename DstTensorType::TensorElementType,
remove_cvref_t<decltype(in_grid_desc)>,
remove_cvref_t<decltype(out_grid_desc)>,
tensor_operation::element_wise::PassThrough,
decltype(thread_slice_lengths),
decltype(dim_access_order),
VectorDim,
ScalarPerVector,
InMemoryDataOperationEnum::Set,
I1,
true>{out_grid_desc,
dst_tensor.GetMultiIdxOffsets(),
tensor_operation::element_wise::PassThrough{}};
transfer.Run(in_grid_desc,
src_slice_origin_idxs,
src_tensor.GetBuffer(),
out_grid_desc,
dst_tensor.GetBuffer());
}
else if constexpr(SrcTensorType::IsDynamicBuffer && !DstTensorType::IsDynamicBuffer)
{
// Perform copy from DynamicBuffer to StaticBuffer
const auto src_dst_slice_origin =
generate_tuple([&](auto) { return I0; }, Number<num_dims>{});
constexpr auto src_vector_tensor_lengths = generate_sequence_v2(
[&](auto I) {
if constexpr(I == VectorDim)
{
return Number<ScalarPerVector>{};
}
else
{
return I1;
}
},
Number<num_dims>{});
auto transfer =
ThreadwiseTensorSliceTransfer_v4r1<typename SrcTensorType::TensorElementType,
typename DstTensorType::TensorElementType,
remove_cvref_t<decltype(in_grid_desc)>,
remove_cvref_t<decltype(out_grid_desc)>,
decltype(thread_slice_lengths),
decltype(dim_access_order),
decltype(src_vector_tensor_lengths),
decltype(dim_access_order)>{
src_tensor.GetMultiIdxOffsets()};
transfer.Run(in_grid_desc,
src_dst_slice_origin,
src_tensor.GetBuffer(),
out_grid_desc,
src_dst_slice_origin,
dst_tensor.GetBuffer());
}
else
{
// Perform copy between StaticBuffers
copy(src_tensor, dst_tensor);
}
}
} // namespace wrapper
} // namespace ck
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment