"vscode:/vscode.git/clone" did not exist on "813dd09aae74854dd3984226e7301fe804e0b825"
Commit 29e58d5b authored by Max Podkorytov's avatar Max Podkorytov
Browse files

Make the library which generates CK instances for pytorch2 inductor's CK backend usage

Also bundle the CK library and include files with the pip package.

The package is pip-installable with
`pip install
git+https://github.com/tenpercent/composable_kernel@enable-pip`

(substitute the repo path and branch if necessary)

Testing:

`myenv/bin/python3 -m ck4inductor.universal_gemm.gen_instances`

(prints a list of instances)

`tree myenv/lib/python3.12/site-packages/ck4inductor`

(observe the list of sources along the installed package)
parent fd72380a
[build-system]
requires = ["setuptools", "setuptools-scm"]
build-backend = "setuptools.build_meta"
[project]
name = "rocm-composable-kernel"
dynamic = ["version"]
description = "Composable Kernel, performance-critical kernels for machine learning workloads"
readme = "README.md"
requires-python = ">=3.8"
license = {file = "LICENSE"}
classifiers = [
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
]
dependencies = []
[project.urls]
"Homepage" = "https://github.com/rocm/composable_kernel"
"Bug Tracker" = "https://github.com/rocm/composable_kernel/issues"
[tool.setuptools]
packages = ["ck4inductor", "ck4inductor.include", "ck4inductor.library"]
[tool.setuptools.package-dir]
ck4inductor = "python/ck4inductor"
"ck4inductor.include" = "include"
"ck4inductor.library" = "library"
[tool.setuptools.package-data]
"ck4inductor.include" = ["ck/**/*.hpp"]
"ck4inductor.library" = ["src/tensor_operation_instance/gpu/gemm_universal/**/*.hpp"]
[tool.setuptools.dynamic]
version = { attr = "setuptools_scm.get_version" }
import logging
import os
import subprocess
from dataclasses import fields, replace
from functools import lru_cache, partial
from typing import List
from ..util import library_path
from .op import CKGemmOperation
log = logging.getLogger(__name__)
def _ck_library_dir():
gemm_instances_path = os.path.join(
library_path(), "src", "tensor_operation_instance", "gpu", "gemm_universal"
)
if not os.path.exists(gemm_instances_path):
log.error("CK library path %s does not exist", gemm_instances_path)
return None
return gemm_instances_path
def parse_instances(str_instances: List[str]) -> List[CKGemmOperation]:
"""
Parse the lines containing Universal Gemm template instances into `CKGemmOperation` instances
"""
def maybe_int(s):
try:
return int(s)
except ValueError:
return s
op_instances = []
for line in str_instances:
s_template_args = line.split("DeviceGemm_Xdl_CShuffleV3")[-1].strip("<>, ")
template_args = []
i_current = 0
while i_current < len(s_template_args):
if s_template_args[i_current] == " ":
# skip whitespace
i_current += 1
continue
elif s_template_args[i_current : i_current + 2] == "S<":
# parse template S<Index...>
i_next = s_template_args.find(">", i_current)
template_args.append(
tuple(map(int, s_template_args[i_current + 2 : i_next].split(",")))
)
i_current = i_next + 2
else:
# all string attributes must be either type aliases or global constants in C++
i_next = s_template_args.find(",", i_current)
template_args.append(
maybe_int(
s_template_args[i_current : i_next if i_next != -1 else None]
)
)
if i_next != -1:
i_current = i_next + 1
if i_next == -1:
break
# pad with `None`s for the fields which are not defined in the instance
new_instance = CKGemmOperation(
*template_args, # type: ignore[arg-type]
*((None,) * (len(fields(CKGemmOperation)) - len(template_args))),
)
# the last 2 template parameters are optional
# if they are absent, substitute them with default values from Universal Gemm C++ template declaration
if new_instance.a_compute_dtype is None:
new_instance.a_compute_dtype = new_instance.c_element_dtype
if new_instance.b_compute_dtype is None:
new_instance.b_compute_dtype = new_instance.c_element_dtype
op_instances.append(new_instance)
return op_instances
def default_instances() -> List[CKGemmOperation]:
# fallback: known working op instance for problem size M=2240 K=256 N=2048
# all string attributes must be either type aliases or global constants in C++
return [
CKGemmOperation(
a_layout="Row",
b_layout="Row",
c_layout="Row",
a_element_dtype="F16",
b_element_dtype="F16",
c_element_dtype="F16",
a_compute_dtype="F16",
b_compute_dtype="F16",
acc_dtype="F32",
c_shuffle_dtype="F16",
a_elementwise_op="PassThrough",
b_elementwise_op="PassThrough",
c_elementwise_op="PassThrough",
gemm_specialization="GemmSpecialization::Default",
block_size=256,
m_per_block=224,
n_per_block=256,
k_per_block=64,
a_k1=8,
b_k1=2,
m_per_xdl=16,
n_per_xdl=16,
m_xdl_per_wave=7,
n_xdl_per_wave=8,
a_block_transfer_thread_cluster_lengths_ak0_m_ak1=(8, 32, 1),
a_block_transfer_thread_cluster_arrange_order=(1, 0, 2),
a_block_transfer_src_access_order=(1, 0, 2),
a_block_transfer_src_vector_dim=2,
a_block_transfer_src_scalar_per_vector=8,
a_block_transfer_dst_scalar_per_vector_ak1=8,
a_block_lds_extra_m=0, # type: ignore[arg-type]
b_block_transfer_thread_cluster_lengths_bk0_n_bk1=(8, 32, 1),
b_block_transfer_thread_cluster_arrange_order=(0, 2, 1),
b_block_transfer_src_access_order=(0, 2, 1),
b_block_transfer_src_vector_dim=1,
b_block_transfer_src_scalar_per_vector=8,
b_block_transfer_dst_scalar_per_vector_bk1=2,
b_block_lds_extra_n=0, # type: ignore[arg-type]
c_shuffle_m_xdl_per_wave_per_shuffle=1,
c_shuffle_n_xdl_per_wave_per_shuffle=2,
c_shuffle_block_transfer_cluster_lengths_m_block_m_per_block_n_block_n_per_block=(
1,
32,
1,
8,
),
c_shuffle_block_transfer_scalar_per_vector_n_per_block=8,
block_gemm_pipeline_scheduler="BlockGemmPipelineScheduler::Intrawave",
block_gemm_pipeline_version="BlockGemmPipelineVersion::v3",
)
]
@lru_cache(None)
def gen_ops_library() -> List[CKGemmOperation]:
"""
Parse the Universal Gemm instances defined in the composable kernel library folder.
"""
ck_library_dir = _ck_library_dir()
if not ck_library_dir:
return []
grep_result = subprocess.run(
[
"grep",
"-inR",
"DeviceGemm_Xdl_CShuffleV3",
_ck_library_dir(),
],
capture_output=True,
text=True,
)
op_instances = parse_instances(grep_result.stdout.strip().split("\n"))
log.debug("ck instances from library: %d", len(op_instances))
schedulers = [
"BlockGemmPipelineScheduler::Intrawave",
"BlockGemmPipelineScheduler::Interwave",
]
gemm_specs = [
"GemmSpecialization::Default",
"GemmSpecialization::MPadding",
"GemmSpecialization::NPadding",
"GemmSpecialization::KPadding",
"GemmSpecialization::MNPadding",
"GemmSpecialization::MKPadding",
"GemmSpecialization::NKPadding",
"GemmSpecialization::MNKPadding",
]
# substitute templated args by looping through their domains
substitute_instances = []
for instance in op_instances:
sub_scheduler = instance.block_gemm_pipeline_scheduler == "BlkGemmPipeSched"
sub_spec = instance.gemm_specialization == "GemmSpec"
schedulers_range = (
schedulers if sub_scheduler else [instance.block_gemm_pipeline_scheduler]
)
spec_range = gemm_specs if sub_spec else [instance.gemm_specialization]
for scheduler in schedulers_range:
for spec in spec_range:
substitute_instances.append(
replace(
instance,
block_gemm_pipeline_scheduler=scheduler,
gemm_specialization=spec,
)
)
return substitute_instances
@lru_cache(None)
def gen_ops_preselected() -> List[CKGemmOperation]:
"""
Manually selected (through benchmarking) F16/F16/F16 Row/Col/Row instances
"""
ck_gemm_f16_rcr = partial(
CKGemmOperation,
a_layout="Row",
b_layout="Col",
c_layout="Row",
a_element_dtype="F16",
b_element_dtype="F16",
c_element_dtype="F16",
acc_dtype="F32",
c_shuffle_dtype="F16",
a_elementwise_op="PassThrough",
b_elementwise_op="PassThrough",
c_elementwise_op="PassThrough",
k_per_block=64,
a_k1=8,
b_k1=8,
a_block_transfer_thread_cluster_arrange_order=(1, 0, 2),
a_block_transfer_src_access_order=(1, 0, 2),
a_block_transfer_src_vector_dim=2,
a_block_transfer_src_scalar_per_vector=8,
a_block_transfer_dst_scalar_per_vector_ak1=8,
a_block_lds_extra_m=0,
b_block_transfer_thread_cluster_arrange_order=(1, 0, 2),
b_block_transfer_src_access_order=(1, 0, 2),
b_block_transfer_src_vector_dim=2,
b_block_transfer_src_scalar_per_vector=8,
b_block_transfer_dst_scalar_per_vector_bk1=8,
b_block_lds_extra_n=0,
a_compute_dtype="F16",
b_compute_dtype="F16",
)
ck_gemm_f16_rcr_compute_friendly = partial(
ck_gemm_f16_rcr,
block_size=256,
a_block_transfer_thread_cluster_lengths_ak0_m_ak1=(8, 32, 1),
b_block_transfer_thread_cluster_lengths_bk0_n_bk1=(8, 32, 1),
c_shuffle_block_transfer_cluster_lengths_m_block_m_per_block_n_block_n_per_block=(
1,
32,
1,
8,
),
c_shuffle_block_transfer_scalar_per_vector_n_per_block=8,
)
ck_gemm_f16_rcr_memory_friendly = partial(
ck_gemm_f16_rcr,
block_size=128,
a_block_transfer_thread_cluster_lengths_ak0_m_ak1=(8, 16, 1),
b_block_transfer_thread_cluster_lengths_bk0_n_bk1=(8, 16, 1),
block_gemm_pipeline_scheduler="BlockGemmPipelineScheduler::Interwave",
block_gemm_pipeline_version="BlockGemmPipelineVersion::v2",
)
ck_gemm_f16_rcr_latency_friendly = partial(
ck_gemm_f16_rcr,
gemm_specialization="GemmSpecialization::Default",
block_size=128,
m_per_xdl=16,
n_per_xdl=16,
m_xdl_per_wave=1,
n_xdl_per_wave=1,
a_block_transfer_thread_cluster_lengths_ak0_m_ak1=(8, 16, 1),
b_block_transfer_thread_cluster_lengths_bk0_n_bk1=(8, 16, 1),
c_shuffle_m_xdl_per_wave_per_shuffle=1,
c_shuffle_n_xdl_per_wave_per_shuffle=1,
c_shuffle_block_transfer_scalar_per_vector_n_per_block=4,
block_gemm_pipeline_scheduler="BlockGemmPipelineScheduler::Intrawave",
block_gemm_pipeline_version="BlockGemmPipelineVersion::v1",
)
return [
ck_gemm_f16_rcr_compute_friendly(
gemm_specialization="GemmSpecialization::MNKPadding",
m_per_block=224,
n_per_block=256,
m_per_xdl=16,
n_per_xdl=16,
m_xdl_per_wave=7,
n_xdl_per_wave=8,
c_shuffle_m_xdl_per_wave_per_shuffle=1,
c_shuffle_n_xdl_per_wave_per_shuffle=2,
block_gemm_pipeline_scheduler="BlockGemmPipelineScheduler::Intrawave",
block_gemm_pipeline_version="BlockGemmPipelineVersion::v3",
),
ck_gemm_f16_rcr_compute_friendly(
gemm_specialization="GemmSpecialization::MNKPadding",
m_per_block=128,
n_per_block=128,
m_per_xdl=32,
n_per_xdl=32,
m_xdl_per_wave=2,
n_xdl_per_wave=2,
c_shuffle_m_xdl_per_wave_per_shuffle=1,
c_shuffle_n_xdl_per_wave_per_shuffle=1,
block_gemm_pipeline_scheduler="BlockGemmPipelineScheduler::Intrawave",
block_gemm_pipeline_version="BlockGemmPipelineVersion::v3",
),
ck_gemm_f16_rcr_compute_friendly(
gemm_specialization="GemmSpecialization::MNKPadding",
m_per_block=128,
n_per_block=128,
m_per_xdl=32,
n_per_xdl=32,
m_xdl_per_wave=2,
n_xdl_per_wave=2,
c_shuffle_m_xdl_per_wave_per_shuffle=1,
c_shuffle_n_xdl_per_wave_per_shuffle=1,
block_gemm_pipeline_scheduler="BlockGemmPipelineScheduler::Intrawave",
block_gemm_pipeline_version="BlockGemmPipelineVersion::v4",
),
ck_gemm_f16_rcr_compute_friendly(
gemm_specialization="GemmSpecialization::MNKPadding",
m_per_block=128,
n_per_block=128,
m_per_xdl=32,
n_per_xdl=32,
m_xdl_per_wave=2,
n_xdl_per_wave=2,
c_shuffle_m_xdl_per_wave_per_shuffle=1,
c_shuffle_n_xdl_per_wave_per_shuffle=1,
block_gemm_pipeline_scheduler="BlockGemmPipelineScheduler::Intrawave",
block_gemm_pipeline_version="BlockGemmPipelineVersion::v5",
),
ck_gemm_f16_rcr_compute_friendly(
gemm_specialization="GemmSpecialization::Default",
m_per_block=128,
n_per_block=128,
m_per_xdl=32,
n_per_xdl=32,
m_xdl_per_wave=2,
n_xdl_per_wave=2,
c_shuffle_m_xdl_per_wave_per_shuffle=1,
c_shuffle_n_xdl_per_wave_per_shuffle=1,
block_gemm_pipeline_scheduler="BlockGemmPipelineScheduler::Intrawave",
block_gemm_pipeline_version="BlockGemmPipelineVersion::v3",
),
ck_gemm_f16_rcr_compute_friendly(
gemm_specialization="GemmSpecialization::Default",
m_per_block=128,
n_per_block=128,
m_per_xdl=32,
n_per_xdl=32,
m_xdl_per_wave=2,
n_xdl_per_wave=2,
c_shuffle_m_xdl_per_wave_per_shuffle=1,
c_shuffle_n_xdl_per_wave_per_shuffle=1,
block_gemm_pipeline_scheduler="BlockGemmPipelineScheduler::Intrawave",
block_gemm_pipeline_version="BlockGemmPipelineVersion::v4",
),
ck_gemm_f16_rcr_compute_friendly(
gemm_specialization="GemmSpecialization::Default",
m_per_block=128,
n_per_block=128,
m_per_xdl=32,
n_per_xdl=32,
m_xdl_per_wave=2,
n_xdl_per_wave=2,
c_shuffle_m_xdl_per_wave_per_shuffle=1,
c_shuffle_n_xdl_per_wave_per_shuffle=1,
block_gemm_pipeline_scheduler="BlockGemmPipelineScheduler::Intrawave",
block_gemm_pipeline_version="BlockGemmPipelineVersion::v5",
),
ck_gemm_f16_rcr_memory_friendly(
gemm_specialization="GemmSpecialization::Default",
m_per_block=16,
n_per_block=32,
m_per_xdl=16,
n_per_xdl=16,
m_xdl_per_wave=1,
n_xdl_per_wave=1,
c_shuffle_m_xdl_per_wave_per_shuffle=1,
c_shuffle_n_xdl_per_wave_per_shuffle=1,
c_shuffle_block_transfer_cluster_lengths_m_block_m_per_block_n_block_n_per_block=(
1,
16,
1,
8,
),
c_shuffle_block_transfer_scalar_per_vector_n_per_block=4,
),
ck_gemm_f16_rcr_memory_friendly(
gemm_specialization="GemmSpecialization::MNKPadding",
m_per_block=16,
n_per_block=32,
m_per_xdl=16,
n_per_xdl=16,
m_xdl_per_wave=1,
n_xdl_per_wave=1,
c_shuffle_m_xdl_per_wave_per_shuffle=1,
c_shuffle_n_xdl_per_wave_per_shuffle=1,
c_shuffle_block_transfer_cluster_lengths_m_block_m_per_block_n_block_n_per_block=(
1,
16,
1,
8,
),
c_shuffle_block_transfer_scalar_per_vector_n_per_block=4,
),
ck_gemm_f16_rcr_memory_friendly(
gemm_specialization="GemmSpecialization::MNKPadding",
m_per_block=16,
n_per_block=64,
m_per_xdl=16,
n_per_xdl=16,
m_xdl_per_wave=1,
n_xdl_per_wave=2,
c_shuffle_m_xdl_per_wave_per_shuffle=1,
c_shuffle_n_xdl_per_wave_per_shuffle=2,
c_shuffle_block_transfer_cluster_lengths_m_block_m_per_block_n_block_n_per_block=(
1,
16,
1,
8,
),
c_shuffle_block_transfer_scalar_per_vector_n_per_block=8,
),
ck_gemm_f16_rcr_memory_friendly(
gemm_specialization="GemmSpecialization::MNKPadding",
m_per_block=32,
n_per_block=64,
m_per_xdl=32,
n_per_xdl=32,
m_xdl_per_wave=1,
n_xdl_per_wave=1,
c_shuffle_m_xdl_per_wave_per_shuffle=1,
c_shuffle_n_xdl_per_wave_per_shuffle=1,
c_shuffle_block_transfer_cluster_lengths_m_block_m_per_block_n_block_n_per_block=(
1,
16,
1,
8,
),
c_shuffle_block_transfer_scalar_per_vector_n_per_block=8,
),
ck_gemm_f16_rcr_memory_friendly(
gemm_specialization="GemmSpecialization::MNKPadding",
m_per_block=32,
n_per_block=128,
m_per_xdl=32,
n_per_xdl=32,
m_xdl_per_wave=1,
n_xdl_per_wave=2,
c_shuffle_m_xdl_per_wave_per_shuffle=1,
c_shuffle_n_xdl_per_wave_per_shuffle=1,
c_shuffle_block_transfer_cluster_lengths_m_block_m_per_block_n_block_n_per_block=(
1,
16,
1,
8,
),
c_shuffle_block_transfer_scalar_per_vector_n_per_block=8,
),
ck_gemm_f16_rcr_memory_friendly(
gemm_specialization="GemmSpecialization::Default",
m_per_block=32,
n_per_block=16,
m_per_xdl=16,
n_per_xdl=16,
m_xdl_per_wave=1,
n_xdl_per_wave=1,
c_shuffle_m_xdl_per_wave_per_shuffle=1,
c_shuffle_n_xdl_per_wave_per_shuffle=1,
c_shuffle_block_transfer_cluster_lengths_m_block_m_per_block_n_block_n_per_block=(
1,
32,
1,
4,
),
c_shuffle_block_transfer_scalar_per_vector_n_per_block=4,
),
ck_gemm_f16_rcr_memory_friendly(
gemm_specialization="GemmSpecialization::MNKPadding",
m_per_block=32,
n_per_block=16,
m_per_xdl=16,
n_per_xdl=16,
m_xdl_per_wave=1,
n_xdl_per_wave=1,
c_shuffle_m_xdl_per_wave_per_shuffle=1,
c_shuffle_n_xdl_per_wave_per_shuffle=1,
c_shuffle_block_transfer_cluster_lengths_m_block_m_per_block_n_block_n_per_block=(
1,
32,
1,
4,
),
c_shuffle_block_transfer_scalar_per_vector_n_per_block=4,
),
ck_gemm_f16_rcr_memory_friendly(
gemm_specialization="GemmSpecialization::MNKPadding",
m_per_block=64,
n_per_block=16,
m_per_xdl=16,
n_per_xdl=16,
m_xdl_per_wave=2,
n_xdl_per_wave=1,
c_shuffle_m_xdl_per_wave_per_shuffle=2,
c_shuffle_n_xdl_per_wave_per_shuffle=1,
c_shuffle_block_transfer_cluster_lengths_m_block_m_per_block_n_block_n_per_block=(
1,
64,
1,
2,
),
c_shuffle_block_transfer_scalar_per_vector_n_per_block=8,
),
ck_gemm_f16_rcr_memory_friendly(
gemm_specialization="GemmSpecialization::MNKPadding",
m_per_block=64,
n_per_block=32,
m_per_xdl=32,
n_per_xdl=32,
m_xdl_per_wave=1,
n_xdl_per_wave=1,
c_shuffle_m_xdl_per_wave_per_shuffle=1,
c_shuffle_n_xdl_per_wave_per_shuffle=1,
c_shuffle_block_transfer_cluster_lengths_m_block_m_per_block_n_block_n_per_block=(
1,
32,
1,
4,
),
c_shuffle_block_transfer_scalar_per_vector_n_per_block=8,
),
ck_gemm_f16_rcr_memory_friendly(
gemm_specialization="GemmSpecialization::MNKPadding",
m_per_block=128,
n_per_block=32,
m_per_xdl=32,
n_per_xdl=32,
m_xdl_per_wave=2,
n_xdl_per_wave=1,
c_shuffle_m_xdl_per_wave_per_shuffle=2,
c_shuffle_n_xdl_per_wave_per_shuffle=1,
c_shuffle_block_transfer_cluster_lengths_m_block_m_per_block_n_block_n_per_block=(
1,
32,
1,
4,
),
c_shuffle_block_transfer_scalar_per_vector_n_per_block=8,
),
ck_gemm_f16_rcr_latency_friendly(
m_per_block=16,
n_per_block=32,
c_shuffle_block_transfer_cluster_lengths_m_block_m_per_block_n_block_n_per_block=(
1,
16,
1,
8,
),
),
ck_gemm_f16_rcr_latency_friendly(
m_per_block=32,
n_per_block=16,
c_shuffle_block_transfer_cluster_lengths_m_block_m_per_block_n_block_n_per_block=(
1,
32,
1,
4,
),
),
]
if __name__ == "__main__":
print(gen_ops_library())
from dataclasses import asdict, dataclass
from typing import Optional, Tuple
@dataclass
class CKGemmOperation:
"""
A python dataclass storing the template parameters of a CK Universal Gemm template instance
"""
a_layout: str
b_layout: str
c_layout: str
a_element_dtype: str
b_element_dtype: str
c_element_dtype: str
acc_dtype: str
c_shuffle_dtype: str
a_elementwise_op: str
b_elementwise_op: str
c_elementwise_op: str
gemm_specialization: str
block_size: int
m_per_block: int
n_per_block: int
k_per_block: int
a_k1: int
b_k1: int
m_per_xdl: int
n_per_xdl: int
m_xdl_per_wave: int
n_xdl_per_wave: int
a_block_transfer_thread_cluster_lengths_ak0_m_ak1: Tuple[int, int, int]
a_block_transfer_thread_cluster_arrange_order: Tuple[int, int, int]
a_block_transfer_src_access_order: Tuple[int, int, int]
a_block_transfer_src_vector_dim: int
a_block_transfer_src_scalar_per_vector: int
a_block_transfer_dst_scalar_per_vector_ak1: int
a_block_lds_extra_m: bool
b_block_transfer_thread_cluster_lengths_bk0_n_bk1: Tuple[int, int, int]
b_block_transfer_thread_cluster_arrange_order: Tuple[int, int, int]
b_block_transfer_src_access_order: Tuple[int, int, int]
b_block_transfer_src_vector_dim: int
b_block_transfer_src_scalar_per_vector: int
b_block_transfer_dst_scalar_per_vector_bk1: int
b_block_lds_extra_n: bool
c_shuffle_m_xdl_per_wave_per_shuffle: int
c_shuffle_n_xdl_per_wave_per_shuffle: int
c_shuffle_block_transfer_cluster_lengths_m_block_m_per_block_n_block_n_per_block: (
Tuple[int, int, int, int]
)
c_shuffle_block_transfer_scalar_per_vector_n_per_block: int
block_gemm_pipeline_scheduler: str
block_gemm_pipeline_version: Optional[str]
a_compute_dtype: Optional[str]
b_compute_dtype: Optional[str]
def name(self):
# cpp alias for template instance
return f"ck_devicegemm_xdl_shuffle_v3_{self.key_name()}"
def key_name(self):
# TBD; must be unique per instance. Intended to use as dict key
return "_".join(
[
"K"
+ field_name.replace("_", "").lower()
+ "V"
+ (
"x".join(map(str, iter(field_value)))
if isinstance(field_value, tuple)
else str(field_value).replace(":", "")
)
for field_name, field_value in self.dict_items()
]
)
def dict_items(self):
return asdict(self).items()
import functools
import os
@functools.lru_cache(None)
def library_path():
return os.path.join(os.path.dirname(__file__), 'library')
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment