Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
2a30cfdd
Unverified
Commit
2a30cfdd
authored
Feb 12, 2025
by
arai713
Committed by
GitHub
Feb 12, 2025
Browse files
Merge branch 'develop' into codegen-enable-hiprtc
parents
9533a172
78195ccc
Changes
433
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
831 additions
and
242 deletions
+831
-242
include/ck_tile/host.hpp
include/ck_tile/host.hpp
+3
-1
include/ck_tile/host/arg_parser.hpp
include/ck_tile/host/arg_parser.hpp
+44
-2
include/ck_tile/host/check_err.hpp
include/ck_tile/host/check_err.hpp
+119
-3
include/ck_tile/host/concat.hpp
include/ck_tile/host/concat.hpp
+122
-0
include/ck_tile/host/convolution_host_tensor_descriptor_helper.hpp
...k_tile/host/convolution_host_tensor_descriptor_helper.hpp
+27
-57
include/ck_tile/host/host_tensor.hpp
include/ck_tile/host/host_tensor.hpp
+40
-1
include/ck_tile/host/reference/reference_batched_transpose.hpp
...de/ck_tile/host/reference/reference_batched_transpose.hpp
+59
-0
include/ck_tile/host/reference/reference_fused_moe.hpp
include/ck_tile/host/reference/reference_fused_moe.hpp
+25
-16
include/ck_tile/host/reference/reference_gemm.hpp
include/ck_tile/host/reference/reference_gemm.hpp
+14
-153
include/ck_tile/host/reference/reference_moe_sorting.hpp
include/ck_tile/host/reference/reference_moe_sorting.hpp
+24
-2
include/ck_tile/host/reference/reference_rmsnorm2d_fwd.hpp
include/ck_tile/host/reference/reference_rmsnorm2d_fwd.hpp
+30
-4
include/ck_tile/host/reference/reference_rowwise_quantization2d.hpp
..._tile/host/reference/reference_rowwise_quantization2d.hpp
+1
-1
include/ck_tile/ops/add_rmsnorm2d_rdquant.hpp
include/ck_tile/ops/add_rmsnorm2d_rdquant.hpp
+2
-1
include/ck_tile/ops/batched_transpose.hpp
include/ck_tile/ops/batched_transpose.hpp
+12
-0
include/ck_tile/ops/batched_transpose/kernel/batched_transpose_kernel.hpp
...ops/batched_transpose/kernel/batched_transpose_kernel.hpp
+129
-0
include/ck_tile/ops/batched_transpose/pipeline/batched_transpose_pipeline.hpp
...batched_transpose/pipeline/batched_transpose_pipeline.hpp
+52
-0
include/ck_tile/ops/batched_transpose/pipeline/batched_transpose_policy.hpp
...s/batched_transpose/pipeline/batched_transpose_policy.hpp
+44
-0
include/ck_tile/ops/batched_transpose/pipeline/batched_transpose_problem.hpp
.../batched_transpose/pipeline/batched_transpose_problem.hpp
+48
-0
include/ck_tile/ops/common.hpp
include/ck_tile/ops/common.hpp
+2
-1
include/ck_tile/ops/common/utils.hpp
include/ck_tile/ops/common/utils.hpp
+34
-0
No files found.
Too many changes to show.
To preserve performance only
433 of 433+
files are displayed.
Plain diff
Email patch
include/ck_tile/host.hpp
View file @
2a30cfdd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/host/arg_parser.hpp"
#include "ck_tile/host/check_err.hpp"
#include "ck_tile/host/concat.hpp"
#include "ck_tile/host/convolution_host_tensor_descriptor_helper.hpp"
#include "ck_tile/host/convolution_parameter.hpp"
#include "ck_tile/host/device_memory.hpp"
...
...
@@ -20,6 +21,7 @@
#include "ck_tile/host/reference/reference_batched_masking.hpp"
#include "ck_tile/host/reference/reference_batched_rotary_position_embedding.hpp"
#include "ck_tile/host/reference/reference_batched_softmax.hpp"
#include "ck_tile/host/reference/reference_batched_transpose.hpp"
#include "ck_tile/host/reference/reference_elementwise.hpp"
#include "ck_tile/host/reference/reference_fused_moe.hpp"
#include "ck_tile/host/reference/reference_gemm.hpp"
...
...
include/ck_tile/host/arg_parser.hpp
View file @
2a30cfdd
...
...
@@ -15,11 +15,14 @@
namespace
ck_tile
{
/*
* a host side utility, arg parser for
* -[key0]=[value0] -[key1]=[value1] ...
* a host side utility, arg parser for, either
* -[key0] = [value0, value1, value2]
* or
* -[key0]=[value0] -[key1]=[value1] ...
*/
class
ArgParser
{
public:
class
Arg
{
...
...
@@ -187,6 +190,45 @@ class ArgParser
return
value
;
}
std
::
vector
<
std
::
string
>
get_string_vec
(
const
std
::
string
&
name
,
const
std
::
string
&
delimiter
=
","
)
const
{
if
(
get_str
(
name
).
empty
())
{
return
{};
}
std
::
string
s
=
get_str
(
name
);
std
::
vector
<
std
::
string
>
tokens
;
size_t
pos
=
0
;
std
::
string
token
;
while
((
pos
=
s
.
find
(
delimiter
))
!=
std
::
string
::
npos
)
{
token
=
s
.
substr
(
0
,
pos
);
tokens
.
push_back
(
token
);
s
.
erase
(
0
,
pos
+
delimiter
.
length
());
}
tokens
.
push_back
(
s
);
return
tokens
;
}
std
::
vector
<
int
>
get_int_vec
(
const
std
::
string
&
name
,
const
std
::
string
&
delimiter
=
","
)
const
{
if
(
get_str
(
name
).
empty
())
{
return
{};
}
const
std
::
vector
<
std
::
string
>
args
=
get_string_vec
(
name
,
delimiter
);
std
::
vector
<
int
>
tokens
;
tokens
.
reserve
(
static_cast
<
int
>
(
args
.
size
()));
for
(
const
std
::
string
&
token
:
args
)
{
int
value
=
atoi
(
token
.
c_str
());
tokens
.
push_back
(
value
);
}
return
tokens
;
}
private:
std
::
unordered_map
<
std
::
string
,
Arg
>
input_map
;
std
::
vector
<
std
::
string
>
keys
;
...
...
include/ck_tile/host/check_err.hpp
View file @
2a30cfdd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -18,6 +18,114 @@
namespace
ck_tile
{
template
<
typename
ComputeDataType
,
typename
OutDataType
,
typename
AccDataType
=
ComputeDataType
>
double
get_relative_threshold
(
const
int
number_of_accumulations
=
1
)
{
using
F8
=
ck_tile
::
fp8_t
;
using
BF8
=
ck_tile
::
bf8_t
;
using
F16
=
ck_tile
::
half_t
;
using
BF16
=
ck_tile
::
bf16_t
;
using
F32
=
float
;
using
I8
=
int8_t
;
using
I32
=
int32_t
;
static_assert
(
is_any_of
<
ComputeDataType
,
F8
,
BF8
,
F16
,
BF16
,
F32
,
I8
,
I32
,
int
>::
value
,
"Warning: Unhandled ComputeDataType for setting up the relative threshold!"
);
double
compute_error
=
0
;
if
constexpr
(
is_any_of
<
ComputeDataType
,
I8
,
I32
,
int
>::
value
)
{
return
0
;
}
else
{
compute_error
=
std
::
pow
(
2
,
-
numeric_traits
<
ComputeDataType
>::
mant
)
*
0.5
;
}
static_assert
(
is_any_of
<
OutDataType
,
F8
,
BF8
,
F16
,
BF16
,
F32
,
I8
,
I32
,
int
>::
value
,
"Warning: Unhandled OutDataType for setting up the relative threshold!"
);
double
output_error
=
0
;
if
constexpr
(
is_any_of
<
OutDataType
,
I8
,
I32
,
int
>::
value
)
{
return
0
;
}
else
{
output_error
=
std
::
pow
(
2
,
-
numeric_traits
<
OutDataType
>::
mant
)
*
0.5
;
}
double
midway_error
=
std
::
max
(
compute_error
,
output_error
);
static_assert
(
is_any_of
<
AccDataType
,
F8
,
BF8
,
F16
,
BF16
,
F32
,
I8
,
I32
,
int
>::
value
,
"Warning: Unhandled AccDataType for setting up the relative threshold!"
);
double
acc_error
=
0
;
if
constexpr
(
is_any_of
<
AccDataType
,
I8
,
I32
,
int
>::
value
)
{
return
0
;
}
else
{
acc_error
=
std
::
pow
(
2
,
-
numeric_traits
<
AccDataType
>::
mant
)
*
0.5
*
number_of_accumulations
;
}
return
std
::
max
(
acc_error
,
midway_error
);
}
template
<
typename
ComputeDataType
,
typename
OutDataType
,
typename
AccDataType
=
ComputeDataType
>
double
get_absolute_threshold
(
const
double
max_possible_num
,
const
int
number_of_accumulations
=
1
)
{
using
F8
=
ck_tile
::
fp8_t
;
using
BF8
=
ck_tile
::
bf8_t
;
using
F16
=
ck_tile
::
half_t
;
using
BF16
=
ck_tile
::
bf16_t
;
using
F32
=
float
;
using
I8
=
int8_t
;
using
I32
=
int32_t
;
static_assert
(
is_any_of
<
ComputeDataType
,
F8
,
BF8
,
F16
,
BF16
,
F32
,
I8
,
I32
,
int
>::
value
,
"Warning: Unhandled ComputeDataType for setting up the absolute threshold!"
);
auto
expo
=
std
::
log2
(
std
::
abs
(
max_possible_num
));
double
compute_error
=
0
;
if
constexpr
(
is_any_of
<
ComputeDataType
,
I8
,
I32
,
int
>::
value
)
{
return
0
;
}
else
{
compute_error
=
std
::
pow
(
2
,
expo
-
numeric_traits
<
ComputeDataType
>::
mant
)
*
0.5
;
}
static_assert
(
is_any_of
<
OutDataType
,
F8
,
BF8
,
F16
,
BF16
,
F32
,
I8
,
I32
,
int
>::
value
,
"Warning: Unhandled OutDataType for setting up the absolute threshold!"
);
double
output_error
=
0
;
if
constexpr
(
is_any_of
<
OutDataType
,
I8
,
I32
,
int
>::
value
)
{
return
0
;
}
else
{
output_error
=
std
::
pow
(
2
,
expo
-
numeric_traits
<
OutDataType
>::
mant
)
*
0.5
;
}
double
midway_error
=
std
::
max
(
compute_error
,
output_error
);
static_assert
(
is_any_of
<
AccDataType
,
F8
,
BF8
,
F16
,
BF16
,
F32
,
I8
,
I32
,
int
>::
value
,
"Warning: Unhandled AccDataType for setting up the absolute threshold!"
);
double
acc_error
=
0
;
if
constexpr
(
is_any_of
<
AccDataType
,
I8
,
I32
,
int
>::
value
)
{
return
0
;
}
else
{
acc_error
=
std
::
pow
(
2
,
expo
-
numeric_traits
<
AccDataType
>::
mant
)
*
0.5
*
number_of_accumulations
;
}
return
std
::
max
(
acc_error
,
midway_error
);
}
template
<
typename
T
>
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
std
::
vector
<
T
>&
v
)
{
...
...
@@ -337,7 +445,11 @@ std::enable_if_t<(std::is_same_v<ranges::range_value_t<Range>, ranges::range_val
}
if
(
!
res
)
{
std
::
cerr
<<
std
::
setw
(
12
)
<<
std
::
setprecision
(
7
)
<<
"max err: "
<<
max_err
<<
std
::
endl
;
const
float
error_percent
=
static_cast
<
float
>
(
err_count
)
/
static_cast
<
float
>
(
out
.
size
())
*
100.
f
;
std
::
cerr
<<
"max err: "
<<
max_err
;
std
::
cerr
<<
", number of errors: "
<<
err_count
;
std
::
cerr
<<
", "
<<
error_percent
<<
"% wrong values"
<<
std
::
endl
;
}
return
res
;
}
...
...
@@ -391,7 +503,11 @@ std::enable_if_t<(std::is_same_v<ranges::range_value_t<Range>, ranges::range_val
}
if
(
!
res
)
{
std
::
cerr
<<
std
::
setw
(
12
)
<<
std
::
setprecision
(
7
)
<<
"max err: "
<<
max_err
<<
std
::
endl
;
const
float
error_percent
=
static_cast
<
float
>
(
err_count
)
/
static_cast
<
float
>
(
out
.
size
())
*
100.
f
;
std
::
cerr
<<
"max err: "
<<
max_err
;
std
::
cerr
<<
", number of errors: "
<<
err_count
;
std
::
cerr
<<
", "
<<
error_percent
<<
"% wrong values"
<<
std
::
endl
;
}
return
res
;
}
...
...
include/ck_tile/host/concat.hpp
0 → 100644
View file @
2a30cfdd
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_scheduler.hpp"
namespace
ck_tile
{
template
<
typename
T
>
struct
IsCharArray
:
std
::
false_type
{
};
template
<
std
::
size_t
N
>
struct
IsCharArray
<
char
[
N
]
>
:
std
::
true_type
{
};
template
<
std
::
size_t
N
>
struct
IsCharArray
<
const
char
[
N
]
>
:
std
::
true_type
{
};
template
<
std
::
size_t
N
>
struct
IsCharArray
<
char
(
&
)[
N
]
>
:
std
::
true_type
{
};
template
<
std
::
size_t
N
>
struct
IsCharArray
<
const
char
(
&
)[
N
]
>
:
std
::
true_type
{
};
template
<
typename
...
Ts
>
inline
constexpr
bool
AllConvertibleToStringView
=
((
std
::
is_convertible_v
<
Ts
,
std
::
string_view
>
||
IsCharArray
<
Ts
>::
value
||
std
::
is_same_v
<
Ts
,
char
>
)
&&
...);
template
<
typename
...
Ts
>
[[
nodiscard
]]
auto
concat
(
const
Ts
&
...
xs
)
->
std
::
enable_if_t
<!
AllConvertibleToStringView
<
Ts
...
>
,
std
::
string
>
{
using
::
operator
<<
;
thread_local
std
::
ostringstream
oss
;
oss
.
str
(
""
);
(
oss
<<
...
<<
xs
);
return
oss
.
str
();
}
template
<
std
::
size_t
N
>
[[
nodiscard
]]
constexpr
inline
std
::
size_t
getSize
(
char
(
&
)[
N
])
noexcept
{
return
N
;
}
template
<
std
::
size_t
N
>
[[
nodiscard
]]
constexpr
inline
std
::
size_t
getSize
(
const
char
(
&
)[
N
])
noexcept
{
return
N
;
}
[[
nodiscard
]]
constexpr
inline
std
::
size_t
getSize
(
const
char
*
s
)
noexcept
{
const
char
*
end
=
s
;
while
(
*
end
++
!=
0
)
{}
return
end
-
s
-
1
;
}
[[
nodiscard
]]
constexpr
inline
std
::
size_t
getSize
(
const
char
&
)
noexcept
{
return
1
;
}
[[
nodiscard
]]
inline
std
::
size_t
getSize
(
const
std
::
string
&
s
)
noexcept
{
return
s
.
size
();
}
[[
nodiscard
]]
constexpr
inline
std
::
size_t
getSize
(
const
std
::
string_view
&
s
)
noexcept
{
return
s
.
size
();
}
template
<
typename
...
Ts
>
auto
concatInto
(
std
::
string
&
result
,
const
Ts
&
...
xs
)
->
std
::
enable_if_t
<
AllConvertibleToStringView
<
Ts
...
>
,
void
>
{
const
std
::
size_t
space
=
(
1
+
...
+
getSize
(
xs
));
result
.
reserve
(
result
.
size
()
+
space
);
((
result
+=
xs
),
...);
}
template
<
typename
...
Ts
>
[[
nodiscard
]]
auto
concat
(
const
Ts
&
...
xs
)
->
std
::
enable_if_t
<
AllConvertibleToStringView
<
Ts
...
>
,
std
::
string
>
{
std
::
string
result
;
concatInto
(
result
,
xs
...);
return
result
;
}
// Function for types convertible to std::string_view
template
<
typename
Sep
,
typename
First
,
typename
...
Rest
>
[[
nodiscard
]]
auto
concat
(
Sep
sep
,
const
First
&
first
,
const
Rest
&
...
rest
)
->
std
::
enable_if_t
<
AllConvertibleToStringView
<
First
,
Rest
...
>
,
std
::
string
>
{
std
::
string
result
;
result
+=
first
;
((
result
+=
sep
,
result
+=
rest
),
...);
return
result
;
}
// Function for other types
template
<
typename
Sep
,
typename
First
,
typename
...
Rest
>
[[
nodiscard
]]
auto
concat
(
Sep
sep
,
const
First
&
first
,
const
Rest
&
...
rest
)
->
std
::
enable_if_t
<!
AllConvertibleToStringView
<
First
,
Rest
...
>
,
std
::
string
>
{
using
::
operator
<<
;
thread_local
std
::
ostringstream
oss
;
oss
.
str
(
""
);
oss
<<
first
;
((
oss
<<
sep
<<
rest
),
...);
return
oss
.
str
();
}
}
// namespace ck_tile
include/ck_tile/host/convolution_host_tensor_descriptor_helper.hpp
View file @
2a30cfdd
...
...
@@ -14,57 +14,41 @@ namespace detail {
template
<
typename
OldLayout
>
CK_TILE_HOST
std
::
vector
<
std
::
size_t
>
get_layout_transpose_gnchw_to_old
()
{
if
constexpr
(
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNCW
>
||
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GKCX
>
||
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNKW
>
)
using
namespace
ck_tile
::
tensor_layout
::
convolution
;
if
constexpr
(
is_any_of
<
OldLayout
,
GNCW
,
GKCX
,
GNKW
>::
value
)
{
return
{
0
,
1
,
2
,
3
};
}
else
if
constexpr
(
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNCHW
>
||
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GKCYX
>
||
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNKHW
>
)
else
if
constexpr
(
is_any_of
<
OldLayout
,
GNCHW
,
GKCYX
,
GNKHW
>::
value
)
{
return
{
0
,
1
,
2
,
3
,
4
};
}
else
if
constexpr
(
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNCDHW
>
||
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GKCZYX
>
||
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNKDHW
>
)
else
if
constexpr
(
is_any_of
<
OldLayout
,
GNCDHW
,
GKCZYX
,
GNKDHW
>::
value
)
{
return
{
0
,
1
,
2
,
3
,
4
,
5
};
}
if
constexpr
(
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNWC
>
||
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GKXC
>
||
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNWK
>
)
if
constexpr
(
is_any_of
<
OldLayout
,
GNWC
,
GKXC
,
GNWK
>::
value
)
{
return
{
0
,
1
,
3
,
2
};
}
else
if
constexpr
(
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNHWC
>
||
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GKYXC
>
||
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNHWK
>
)
else
if
constexpr
(
is_any_of
<
OldLayout
,
GNHWC
,
GKYXC
,
GNHWK
>::
value
)
{
return
{
0
,
1
,
4
,
2
,
3
};
}
else
if
constexpr
(
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNDHWC
>
||
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GKZYXC
>
||
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNDHWK
>
)
else
if
constexpr
(
is_any_of
<
OldLayout
,
GNDHWC
,
GKZYXC
,
GNDHWK
>::
value
)
{
return
{
0
,
1
,
5
,
2
,
3
,
4
};
}
else
if
constexpr
(
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
NWGC
>
||
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
KXGC
>
||
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
NWGK
>
)
else
if
constexpr
(
is_any_of
<
OldLayout
,
NWGC
,
KXGC
,
NWGK
>::
value
)
{
return
{
2
,
0
,
3
,
1
};
}
else
if
constexpr
(
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
NHWGC
>
||
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
KYXGC
>
||
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
NHWGK
>
)
else
if
constexpr
(
is_any_of
<
OldLayout
,
NHWGC
,
KYXGC
,
NHWGK
>::
value
)
{
return
{
3
,
0
,
4
,
1
,
2
};
}
else
if
constexpr
(
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
NDHWGC
>
||
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
KZYXGC
>
||
std
::
is_same_v
<
OldLayout
,
ck_tile
::
tensor_layout
::
convolution
::
NDHWGK
>
)
else
if
constexpr
(
is_any_of
<
OldLayout
,
NDHWGC
,
KZYXGC
,
NDHWGK
>::
value
)
{
return
{
4
,
0
,
5
,
1
,
2
,
3
};
}
...
...
@@ -83,11 +67,11 @@ template <typename InLayout>
CK_TILE_HOST
HostTensorDescriptor
make_input_host_tensor_descriptor_g_n_c_wis_packed
(
const
ck_tile
::
conv
::
ConvParam
&
param
)
{
using
namespace
ck_tile
::
tensor_layout
::
convolution
;
std
::
vector
<
std
::
size_t
>
physical_lengths
;
if
constexpr
(
std
::
is_same_v
<
InLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNCW
>
||
std
::
is_same_v
<
InLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNCHW
>
||
std
::
is_same_v
<
InLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNCDHW
>
)
if
constexpr
(
is_any_of
<
InLayout
,
GNCW
,
GNCHW
,
GNCDHW
>::
value
)
{
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
G_
),
static_cast
<
std
::
size_t
>
(
param
.
N_
),
...
...
@@ -97,9 +81,7 @@ make_input_host_tensor_descriptor_g_n_c_wis_packed(const ck_tile::conv::ConvPara
param
.
input_spatial_lengths_
.
begin
(),
param
.
input_spatial_lengths_
.
begin
()
+
param
.
num_dim_spatial_
);
}
else
if
constexpr
(
std
::
is_same_v
<
InLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNWC
>
||
std
::
is_same_v
<
InLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNHWC
>
||
std
::
is_same_v
<
InLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNDHWC
>
)
else
if
constexpr
(
is_any_of
<
InLayout
,
GNWC
,
GNHWC
,
GNDHWC
>::
value
)
{
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
G_
),
static_cast
<
std
::
size_t
>
(
param
.
N_
),
...
...
@@ -109,9 +91,7 @@ make_input_host_tensor_descriptor_g_n_c_wis_packed(const ck_tile::conv::ConvPara
param
.
input_spatial_lengths_
.
begin
(),
param
.
input_spatial_lengths_
.
begin
()
+
param
.
num_dim_spatial_
);
}
else
if
constexpr
(
std
::
is_same_v
<
InLayout
,
ck_tile
::
tensor_layout
::
convolution
::
NWGC
>
||
std
::
is_same_v
<
InLayout
,
ck_tile
::
tensor_layout
::
convolution
::
NHWGC
>
||
std
::
is_same_v
<
InLayout
,
ck_tile
::
tensor_layout
::
convolution
::
NDHWGC
>
)
else
if
constexpr
(
is_any_of
<
InLayout
,
NWGC
,
NHWGC
,
NDHWGC
>::
value
)
{
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
N_
),
static_cast
<
std
::
size_t
>
(
param
.
G_
),
...
...
@@ -139,11 +119,11 @@ template <typename WeiLayout>
CK_TILE_HOST
HostTensorDescriptor
make_weight_host_tensor_descriptor_g_k_c_xs_packed
(
const
ck_tile
::
conv
::
ConvParam
&
param
)
{
using
namespace
ck_tile
::
tensor_layout
::
convolution
;
std
::
vector
<
std
::
size_t
>
physical_lengths
;
if
constexpr
(
std
::
is_same_v
<
WeiLayout
,
ck_tile
::
tensor_layout
::
convolution
::
KXC
>
||
std
::
is_same_v
<
WeiLayout
,
ck_tile
::
tensor_layout
::
convolution
::
KYXC
>
||
std
::
is_same_v
<
WeiLayout
,
ck_tile
::
tensor_layout
::
convolution
::
KZYXC
>
)
if
constexpr
(
is_any_of
<
WeiLayout
,
KXC
,
KYXC
,
KZYXC
>::
value
)
{
if
(
param
.
G_
!=
1
)
{
...
...
@@ -157,9 +137,7 @@ make_weight_host_tensor_descriptor_g_k_c_xs_packed(const ck_tile::conv::ConvPara
param
.
filter_spatial_lengths_
.
begin
(),
param
.
filter_spatial_lengths_
.
begin
()
+
param
.
num_dim_spatial_
);
}
else
if
constexpr
(
std
::
is_same_v
<
WeiLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GKCX
>
||
std
::
is_same_v
<
WeiLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GKCYX
>
||
std
::
is_same_v
<
WeiLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GKCZYX
>
)
else
if
constexpr
(
is_any_of
<
WeiLayout
,
GKCX
,
GKCYX
,
GKCZYX
>::
value
)
{
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
G_
),
static_cast
<
std
::
size_t
>
(
param
.
K_
),
...
...
@@ -169,9 +147,7 @@ make_weight_host_tensor_descriptor_g_k_c_xs_packed(const ck_tile::conv::ConvPara
param
.
filter_spatial_lengths_
.
begin
(),
param
.
filter_spatial_lengths_
.
begin
()
+
param
.
num_dim_spatial_
);
}
else
if
constexpr
(
std
::
is_same_v
<
WeiLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GKXC
>
||
std
::
is_same_v
<
WeiLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GKYXC
>
||
std
::
is_same_v
<
WeiLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GKZYXC
>
)
else
if
constexpr
(
is_any_of
<
WeiLayout
,
GKXC
,
GKYXC
,
GKZYXC
>::
value
)
{
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
G_
),
static_cast
<
std
::
size_t
>
(
param
.
K_
),
...
...
@@ -181,9 +157,7 @@ make_weight_host_tensor_descriptor_g_k_c_xs_packed(const ck_tile::conv::ConvPara
param
.
filter_spatial_lengths_
.
begin
(),
param
.
filter_spatial_lengths_
.
begin
()
+
param
.
num_dim_spatial_
);
}
else
if
constexpr
(
std
::
is_same_v
<
WeiLayout
,
ck_tile
::
tensor_layout
::
convolution
::
KXGC
>
||
std
::
is_same_v
<
WeiLayout
,
ck_tile
::
tensor_layout
::
convolution
::
KYXGC
>
||
std
::
is_same_v
<
WeiLayout
,
ck_tile
::
tensor_layout
::
convolution
::
KZYXGC
>
)
else
if
constexpr
(
is_any_of
<
WeiLayout
,
KXGC
,
KYXGC
,
KZYXGC
>::
value
)
{
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
K_
),
static_cast
<
std
::
size_t
>
(
param
.
G_
),
...
...
@@ -211,11 +185,11 @@ template <typename OutLayout>
CK_TILE_HOST
HostTensorDescriptor
make_output_host_tensor_descriptor_g_n_k_wos_packed
(
const
ck_tile
::
conv
::
ConvParam
&
param
)
{
using
namespace
ck_tile
::
tensor_layout
::
convolution
;
std
::
vector
<
std
::
size_t
>
physical_lengths
;
if
constexpr
(
std
::
is_same_v
<
OutLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNKW
>
||
std
::
is_same_v
<
OutLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNKHW
>
||
std
::
is_same_v
<
OutLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNKDHW
>
)
if
constexpr
(
is_any_of
<
OutLayout
,
GNKW
,
GNKHW
,
GNKDHW
>::
value
)
{
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
G_
),
static_cast
<
std
::
size_t
>
(
param
.
N_
),
...
...
@@ -226,9 +200,7 @@ make_output_host_tensor_descriptor_g_n_k_wos_packed(const ck_tile::conv::ConvPar
param
.
output_spatial_lengths_
.
begin
()
+
param
.
num_dim_spatial_
);
}
// separate from legacy code above
else
if
constexpr
(
std
::
is_same_v
<
OutLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNWK
>
||
std
::
is_same_v
<
OutLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNHWK
>
||
std
::
is_same_v
<
OutLayout
,
ck_tile
::
tensor_layout
::
convolution
::
GNDHWK
>
)
else
if
constexpr
(
is_any_of
<
OutLayout
,
GNWK
,
GNHWK
,
GNDHWK
>::
value
)
{
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
G_
),
static_cast
<
std
::
size_t
>
(
param
.
N_
),
...
...
@@ -238,9 +210,7 @@ make_output_host_tensor_descriptor_g_n_k_wos_packed(const ck_tile::conv::ConvPar
param
.
output_spatial_lengths_
.
begin
(),
param
.
output_spatial_lengths_
.
begin
()
+
param
.
num_dim_spatial_
);
}
else
if
constexpr
(
std
::
is_same_v
<
OutLayout
,
ck_tile
::
tensor_layout
::
convolution
::
NWGK
>
||
std
::
is_same_v
<
OutLayout
,
ck_tile
::
tensor_layout
::
convolution
::
NHWGK
>
||
std
::
is_same_v
<
OutLayout
,
ck_tile
::
tensor_layout
::
convolution
::
NDHWGK
>
)
else
if
constexpr
(
is_any_of
<
OutLayout
,
NWGK
,
NHWGK
,
NDHWGK
>::
value
)
{
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
N_
),
static_cast
<
std
::
size_t
>
(
param
.
G_
),
...
...
include/ck_tile/host/host_tensor.hpp
View file @
2a30cfdd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -678,4 +678,43 @@ struct HostTensor
Descriptor
mDesc
;
Data
mData
;
};
template
<
bool
is_row_major
>
auto
host_tensor_descriptor
(
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
bool_constant
<
is_row_major
>
)
{
using
namespace
ck_tile
::
literals
;
if
constexpr
(
is_row_major
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
}
template
<
bool
is_row_major
>
auto
get_default_stride
(
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
bool_constant
<
is_row_major
>
)
{
if
(
stride
==
0
)
{
if
constexpr
(
is_row_major
)
{
return
col
;
}
else
{
return
row
;
}
}
else
return
stride
;
}
}
// namespace ck_tile
include/ck_tile/host/reference/reference_batched_transpose.hpp
0 → 100644
View file @
2a30cfdd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host/host_tensor.hpp"
#include <thread>
namespace
ck_tile
{
template
<
typename
Type
>
CK_TILE_HOST
void
reference_batched_transpose
(
const
HostTensor
<
Type
>&
x
,
HostTensor
<
Type
>&
y
,
std
::
string
layout_in
=
"NCHW"
,
std
::
string
layout_out
=
"NHWC"
)
{
const
int
N
=
x
.
mDesc
.
get_lengths
()[
0
];
auto
f
=
[
&
](
auto
batch
)
{
if
(
layout_in
==
"NCHW"
&&
layout_out
==
"NHWC"
)
{
const
int
C
=
x
.
mDesc
.
get_lengths
()[
1
];
const
int
H
=
x
.
mDesc
.
get_lengths
()[
2
];
const
int
W
=
x
.
mDesc
.
get_lengths
()[
3
];
for
(
int
c
=
0
;
c
<
C
;
++
c
)
{
for
(
int
h
=
0
;
h
<
H
;
++
h
)
{
for
(
int
w
=
0
;
w
<
W
;
++
w
)
{
Type
v_x
=
x
(
batch
,
c
,
h
,
w
);
y
(
batch
,
h
,
w
,
c
)
=
v_x
;
}
}
}
}
else
if
(
layout_in
==
"NHWC"
&&
layout_out
==
"NCHW"
)
{
const
int
H
=
x
.
mDesc
.
get_lengths
()[
1
];
const
int
W
=
x
.
mDesc
.
get_lengths
()[
2
];
const
int
C
=
x
.
mDesc
.
get_lengths
()[
3
];
for
(
int
h
=
0
;
h
<
H
;
++
h
)
{
for
(
int
w
=
0
;
w
<
W
;
++
w
)
{
for
(
int
c
=
0
;
c
<
C
;
++
c
)
{
Type
v_x
=
x
(
batch
,
h
,
w
,
c
);
y
(
batch
,
c
,
h
,
w
)
=
v_x
;
}
}
}
}
};
make_ParallelTensorFunctor
(
f
,
N
)(
std
::
thread
::
hardware_concurrency
());
}
}
// namespace ck_tile
include/ck_tile/host/reference/reference_fused_moe.hpp
View file @
2a30cfdd
...
...
@@ -73,7 +73,7 @@ void reference_fused_moe(
ck_tile
::
index_t
tokens
,
ck_tile
::
index_t
experts
,
ck_tile
::
index_t
hidden_size
,
ck_tile
::
index_t
intermediate_size
,
// this size is for gate/up
ck_tile
::
index_t
intermediate_size
,
// this size is for gate/up
/down
ck_tile
::
index_t
topk
,
ck_tile
::
index_t
gate_only
)
{
...
...
@@ -82,19 +82,8 @@ void reference_fused_moe(
assert
(
sorted_expert_ids_host
.
get_num_of_dimension
()
==
1
);
assert
(
num_sorted_tiles_host
.
get_element_size
()
==
1
);
ck_tile
::
index_t
num_sorted_tiles
=
num_sorted_tiles_host
.
mData
[
0
]
/
block_m
;
ck_tile
::
index_t
intermediate_size_0
=
intermediate_size
;
ck_tile
::
index_t
intermediate_size_1
=
intermediate_size
/
(
gate_only
?
1
:
2
);
// TODO: better remove this in the future, or modify the token_id value
auto
get_topk_id
=
[
&
](
ck_tile
::
index_t
token_id_
,
ck_tile
::
index_t
expert_id_
)
{
for
(
ck_tile
::
index_t
i_
=
0
;
i_
<
topk
;
i_
++
)
{
if
(
token_ids_host
(
token_id_
,
i_
)
==
expert_id_
)
return
i_
;
}
throw
std
::
runtime_error
(
"not correct token/expert pair
\n
"
);
return
-
1
;
// TODO: not correct!!
};
ck_tile
::
index_t
intermediate_size_0
=
intermediate_size
*
(
gate_only
?
1
:
2
);
ck_tile
::
index_t
intermediate_size_1
=
intermediate_size
;
ck_tile
::
HostTensor
<
AccDataType
>
out_topk_tokens
({
tokens
,
topk
,
hidden_size
});
...
...
@@ -105,11 +94,31 @@ void reference_fused_moe(
if
(
i_tile
>=
num_sorted_tiles
)
return
;
ck_tile
::
index_t
i_expert
=
sorted_expert_ids_host
.
mData
[
i_tile
];
ck_tile
::
index_t
i_token
=
sorted_token_ids_host
.
mData
[
i_flatten
];
#if CK_TILE_REFERENCE_MOE_SORTING_MOCK_ID
ck_tile
::
index_t
i_token
=
sorted_token_ids_host
.
mData
[
i_flatten
];
ck_tile
::
index_t
i_topk
=
i_token
>>
24
;
i_token
&=
0xffffff
;
if
(
i_token
>=
tokens
)
return
;
(
void
)
token_ids_host
;
#else
// TODO: better remove this in the future, or modify the token_id value
auto
get_topk_id
=
[
&
](
ck_tile
::
index_t
token_id_
,
ck_tile
::
index_t
expert_id_
)
{
for
(
ck_tile
::
index_t
i_
=
0
;
i_
<
topk
;
i_
++
)
{
if
(
token_ids_host
(
token_id_
,
i_
)
==
expert_id_
)
return
i_
;
}
throw
std
::
runtime_error
(
"not correct token/expert pair
\n
"
);
return
-
1
;
// TODO: not correct!!
};
ck_tile
::
index_t
i_token
=
sorted_token_ids_host
.
mData
[
i_flatten
];
if
(
i_token
>=
tokens
)
return
;
ck_tile
::
index_t
i_topk
=
get_topk_id
(
i_token
,
i_expert
);
// TODO: ugly
auto
weight
=
sorted_weight_host
.
mData
[
i_flatten
];
#endif
auto
weight
=
sorted_weight_host
.
mData
[
i_flatten
];
ck_tile
::
HostTensor
<
AccDataType
>
acc_0
({
1
,
intermediate_size_0
});
// first gemm
...
...
include/ck_tile/host/reference/reference_gemm.hpp
View file @
2a30cfdd
...
...
@@ -80,13 +80,14 @@ __global__ void naive_gemm_kernel(ADataType* A,
int
b_index
=
(
std
::
is_same_v
<
LayoutB
,
tensor_layout
::
gemm
::
ColumnMajor
>
)
?
col
*
strideB
+
k
:
k
*
strideB
+
col
;
acc
+=
static_cast
<
AccDataType
>
(
A
[
a_index
])
*
static_cast
<
AccDataType
>
(
B
[
b_index
]);
acc
+=
ck_tile
::
type_convert
<
AccDataType
>
(
A
[
a_index
])
*
ck_tile
::
type_convert
<
AccDataType
>
(
B
[
b_index
]);
}
int
c_index
=
(
std
::
is_same_v
<
LayoutC
,
tensor_layout
::
gemm
::
RowMajor
>
)
?
row
*
strideC
+
col
:
col
*
strideC
+
row
;
C
[
c_index
]
=
acc
;
C
[
c_index
]
=
ck_tile
::
type_convert
<
CDataType
>
(
acc
)
;
}
}
...
...
@@ -97,9 +98,9 @@ template <typename ADataType,
typename
LayoutA
,
typename
LayoutB
,
typename
LayoutC
>
void
reference_gemm_gpu
(
DeviceMem
&
a_device
,
DeviceMem
&
b_device
,
DeviceMem
&
c_device
,
void
reference_gemm_gpu
(
ADataType
*
a_ptr
,
BDataType
*
b_ptr
,
CDataType
*
c_ptr
,
index_t
M
,
index_t
N
,
index_t
K
,
...
...
@@ -107,79 +108,13 @@ void reference_gemm_gpu(DeviceMem& a_device,
index_t
stride_b
,
index_t
stride_c
)
{
ADataType
*
d_A
;
BDataType
*
d_B
;
CDataType
*
d_C
;
hipError_t
errA
=
hipMalloc
(
&
d_A
,
M
*
K
*
sizeof
(
ADataType
));
hipError_t
errB
=
hipMalloc
(
&
d_B
,
N
*
K
*
sizeof
(
BDataType
));
hipError_t
errC
=
hipMalloc
(
&
d_C
,
M
*
N
*
sizeof
(
CDataType
));
if
(
errA
!=
hipSuccess
)
{
std
::
cerr
<<
"Error allocating device memory for A: "
<<
hipGetErrorString
(
errA
)
<<
std
::
endl
;
return
;
// Early exit on error
}
if
(
errB
!=
hipSuccess
)
{
std
::
cerr
<<
"Error allocating device memory for B: "
<<
hipGetErrorString
(
errB
)
<<
std
::
endl
;
return
;
// Early exit on error
}
if
(
errC
!=
hipSuccess
)
{
std
::
cerr
<<
"Error allocating device memory for C: "
<<
hipGetErrorString
(
errC
)
<<
std
::
endl
;
return
;
// Early exit on error
}
errA
=
hipMemcpy
(
d_A
,
a_device
.
GetDeviceBuffer
(),
M
*
K
*
sizeof
(
ADataType
),
hipMemcpyHostToDevice
);
if
(
errA
!=
hipSuccess
)
{
std
::
cerr
<<
"Error copying A to device: "
<<
hipGetErrorString
(
errA
)
<<
std
::
endl
;
}
errB
=
hipMemcpy
(
d_B
,
b_device
.
GetDeviceBuffer
(),
N
*
K
*
sizeof
(
BDataType
),
hipMemcpyHostToDevice
);
if
(
errB
!=
hipSuccess
)
{
std
::
cerr
<<
"Error copying B to device: "
<<
hipGetErrorString
(
errB
)
<<
std
::
endl
;
}
int
totalElements
=
M
*
N
;
int
numThreadsPerBlock
=
256
;
// Common choice for threads per block
int
numBlocks
=
(
totalElements
+
numThreadsPerBlock
-
1
)
/
numThreadsPerBlock
;
naive_gemm_kernel
<
ADataType
,
BDataType
,
AccDataType
,
CDataType
,
LayoutA
,
LayoutB
,
LayoutC
>
<<<
numBlocks
,
numThreadsPerBlock
>>>
(
d_A
,
d_B
,
d_C
,
M
,
N
,
K
,
stride_a
,
stride_b
,
stride_c
);
errC
=
hipMemcpy
(
c_device
.
GetDeviceBuffer
(),
d_C
,
M
*
N
*
sizeof
(
CDataType
),
hipMemcpyDeviceToHost
);
if
(
errC
!=
hipSuccess
)
{
std
::
cerr
<<
"Error copying C to device: "
<<
hipGetErrorString
(
errC
)
<<
std
::
endl
;
}
errA
=
hipFree
(
d_A
);
if
(
errA
!=
hipSuccess
)
{
std
::
cerr
<<
"Error free the A memory: "
<<
hipGetErrorString
(
errA
)
<<
std
::
endl
;
}
errB
=
hipFree
(
d_B
);
if
(
errB
!=
hipSuccess
)
{
std
::
cerr
<<
"Error free the B memory: "
<<
hipGetErrorString
(
errB
)
<<
std
::
endl
;
}
errC
=
hipFree
(
d_C
);
if
(
errC
!=
hipSuccess
)
{
std
::
cerr
<<
"Error free the C memory: "
<<
hipGetErrorString
(
errC
)
<<
std
::
endl
;
}
<<<
numBlocks
,
numThreadsPerBlock
>>>
(
a_ptr
,
b_ptr
,
c_ptr
,
M
,
N
,
K
,
stride_a
,
stride_b
,
stride_c
);
return
;
}
...
...
@@ -191,9 +126,9 @@ template <typename ADataType,
typename
LayoutA
,
typename
LayoutB
,
typename
LayoutC
>
void
reference_batched_gemm_gpu
(
DeviceMem
&
a_device
,
DeviceMem
&
b_device
,
DeviceMem
&
c_device
,
void
reference_batched_gemm_gpu
(
ADataType
*
a_ptr
,
BDataType
*
b_ptr
,
CDataType
*
c_ptr
,
index_t
M
,
index_t
N
,
index_t
K
,
...
...
@@ -205,94 +140,20 @@ void reference_batched_gemm_gpu(DeviceMem& a_device,
index_t
batch_stride_C
,
index_t
batch_count
)
{
ADataType
*
d_A
;
BDataType
*
d_B
;
CDataType
*
d_C
;
hipError_t
errA
=
hipMalloc
(
&
d_A
,
batch_count
*
M
*
K
*
sizeof
(
ADataType
));
hipError_t
errB
=
hipMalloc
(
&
d_B
,
batch_count
*
N
*
K
*
sizeof
(
BDataType
));
hipError_t
errC
=
hipMalloc
(
&
d_C
,
batch_count
*
M
*
N
*
sizeof
(
CDataType
));
if
(
errA
!=
hipSuccess
)
{
std
::
cerr
<<
"Error allocating device memory for A: "
<<
hipGetErrorString
(
errA
)
<<
std
::
endl
;
return
;
// Early exit on error
}
if
(
errB
!=
hipSuccess
)
{
std
::
cerr
<<
"Error allocating device memory for B: "
<<
hipGetErrorString
(
errB
)
<<
std
::
endl
;
return
;
// Early exit on error
}
if
(
errC
!=
hipSuccess
)
{
std
::
cerr
<<
"Error allocating device memory for C: "
<<
hipGetErrorString
(
errC
)
<<
std
::
endl
;
return
;
// Early exit on error
}
errA
=
hipMemcpy
(
d_A
,
a_device
.
GetDeviceBuffer
(),
batch_count
*
M
*
K
*
sizeof
(
ADataType
),
hipMemcpyHostToDevice
);
if
(
errA
!=
hipSuccess
)
{
std
::
cerr
<<
"Error copying A to device: "
<<
hipGetErrorString
(
errA
)
<<
std
::
endl
;
}
errB
=
hipMemcpy
(
d_B
,
b_device
.
GetDeviceBuffer
(),
batch_count
*
N
*
K
*
sizeof
(
BDataType
),
hipMemcpyHostToDevice
);
if
(
errB
!=
hipSuccess
)
{
std
::
cerr
<<
"Error copying B to device: "
<<
hipGetErrorString
(
errB
)
<<
std
::
endl
;
}
int
totalElements
=
M
*
N
;
int
numThreadsPerBlock
=
256
;
// Common choice for threads per block
int
numBlocks
=
(
totalElements
+
numThreadsPerBlock
-
1
)
/
numThreadsPerBlock
;
for
(
index_t
batch_id
=
0
;
batch_id
<
batch_count
;
++
batch_id
)
{
ADataType
*
d_ATemp
=
d_A
+
batch_id
*
batch_stride_A
;
BDataType
*
d_BTemp
=
d_B
+
batch_id
*
batch_stride_B
;
CDataType
*
d_CTemp
=
d_C
+
batch_id
*
batch_stride_C
;
ADataType
*
d_ATemp
=
a_ptr
+
batch_id
*
batch_stride_A
;
BDataType
*
d_BTemp
=
b_ptr
+
batch_id
*
batch_stride_B
;
CDataType
*
d_CTemp
=
c_ptr
+
batch_id
*
batch_stride_C
;
naive_gemm_kernel
<
ADataType
,
BDataType
,
AccDataType
,
CDataType
,
LayoutA
,
LayoutB
,
LayoutC
>
<<<
numBlocks
,
numThreadsPerBlock
>>>
(
d_ATemp
,
d_BTemp
,
d_CTemp
,
M
,
N
,
K
,
stride_a
,
stride_b
,
stride_c
);
}
errC
=
hipMemcpy
(
c_device
.
GetDeviceBuffer
(),
d_C
,
batch_count
*
M
*
N
*
sizeof
(
CDataType
),
hipMemcpyDeviceToHost
);
if
(
errC
!=
hipSuccess
)
{
std
::
cerr
<<
"Error copying C to device: "
<<
hipGetErrorString
(
errC
)
<<
std
::
endl
;
}
errA
=
hipFree
(
d_A
);
if
(
errA
!=
hipSuccess
)
{
std
::
cerr
<<
"Error free the A memory: "
<<
hipGetErrorString
(
errA
)
<<
std
::
endl
;
}
errB
=
hipFree
(
d_B
);
if
(
errB
!=
hipSuccess
)
{
std
::
cerr
<<
"Error free the B memory: "
<<
hipGetErrorString
(
errB
)
<<
std
::
endl
;
}
errC
=
hipFree
(
d_C
);
if
(
errC
!=
hipSuccess
)
{
std
::
cerr
<<
"Error free the C memory: "
<<
hipGetErrorString
(
errC
)
<<
std
::
endl
;
}
return
;
}
}
// namespace ck_tile
include/ck_tile/host/reference/reference_moe_sorting.hpp
View file @
2a30cfdd
...
...
@@ -14,12 +14,15 @@ namespace ck_tile {
template
<
typename
WeightType
,
typename
IndexType
=
index_t
>
CK_TILE_HOST
void
reference_moe_sorting
(
const
HostTensor
<
IndexType
>&
topk_ids
,
const
HostTensor
<
WeightType
>&
weights
,
const
HostTensor
<
IndexType
>&
local_expert_mask
,
HostTensor
<
IndexType
>&
p_sorted_token_ids
,
HostTensor
<
WeightType
>&
sorted_weight
,
HostTensor
<
IndexType
>&
sorted_expert_ids
,
index_t
&
unit_cnt
,
const
index_t
experts
,
const
index_t
unit_size
)
const
index_t
unit_size
,
bool
local_expert_masking
,
bool
skip_experts_with_zero_token
=
true
)
{
const
index_t
num_token
=
topk_ids
.
mDesc
.
get_lengths
()[
0
];
const
index_t
topk
=
topk_ids
.
mDesc
.
get_lengths
()[
1
];
...
...
@@ -33,8 +36,11 @@ CK_TILE_HOST void reference_moe_sorting(const HostTensor<IndexType>& topk_ids,
#endif
std
::
vector
<
std
::
vector
<
WeightType
>>
expert_token_weights
(
experts
,
std
::
vector
<
WeightType
>
(
unit_size
,
0
));
// count number of unit-size slices in this expert
std
::
vector
<
IndexType
>
expert_slices
(
experts
,
1
);
// count the tokens used in this expert
std
::
vector
<
IndexType
>
expert_slice_idxs
(
experts
,
0
);
// TODO: above 2 buffer seems duplicated
for
(
index_t
t
=
0
;
t
<
num_token
;
t
++
)
{
...
...
@@ -72,8 +78,23 @@ CK_TILE_HOST void reference_moe_sorting(const HostTensor<IndexType>& topk_ids,
IndexType
*
out_tokens
=
p_sorted_token_ids
.
data
();
WeightType
*
out_weights
=
sorted_weight
.
data
();
IndexType
*
out_expert_id
=
sorted_expert_ids
.
data
();
int
curr_expert_id
=
0
;
for
(
index_t
e
=
0
;
e
<
experts
;
e
++
)
{
if
(
local_expert_masking
)
{
if
(
local_expert_mask
(
e
)
==
0
)
continue
;
}
if
(
skip_experts_with_zero_token
)
{
if
(
expert_slice_idxs
[
e
]
==
0
)
{
curr_expert_id
++
;
continue
;
}
}
memcpy
(
out_tokens
,
expert_tokens
[
e
].
data
(),
sizeof
(
index_t
)
*
expert_slices
[
e
]
*
unit_size
);
out_tokens
+=
expert_slices
[
e
]
*
unit_size
;
memcpy
(
out_weights
,
...
...
@@ -83,10 +104,11 @@ CK_TILE_HOST void reference_moe_sorting(const HostTensor<IndexType>& topk_ids,
for
(
index_t
s
=
0
;
s
<
expert_slices
[
e
];
s
++
)
{
out_expert_id
[
s
]
=
e
;
out_expert_id
[
s
]
=
curr_expert_id
;
unit_cnt
++
;
}
out_expert_id
+=
expert_slices
[
e
];
curr_expert_id
++
;
}
unit_cnt
*=
unit_size
;
return
;
...
...
include/ck_tile/host/reference/reference_rmsnorm2d_fwd.hpp
View file @
2a30cfdd
...
...
@@ -8,16 +8,40 @@
namespace
ck_tile
{
// Note: for simplicity, each functor only care about single M
struct
reference_rmsnorm2d_default_epilogue
{
template
<
typename
OutDataType
,
typename
AccDataType
>
void
operator
()(
int
m
,
HostTensor
<
OutDataType
>&
o
,
const
HostTensor
<
AccDataType
>&
acc
)
{
const
int
N
=
acc
.
mDesc
.
get_lengths
()[
1
];
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
o
(
m
,
n
)
=
ck_tile
::
type_convert
<
OutDataType
>
(
acc
(
m
,
n
));
}
}
template
<
typename
OutDataType
,
typename
AccDataType
>
auto
operator
()(
int
m
,
const
HostTensor
<
AccDataType
>&
acc
)
{
HostTensor
<
OutDataType
>
o
(
acc
.
get_lengths
(),
acc
.
get_strides
());
operator
()(
m
,
o
,
acc
);
return
o
;
}
};
template
<
typename
XDataType
,
typename
GammaDataType
,
typename
ComputeDataType
,
typename
YDataType
,
typename
InvRmsDataType
>
typename
InvRmsDataType
,
typename
Epilogue
=
reference_rmsnorm2d_default_epilogue
>
void
reference_rmsnorm2d_fwd
(
const
HostTensor
<
XDataType
>&
x_m_n
,
const
HostTensor
<
GammaDataType
>&
gamma_n
,
HostTensor
<
YDataType
>&
y_m_n
,
HostTensor
<
InvRmsDataType
>&
invRms_m
,
ComputeDataType
epsilon
)
ComputeDataType
epsilon
,
Epilogue
epilogue_functor
=
{})
{
auto
rmsnorm2d_fwd_func
=
[
&
](
auto
m
)
{
const
int
N
=
x_m_n
.
mDesc
.
get_lengths
()[
1
];
...
...
@@ -37,13 +61,15 @@ void reference_rmsnorm2d_fwd(const HostTensor<XDataType>& x_m_n,
if
constexpr
(
!
std
::
is_same_v
<
InvRmsDataType
,
ck_tile
::
null_type
>
)
invRms_m
(
m
)
=
ck_tile
::
type_convert
<
InvRmsDataType
>
(
divisor
);
HostTensor
<
ComputeDataType
>
acc
(
x_m_n
.
get_lengths
(),
x_m_n
.
get_strides
());
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ComputeDataType
x
=
ck_tile
::
type_convert
<
ComputeDataType
>
(
x_m_n
(
m
,
n
));
ComputeDataType
gamma
=
ck_tile
::
type_convert
<
ComputeDataType
>
(
gamma_n
(
n
));
auto
y
=
x
*
divisor
*
gamma
;
y_m_n
(
m
,
n
)
=
ck_tile
::
type_convert
<
YDataType
>
(
y
);
acc
(
m
,
n
)
=
x
*
divisor
*
gamma
;
}
epilogue_functor
(
m
,
y_m_n
,
acc
);
};
make_ParallelTensorFunctor
(
rmsnorm2d_fwd_func
,
invRms_m
.
mDesc
.
get_lengths
()[
0
])(
...
...
include/ck_tile/host/reference/reference_rowwise_quantization2d.hpp
View file @
2a30cfdd
...
...
@@ -22,7 +22,7 @@ CK_TILE_HOST void reference_rowwise_quantization2d(const HostTensor<XDataType>&
// scale = amax / 127 for int8
auto
v_scale
=
type_convert
<
XDataType
>
(
scale_m
(
m
));
auto
v_qx
=
v_x
/
v_scale
;
qx_m_n
(
m
,
n
)
=
saturates
<
QXDataType
>
{}(
v_qx
);
qx_m_n
(
m
,
n
)
=
type_convert
<
QXDataType
>
(
saturates
<
QXDataType
>
{}(
v_qx
)
)
;
}
};
...
...
include/ck_tile/ops/add_rmsnorm2d_rdquant.hpp
View file @
2a30cfdd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -10,3 +10,4 @@
#include "ck_tile/ops/add_rmsnorm2d_rdquant/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_three_pass.hpp"
#include "ck_tile/ops/common/generic_2d_block_shape.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
#include "ck_tile/ops/common/utils.hpp"
include/ck_tile/ops/batched_transpose.hpp
0 → 100644
View file @
2a30cfdd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/ops/batched_transpose/kernel/batched_transpose_kernel.hpp"
#include "ck_tile/ops/batched_transpose/pipeline/batched_transpose_pipeline.hpp"
#include "ck_tile/ops/batched_transpose/pipeline/batched_transpose_policy.hpp"
#include "ck_tile/ops/batched_transpose/pipeline/batched_transpose_problem.hpp"
#include "ck_tile/ops/common/generic_2d_block_shape.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
#include "ck_tile/ops/common/utils.hpp"
include/ck_tile/ops/batched_transpose/kernel/batched_transpose_kernel.hpp
0 → 100644
View file @
2a30cfdd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
#include "ck_tile/ops/elementwise.hpp"
#include "ck_tile/host/hip_check_error.hpp"
#include <string>
#include <type_traits>
namespace
ck_tile
{
struct
BatchedTransposeHostArgs
{
const
void
*
p_input
;
void
*
p_output
;
index_t
batch
;
index_t
height
;
index_t
width
;
// index_t dim_blocks;
index_t
dim_stride
;
index_t
dim_block_h
;
index_t
dim_block_w
;
};
template
<
typename
Pipeline_
>
struct
BatchedTransposeKernel
{
using
Pipeline
=
remove_cvref_t
<
Pipeline_
>
;
using
Problem
=
remove_cvref_t
<
typename
Pipeline
::
Problem
>
;
using
Type
=
typename
Problem
::
InputType
;
struct
BatchedTransposeKargs
{
const
void
*
p_input
;
void
*
p_output
;
index_t
batch
;
index_t
height
;
index_t
width
;
index_t
dim_stride
;
};
using
Kargs
=
BatchedTransposeKargs
;
using
Hargs
=
BatchedTransposeHostArgs
;
CK_TILE_HOST
static
constexpr
auto
GridSize
(
const
Hargs
&
h
)
{
size_t
grid_size_x
=
(
h
.
width
+
h
.
dim_block_w
-
1
)
/
h
.
dim_block_w
;
size_t
grid_size_y
=
(
h
.
height
+
h
.
dim_block_h
-
1
)
/
h
.
dim_block_h
;
size_t
grid_size_z
=
h
.
batch
;
return
dim3
(
grid_size_x
,
grid_size_y
,
grid_size_z
);
}
CK_TILE_HOST
static
constexpr
auto
MakeKargs
(
const
Hargs
&
h
)
{
Kargs
k
;
k
.
p_input
=
h
.
p_input
;
k
.
p_output
=
h
.
p_output
;
k
.
batch
=
h
.
batch
;
k
.
height
=
h
.
height
;
k
.
width
=
h
.
width
;
k
.
dim_stride
=
h
.
dim_stride
;
return
k
;
}
CK_TILE_HOST_DEVICE
static
constexpr
auto
BlockSize
()
{
return
Problem
::
kBlockSize
;
}
CK_TILE_DEVICE
void
operator
()(
Kargs
kargs
)
const
{
static
constexpr
ck_tile
::
index_t
kMPerBlock
=
Problem
::
kMPerBlock
;
static
constexpr
ck_tile
::
index_t
kNPerBlock
=
Problem
::
kNPerBlock
;
static
constexpr
bool
kPadM
=
Problem
::
kPadM
;
static
constexpr
bool
kPadN
=
Problem
::
kPadN
;
static
constexpr
ck_tile
::
index_t
kMPerThread
=
Problem
::
kMPerThread
;
static
constexpr
ck_tile
::
index_t
kNPerThread
=
Problem
::
kNPerThread
;
static_assert
(
kMPerThread
==
1
&&
kNPerThread
==
1
);
const
auto
iDim
=
blockIdx
.
z
;
const
auto
x_m_n
=
[
&
]()
{
const
auto
x_dram_naive
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
const
Type
*>
(
kargs
.
p_input
)
+
iDim
*
kargs
.
dim_stride
,
make_tuple
(
kargs
.
height
,
kargs
.
width
),
make_tuple
(
kargs
.
width
,
1
),
number
<
kNPerThread
>
{},
// TODO thread load value
number
<
1
>
{});
return
pad_tensor_view
(
x_dram_naive
,
make_tuple
(
number
<
kMPerBlock
>
{},
number
<
kNPerBlock
>
{}),
sequence
<
kPadM
,
kPadN
>
{});
}();
const
auto
iM
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
x
*
kMPerBlock
);
const
auto
iN
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
y
*
kNPerBlock
);
const
auto
y_n_m
=
[
&
]()
{
const
auto
y_dram_naive
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
Type
*>
(
kargs
.
p_output
)
+
iDim
*
kargs
.
dim_stride
,
make_tuple
(
kargs
.
width
,
kargs
.
height
),
make_tuple
(
kargs
.
height
,
1
),
number
<
kMPerThread
>
{},
number
<
1
>
{});
return
pad_tensor_view
(
y_dram_naive
,
make_tuple
(
number
<
kNPerBlock
>
{},
number
<
kMPerBlock
>
{}),
sequence
<
kPadN
,
kPadM
>
{});
}();
auto
x_block_window
=
make_tile_window
(
x_m_n
,
make_tuple
(
number
<
kMPerBlock
>
{},
number
<
kNPerBlock
>
{}),
{
static_cast
<
ck_tile
::
index_t
>
(
iM
*
kMPerBlock
),
static_cast
<
ck_tile
::
index_t
>
(
iN
*
kNPerBlock
)});
auto
y_block_window
=
make_tile_window
(
y_n_m
,
make_tuple
(
number
<
kNPerBlock
>
{},
number
<
kMPerBlock
>
{}),
{
static_cast
<
ck_tile
::
index_t
>
(
iN
*
kNPerBlock
),
static_cast
<
ck_tile
::
index_t
>
(
iM
*
kMPerBlock
)});
Pipeline
{}(
x_block_window
,
y_block_window
);
}
};
}
// namespace ck_tile
include/ck_tile/ops/batched_transpose/pipeline/batched_transpose_pipeline.hpp
0 → 100644
View file @
2a30cfdd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/batched_transpose/pipeline/batched_transpose_policy.hpp"
#include <string>
#include <type_traits>
namespace
ck_tile
{
template
<
typename
Problem_
,
typename
Policy_
=
BatchedTransposePolicy
>
struct
BatchedTransposePipeline
{
// TODO: this kernel only support warp per row
using
Problem
=
remove_cvref_t
<
Problem_
>
;
using
Policy
=
remove_cvref_t
<
Policy_
>
;
using
InputType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
InputType
>
;
static
constexpr
ck_tile
::
index_t
kMPerBlock
=
Problem
::
kMPerBlock
;
static
constexpr
ck_tile
::
index_t
kNPerBlock
=
Problem
::
kNPerBlock
;
static
constexpr
index_t
AlignmentM
=
Problem
::
AlignmentM
;
static
constexpr
index_t
AlignmentN
=
Problem
::
AlignmentN
;
static
constexpr
bool
kPadM
=
Problem
::
kPadM
;
static
constexpr
bool
kPadN
=
Problem
::
kPadN
;
template
<
typename
InputWindow
,
typename
OutputWindow
>
CK_TILE_DEVICE
auto
operator
()(
const
InputWindow
&
input_window
,
OutputWindow
&
out_window
)
{
auto
inp_win
=
make_tile_window
(
input_window
,
Policy
::
template
MakeInputDistribution
<
Problem
>());
auto
out_win
=
make_tile_window
(
out_window
,
Policy
::
template
MakeOutputDistribution
<
Problem
>());
auto
x
=
load_tile
(
inp_win
);
// x->thread input_win->block
auto
y
=
make_static_distributed_tensor
<
InputType
>
(
Policy
::
template
MakeOutputDistribution
<
Problem
>());
constexpr
auto
span_2d_x
=
decltype
(
x
)
::
get_distributed_spans
();
sweep_tile_span
(
span_2d_x
[
number
<
0
>
{}],
[
&
](
auto
idx0
)
{
sweep_tile_span
(
span_2d_x
[
number
<
1
>
{}],
[
&
](
auto
idx1
)
{
constexpr
auto
i_j_idx
=
make_tuple
(
idx1
,
idx0
);
y
(
i_j_idx
)
=
x
(
i_j_idx
);
});
});
store_tile
(
out_win
,
y
);
}
};
}
// namespace ck_tile
include/ck_tile/ops/batched_transpose/pipeline/batched_transpose_policy.hpp
0 → 100644
View file @
2a30cfdd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/softmax.hpp"
#include "ck_tile/ops/topk.hpp"
namespace
ck_tile
{
struct
BatchedTransposePolicy
{
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
MakeInputDistribution
()
{
using
S
=
Problem
;
return
make_static_tile_distribution
(
tile_distribution_encoding
<
sequence
<>
,
tuple
<
sequence
<
S
::
kMWarpPerBlock
,
S
::
kMThreadPerWarp
,
S
::
kMPerThread
>
,
sequence
<
S
::
kNWarpPerBlock
,
S
::
kNThreadPerWarp
,
S
::
kNPerThread
>>
,
tuple
<
sequence
<
1
,
2
>
,
sequence
<
1
,
2
>>
,
tuple
<
sequence
<
0
,
0
>
,
sequence
<
1
,
1
>>
,
sequence
<
1
,
2
>
,
sequence
<
2
,
2
>>
{});
}
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
MakeOutputDistribution
()
{
using
S
=
Problem
;
return
make_static_tile_distribution
(
tile_distribution_encoding
<
sequence
<>
,
tuple
<
sequence
<
S
::
kNWarpPerBlock
,
S
::
kNThreadPerWarp
,
S
::
kNPerThread
>
,
sequence
<
S
::
kMWarpPerBlock
,
S
::
kMThreadPerWarp
,
S
::
kMPerThread
>>
,
tuple
<
sequence
<
2
,
1
>
,
sequence
<
2
,
1
>>
,
tuple
<
sequence
<
0
,
0
>
,
sequence
<
1
,
1
>>
,
sequence
<
2
,
1
>
,
sequence
<
2
,
2
>>
{});
}
};
}
// namespace ck_tile
include/ck_tile/ops/batched_transpose/pipeline/batched_transpose_problem.hpp
0 → 100644
View file @
2a30cfdd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include <string>
#include <type_traits>
#define VectorLoadSize 16
namespace
ck_tile
{
template
<
typename
InputType_
,
typename
BlockTile
,
// Sequence<...
typename
WarpTile
,
// Sequence<...
typename
ThreadTile
,
// Sequence<...
bool
kPadM_
=
true
,
bool
kPadN_
=
true
>
struct
BatchedTransposeProblem
{
using
InputType
=
remove_cvref_t
<
InputType_
>
;
static
constexpr
index_t
kMPerThread
=
ThreadTile
::
at
(
number
<
0
>
{});
static
constexpr
index_t
kNPerThread
=
ThreadTile
::
at
(
number
<
1
>
{});
static
constexpr
index_t
kMPerWarp
=
WarpTile
::
at
(
number
<
0
>
{});
static
constexpr
index_t
kNPerWarp
=
WarpTile
::
at
(
number
<
1
>
{});
static
constexpr
index_t
kMThreadPerWarp
=
kMPerWarp
/
kMPerThread
;
static
constexpr
index_t
kNThreadPerWarp
=
kNPerWarp
/
kNPerThread
;
static
constexpr
index_t
kMPerBlock
=
BlockTile
::
at
(
number
<
0
>
{});
static
constexpr
index_t
kNPerBlock
=
BlockTile
::
at
(
number
<
1
>
{});
static
constexpr
index_t
kMWarpPerBlock
=
kMPerBlock
/
kMPerWarp
;
static
constexpr
index_t
kNWarpPerBlock
=
kNPerBlock
/
kNPerWarp
;
static
constexpr
index_t
kBlockSize
=
kMThreadPerWarp
*
kNThreadPerWarp
*
kMWarpPerBlock
*
kNWarpPerBlock
;
static
constexpr
bool
kPadM
=
kPadM_
;
static
constexpr
bool
kPadN
=
kPadN_
;
static
constexpr
index_t
AlignmentM
=
kPadM
?
VectorLoadSize
/
sizeof
(
InputType
)
:
1
;
// TODO
static
constexpr
index_t
AlignmentN
=
kPadN
?
VectorLoadSize
/
sizeof
(
InputType
)
:
1
;
};
}
// namespace ck_tile
include/ck_tile/ops/common.hpp
View file @
2a30cfdd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/ops/common/generic_2d_block_shape.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
#include "ck_tile/ops/common/utils.hpp"
include/ck_tile/ops/common/utils.hpp
0 → 100644
View file @
2a30cfdd
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <string>
#include "ck_tile/core.hpp"
namespace
ck_tile
{
// clang-format off
template
<
typename
T
>
struct
typeToStr
;
template
<
>
struct
typeToStr
<
float
>
{
static
constexpr
const
char
*
name
=
"fp32"
;
};
template
<
>
struct
typeToStr
<
fp16_t
>
{
static
constexpr
const
char
*
name
=
"fp16"
;
};
template
<
>
struct
typeToStr
<
bf16_t
>
{
static
constexpr
const
char
*
name
=
"bf16"
;
};
template
<
>
struct
typeToStr
<
fp8_t
>
{
static
constexpr
const
char
*
name
=
"fp8"
;
};
template
<
>
struct
typeToStr
<
bf8_t
>
{
static
constexpr
const
char
*
name
=
"bf8"
;
};
template
<
>
struct
typeToStr
<
int8_t
>
{
static
constexpr
const
char
*
name
=
"int8"
;
};
// clang-format on
template
<
typename
ADataType_
,
typename
BDataType_
>
std
::
string
gemm_prec_str
()
{
std
::
string
base_str
=
std
::
string
(
typeToStr
<
ADataType_
>::
name
);
if
(
!
std
::
is_same_v
<
ADataType_
,
BDataType_
>
)
{
base_str
+=
"_"
+
std
::
string
(
typeToStr
<
BDataType_
>::
name
);
}
return
base_str
;
}
}
// namespace ck_tile
Prev
1
…
16
17
18
19
20
21
22
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment