Commit 2a4c2316 authored by danyao12's avatar danyao12
Browse files

Merge branch 'develop' into ck_tile/fa_asm_bwd

parents 1e01ee09 770d2b77
......@@ -9,9 +9,12 @@ set(PROFILER_SOURCES
profile_layernorm_bwd_gamma_beta.cpp
profile_groupnorm_bwd_gamma_beta.cpp
profile_layernorm_fwd.cpp
profile_max_pool3d_fwd.cpp
profile_max_pool2d_fwd.cpp
profile_pool3d_fwd.cpp
profile_avg_pool3d_bwd.cpp
profile_max_pool3d_bwd.cpp
profile_avg_pool2d_bwd.cpp
profile_max_pool2d_bwd.cpp
profile_softmax.cpp
profile_batchnorm_fwd.cpp
profile_batchnorm_bwd.cpp
......@@ -98,7 +101,9 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_bwd_ga
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_pool2d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_pool3d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_avg_pool2d_bwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_avg_pool3d_bwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_max_pool_bwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_image_to_column_instance)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_avg_pool2d_bwd_impl.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t;
struct maxPoolbwdArgParser
{
std::unordered_map<std::string, std::vector<int>> long_opts = {{"length", {}},
{"wsize", {}},
{"wstride", {}},
{"wdilation", {}},
{"pad1", {}},
{"pad2", {}}};
bool parse_opt(int argc, char* argv[], const std::string& key, int i)
{
if(std::string("--") + key == argv[i])
{
int pos = i;
while(++i < argc && argv[i][0] != '-') {}
int end = i;
for(int j = pos + 1; j < end; j++)
{
long_opts[key].push_back(std::stoi(argv[j]));
}
return true;
}
return false;
}
void operator()(int argc, char* argv[])
{
for(auto& kv : long_opts)
{
for(int i = 1; i < argc; i++)
{
if(parse_opt(argc, argv, kv.first, i))
break;
}
}
}
};
void print_help_avg_pool2d_bwd()
{
std::cout << "arg1: data type (0: fp16; 1: fp32; 3: int8; 5: bf16, 7: Float8)\n"
<< "arg2: verification (0: no; 1: yes)\n"
<< "arg3: initialization (0: no init; 1: integer value; 2: decimal value)\n"
<< "arg4: print tensor value (0: no; 1: yes)\n"
<< "arg5: time kernel (0=no, 1=yes)\n"
<< "--length: input tensor length for NCHW(e.g, --length 2 32 30 30) \n"
<< "--wsize: window size for YX (e.g, --wsize 2 2) \n"
<< "--wstride: window stride for HW (e.g, --wstride 2 2) \n"
<< "--wdilation: window dilation for HW (e.g, --wdilation 1 1) \n"
<< "--pad1: left side of padding in HW (e.g, --pad1 1 1) \n"
<< "--pad2: right side of padding in HW (e.g, --pad2 1 1) \n"
<< "eg: ckProfiler avg_pool2d_bwd 0 1 2 0 --length 2 32 30 30 --wsize 2 2 "
"--wstride 2 2 --wdilation 1 1 --pad1 1 1 --pad2 1 1"
<< std::endl;
}
int profile_avg_pool2d_bwd(int argc, char* argv[])
{
ck::DataTypeEnum data_type = ck::DataTypeEnum::Float8;
bool do_verification = true;
int init_method = 2;
bool do_log = false;
bool time_kernel = true;
std::vector<index_t> in_length = {2, 32, 30, 30};
std::vector<index_t> wsize = {2, 2};
std::vector<index_t> wstride = {2, 2};
std::vector<index_t> wdilation = {1, 1};
std::vector<index_t> pad1 = {1, 1};
std::vector<index_t> pad2 = {1, 1};
if(argc != 2 && argc != 33)
{
print_help_avg_pool2d_bwd();
return 0;
}
else if(argc == 33)
{
data_type = static_cast<ck::DataTypeEnum>(std::stoi(argv[2]));
do_verification = std::stoi(argv[3]);
init_method = std::stoi(argv[4]);
do_log = std::stoi(argv[5]);
time_kernel = std::stoi(argv[6]);
maxPoolbwdArgParser arg_parser;
arg_parser(argc, argv);
in_length = arg_parser.long_opts["length"];
wsize = arg_parser.long_opts["wsize"];
wstride = arg_parser.long_opts["wstride"];
wdilation = arg_parser.long_opts["wdilation"];
pad1 = arg_parser.long_opts["pad1"];
pad2 = arg_parser.long_opts["pad2"];
}
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F8 = ck::f8_t;
using F32 = float;
using I8 = int8_t;
using NHWC = ck::tensor_layout::convolution::NHWC;
if(data_type == ck::DataTypeEnum::Half)
{
ck::profiler::profile_avg_pool2d_bwd_impl<F16, F16, NHWC, NHWC>(do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
else if(data_type == ck::DataTypeEnum::BFloat16)
{
ck::profiler::profile_avg_pool2d_bwd_impl<BF16, BF16, NHWC, NHWC>(do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
else if(data_type == ck::DataTypeEnum::Float)
{
ck::profiler::profile_avg_pool2d_bwd_impl<F32, F32, NHWC, NHWC>(do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
else if(data_type == ck::DataTypeEnum::Float8)
{
ck::profiler::profile_avg_pool2d_bwd_impl<F8, F8, NHWC, NHWC>(do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
else if(data_type == ck::DataTypeEnum::Int8)
{
ck::profiler::profile_avg_pool2d_bwd_impl<I8, I8, NHWC, NHWC>(do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
else
{
throw std::runtime_error("not implemented yet");
}
return 0;
}
REGISTER_PROFILER_OPERATION("avg_pool2d_bwd", "avg_pool2d bwd", profile_avg_pool2d_bwd);
......@@ -171,6 +171,14 @@ int profile_gemm_universal(int argc, char* argv[])
{
return profile(BF16{}, BF16{}, BF16{}, F32{}, BF16{}, Row{}, Col{}, Row{});
}
else if(data_type == GemmDataType::BF16_BF16_BF16 && layout == GemmMatrixLayout::KM_NK_MN)
{
return profile(BF16{}, BF16{}, BF16{}, F32{}, BF16{}, Col{}, Col{}, Row{});
}
else if(data_type == GemmDataType::BF16_BF16_BF16 && layout == GemmMatrixLayout::KM_KN_MN)
{
return profile(BF16{}, BF16{}, BF16{}, F32{}, BF16{}, Col{}, Row{}, Row{});
}
else if(data_type == GemmDataType::F8_F8_BF16 && layout == GemmMatrixLayout::MK_KN_MN)
{
return profile(F8{}, F8{}, F8{}, F32{}, BF16{}, Row{}, Row{}, Row{});
......
......@@ -45,6 +45,8 @@ static void print_helper_msg()
"N, Ho, Wo, K]\n"
<< " 2: Input[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Output[N, "
"Ho, Wo, G, K]\n"
<< " 3: Input[N, G, C, Hi, Wi], Weight[G, K, Y, X, C], Output[N, "
"G, K, Ho, Wo]\n"
<< "arg4: verification (0: no, 1: yes)\n"
<< "arg5: initialization (0: no init, 1: integer value, 2: decimal value)\n"
<< "arg6: print tensor value (0: no; 1: yes)\n"
......
......@@ -15,6 +15,7 @@ enum struct ConvLayout
{
GNHWC_GKYXC_GNHWK, // 0
NHWGC_GKYXC_NHWGK, // 1
NGCHW_GKYXC_NGKHW, // 2
};
enum struct ConvDataType
......@@ -54,6 +55,8 @@ static void print_helper_msg()
<< "arg3: indexing data type (0: 32-bit, 1: 64-bit)\n"
<< "arg4: tensor layout (0: Input[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Output[G, N, Ho, Wo, K]\n"
<< " 1: Input[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Output[N, Ho, Wo, G, K])\n"
<< " 2: Input[N, G, C, Hi, Wi], Weight[G, K, Y, X, C], Output[N, "
"G, K, Ho, Wo]\n"
<< "arg5: verification (0: no, 1: yes)\n"
<< "arg6: initialization (0: no init, 1: integer value, 2: decimal value)\n"
<< "arg7: print tensor value (0: no; 1: yes)\n"
......@@ -111,6 +114,11 @@ int profile_grouped_conv_fwd(int argc, char* argv[])
using GNHWK = ck::tensor_layout::convolution::GNHWK;
using GNDHWK = ck::tensor_layout::convolution::GNDHWK;
//
using NGCHW = ck::tensor_layout::convolution::NGCHW;
using NGKHW = ck::tensor_layout::convolution::NGKHW;
//
using NWGC = ck::tensor_layout::convolution::NWGC;
using NHWGC = ck::tensor_layout::convolution::NHWGC;
......@@ -284,6 +292,17 @@ int profile_grouped_conv_fwd(int argc, char* argv[])
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, INT8{}, INT8{}, INT8{}, INT8{}, INT8{});
}
}
else if(num_dim_spatial == 2 && layout == ConvLayout::NGCHW_GKYXC_NGKHW)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I2, NGCHW{}, GKYXC{}, NGKHW{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I2, NGCHW{}, GKYXC{}, NGKHW{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
}
else if(num_dim_spatial == 3 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
{
if(data_type == ConvDataType::F32_F32_F32)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_max_pool2d_bwd_impl.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t;
struct maxPoolbwdArgParser
{
std::unordered_map<std::string, std::vector<int>> long_opts = {{"length", {}},
{"wsize", {}},
{"wstride", {}},
{"wdilation", {}},
{"pad1", {}},
{"pad2", {}}};
bool parse_opt(int argc, char* argv[], const std::string& key, int i)
{
if(std::string("--") + key == argv[i])
{
int pos = i;
while(++i < argc && argv[i][0] != '-') {}
int end = i;
for(int j = pos + 1; j < end; j++)
{
long_opts[key].push_back(std::stoi(argv[j]));
}
return true;
}
return false;
}
void operator()(int argc, char* argv[])
{
for(auto& kv : long_opts)
{
for(int i = 1; i < argc; i++)
{
if(parse_opt(argc, argv, kv.first, i))
break;
}
}
}
};
void print_help_max_pool2d_bwd()
{
std::cout << "arg1: data type (0: fp16; 1: fp32; 3: int8; 5: bf16)\n"
<< "arg2: verification (0: no; 1: yes)\n"
<< "arg3: initialization (0: no init; 1: integer value; 2: decimal value)\n"
<< "arg4: print tensor value (0: no; 1: yes)\n"
<< "arg5: time kernel (0=no, 1=yes)\n"
<< "--length: input tensor length for NCHW(e.g, --length 2 32 30 30) \n"
<< "--wsize: window size for YX (e.g, --wsize 2 2) \n"
<< "--wstride: window stride for HW (e.g, --wstride 2 2) \n"
<< "--wdilation: window dilation for HW (e.g, --wdilation 1 1) \n"
<< "--pad1: left side of padding in HW (e.g, --pad1 1 1) \n"
<< "--pad2: right side of padding in HW (e.g, --pad2 1 1) \n"
<< "eg: ckProfiler max_pool2d_bwd 0 1 2 0 --length 2 32 30 30 --wsize 2 2 "
"--wstride 2 2 --wdilation 1 1 --pad1 1 1 --pad2 1 1"
<< std::endl;
}
int profile_max_pool2d_bwd(int argc, char* argv[])
{
ck::DataTypeEnum data_type = ck::DataTypeEnum::Half;
bool do_verification = true;
int init_method = 2;
bool do_log = false;
bool time_kernel = true;
std::vector<index_t> in_length = {2, 32, 30, 30};
std::vector<index_t> wsize = {2, 2};
std::vector<index_t> wstride = {2, 2};
std::vector<index_t> wdilation = {1, 1};
std::vector<index_t> pad1 = {1, 1};
std::vector<index_t> pad2 = {1, 1};
if(argc != 2 && argc != 33)
{
print_help_max_pool2d_bwd();
return 0;
}
else if(argc == 33)
{
data_type = static_cast<ck::DataTypeEnum>(std::stoi(argv[2]));
do_verification = std::stoi(argv[3]);
init_method = std::stoi(argv[4]);
do_log = std::stoi(argv[5]);
time_kernel = std::stoi(argv[6]);
// parse the long options
maxPoolbwdArgParser arg_parser;
arg_parser(argc, argv);
in_length = arg_parser.long_opts["length"];
wsize = arg_parser.long_opts["wsize"];
wstride = arg_parser.long_opts["wstride"];
wdilation = arg_parser.long_opts["wdilation"];
pad1 = arg_parser.long_opts["pad1"];
pad2 = arg_parser.long_opts["pad2"];
}
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using I8 = int8_t;
using I32 = int32_t;
if(data_type == ck::DataTypeEnum::Half)
{
ck::profiler::profile_max_pool2d_bwd_impl<F16, F16, I32, F16, F16, false>(do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
else if(data_type == ck::DataTypeEnum::BFloat16)
{
ck::profiler::profile_max_pool2d_bwd_impl<BF16, BF16, I32, BF16, BF16, false>(
do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
else if(data_type == ck::DataTypeEnum::Float)
{
ck::profiler::profile_max_pool2d_bwd_impl<F32, F32, I32, F32, F32, false>(do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
else if(data_type == ck::DataTypeEnum::Int8)
{
ck::profiler::profile_max_pool2d_bwd_impl<I8, I8, I32, I8, I8, false>(do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
else
{
throw std::runtime_error("not implemented yet");
}
return 0;
}
REGISTER_PROFILER_OPERATION("max_pool2d_bwd", "max_pool2d bwd", profile_max_pool2d_bwd);
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_pool3d_fwd_impl.hpp"
#include "profiler/profile_pool2d_fwd_impl.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t;
......@@ -49,49 +49,58 @@ struct maxPoolFwdArgParser
}
};
void print_help_max_pool3d_fwd()
enum struct PoolDataType
{
std::cout << "arg1: data type (0: fp16; 1: fp32; 5: bf16)\n"
F32 = 0,
BF16,
F16,
INT8,
F8,
};
void print_help_max_pool2d_fwd()
{
std::cout << "arg1: data type (0: fp16; 1: fp32; 2: bf16; 3: int8; 4: fp8)\n"
<< "arg2: verification (0: no; 1: yes)\n"
<< "arg3: initialization (0: no init; 1: integer value; 2: decimal value)\n"
<< "arg4: print tensor value (0: no; 1: yes)\n"
<< "arg5: time kernel (0=no, 1=yes)\n"
<< "arg6: return index (0=no, 1=yes)\n"
<< "--length: input tensor length for NCDHW(e.g, --length 2 32 30 30 30) \n"
<< "--wsize: window size for ZYX (e.g, --wsize 2 2 2) \n"
<< "--wstride: window stride for DHW (e.g, --wstride 2 2 2) \n"
<< "--wdilation: window dilation for DHW (e.g, --wdilation 1 1 1) \n"
<< "--pad1: left side of padding in DHW (e.g, --pad1 1 1 1) \n"
<< "--pad2: right side of padding in DHW (e.g, --pad2 1 1 1) \n"
<< "eg: ckProfiler max_pool3d_fwd 0 1 2 0 1 0 --length 2 32 30 30 30 --wsize 2 2 2 "
"--wstride 2 2 2 --wdilation 1 1 1 --pad1 1 1 1 --pad2 1 1 1"
<< "--length: input tensor length for NCHW(e.g, --length 2 32 30 30) \n"
<< "--wsize: window size for YX (e.g, --wsize 2 2) \n"
<< "--wstride: window stride for HW (e.g, --wstride 2 2) \n"
<< "--wdilation: window dilation for HW (e.g, --wdilation 1 1) \n"
<< "--pad1: left side of padding in HW (e.g, --pad1 1 1) \n"
<< "--pad2: right side of padding in HW (e.g, --pad2 1 1) \n"
<< "eg: ckProfiler max_pool2d_fwd 0 1 2 0 1 0 --length 2 32 30 30 --wsize 2 2"
"--wstride 2 2 --wdilation 1 1 --pad1 1 1 --pad2 1 1"
<< std::endl;
}
int profile_max_pool3d_fwd(int argc, char* argv[])
int profile_max_pool2d_fwd(int argc, char* argv[])
{
ck::DataTypeEnum data_type = ck::DataTypeEnum::Half;
bool do_verification = true;
int init_method = 0;
bool do_log = false;
bool time_kernel = true;
bool return_index = false;
std::vector<index_t> in_length = {2, 32, 30, 30, 30};
std::vector<index_t> wsize = {2, 2, 2};
std::vector<index_t> wstride = {2, 2, 2};
std::vector<index_t> wdilation = {1, 1, 1};
std::vector<index_t> pad1 = {1, 1, 1};
std::vector<index_t> pad2 = {1, 1, 1};
if(argc != 2 && argc != 34)
PoolDataType data_type = PoolDataType::F32;
bool do_verification = true;
int init_method = 0;
bool do_log = false;
bool time_kernel = true;
bool return_index = false;
std::vector<index_t> in_length = {2, 32, 30, 30};
std::vector<index_t> wsize = {2, 2};
std::vector<index_t> wstride = {2, 2};
std::vector<index_t> wdilation = {1, 1};
std::vector<index_t> pad1 = {1, 1};
std::vector<index_t> pad2 = {1, 1};
if(argc != 2 && argc != 28)
{
print_help_max_pool3d_fwd();
print_help_max_pool2d_fwd();
return 0;
}
else if(argc == 34)
else if(argc == 28)
{
data_type = static_cast<ck::DataTypeEnum>(std::stoi(argv[2]));
data_type = static_cast<PoolDataType>(std::stoi(argv[2]));
do_verification = std::stoi(argv[3]);
init_method = std::stoi(argv[4]);
do_log = std::stoi(argv[5]);
......@@ -109,32 +118,22 @@ int profile_max_pool3d_fwd(int argc, char* argv[])
pad2 = arg_parser.long_opts["pad2"];
}
#ifdef CK_ENABLE_FP16
using F16 = ck::half_t;
#endif
#ifdef CK_ENABLE_BF16
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
#endif
#ifdef CK_ENABLE_FP32
using F32 = float;
#endif
using I32 = int32_t;
using NDHWC = ck::tensor_layout::convolution::NDHWC;
#if 1
using F32 = float;
using I32 = int32_t;
using F8 = ck::f8_t;
using I8 = int8_t;
using NHWC = ck::tensor_layout::convolution::NHWC;
constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
#else
constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
#endif
if(false)
;
#ifdef CK_ENABLE_FP16
else if(data_type == ck::DataTypeEnum::Half)
if(data_type == PoolDataType::F16)
{
if(return_index)
{
ck::profiler::
profile_pool3d_fwd_impl<F16, F16, F16, I32, NDHWC, NDHWC, ReduceOpId, false, true>(
profile_pool2d_fwd_impl<F16, F16, F16, I32, NHWC, NHWC, ReduceOpId, false, true>(
do_verification,
init_method,
do_log,
......@@ -145,9 +144,11 @@ int profile_max_pool3d_fwd(int argc, char* argv[])
wdilation,
pad1,
pad2);
}
else
{
ck::profiler::
profile_pool3d_fwd_impl<F16, F16, F16, I32, NDHWC, NDHWC, ReduceOpId, false, false>(
profile_pool2d_fwd_impl<F16, F16, F16, I32, NHWC, NHWC, ReduceOpId, false, false>(
do_verification,
init_method,
do_log,
......@@ -158,37 +159,33 @@ int profile_max_pool3d_fwd(int argc, char* argv[])
wdilation,
pad1,
pad2);
}
}
#endif
#ifdef CK_ENABLE_BF16
else if(data_type == ck::DataTypeEnum::BFloat16)
else if(data_type == PoolDataType::BF16)
{
if(return_index)
ck::profiler::profile_pool3d_fwd_impl<BF16,
BF16,
BF16,
I32,
NDHWC,
NDHWC,
ReduceOpId,
false,
true>(do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
{
ck::profiler::
profile_pool2d_fwd_impl<BF16, BF16, BF16, I32, NHWC, NHWC, ReduceOpId, false, true>(
do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
else
ck::profiler::profile_pool3d_fwd_impl<BF16,
{
ck::profiler::profile_pool2d_fwd_impl<BF16,
BF16,
BF16,
I32,
NDHWC,
NDHWC,
NHWC,
NHWC,
ReduceOpId,
false,
false>(do_verification,
......@@ -201,14 +198,14 @@ int profile_max_pool3d_fwd(int argc, char* argv[])
wdilation,
pad1,
pad2);
}
}
#endif
#ifdef CK_ENABLE_FP32
else if(data_type == ck::DataTypeEnum::Float)
else if(data_type == PoolDataType::F32)
{
if(return_index)
{
ck::profiler::
profile_pool3d_fwd_impl<F32, F32, F32, I32, NDHWC, NDHWC, ReduceOpId, false, true>(
profile_pool2d_fwd_impl<F32, F32, F32, I32, NHWC, NHWC, ReduceOpId, false, true>(
do_verification,
init_method,
do_log,
......@@ -219,9 +216,11 @@ int profile_max_pool3d_fwd(int argc, char* argv[])
wdilation,
pad1,
pad2);
}
else
{
ck::profiler::
profile_pool3d_fwd_impl<F32, F32, F32, I32, NDHWC, NDHWC, ReduceOpId, false, false>(
profile_pool2d_fwd_impl<F32, F32, F32, I32, NHWC, NHWC, ReduceOpId, false, false>(
do_verification,
init_method,
do_log,
......@@ -232,8 +231,74 @@ int profile_max_pool3d_fwd(int argc, char* argv[])
wdilation,
pad1,
pad2);
}
}
else if(data_type == PoolDataType::INT8)
{
if(return_index)
{
ck::profiler::
profile_pool2d_fwd_impl<I8, I8, F32, I32, NHWC, NHWC, ReduceOpId, false, true>(
do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
else
{
ck::profiler::
profile_pool2d_fwd_impl<I8, I8, F32, I32, NHWC, NHWC, ReduceOpId, false, false>(
do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
}
else if(data_type == PoolDataType::F8)
{
if(return_index)
{
ck::profiler::
profile_pool2d_fwd_impl<F8, F8, F32, I32, NHWC, NHWC, ReduceOpId, false, true>(
do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
else
{
ck::profiler::
profile_pool2d_fwd_impl<F8, F8, F32, I32, NHWC, NHWC, ReduceOpId, false, false>(
do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
}
#endif
else
{
throw std::runtime_error("not implemented yet");
......@@ -242,4 +307,4 @@ int profile_max_pool3d_fwd(int argc, char* argv[])
return 0;
}
REGISTER_PROFILER_OPERATION("max_pool3d_fwd", "max_pool3d fwd", profile_max_pool3d_fwd);
REGISTER_PROFILER_OPERATION("max_pool2d_fwd", "max_pool2d fwd", profile_max_pool2d_fwd);
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_pool3d_fwd_impl.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t;
struct poolFwdArgParser
{
std::unordered_map<std::string, std::vector<int>> long_opts = {{"length", {}},
{"wsize", {}},
{"wstride", {}},
{"wdilation", {}},
{"pad1", {}},
{"pad2", {}}};
bool parse_opt(int argc, char* argv[], const std::string& key, int i)
{
if(std::string("--") + key == argv[i])
{
int pos = i;
while(++i < argc && argv[i][0] != '-') {}
int end = i;
for(int j = pos + 1; j < end; j++)
{
long_opts[key].push_back(std::stoi(argv[j]));
}
return true;
}
return false;
}
void operator()(int argc, char* argv[])
{
for(auto& kv : long_opts)
{
for(int i = 1; i < argc; i++)
{
if(parse_opt(argc, argv, kv.first, i))
break;
}
}
}
};
void print_help_pool3d_fwd()
{
std::cout << "arg1: data type (0: fp16; 1: fp32; 3: int8; 5: bf16; 7: fp8)\n"
<< "arg2: verification (0: no; 1: yes)\n"
<< "arg3: initialization (0: no init; 1: integer value; 2: decimal value)\n"
<< "arg4: print tensor value (0: no; 1: yes)\n"
<< "arg5: time kernel (0=no, 1=yes)\n"
<< "arg6: return index (0=no, 1=yes)\n"
<< "arg7: reduce op (0: max; 1: avg)\n"
<< "--length: input tensor length for NCDHW(e.g, --length 2 32 30 30 30) \n"
<< "--wsize: window size for ZYX (e.g, --wsize 2 2 2) \n"
<< "--wstride: window stride for DHW (e.g, --wstride 2 2 2) \n"
<< "--wdilation: window dilation for DHW (e.g, --wdilation 1 1 1) \n"
<< "--pad1: left side of padding in DHW (e.g, --pad1 1 1 1) \n"
<< "--pad2: right side of padding in DHW (e.g, --pad2 1 1 1) \n"
<< "eg: ckProfiler pool3d_fwd 0 1 2 0 1 0 --length 2 32 30 30 30 --wsize 2 2 2 "
"--wstride 2 2 2 --wdilation 1 1 1 --pad1 1 1 1 --pad2 1 1 1"
<< std::endl;
}
int profile_pool3d_fwd(int argc, char* argv[])
{
ck::DataTypeEnum data_type = ck::DataTypeEnum::Half;
ck::profiler::PoolFwdInputParams in_params{true, 0, false, true, false, 0};
ck::profiler::PoolFwdKernelParams kernel_params{
{2, 32, 30, 30, 30}, {2, 2, 2}, {2, 2, 2}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}};
if(argc != 2 && argc != 35)
{
print_help_pool3d_fwd();
return 0;
}
else if(argc == 35)
{
data_type = static_cast<ck::DataTypeEnum>(std::stoi(argv[2]));
in_params.do_verification = std::stoi(argv[3]);
in_params.init_method = std::stoi(argv[4]);
in_params.do_log = std::stoi(argv[5]);
in_params.time_kernel = std::stoi(argv[6]);
in_params.return_index = std::stoi(argv[7]);
in_params.reduce_op = std::stoi(argv[8]);
// parse the long options
poolFwdArgParser arg_parser;
arg_parser(argc, argv);
kernel_params.in_length = arg_parser.long_opts["length"];
kernel_params.window_spatial_lengths = arg_parser.long_opts["wsize"];
kernel_params.window_strides = arg_parser.long_opts["wstride"];
kernel_params.window_dilations = arg_parser.long_opts["wdilation"];
kernel_params.input_left_pads = arg_parser.long_opts["pad1"];
kernel_params.input_right_pads = arg_parser.long_opts["pad2"];
}
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using I8 = int8_t;
using I32 = int32_t;
using F8 = ck::f8_t;
using NDHWC = ck::tensor_layout::convolution::NDHWC;
if(data_type == ck::DataTypeEnum::Half)
{
if(in_params.reduce_op == 1)
{
ck::profiler::profile_pool3d_fwd_impl<F16,
F16,
F32,
I32,
NDHWC,
NDHWC,
ck::ReduceTensorOp::AVG,
false,
false>(in_params, kernel_params);
}
else
{ // reduce_op == 0
if(in_params.return_index)
{
ck::profiler::profile_pool3d_fwd_impl<F16,
F16,
F16,
I32,
NDHWC,
NDHWC,
ck::ReduceTensorOp::MAX,
false,
true>(in_params, kernel_params);
}
else
{
ck::profiler::profile_pool3d_fwd_impl<F16,
F16,
F16,
I32,
NDHWC,
NDHWC,
ck::ReduceTensorOp::MAX,
false,
false>(in_params, kernel_params);
}
}
}
else if(data_type == ck::DataTypeEnum::BFloat16)
{
if(in_params.reduce_op == 1)
{
ck::profiler::profile_pool3d_fwd_impl<BF16,
BF16,
F32,
I32,
NDHWC,
NDHWC,
ck::ReduceTensorOp::AVG,
false,
false>(in_params, kernel_params);
}
else
{ // reduce_op == 0
if(in_params.return_index)
{
ck::profiler::profile_pool3d_fwd_impl<BF16,
BF16,
BF16,
I32,
NDHWC,
NDHWC,
ck::ReduceTensorOp::MAX,
false,
true>(in_params, kernel_params);
}
else
{
ck::profiler::profile_pool3d_fwd_impl<BF16,
BF16,
BF16,
I32,
NDHWC,
NDHWC,
ck::ReduceTensorOp::MAX,
false,
false>(in_params, kernel_params);
}
}
}
else if(data_type == ck::DataTypeEnum::Float)
{
if(in_params.reduce_op == 1)
{
ck::profiler::profile_pool3d_fwd_impl<F32,
F32,
F32,
I32,
NDHWC,
NDHWC,
ck::ReduceTensorOp::AVG,
false,
false>(in_params, kernel_params);
}
else
{ // reduce_op == 0
if(in_params.return_index)
{
ck::profiler::profile_pool3d_fwd_impl<F32,
F32,
F32,
I32,
NDHWC,
NDHWC,
ck::ReduceTensorOp::MAX,
false,
true>(in_params, kernel_params);
}
else
{
ck::profiler::profile_pool3d_fwd_impl<F32,
F32,
F32,
I32,
NDHWC,
NDHWC,
ck::ReduceTensorOp::MAX,
false,
false>(in_params, kernel_params);
}
}
}
else if(data_type == ck::DataTypeEnum::Float8)
{
if(in_params.reduce_op == 1)
{
return ck::profiler::profile_pool3d_fwd_impl<F8,
F8,
F32,
I32,
NDHWC,
NDHWC,
ck::ReduceTensorOp::AVG,
false,
false>(in_params, kernel_params);
}
else
{ // reduce_op == 0
if(in_params.return_index)
{
return ck::profiler::profile_pool3d_fwd_impl<F8,
F8,
F8,
I32,
NDHWC,
NDHWC,
ck::ReduceTensorOp::MAX,
false,
true>(in_params, kernel_params);
}
else
{
return ck::profiler::profile_pool3d_fwd_impl<F8,
F8,
F8,
I32,
NDHWC,
NDHWC,
ck::ReduceTensorOp::MAX,
false,
false>(in_params, kernel_params);
}
}
}
else if(data_type == ck::DataTypeEnum::Int8)
{
if(in_params.reduce_op == 1)
{
return ck::profiler::profile_pool3d_fwd_impl<I8,
I8,
I32,
I32,
NDHWC,
NDHWC,
ck::ReduceTensorOp::AVG,
false,
false>(in_params, kernel_params);
}
else
{ // reduce_op == 0
if(in_params.return_index)
{
return ck::profiler::profile_pool3d_fwd_impl<I8,
I8,
I8,
I32,
NDHWC,
NDHWC,
ck::ReduceTensorOp::MAX,
false,
true>(in_params, kernel_params);
}
else
{
return ck::profiler::profile_pool3d_fwd_impl<I8,
I8,
I8,
I32,
NDHWC,
NDHWC,
ck::ReduceTensorOp::MAX,
false,
false>(in_params, kernel_params);
}
}
}
else
{
throw std::runtime_error("not implemented yet");
}
return 0;
}
REGISTER_PROFILER_OPERATION("pool3d_fwd", "pool3d fwd", profile_pool3d_fwd);
......@@ -28,6 +28,8 @@ def parse_layouts(args):
args.in_layout == "NCDHW":
if args.ck_profier_op == "grouped_conv_bwd_weight":
args.layout = 3
elif args.ck_profier_op == "grouped_conv_fwd":
args.layout = 2
else:
print('Not supported layout for this op')
exit(1)
......
......@@ -28,6 +28,38 @@ TYPED_TEST(TestGemmUniversal_MK_NK, SmallM)
this->Run(M, N, K, StrideA, StrideB, StrideC);
}
TYPED_TEST(TestGemmUniversal_KM_KN, SmallM)
{
std::vector<int> Ms{1, 2, 3, 4, 5, 6};
constexpr int N = 512;
constexpr int K = 320;
constexpr int StrideB = N;
constexpr int StrideC = N;
for(int M : Ms)
{
int StrideA = M;
this->Run(M, N, K, StrideA, StrideB, StrideC);
}
}
TYPED_TEST(TestGemmUniversal_KM_NK, SmallM)
{
std::vector<int> Ms{1, 2, 3, 4, 5, 6};
constexpr int N = 512;
constexpr int K = 320;
constexpr int StrideB = N;
constexpr int StrideC = N;
for(int M : Ms)
{
int StrideA = M;
this->Run(M, N, K, StrideA, StrideB, StrideC);
}
}
TYPED_TEST(TestGemmUniversal_MK_KN, MidLargeM)
{
std::vector<int> Ms{127, 255, 312, 799, 1573};
......@@ -56,6 +88,38 @@ TYPED_TEST(TestGemmUniversal_MK_NK, MidLargeM)
this->Run(M, N, K, StrideA, StrideB, StrideC);
}
TYPED_TEST(TestGemmUniversal_KM_KN, MidLargeM)
{
std::vector<int> Ms{127, 255, 312, 799, 1573};
constexpr int N = 512;
constexpr int K = 320;
constexpr int StrideB = N;
constexpr int StrideC = N;
for(int M : Ms)
{
int StrideA = M;
this->Run(M, N, K, StrideA, StrideB, StrideC);
}
}
TYPED_TEST(TestGemmUniversal_KM_NK, MidLargeM)
{
std::vector<int> Ms{127, 255, 312, 799, 1573};
constexpr int N = 512;
constexpr int K = 320;
constexpr int StrideB = N;
constexpr int StrideC = N;
for(int M : Ms)
{
int StrideA = M;
this->Run(M, N, K, StrideA, StrideB, StrideC);
}
}
TYPED_TEST(TestGemmUniversal_MK_KN, PaddK)
{
std::vector<int> Ms{127};
......@@ -84,6 +148,38 @@ TYPED_TEST(TestGemmUniversal_MK_NK, PaddK)
this->Run(M, N, K, StrideA, StrideB, StrideC);
}
TYPED_TEST(TestGemmUniversal_KM_KN, PaddK)
{
std::vector<int> Ms{127};
constexpr int N = 512;
constexpr int K = 437;
constexpr int StrideB = N;
constexpr int StrideC = N;
for(int M : Ms)
{
int StrideA = M;
this->Run(M, N, K, StrideA, StrideB, StrideC);
}
}
TYPED_TEST(TestGemmUniversal_KM_NK, PaddK)
{
std::vector<int> Ms{127};
constexpr int N = 512;
constexpr int K = 437;
constexpr int StrideB = N;
constexpr int StrideC = N;
for(int M : Ms)
{
int StrideA = M;
this->Run(M, N, K, StrideA, StrideB, StrideC);
}
}
TYPED_TEST(TestGemmUniversal_MK_KN, Regular)
{
std::vector<int> Ms{512};
......@@ -111,3 +207,35 @@ TYPED_TEST(TestGemmUniversal_MK_NK, Regular)
for(int M : Ms)
this->Run(M, N, K, StrideA, StrideB, StrideC);
}
TYPED_TEST(TestGemmUniversal_KM_KN, Regular)
{
std::vector<int> Ms{512};
constexpr int N = 512;
constexpr int K = 512;
constexpr int StrideB = N;
constexpr int StrideC = N;
for(int M : Ms)
{
int StrideA = M;
this->Run(M, N, K, StrideA, StrideB, StrideC);
}
}
TYPED_TEST(TestGemmUniversal_KM_NK, Regular)
{
std::vector<int> Ms{512};
constexpr int N = 512;
constexpr int K = 512;
constexpr int StrideB = N;
constexpr int StrideC = N;
for(int M : Ms)
{
int StrideA = M;
this->Run(M, N, K, StrideA, StrideB, StrideC);
}
}
......@@ -40,6 +40,18 @@ class TestGemmUniversal_MK_NK
{
};
template <typename Tuple>
class TestGemmUniversal_KM_KN
: public ck::test::TestGemmUniversal<typename tuple_concat<std::tuple<Col, Row>, Tuple>::type>
{
};
template <typename Tuple>
class TestGemmUniversal_KM_NK
: public ck::test::TestGemmUniversal<typename tuple_concat<std::tuple<Col, Col>, Tuple>::type>
{
};
// clang-format off
using KernelTypes_MK_KN = ::testing::Types<
// ADataType, BDataType, ComputeDataType, CDataType
......@@ -61,9 +73,22 @@ using KernelTypes_MK_NK = ::testing::Types<
#endif
std::tuple< BF16, BF16, BF16, BF16>
>;
using KernelTypes_KM_NK = ::testing::Types<
// ADataType, BDataType, ComputeDataType, CDataType
std::tuple< BF16, BF16, BF16, BF16>
>;
using KernelTypes_KM_KN = ::testing::Types<
// ADataType, BDataType, ComputeDataType, CDataType
std::tuple< BF16, BF16, BF16, BF16>
>;
// clang-format on
TYPED_TEST_SUITE(TestGemmUniversal_MK_KN, KernelTypes_MK_KN);
TYPED_TEST_SUITE(TestGemmUniversal_MK_NK, KernelTypes_MK_NK);
TYPED_TEST_SUITE(TestGemmUniversal_KM_KN, KernelTypes_KM_KN);
TYPED_TEST_SUITE(TestGemmUniversal_KM_NK, KernelTypes_KM_NK);
#include "test_gemm_universal_ut_cases.inc"
......@@ -62,7 +62,9 @@ using KernelTypes2d = ::testing::Types<std::tuple<float, GNHWC, GKYXC, GNHWK>,
std::tuple<float, NHWGC, GKYXC, NHWGK>,
std::tuple<ck::half_t, NHWGC, GKYXC, NHWGK>,
std::tuple<ck::bhalf_t, NHWGC, GKYXC, NHWGK>,
std::tuple<int8_t, NHWGC, GKYXC, NHWGK>>;
std::tuple<int8_t, NHWGC, GKYXC, NHWGK>,
std::tuple<float, NGCHW, GKYXC, NGKHW>,
std::tuple<ck::half_t, NGCHW, GKYXC, NGKHW>>;
using KernelTypes3d = ::testing::Types<std::tuple<float, GNDHWC, GKZYXC, GNDHWK>,
std::tuple<ck::half_t, GNDHWC, GKZYXC, GNDHWK>,
......
......@@ -4,13 +4,25 @@ add_gtest_executable(test_avg_pool3d_bwd test_avg_pool3d_bwd.cpp)
add_gtest_executable(test_max_pool3d_bwd test_max_pool3d_bwd.cpp)
add_gtest_executable(test_avg_pool3d_fwd test_avg_pool3d_fwd.cpp)
add_gtest_executable(test_max_pool3d_fwd test_max_pool3d_fwd.cpp)
add_gtest_executable(test_avg_pool2d_bwd test_avg_pool2d_bwd.cpp)
add_gtest_executable(test_max_pool2d_bwd test_max_pool2d_bwd.cpp)
add_gtest_executable(test_avg_pool2d_fwd test_avg_pool2d_fwd.cpp)
add_gtest_executable(test_max_pool2d_fwd test_max_pool2d_fwd.cpp)
target_link_libraries(test_avg_pool3d_bwd PRIVATE utility device_avg_pool3d_bwd_instance)
target_link_libraries(test_avg_pool2d_bwd PRIVATE utility device_avg_pool2d_bwd_instance)
target_link_libraries(test_max_pool2d_bwd PRIVATE utility device_max_pool_bwd_instance)
target_link_libraries(test_max_pool3d_bwd PRIVATE utility device_max_pool_bwd_instance)
target_link_libraries(test_avg_pool3d_fwd PRIVATE utility device_pool3d_fwd_instance)
target_link_libraries(test_max_pool3d_fwd PRIVATE utility device_pool3d_fwd_instance)
target_link_libraries(test_avg_pool2d_fwd PRIVATE utility device_pool2d_fwd_instance)
target_link_libraries(test_max_pool2d_fwd PRIVATE utility device_pool2d_fwd_instance)
add_dependencies(test_pool test_avg_pool3d_bwd)
add_dependencies(test_pool test_max_pool3d_bwd)
add_dependencies(test_pool test_avg_pool3d_fwd)
add_dependencies(test_pool test_max_pool3d_fwd)
add_dependencies(test_pool test_avg_pool2d_bwd)
add_dependencies(test_pool test_max_pool2d_bwd)
add_dependencies(test_pool test_avg_pool2d_fwd)
add_dependencies(test_pool test_max_pool2d_fwd)
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_avg_pool2d_bwd_impl.hpp"
#include "test_pool_fwd_common.hpp"
template <typename T>
class AvgPool2dBWDTest : public ::testing::Test
{
protected:
using InDataType = std::tuple_element_t<0, T>;
using OutDataType = std::tuple_element_t<1, T>;
static std::vector<PoolingParam> params;
void Run()
{
for(auto param : this->params)
{
bool success =
ck::profiler::profile_avg_pool2d_bwd_impl<InDataType, OutDataType, NHWC, NHWC>(
true,
2,
false,
false,
param.length_,
param.window_spatial_lengths_,
param.window_strides_,
param.window_dilations_,
param.input_left_pads_,
param.input_right_pads_);
EXPECT_TRUE(success);
}
}
};
template <typename T>
std::vector<PoolingParam> AvgPool2dBWDTest<T>::params = {
{{1, 1, 1, 1}, {1, 1}, {1, 1}, {1, 1}, {0, 0}, {0, 0}},
{{1, 1, 64, 64}, {64, 64}, {1, 1}, {1, 1}, {0, 0}, {0, 0}},
{{1, 5, 7, 7}, {2, 2}, {2, 2}, {1, 1}, {2, 2}, {0, 0}},
{{1, 1, 8, 8}, {2, 2}, {2, 2}, {1, 1}, {2, 2}, {0, 0}},
{{1, 1, 8, 8}, {2, 2}, {1, 1}, {1, 1}, {1, 1}, {0, 0}},
{{2, 32, 30, 30}, {2, 2}, {2, 2}, {1, 1}, {1, 1}, {1, 1}},
{{1, 2, 30, 30}, {2, 2}, {2, 2}, {1, 1}, {0, 0}, {0, 0}}};
using Avg_Pool_2D_f32_types = ::testing::Types<std::tuple<F32, F32>>;
using Avg_Pool_2D_int8_types = ::testing::Types<std::tuple<I8, I8>>;
using Avg_Pool_2D_f16_types = ::testing::Types<std::tuple<F16, F16>>;
using Avg_Pool_2D_bf16_types = ::testing::Types<std::tuple<BF16, BF16>>;
using Avg_Pool_2D_f8_types = ::testing::Types<std::tuple<F8, F8>>;
template <typename TType>
class AvgPool2D_f32 : public AvgPool2dBWDTest<TType>
{
protected:
void SetUp() override
{
if(!CK_ENABLE_FP32)
{
GTEST_SKIP() << "Skipping AvgPool2D_f32 tests because CK_ENABLE_FP32 is not enabled";
}
}
};
template <typename TType>
class AvgPool2D_int8 : public AvgPool2dBWDTest<TType>
{
protected:
void SetUp() override
{
if(!CK_ENABLE_INT8)
{
GTEST_SKIP() << "Skipping AvgPool2D_int8 tests because CK_ENABLE_INT8 is not enabled";
}
}
};
template <typename TType>
class AvgPool2D_f16 : public AvgPool2dBWDTest<TType>
{
protected:
void SetUp() override
{
if(!CK_ENABLE_FP16)
{
GTEST_SKIP() << "Skipping AvgPool2D_f16 because CK_ENABLE_FP16 is not enabled";
}
}
};
template <typename TType>
class AvgPool2D_bf16 : public AvgPool2dBWDTest<TType>
{
protected:
void SetUp() override
{
if(!CK_ENABLE_BF16)
{
GTEST_SKIP() << "Skipping AvgPool2D_bf16 tests because CK_ENABLE_BF16 is not enabled";
}
}
};
template <typename TType>
class AvgPool2D_f8 : public AvgPool2dBWDTest<TType>
{
protected:
void SetUp() override
{
if(!CK_ENABLE_FP8)
{
GTEST_SKIP() << "Skipping AvgPool2D_f8 tests because CK_ENABLE_FP8 is not enabled";
}
}
};
TYPED_TEST_SUITE(AvgPool2D_f32, Avg_Pool_2D_f32_types);
TYPED_TEST_SUITE(AvgPool2D_int8, Avg_Pool_2D_int8_types);
TYPED_TEST_SUITE(AvgPool2D_f16, Avg_Pool_2D_f16_types);
TYPED_TEST_SUITE(AvgPool2D_bf16, Avg_Pool_2D_bf16_types);
TYPED_TEST_SUITE(AvgPool2D_f8, Avg_Pool_2D_f8_types);
TYPED_TEST(AvgPool2D_f32, AvgPool2DTest_f32) { this->Run(); }
TYPED_TEST(AvgPool2D_int8, AvgPool2DTest_int8) { this->Run(); }
TYPED_TEST(AvgPool2D_f16, AvgPool2DTest_f16) { this->Run(); }
TYPED_TEST(AvgPool2D_bf16, AvgPool2DTest_bf16) { this->Run(); }
TYPED_TEST(AvgPool2D_f8, AvgPool2DTest_f8) { this->Run(); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_pool2d_fwd_impl.hpp"
#include "test_pool_fwd_common.hpp"
template <typename Tuple>
class TestAvgPool2dFwd : public ::testing::Test
{
protected:
using InDataType = std::tuple_element_t<0, Tuple>;
using OutDataType = std::tuple_element_t<1, Tuple>;
using ComputeDataType = std::tuple_element_t<2, Tuple>;
using IndexDataType = std::tuple_element_t<3, Tuple>;
static std::vector<PoolingParam> params;
void Run()
{
for(auto param : params)
{
bool success =
ck::profiler::profile_pool2d_fwd_impl<InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::NHWC,
ck::ReduceTensorOp::AVG,
false,
false>(true,
2,
false,
false,
param.length_,
param.window_spatial_lengths_,
param.window_strides_,
param.window_dilations_,
param.input_left_pads_,
param.input_right_pads_);
EXPECT_TRUE(success);
}
}
};
template <typename T>
std::vector<PoolingParam> TestAvgPool2dFwd<T>::params = {
{{{1, 1, 1, 1}, {1, 1}, {1, 1}, {1, 1}, {0, 0}, {0, 0}},
{{2, 16, 64, 64}, {64, 64}, {1, 1}, {1, 1}, {0, 0}, {0, 0}},
{{2, 16, 64, 64}, {4, 4}, {4, 4}, {2, 2}, {0, 0}, {0, 0}},
{{2, 32, 30, 30}, {2, 2}, {2, 2}, {1, 1}, {1, 1}, {1, 1}}}};
using AvgPool2D_F32_Types =
::testing::Types<std::tuple<F32, F32, F32, I32>, std::tuple<F32, F32, F32, I32>>;
using AvgPool2D_F16_Types =
::testing::Types<std::tuple<F16, F16, F32, I32>, std::tuple<F16, F16, F32, I32>>;
using AvgPool2D_BF16_Types =
::testing::Types<std::tuple<I8, I8, F32, I32>, std::tuple<BF16, BF16, F32, I32>>;
using AvgPool2D_I8_Types =
::testing::Types<std::tuple<I8, I8, F32, I32>, std::tuple<I8, I8, F32, I32>>;
using AvgPool2D_F8_Types =
::testing::Types<std::tuple<F8, F8, F32, I32>, std::tuple<F8, F8, F32, I32>>;
template <typename TType>
class AvgPool2D_F32 : public TestAvgPool2dFwd<TType>
{
protected:
void SetUp() override
{
if(!CK_ENABLE_FP32)
{
GTEST_SKIP() << "Skipping AvgPool2D_F32 tests because CK_ENABLE_FP32 is "
"not enabled";
}
}
};
template <typename TType>
class AvgPool2D_F16 : public TestAvgPool2dFwd<TType>
{
protected:
void SetUp() override
{
if(!CK_ENABLE_FP16)
{
GTEST_SKIP() << "Skipping AvgPool2D_F16 tests because CK_ENABLE_FP16 is "
"not enabled";
}
}
};
template <typename TType>
class AvgPool2D_BF16 : public TestAvgPool2dFwd<TType>
{
protected:
void SetUp() override
{
if(!CK_ENABLE_BF16)
{
GTEST_SKIP() << "Skipping AvgPool2D_BF16 tests because CK_ENABLE_BF16 is "
"not enabled";
}
}
};
template <typename TType>
class AvgPool2D_I8 : public TestAvgPool2dFwd<TType>
{
protected:
void SetUp() override
{
if(!CK_ENABLE_INT8)
{
GTEST_SKIP() << "Skipping AvgPool2D_I8 tests because CK_ENABLE_INT8 is "
"not enabled";
}
}
};
template <typename TType>
class AvgPool2D_F8 : public TestAvgPool2dFwd<TType>
{
protected:
void SetUp() override
{
if(!CK_ENABLE_FP8)
{
GTEST_SKIP() << "Skipping AvgPool2D_F8 tests because CK_ENABLE_FP8 is "
"not enabled";
}
}
};
TYPED_TEST_SUITE(AvgPool2D_F32, AvgPool2D_F32_Types);
TYPED_TEST_SUITE(AvgPool2D_F16, AvgPool2D_F16_Types);
TYPED_TEST_SUITE(AvgPool2D_BF16, AvgPool2D_BF16_Types);
TYPED_TEST_SUITE(AvgPool2D_I8, AvgPool2D_I8_Types);
TYPED_TEST_SUITE(AvgPool2D_F8, AvgPool2D_F8_Types);
TYPED_TEST(AvgPool2D_F32, AvgPool2D_I8_Test) { this->Run(); }
TYPED_TEST(AvgPool2D_F16, AvgPool2D_F16_Test) { this->Run(); }
TYPED_TEST(AvgPool2D_BF16, AvgPool2D_BF16_Test) { this->Run(); }
TYPED_TEST(AvgPool2D_I8, AvgPool2D_I8_Test) { this->Run(); }
TYPED_TEST(AvgPool2D_F8, AvgPool2D_F8_Test) { this->Run(); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_pool3d_fwd_impl.hpp"
......@@ -16,10 +16,19 @@ class TestAvgPool3dFwd : public ::testing::Test
std::vector<PoolingParam> params;
ck::profiler::PoolFwdInputParams in_params_avg_pool{true, 2, false, false, false, 1};
void Run()
{
for(auto param : params)
{
ck::profiler::PoolFwdKernelParams kernel_params{param.length_,
param.window_spatial_lengths_,
param.window_strides_,
param.window_dilations_,
param.input_left_pads_,
param.input_right_pads_};
bool success =
ck::profiler::profile_pool3d_fwd_impl<InDataType,
OutDataType,
......@@ -29,26 +38,18 @@ class TestAvgPool3dFwd : public ::testing::Test
ck::tensor_layout::convolution::NDHWC,
ck::ReduceTensorOp::AVG,
false,
false>(true,
2,
false,
false,
param.length_,
param.window_spatial_lengths_,
param.window_strides_,
param.window_dilations_,
param.input_left_pads_,
param.input_right_pads_);
false>(in_params_avg_pool, kernel_params);
EXPECT_TRUE(success);
}
}
};
#ifdef CK_ENABLE_FP16
using KernelTypes =
::testing::Types<std::tuple<F16, F16, F32, I32>, std::tuple<F32, F32, F32, I32>>;
#else
using KernelTypes = ::testing::Types<std::tuple<F32, F32, F32, I32>>;
#endif
using KernelTypes = ::testing::Types<std::tuple<I8, I8, I32, I32>,
std::tuple<F8, F8, F32, I32>,
std::tuple<F16, F16, F32, I32>,
std::tuple<BF16, BF16, F32, I32>,
std::tuple<F32, F32, F32, I32>>;
TYPED_TEST_SUITE(TestAvgPool3dFwd, KernelTypes);
TYPED_TEST(TestAvgPool3dFwd, Test_Pool)
{
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_max_pool2d_bwd_impl.hpp"
#include "test_pool_fwd_common.hpp"
template <typename T>
class MaxPool2dBWDTest : public ::testing::Test
{
protected:
using DOutDataType = std::tuple_element_t<0, T>;
using DInDataType = std::tuple_element_t<1, T>;
using IndexDataType = std::tuple_element_t<2, T>;
using InDataType = DInDataType;
using OutDataType = DOutDataType;
static std::vector<PoolingParam> params;
void Run()
{
for(auto param : this->params)
{
bool success =
ck::profiler::profile_max_pool2d_bwd_impl<InDataType,
OutDataType,
IndexDataType,
DOutDataType,
DInDataType,
false>(true,
2,
false,
false,
param.length_,
param.window_spatial_lengths_,
param.window_strides_,
param.window_dilations_,
param.input_left_pads_,
param.input_right_pads_);
EXPECT_TRUE(success);
}
}
};
template <typename T>
std::vector<PoolingParam> MaxPool2dBWDTest<T>::params = {
{{1, 1, 1, 1}, {1, 1}, {1, 1}, {1, 1}, {0, 0}, {0, 0}},
{{2, 16, 64, 64}, {64, 64}, {1, 1}, {1, 1}, {0, 0}, {0, 0}},
{{2, 16, 64, 64}, {4, 4}, {4, 4}, {2, 2}, {0, 0}, {0, 0}},
{{2, 32, 30, 30}, {2, 2}, {2, 2}, {1, 1}, {1, 1}, {1, 1}},
{{2, 2, 30, 30}, {2, 2}, {2, 2}, {1, 1}, {1, 1}, {1, 1}}};
using Max_Pool_2D_f32_types = ::testing::Types<std::tuple<F32, F32, I32>>;
using Max_Pool_2D_int8_types = ::testing::Types<std::tuple<I8, I8, I32>>;
using Max_Pool_2D_f16_types = ::testing::Types<std::tuple<F16, F16, I32>>;
using Max_Pool_2D_bf16_types = ::testing::Types<std::tuple<BF16, BF16, I32>>;
using Max_Pool_2D_f8_types = ::testing::Types<std::tuple<F8, F8, I32>>;
template <typename TType>
class MaxPool2D_f32 : public MaxPool2dBWDTest<TType>
{
protected:
void SetUp() override
{
if(!CK_ENABLE_FP32)
{
GTEST_SKIP() << "Skipping MaxPool2D_f32 tests because CK_ENABLE_FP32 is not enabled";
}
}
};
template <typename TType>
class MaxPool2D_int8 : public MaxPool2dBWDTest<TType>
{
protected:
void SetUp() override
{
if(!CK_ENABLE_INT8)
{
GTEST_SKIP() << "Skipping MaxPool2D_int8 tests because CK_ENABLE_INT8 is not enabled";
}
}
};
template <typename TType>
class MaxPool2D_f16 : public MaxPool2dBWDTest<TType>
{
protected:
void SetUp() override
{
if(!CK_ENABLE_FP16)
{
GTEST_SKIP() << "Skipping MaxPool2D_f16 because CK_ENABLE_FP16 is not enabled";
}
}
};
template <typename TType>
class MaxPool2D_bf16 : public MaxPool2dBWDTest<TType>
{
protected:
void SetUp() override
{
if(!CK_ENABLE_BF16)
{
GTEST_SKIP() << "Skipping MaxPool2D_bf16 tests because CK_ENABLE_BF16 is not enabled";
}
}
};
template <typename TType>
class MaxPool2D_f8 : public MaxPool2dBWDTest<TType>
{
protected:
void SetUp() override
{
if(!CK_ENABLE_FP8)
{
GTEST_SKIP() << "Skipping MaxPool2D_f8 tests because CK_ENABLE_FP8 is not enabled";
}
}
};
TYPED_TEST_SUITE(MaxPool2D_f32, Max_Pool_2D_f32_types);
TYPED_TEST_SUITE(MaxPool2D_int8, Max_Pool_2D_int8_types);
TYPED_TEST_SUITE(MaxPool2D_f16, Max_Pool_2D_f16_types);
TYPED_TEST_SUITE(MaxPool2D_bf16, Max_Pool_2D_bf16_types);
TYPED_TEST_SUITE(MaxPool2D_f8, Max_Pool_2D_f8_types);
TYPED_TEST(MaxPool2D_f32, MaxPool2DTest_f32) { this->Run(); }
TYPED_TEST(MaxPool2D_int8, MaxPool2DTest_int8) { this->Run(); }
TYPED_TEST(MaxPool2D_f16, MaxPool2DTest_f16) { this->Run(); }
TYPED_TEST(MaxPool2D_bf16, MaxPool2DTest_bf16) { this->Run(); }
TYPED_TEST(MaxPool2D_f8, MaxPool2DTest_f8) { this->Run(); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_pool2d_fwd_impl.hpp"
#include "test_pool_fwd_common.hpp"
template <typename Tuple>
class TestMaxPool2dFwd : public ::testing::Test
{
protected:
using InDataType = std::tuple_element_t<0, Tuple>;
using OutDataType = std::tuple_element_t<1, Tuple>;
using ComputeDataType = std::tuple_element_t<2, Tuple>;
using IndexDataType = std::tuple_element_t<3, Tuple>;
static constexpr bool ReturnIndex = std::tuple_element_t<4, Tuple>::value;
static std::vector<PoolingParam> params;
void Run()
{
for(auto param : params)
{
// max pool
bool success =
ck::profiler::profile_pool2d_fwd_impl<InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::NHWC,
ck::ReduceTensorOp::MAX,
false,
ReturnIndex>(true,
2,
false,
false,
param.length_,
param.window_spatial_lengths_,
param.window_strides_,
param.window_dilations_,
param.input_left_pads_,
param.input_right_pads_);
EXPECT_TRUE(success);
}
}
};
template <typename T>
std::vector<PoolingParam> TestMaxPool2dFwd<T>::params = {
{{{1, 1, 1, 1}, {1, 1}, {1, 1}, {1, 1}, {0, 0}, {0, 0}},
{{2, 16, 64, 64}, {64, 64}, {1, 1}, {1, 1}, {0, 0}, {0, 0}},
{{2, 16, 64, 64}, {4, 4}, {4, 4}, {2, 2}, {0, 0}, {0, 0}},
{{2, 32, 30, 30}, {2, 2}, {2, 2}, {1, 1}, {1, 1}, {1, 1}}}};
using true_t = std::integral_constant<bool, true>;
using false_t = std::integral_constant<bool, false>;
using MaxPool2D_F32_Types = ::testing::Types<std::tuple<F32, F32, F32, I32, true_t>,
std::tuple<F32, F32, F32, I32, false_t>>;
using MaxPool2D_F16_Types = ::testing::Types<std::tuple<F16, F16, F32, I32, true_t>,
std::tuple<F16, F16, F32, I32, false_t>>;
using MaxPool2D_BF16_Types = ::testing::Types<std::tuple<I8, I8, F32, I32, true_t>,
std::tuple<BF16, BF16, F32, I32, false_t>>;
using MaxPool2D_I8_Types =
::testing::Types<std::tuple<I8, I8, F32, I32, true_t>, std::tuple<I8, I8, F32, I32, false_t>>;
using MaxPool2D_F8_Types =
::testing::Types<std::tuple<F8, F8, F32, I32, true_t>, std::tuple<F8, F8, F32, I32, false_t>>;
template <typename TType>
class MaxPool2D_F32 : public TestMaxPool2dFwd<TType>
{
protected:
void SetUp() override
{
if(!CK_ENABLE_FP32)
{
GTEST_SKIP() << "Skipping MaxPool2D_F32 tests because CK_ENABLE_FP32 is "
"not enabled";
}
}
};
template <typename TType>
class MaxPool2D_F16 : public TestMaxPool2dFwd<TType>
{
protected:
void SetUp() override
{
if(!CK_ENABLE_FP16)
{
GTEST_SKIP() << "Skipping MaxPool2D_F16 tests because CK_ENABLE_FP16 is "
"not enabled";
}
}
};
template <typename TType>
class MaxPool2D_BF16 : public TestMaxPool2dFwd<TType>
{
protected:
void SetUp() override
{
if(!CK_ENABLE_BF16)
{
GTEST_SKIP() << "Skipping MaxPool2D_BF16 tests because CK_ENABLE_BF16 is "
"not enabled";
}
}
};
template <typename TType>
class MaxPool2D_I8 : public TestMaxPool2dFwd<TType>
{
protected:
void SetUp() override
{
if(!CK_ENABLE_INT8)
{
GTEST_SKIP() << "Skipping MaxPool2D_I8 tests because CK_ENABLE_INT8 is "
"not enabled";
}
}
};
template <typename TType>
class MaxPool2D_F8 : public TestMaxPool2dFwd<TType>
{
protected:
void SetUp() override
{
if(!CK_ENABLE_FP8)
{
GTEST_SKIP() << "Skipping MaxPool2D_F8 tests because CK_ENABLE_FP8 is "
"not enabled";
}
}
};
TYPED_TEST_SUITE(MaxPool2D_F32, MaxPool2D_F32_Types);
TYPED_TEST_SUITE(MaxPool2D_F16, MaxPool2D_F16_Types);
TYPED_TEST_SUITE(MaxPool2D_BF16, MaxPool2D_BF16_Types);
TYPED_TEST_SUITE(MaxPool2D_I8, MaxPool2D_I8_Types);
TYPED_TEST_SUITE(MaxPool2D_F8, MaxPool2D_F8_Types);
TYPED_TEST(MaxPool2D_F32, MaxPool2D_I8_Test) { this->Run(); }
TYPED_TEST(MaxPool2D_F16, MaxPool2D_F16_Test) { this->Run(); }
TYPED_TEST(MaxPool2D_BF16, MaxPool2D_BF16_Test) { this->Run(); }
TYPED_TEST(MaxPool2D_I8, MaxPool2D_I8_Test) { this->Run(); }
TYPED_TEST(MaxPool2D_F8, MaxPool2D_F8_Test) { this->Run(); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_pool3d_fwd_impl.hpp"
......@@ -16,10 +16,20 @@ class TestMaxPool3dFwd : public ::testing::Test
std::vector<PoolingParam> params;
ck::profiler::PoolFwdInputParams in_params_max_pool{true, 2, false, false, false, 0};
ck::profiler::PoolFwdInputParams in_params_max_pool_indexed{true, 2, false, false, true, 0};
void Run()
{
for(auto param : params)
{
ck::profiler::PoolFwdKernelParams kernel_params{param.length_,
param.window_spatial_lengths_,
param.window_strides_,
param.window_dilations_,
param.input_left_pads_,
param.input_right_pads_};
// max pool
bool success =
ck::profiler::profile_pool3d_fwd_impl<InDataType,
......@@ -30,16 +40,7 @@ class TestMaxPool3dFwd : public ::testing::Test
ck::tensor_layout::convolution::NDHWC,
ck::ReduceTensorOp::MAX,
false,
false>(true,
2,
false,
false,
param.length_,
param.window_spatial_lengths_,
param.window_strides_,
param.window_dilations_,
param.input_left_pads_,
param.input_right_pads_);
false>(in_params_max_pool, kernel_params);
EXPECT_TRUE(success);
// max pool + index
......@@ -51,27 +52,18 @@ class TestMaxPool3dFwd : public ::testing::Test
ck::tensor_layout::convolution::NDHWC,
ck::ReduceTensorOp::MAX,
false,
true>(true,
2,
false,
false,
param.length_,
param.window_spatial_lengths_,
param.window_strides_,
param.window_dilations_,
param.input_left_pads_,
param.input_right_pads_);
true>(in_params_max_pool_indexed,
kernel_params);
EXPECT_TRUE(success);
}
}
};
#ifdef CK_ENABLE_FP16
using KernelTypes =
::testing::Types<std::tuple<F16, F16, F32, I32>, std::tuple<F32, F32, F32, I32>>;
#else
using KernelTypes = ::testing::Types<std::tuple<F32, F32, F32, I32>>;
#endif
using KernelTypes = ::testing::Types<std::tuple<I8, I8, I8, I32>,
std::tuple<F8, F8, F8, I32>,
std::tuple<F16, F16, F16, I32>,
std::tuple<BF16, BF16, BF16, I32>,
std::tuple<F32, F32, F32, I32>>;
TYPED_TEST_SUITE(TestMaxPool3dFwd, KernelTypes);
TYPED_TEST(TestMaxPool3dFwd, Test_Pool)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "ck/ck.hpp"
using I8 = int8_t;
using F8 = ck::f8_t;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using I32 = int32_t;
using I8 = int8_t;
using F8 = ck::f8_t;
using ck::index_t;
using NDHWC = ck::tensor_layout::convolution::NDHWC;
using NHWC = ck::tensor_layout::convolution::NHWC;
struct PoolingParam
{
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment