Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
29deceb6
Unverified
Commit
29deceb6
authored
Nov 28, 2023
by
Illia Silin
Committed by
GitHub
Nov 28, 2023
Browse files
Merge pull request #18 from ROCmSoftwarePlatform/merge-from-public
Merge from public
parents
91c1d147
c997bbf6
Changes
422
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
879 additions
and
432 deletions
+879
-432
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_xdl_bias_perchannel_quantization_int8_instance.cpp
...conv2d_xdl_bias_perchannel_quantization_int8_instance.cpp
+37
-36
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_xdl_bias_perlayer_quantization_int8_instance.cpp
...e_conv2d_xdl_bias_perlayer_quantization_int8_instance.cpp
+37
-36
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_xdl_int8_instance.hpp
...antization/conv2d_fwd/device_conv2d_xdl_int8_instance.hpp
+14
-14
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_xdl_perchannel_quantization_int8_instance.cpp
...vice_conv2d_xdl_perchannel_quantization_int8_instance.cpp
+24
-24
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_xdl_perlayer_quantization_int8_instance.cpp
...device_conv2d_xdl_perlayer_quantization_int8_instance.cpp
+24
-24
library/src/tensor_operation_instance/gpu/transpose/CMakeLists.txt
...rc/tensor_operation_instance/gpu/transpose/CMakeLists.txt
+3
-0
library/src/tensor_operation_instance/gpu/transpose/device_transpose_instances_3d.cpp
..._instance/gpu/transpose/device_transpose_instances_3d.cpp
+43
-0
profiler/README.md
profiler/README.md
+14
-12
profiler/include/profiler/profile_contraction_impl.hpp
profiler/include/profiler/profile_contraction_impl.hpp
+46
-16
profiler/include/profiler/profile_contraction_utils.hpp
profiler/include/profiler/profile_contraction_utils.hpp
+12
-2
profiler/include/profiler/profile_gemm_impl.hpp
profiler/include/profiler/profile_gemm_impl.hpp
+96
-53
profiler/include/profiler/profile_gemm_splitk_impl.hpp
profiler/include/profiler/profile_gemm_splitk_impl.hpp
+1
-2
profiler/include/profiler/profile_grouped_conv_fwd_impl.hpp
profiler/include/profiler/profile_grouped_conv_fwd_impl.hpp
+12
-12
profiler/include/profiler/profile_groupnorm_fwd_impl.hpp
profiler/include/profiler/profile_groupnorm_fwd_impl.hpp
+9
-9
profiler/include/profiler/profile_layernorm_fwd_impl.hpp
profiler/include/profiler/profile_layernorm_fwd_impl.hpp
+9
-9
profiler/include/profiler/profile_transpose_impl.hpp
profiler/include/profiler/profile_transpose_impl.hpp
+182
-0
profiler/src/CMakeLists.txt
profiler/src/CMakeLists.txt
+6
-3
profiler/src/profile_contraction_bilinear.cpp
profiler/src/profile_contraction_bilinear.cpp
+134
-91
profiler/src/profile_contraction_scale.cpp
profiler/src/profile_contraction_scale.cpp
+133
-88
profiler/src/profile_grouped_gemm.cpp
profiler/src/profile_grouped_gemm.cpp
+43
-1
No files found.
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_xdl_bias_perchannel_quantization_int8_instance.cpp
View file @
29deceb6
...
...
@@ -8,18 +8,18 @@ namespace tensor_operation {
namespace
device
{
namespace
instance
{
void
add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul2_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul2_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_xdl_int8_instances
<
NHWGC
,
...
...
@@ -51,18 +51,18 @@ void add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances(
}
void
add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Relu_Mul2_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Relu_Mul2_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_xdl_int8_instances
<
NHWGC
,
...
...
@@ -94,18 +94,19 @@ void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances(
}
void
add_device_conv2d_xdl_bias_tanh_perchannel_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul2_TanH_Mul_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul2_TanH_Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_xdl_int8_instances
<
NHWGC
,
...
...
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_xdl_bias_perlayer_quantization_int8_instance.cpp
View file @
29deceb6
...
...
@@ -8,18 +8,18 @@ namespace tensor_operation {
namespace
device
{
namespace
instance
{
void
add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_xdl_int8_instances
<
NHWGC
,
...
...
@@ -51,18 +51,18 @@ void add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances(
}
void
add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Relu_Mul_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Relu_Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_xdl_int8_instances
<
NHWGC
,
...
...
@@ -96,18 +96,19 @@ void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances(
}
void
add_device_conv2d_xdl_bias_tanh_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul_TanH_Mul_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul_TanH_Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_xdl_int8_instances
<
NHWGC
,
...
...
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_xdl_int8_instance.hpp
View file @
29deceb6
...
...
@@ -4,7 +4,7 @@
#pragma once
#include "conv2d_quantization_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
@@ -26,19 +26,19 @@ using device_grouped_conv2d_xdl_int8_instances =
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
16
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
64
,
64
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
128
,
32
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
32
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
64
,
64
,
32
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
64
,
32
,
64
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
DstScalarPerVector
>
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
16
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
64
,
64
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
128
,
32
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
32
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
64
,
64
,
32
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
64
,
32
,
64
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
DstScalarPerVector
>
>
;
// clang-format on
...
...
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_xdl_perchannel_quantization_int8_instance.cpp
View file @
29deceb6
...
...
@@ -8,18 +8,18 @@ namespace tensor_operation {
namespace
device
{
namespace
instance
{
void
add_device_conv2d_xdl_perchannel_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Mul2_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Mul2_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_xdl_int8_instances
<
NHWGC
,
...
...
@@ -51,18 +51,18 @@ void add_device_conv2d_xdl_perchannel_quantization_int8_instances(
}
void
add_device_conv2d_xdl_relu_perchannel_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Relu_Mul2_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Relu_Mul2_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_xdl_int8_instances
<
NHWGC
,
...
...
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_xdl_perlayer_quantization_int8_instance.cpp
View file @
29deceb6
...
...
@@ -8,18 +8,18 @@ namespace tensor_operation {
namespace
device
{
namespace
instance
{
void
add_device_conv2d_xdl_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
Empty_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Mul_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
Empty_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_xdl_int8_instances
<
NHWGC
,
...
...
@@ -51,18 +51,18 @@ void add_device_conv2d_xdl_perlayer_quantization_int8_instances(
}
void
add_device_conv2d_xdl_relu_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
Empty_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Relu_Mul_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
Empty_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Relu_Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_xdl_int8_instances
<
NHWGC
,
...
...
library/src/tensor_operation_instance/gpu/transpose/CMakeLists.txt
0 → 100644
View file @
29deceb6
add_instance_library
(
device_transpose_instance
device_transpose_instances_3d.cpp
)
library/src/tensor_operation_instance/gpu/transpose/device_transpose_instances_3d.cpp
0 → 100644
View file @
29deceb6
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/transpose/device_transpose_instance.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
void
add_device_transpose_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
PassThrough
,
5
>>>&
instances
)
{
#ifdef CK_ENABLE_FP16
add_device_operation_instances
(
instances
,
device_transpose_f16_instances
{});
#else
ignore
=
instances
;
#endif
}
void
add_device_transpose_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
PassThrough
,
5
>>>&
instances
)
{
#ifdef CK_ENABLE_FP32
add_device_operation_instances
(
instances
,
device_transpose_f32_instances
{});
#else
ignore
=
instances
;
#endif
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
profiler/README.md
View file @
29deceb6
...
...
@@ -50,21 +50,23 @@ Best Perf: 1.42509 ms, 102.988 TFlops, 234.086 GB/s
## Profile contraction kernels
```
bash
#arg1: tensor operation (contraction_bilinear=CONTRACTION+Bilinear)
#arg2: data type (0: fp32; 1: f64)\n"
#arg3: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
#arg2: data type (0: fp32; 1: f64; 2: f16; 3: bf16)
#arg3: compute data type (0: fp32; 1: f64; 2: f16; 3: bf16)
#arg4: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
# 1: A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
# 2: A[k0, k1, m0, m1] * B[k0, k1, n0, n1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
# 3: A[k0, k1, m0, m1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1])
#arg4: verification (0: no; 1: yes)
#arg5: initialization (0: no init; 1: integer value; 2: decimal value)
#arg6: print tensor value (0: no; 1: yes)
#arg7: time kernel (0: no, 1: yes)
#arg8 and arg9: alpha and beta
#arg10 to 15: M0, M1, N0, N1, K0, K1
#arg16 to 31: Strides for A, B, D and E (skip for default)
################ op datatype layout verify init log time alpha beta M0 M1 N0 N1 K0 K1
./bin/ckProfiler contraction_bilinear 0 1 0 0 0 1 1.0 1.0 128 128 128 128 128 128
#arg5: verification (0: no; 1: yes)
#arg6: initialization (0: no init; 1: integer value; 2: decimal value)
#arg7: print tensor value (0: no; 1: yes)
#arg8: time kernel (0: no, 1: yes)
#arg9: alpha
#arg10: beta
#arg11 to 16: M0, M1, N0, N1, K0, K1
#arg17 to 32: Strides for A, B, D and E (skip for default)
################ op datatype compute_datatype layout verify init log time alpha beta M0 M1 N0 N1 K0 K1
./bin/ckProfiler contraction_bilinear 0 0 1 0 0 0 1 1.0 1.0 128 128 128 128 128 128
```
Result (MI100)
...
...
profiler/include/profiler/profile_contraction_impl.hpp
View file @
29deceb6
...
...
@@ -31,10 +31,14 @@ namespace profiler {
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
F32
=
float
;
using
F64
=
double
;
template
<
typename
ALayout
,
typename
BLayout
,
typename
CDELayout
,
typename
DataType
,
typename
ComputeDataType
,
typename
DTupleDataType
,
typename
CDElementOp
>
int
profile_contraction_impl
(
ck
::
index_t
do_verification
,
...
...
@@ -45,10 +49,10 @@ int profile_contraction_impl(ck::index_t do_verification,
const
std
::
vector
<
ck
::
index_t
>&
M
,
const
std
::
vector
<
ck
::
index_t
>&
N
,
const
std
::
vector
<
ck
::
index_t
>&
K
,
const
std
::
vector
<
ck
::
index_t
>&
StridesA
,
const
std
::
vector
<
ck
::
index_t
>&
StridesB
,
const
std
::
vector
<
ck
::
index_t
>&
StridesE
,
const
std
::
vector
<
ck
::
index_t
>&
StridesD
)
const
std
::
vector
<
ck
::
index_t
>&
StridesA
,
// [M0, M1, K0, K1]
const
std
::
vector
<
ck
::
index_t
>&
StridesB
,
// [N0, N1, K0, K1]
const
std
::
vector
<
ck
::
index_t
>&
StridesE
,
// [M0, M1, N0, N1]
const
std
::
vector
<
ck
::
index_t
>&
StridesD
)
// [M0, M1, N0, N1]
{
bool
pass
=
true
;
...
...
@@ -63,13 +67,13 @@ int profile_contraction_impl(ck::index_t do_verification,
};
Tensor
<
DataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StridesA
));
Tensor
<
DataType
>
b_
k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StridesB
));
Tensor
<
DataType
>
b_
n_k
(
f_host_tensor_descriptor
(
N
,
K
,
StridesB
));
Tensor
<
DataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StridesE
));
Tensor
<
DataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StridesE
));
Tensor
<
DataType
>
d_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StridesD
));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_
k_n
: "
<<
b_
k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_
n_k
: "
<<
b_
n_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_m_n: "
<<
d_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_device_result
.
mDesc
<<
std
::
endl
;
...
...
@@ -78,12 +82,12 @@ int profile_contraction_impl(ck::index_t do_verification,
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
DataType
>
{
-
5
,
5
});
b_
k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
DataType
>
{
-
5
,
5
});
b_
n_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
DataType
>
{
-
5
,
5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
DataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
DataType
>
{
0.0
,
1.0
});
b_
k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
DataType
>
{
-
0.5
,
0.5
});
b_
n_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
DataType
>
{
-
0.5
,
0.5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
DataType
>
{
-
0.5
,
0.5
});
}
...
...
@@ -91,12 +95,12 @@ int profile_contraction_impl(ck::index_t do_verification,
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
DeviceMem
a_device_buf
(
sizeof
(
DataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
DataType
)
*
b_
k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
DataType
)
*
b_
n_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
DataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
DataType
)
*
d_m_n
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_
k_n
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_
n_k
.
mData
.
data
());
e_device_buf
.
SetZero
();
d_device_buf
.
ToDevice
(
d_m_n
.
mData
.
data
());
...
...
@@ -118,7 +122,8 @@ int profile_contraction_impl(ck::index_t do_verification,
DataType
,
AElementOp
,
BElementOp
,
CDElementOp
>
;
CDElementOp
,
ComputeDataType
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
...
...
@@ -126,6 +131,9 @@ int profile_contraction_impl(ck::index_t do_verification,
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
using
AccDataType
=
typename
std
::
conditional
<
std
::
is_same
<
ComputeDataType
,
F64
>::
value
,
F64
,
F32
>::
type
;
// Run reference op
if
(
do_verification
)
{
...
...
@@ -136,7 +144,8 @@ int profile_contraction_impl(ck::index_t do_verification,
DataType
,
DataType
,
DataType
,
DataType
,
AccDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
>
;
...
...
@@ -146,7 +155,7 @@ int profile_contraction_impl(ck::index_t do_verification,
Tensor
<
DataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StridesE
));
auto
ref_argument
=
ref_op
.
MakeArgument
(
a_m_k
,
b_
k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
);
ref_op
.
MakeArgument
(
a_m_k
,
b_
n_k
,
c_m_n_host_result
,
a_element_op
,
b_element_op
);
ref_invoker
.
Run
(
ref_argument
);
...
...
@@ -272,8 +281,29 @@ int profile_contraction_impl(ck::index_t do_verification,
{
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
float
threshold
=
static_cast
<
DataType
>
(
nelems_k
)
*
std
::
numeric_limits
<
DataType
>::
epsilon
();
// Both the kernel and the reference use `AccDataType`, so an absolute error of both
// of them is bounded by `nelems_k * std::numeric_limits<AccDataType>::epsilon()`.
// Comparing one to another can result in an absolute error as high as twice that
// value.
double
threshold
=
2
*
nelems_k
*
std
::
numeric_limits
<
AccDataType
>::
epsilon
();
// Handle the possible casting error of either AccDataType -> DataType or
// DataType -> ComputeDataType.
// TODO: Add a generic solution for calculating thresholds in CK.
if
constexpr
(
ck
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
||
ck
::
is_same_v
<
ComputeDataType
,
ck
::
bhalf_t
>
)
{
const
double
epsilon
=
std
::
pow
(
2
,
-
7
);
// Maximum relative casting error when rounding to zero.
threshold
+=
epsilon
*
2
;
}
else
if
constexpr
(
ck
::
is_same_v
<
DataType
,
ck
::
half_t
>
||
ck
::
is_same_v
<
ComputeDataType
,
ck
::
half_t
>
)
{
const
double
epsilon
=
std
::
pow
(
2
,
-
10
);
// Maximum relative casting error when rounding to zero.
threshold
+=
epsilon
*
2
;
}
pass
=
pass
&
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
,
"Error: incorrect results!"
,
...
...
@@ -283,7 +313,7 @@ int profile_contraction_impl(ck::index_t do_verification,
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_
k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_
n_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
e_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
e_m_n_device_result
.
mData
,
","
)
...
...
profiler/include/profiler/profile_contraction_utils.hpp
View file @
29deceb6
...
...
@@ -23,8 +23,18 @@ enum struct ContractionMatrixLayout
enum
struct
ContractionDataType
{
F32_F32_F32_F32
,
// 0
F64_F64_F64_F64
,
// 1
F32_F32_F32_F32
,
// 0
F64_F64_F64_F64
,
// 1
F16_F16_F16_F16
,
// 2
BF16_BF16_BF16_BF16
,
// 3
};
enum
struct
ContractionComputeDataType
{
F32
=
0
,
F64
,
F16
,
BF16
,
};
inline
void
collect_index_params
(
char
*
argv
[],
...
...
profiler/include/profiler/profile_gemm_impl.hpp
View file @
29deceb6
...
...
@@ -6,6 +6,7 @@
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include <unistd.h>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
...
...
@@ -20,6 +21,7 @@
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/fill.hpp"
namespace
ck
{
namespace
profiler
{
...
...
@@ -69,14 +71,17 @@ int profile_gemm_impl(int do_verification,
switch
(
init_method
)
{
case
0
:
break
;
case
0
:
ck
::
utils
::
FillConstant
<
ADataType
>
{
static_cast
<
ADataType
>
(
1.
f
)}(
a_m_k
);
ck
::
utils
::
FillConstant
<
BDataType
>
{
static_cast
<
BDataType
>
(
1.
f
)}(
b_k_n
);
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
}
);
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
}
);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
5
.
f
,
5
.
f
}(
a_m_k
);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
5
.
f
,
5
.
f
}(
b_k_n
);
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
0.1
}
);
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.05
,
0.05
}
);
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
1.
f
,
1.
f
}(
a_m_k
);
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
1.
f
,
1.
f
}(
b_k_n
);
}
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
...
...
@@ -130,11 +135,10 @@ int profile_gemm_impl(int do_verification,
ref_invoker
.
Run
(
ref_argument
);
}
std
::
string
best_op_name
;
float
best_avg_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
int
best_instance_id
=
0
;
int
instance_id
=
0
;
// profile device op instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
...
...
@@ -162,7 +166,7 @@ int profile_gemm_impl(int do_verification,
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
0
,
10
,
50
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
...
...
@@ -178,10 +182,8 @@ int profile_gemm_impl(int do_verification,
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_instance_id
=
instance_id
;
best_tflops
=
tflops
;
}
if
(
do_verification
)
...
...
@@ -205,53 +207,94 @@ int profile_gemm_impl(int do_verification,
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
constexpr
(
is_same
<
CDataType
,
float
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f32"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
half_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f16"
;
instance_id
++
;
}
else
if
constexpr
(
is_same
<
CDataType
,
bhalf_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = bf16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
int8_t
>::
value
)
sleep
(
2
);
// Run the best instance again
{
std
::
cout
<<
"Best Perf for datatype = int8"
;
}
auto
&
op_ptr
=
op_ptrs
[
best_instance_id
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
0
,
50
,
200
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
if
constexpr
(
is_same
<
CDataType
,
float
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f32"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
half_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
bhalf_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = bf16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
int8_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = int8"
;
}
#if defined CK_ENABLE_FP8
else
if
constexpr
(
is_same
<
CDataType
,
f8_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = fp8"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
f8_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = fp8"
;
}
#endif
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" ALayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" ALayout = ColumnMajor"
;
}
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" ALayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" ALayout = ColumnMajor"
;
}
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" BLayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" BLayout = ColumnMajor"
;
}
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" BLayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" BLayout = ColumnMajor"
;
}
std
::
cout
<<
" M = "
<<
M
<<
" N = "
<<
N
<<
" K = "
<<
K
<<
" StrideA = "
<<
StrideA
<<
" StrideB = "
<<
StrideB
<<
" StrideC = "
<<
StrideC
<<
" : "
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
std
::
cout
<<
" M = "
<<
M
<<
" N = "
<<
N
<<
" K = "
<<
K
<<
" StrideA = "
<<
StrideA
<<
" StrideB = "
<<
StrideB
<<
" StrideC = "
<<
StrideC
<<
" : "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
}
}
return
pass
?
0
:
1
;
}
...
...
profiler/include/profiler/profile_gemm_splitk_impl.hpp
View file @
29deceb6
...
...
@@ -143,8 +143,7 @@ bool profile_gemm_splitk_impl(int do_verification,
// profile device GEMM instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
std
::
vector
<
int
>
kbatch_list
=
{
1
,
2
,
4
,
8
,
12
,
16
,
20
,
24
,
32
,
36
,
40
,
60
,
64
,
72
,
80
,
88
,
96
,
128
,
144
,
160
,
176
,
192
,
256
};
std
::
vector
<
int
>
kbatch_list
=
{
1
,
2
,
4
,
8
,
12
,
16
,
20
,
32
,
36
,
40
,
64
,
96
,
128
};
if
(
KBatch
>
0
)
{
...
...
profiler/include/profiler/profile_grouped_conv_fwd_impl.hpp
View file @
29deceb6
...
...
@@ -198,18 +198,18 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
}
};
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
...
...
profiler/include/profiler/profile_groupnorm_impl.hpp
→
profiler/include/profiler/profile_groupnorm_
fwd_
impl.hpp
View file @
29deceb6
...
...
@@ -7,7 +7,7 @@
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization
_fwd
.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
@@ -88,14 +88,14 @@ bool profile_groupnorm_impl(int do_verification,
beta_dev
.
ToDevice
(
beta
.
mData
.
data
());
// add device normalization instances
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalization
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
PassThrough
,
5
,
3
>
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalization
Fwd
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
PassThrough
,
5
,
3
>
;
// get device op instances
const
auto
instance_ptrs
=
...
...
profiler/include/profiler/profile_layernorm_impl.hpp
→
profiler/include/profiler/profile_layernorm_
fwd_
impl.hpp
View file @
29deceb6
...
...
@@ -6,7 +6,7 @@
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization
_fwd
.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
...
...
@@ -94,14 +94,14 @@ bool profile_layernorm_impl(int do_verification,
constexpr
int
NumReduceDim
=
Rank
-
1
;
// add device normalization instances
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalization
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
PassThrough
,
Rank
,
NumReduceDim
>
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalization
Fwd
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
PassThrough
,
Rank
,
NumReduceDim
>
;
// get device op instances
const
auto
instance_ptrs
=
...
...
profiler/include/profiler/profile_transpose_impl.hpp
0 → 100644
View file @
29deceb6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_3d_impl.hpp"
#include "ck/library/tensor_operation_instance/gpu/transpose_3d.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
Functor
>
void
host_elementwise4D
(
HostTensorB
&
B_nchwd
,
const
HostTensorA
&
A_ncdhw
,
Functor
functor
)
{
for
(
std
::
size_t
n
=
0
;
n
<
A_ncdhw
.
mDesc
.
GetLengths
()[
0
];
++
n
)
for
(
std
::
size_t
c
=
0
;
c
<
A_ncdhw
.
mDesc
.
GetLengths
()[
1
];
++
c
)
for
(
std
::
size_t
d
=
0
;
d
<
A_ncdhw
.
mDesc
.
GetLengths
()[
2
];
++
d
)
for
(
std
::
size_t
h
=
0
;
h
<
A_ncdhw
.
mDesc
.
GetLengths
()[
3
];
++
h
)
for
(
std
::
size_t
w
=
0
;
w
<
A_ncdhw
.
mDesc
.
GetLengths
()[
4
];
++
w
)
{
auto
a_val
=
A_ncdhw
(
n
,
c
,
d
,
h
,
w
);
functor
(
B_nchwd
(
n
,
c
,
h
,
w
,
d
),
a_val
);
}
}
template
<
typename
ADataType
,
typename
BDataType
,
index_t
NumDim
>
bool
profile_transpose_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
std
::
vector
<
index_t
>
lengths
)
{
bool
pass
=
true
;
index_t
N
=
lengths
[
0
];
index_t
C
=
lengths
[
1
];
index_t
D
=
lengths
[
2
];
index_t
H
=
lengths
[
3
];
index_t
W
=
lengths
[
4
];
std
::
vector
<
ck
::
index_t
>
ncdhw
=
{
N
,
C
,
D
,
H
,
W
};
std
::
vector
<
ck
::
index_t
>
ndhwc
=
{
N
,
D
,
H
,
W
,
C
};
Tensor
<
ADataType
>
a
(
ncdhw
);
Tensor
<
BDataType
>
b
(
ndhwc
);
Tensor
<
BDataType
>
host_b
(
ndhwc
);
// a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
std
::
array
<
ck
::
index_t
,
5
>
ab_lengths
{
N
,
C
,
H
,
W
,
D
};
std
::
array
<
ck
::
index_t
,
5
>
a_strides
=
{
C
*
D
*
H
*
W
,
H
*
W
,
W
,
1
,
D
*
H
*
W
};
// N, C, D, H, W
std
::
array
<
ck
::
index_t
,
5
>
b_strides
=
{
C
*
H
*
W
*
D
,
H
*
W
*
D
,
W
*
D
,
D
,
1
};
// N, D, H, W, C
std
::
cout
<<
"A: "
<<
a
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"B: "
<<
b
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
1
,
2
});
break
;
default:
a
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
}
using
ElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
// const auto element_op = ElementOp{};
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
std
::
array
<
const
void
*
,
1
>
input
=
{
a_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ADataType
>
,
ck
::
Tuple
<
BDataType
>
,
ElementOp
,
NumDim
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
if
(
do_verification
)
{
host_elementwise4D
(
host_b
,
a
,
ElementOp
{});
}
std
::
string
best_op_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
ElementOp
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init C to zero before profiling next kernel
b_device_buf
.
SetZero
();
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
if
(
do_verification
)
{
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
1e-3
,
1e-3
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b
.
mData
,
","
)
<<
std
::
endl
;
}
}
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
ncdhw
[
0
]
*
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
];
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
(
ncdhw
[
0
]
*
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
])
+
sizeof
(
BDataType
)
*
(
ncdhw
[
0
]
*
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
]);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
// pass = pass & ck::utils::check_err(b_device_result, b_host_result);
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
1e-3
,
1e-3
);
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
" N = "
<<
N
<<
" C = "
<<
C
<<
" D = "
<<
D
<<
" H = "
<<
H
<<
" W = "
<<
W
<<
" : "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/src/CMakeLists.txt
View file @
29deceb6
...
...
@@ -16,8 +16,8 @@ set(PROFILER_SOURCES
profile_grouped_conv_fwd.cpp
profile_grouped_conv_bwd_weight.cpp
profile_reduce.cpp
profile_groupnorm.cpp
profile_layernorm.cpp
profile_groupnorm
_fwd
.cpp
profile_layernorm
_fwd
.cpp
profile_max_pool3d_fwd.cpp
profile_avg_pool3d_bwd.cpp
profile_max_pool3d_bwd.cpp
...
...
@@ -28,9 +28,11 @@ set(PROFILER_SOURCES
profile_grouped_conv_bwd_data.cpp
profile_conv_tensor_rearrange.cpp
)
if
(
DL_KERNELS
)
list
(
APPEND PROFILER_SOURCES profile_batched_gemm_multi_d.cpp
)
endif
()
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
list
(
APPEND PROFILER_SOURCES profile_batched_gemm_gemm.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_fastgelu.cpp
)
...
...
@@ -75,7 +77,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_w
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv3d_bwd_weight_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_conv2d_fwd_bias_relu_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_conv2d_fwd_bias_relu_add_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_normalization_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_normalization_
fwd_
instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_softmax_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batchnorm_instance
)
...
...
@@ -110,4 +112,5 @@ if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_gemm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_gemm_fastgelu_instance
)
endif
()
rocm_install
(
TARGETS
${
PROFILER_EXECUTABLE
}
COMPONENT profiler
)
profiler/src/profile_contraction_bilinear.cpp
View file @
29deceb6
...
...
@@ -17,8 +17,9 @@
static
void
print_helper_msg
()
{
std
::
cout
<<
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
<<
"arg2: data type (0: fp32; 1: f64)
\n
"
<<
"arg3: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
<<
"arg2: data type (0: fp32; 1: f64; 2: f16; 3: bf16)
\n
"
<<
"arg3: compute data type (0: fp32; 1: f64; 2: f16; 3: bf16)
\n
"
<<
"arg4: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
\n
"
<<
" 1: A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
\n
"
...
...
@@ -26,40 +27,42 @@ static void print_helper_msg()
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
\n
"
<<
" 3: A[k0, k1, m0, m1] * B[n0, n1, k0, k1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1])
\n
"
<<
"arg
4
: verification (0: no; 1: yes)
\n
"
<<
"arg
5
: initialization (0: no init; 1: integer value; 2: decimal "
<<
"arg
5
: verification (0: no; 1: yes)
\n
"
<<
"arg
6
: initialization (0: no init; 1: integer value; 2: decimal "
<<
"value)
\n
"
<<
"arg6: print tensor value (0: no; 1: yes)
\n
"
<<
"arg7: time kernel (0: no, 1: yes)
\n
"
<<
"arg8 and arg9: alpha and beta
\n
"
<<
"arg10 to 15: M0, M1, N0, N1, K0, K1
\n
"
<<
"arg16 to 31: Strides for A, B, D and E (skip for default)
\n
"
<<
"arg7: print tensor value (0: no; 1: yes)
\n
"
<<
"arg8: time kernel (0: no, 1: yes)
\n
"
<<
"arg9: alpha
\n
"
<<
"arg10: beta
\n
"
<<
"arg11 to 16: M0, M1, N0, N1, K0, K1
\n
"
<<
"arg17 to 32: Strides for A, B, D and E (skip for default)
\n
"
<<
std
::
endl
;
}
int
profile_contraction_bilinear
(
int
argc
,
char
*
argv
[])
{
const
bool
default_strides
=
argc
==
1
6
;
const
bool
default_strides
=
argc
==
1
7
;
if
(
argc
!=
3
2
&&
argc
!=
1
6
)
if
(
argc
!=
3
3
&&
argc
!=
1
7
)
{
print_helper_msg
();
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
ContractionDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
ContractionMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
ck
::
index_t
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
float
alpha
=
std
::
stof
(
argv
[
8
]);
const
float
beta
=
std
::
stof
(
argv
[
9
]);
const
auto
compute_data_type
=
static_cast
<
ContractionComputeDataType
>
(
std
::
stoi
(
argv
[
3
]));
const
auto
layout
=
static_cast
<
ContractionMatrixLayout
>
(
std
::
stoi
(
argv
[
4
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
5
]);
const
ck
::
index_t
init_method
=
std
::
stoi
(
argv
[
6
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
7
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
8
]);
const
float
alpha
=
std
::
stof
(
argv
[
9
]);
const
float
beta
=
std
::
stof
(
argv
[
10
]);
std
::
vector
<
ck
::
index_t
>
M
;
std
::
vector
<
ck
::
index_t
>
N
;
std
::
vector
<
ck
::
index_t
>
K
;
const
ck
::
index_t
dims_arg_num
=
1
0
;
const
ck
::
index_t
dims_arg_num
=
1
1
;
collect_index_params
(
argv
,
M
,
dims_arg_num
,
2
);
collect_index_params
(
argv
,
N
,
dims_arg_num
+
2
,
2
);
collect_index_params
(
argv
,
K
,
dims_arg_num
+
4
,
2
);
...
...
@@ -76,90 +79,130 @@ int profile_contraction_bilinear(int argc, char* argv[])
collect_index_params
(
argv
,
StridesD
,
dims_arg_num
+
18
,
4
);
}
using
F32
=
float
;
using
F64
=
double
;
auto
profile
=
[
&
](
auto
a_layout
,
auto
b_layout
,
auto
cde_layout
,
auto
type
)
{
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
CDELayout
=
decltype
(
cde_layout
);
using
DataType
=
decltype
(
type
);
if
(
default_strides
)
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
F64
=
double
;
auto
profile
=
[
&
](
auto
a_layout
,
auto
b_layout
,
auto
cde_layout
,
auto
type
,
auto
compute_type
)
{
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
CDELayout
=
decltype
(
cde_layout
);
using
DataType
=
decltype
(
type
);
using
ComputeDataType
=
decltype
(
compute_type
);
if
(
default_strides
)
{
assign_default_strides
(
a_layout
,
StridesA
,
{
M
[
0
],
M
[
1
],
K
[
0
],
K
[
1
]});
assign_default_strides
(
b_layout
,
StridesB
,
{
N
[
0
],
N
[
1
],
K
[
0
],
K
[
1
]});
assign_default_strides
(
cde_layout
,
StridesE
,
{
M
[
0
],
M
[
1
],
N
[
0
],
N
[
1
]});
assign_default_strides
(
cde_layout
,
StridesD
,
{
M
[
0
],
M
[
1
],
N
[
0
],
N
[
1
]});
}
bool
pass
=
ck
::
profiler
::
profile_contraction_impl
<
ALayout
,
BLayout
,
CDELayout
,
DataType
,
ComputeDataType
,
ck
::
Tuple
<
DataType
>
,
Bilinear
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Bilinear
{
alpha
,
beta
},
M
,
N
,
K
,
StridesA
,
StridesB
,
StridesE
,
StridesD
);
return
pass
;
};
auto
run_profile_for_datatype
=
[
&
](
auto
type
,
auto
compute_type
)
{
if
(
layout
==
ContractionMatrixLayout
::
MK_KN_MN_MN
)
{
assign_default_strides
(
a_layout
,
StridesA
,
{
M
[
0
],
M
[
1
],
K
[
0
],
K
[
1
]});
assign_default_strides
(
b_layout
,
StridesB
,
{
K
[
0
],
K
[
1
],
N
[
0
],
N
[
1
]});
assign_default_strides
(
cde_layout
,
StridesE
,
{
M
[
0
],
M
[
1
],
N
[
0
],
N
[
1
]});
assign_default_strides
(
cde_layout
,
StridesD
,
{
M
[
0
],
M
[
1
],
N
[
0
],
N
[
1
]});
return
profile
(
Row
{},
Row
{},
Row
{},
type
,
compute_type
);
}
bool
pass
=
ck
::
profiler
::
profile_contraction_impl
<
ALayout
,
BLayout
,
CDELayout
,
DataType
,
ck
::
Tuple
<
DataType
>
,
Bilinear
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Bilinear
{
alpha
,
beta
},
M
,
N
,
K
,
StridesA
,
StridesB
,
StridesE
,
StridesD
);
return
pass
;
else
if
(
layout
==
ContractionMatrixLayout
::
MK_NK_MN_MN
)
{
return
profile
(
Row
{},
Col
{},
Row
{},
type
,
compute_type
);
}
else
if
(
layout
==
ContractionMatrixLayout
::
KM_KN_MN_MN
)
{
return
profile
(
Col
{},
Row
{},
Row
{},
type
,
compute_type
);
}
else
if
(
layout
==
ContractionMatrixLayout
::
KM_NK_MN_MN
)
{
return
profile
(
Col
{},
Col
{},
Row
{},
type
,
compute_type
);
}
return
false
;
};
if
(
data_type
==
ContractionDataType
::
F32_F32_F32_F32
&&
layout
==
ContractionMatrixLayout
::
MK_KN_MN_MN
)
{
return
profile
(
Row
{},
Row
{},
Row
{},
F32
{});
}
else
if
(
data_type
==
ContractionDataType
::
F32_F32_F32_F32
&&
layout
==
ContractionMatrixLayout
::
MK_NK_MN_MN
)
if
(
data_type
==
ContractionDataType
::
F32_F32_F32_F32
)
{
return
profile
(
Row
{},
Col
{},
Row
{},
F32
{});
}
else
if
(
data_type
==
ContractionDataType
::
F32_F32_F32_F32
&&
layout
==
ContractionMatrixLayout
::
KM_KN_MN_MN
)
{
return
profile
(
Col
{},
Row
{},
Row
{},
F32
{});
}
else
if
(
data_type
==
ContractionDataType
::
F32_F32_F32_F32
&&
layout
==
ContractionMatrixLayout
::
KM_NK_MN_MN
)
{
return
profile
(
Col
{},
Col
{},
Row
{},
F32
{});
}
else
if
(
data_type
==
ContractionDataType
::
F64_F64_F64_F64
&&
layout
==
ContractionMatrixLayout
::
MK_KN_MN_MN
)
{
return
profile
(
Row
{},
Row
{},
Row
{},
F64
{});
}
else
if
(
data_type
==
ContractionDataType
::
F64_F64_F64_F64
&&
layout
==
ContractionMatrixLayout
::
MK_NK_MN_MN
)
{
return
profile
(
Row
{},
Col
{},
Row
{},
F64
{});
if
(
compute_data_type
==
ContractionComputeDataType
::
F32
)
{
return
run_profile_for_datatype
(
F32
{},
F32
{});
}
else
if
(
compute_data_type
==
ContractionComputeDataType
::
F16
)
{
return
run_profile_for_datatype
(
F32
{},
F16
{});
}
else
if
(
compute_data_type
==
ContractionComputeDataType
::
BF16
)
{
return
run_profile_for_datatype
(
F32
{},
BF16
{});
}
else
{
std
::
cout
<<
"Incorrect combination of data type and compute data type."
<<
std
::
endl
;
return
1
;
}
}
else
if
(
data_type
==
ContractionDataType
::
F64_F64_F64_F64
&&
layout
==
ContractionMatrixLayout
::
KM_KN_MN_MN
)
else
if
(
data_type
==
ContractionDataType
::
F64_F64_F64_F64
)
{
return
profile
(
Col
{},
Row
{},
Row
{},
F64
{});
if
(
compute_data_type
==
ContractionComputeDataType
::
F64
)
{
return
run_profile_for_datatype
(
F64
{},
F64
{});
}
else
if
(
compute_data_type
==
ContractionComputeDataType
::
F32
)
{
return
run_profile_for_datatype
(
F64
{},
F32
{});
}
else
{
std
::
cout
<<
"Incorrect combination of data type and compute data type."
<<
std
::
endl
;
return
1
;
}
}
else
if
(
data_type
==
ContractionDataType
::
F64_F64_F64_F64
&&
layout
==
ContractionMatrixLayout
::
KM_NK_MN_MN
)
else
if
(
data_type
==
ContractionDataType
::
F16_F16_F16_F16
)
{
return
profile
(
Col
{},
Col
{},
Row
{},
F64
{});
if
(
compute_data_type
==
ContractionComputeDataType
::
F32
)
{
return
run_profile_for_datatype
(
F16
{},
F32
{});
}
else
{
std
::
cout
<<
"Incorrect combination of data type and compute data type."
<<
std
::
endl
;
return
1
;
}
}
else
else
if
(
data_type
==
ContractionDataType
::
BF16_BF16_BF16_BF16
)
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
if
(
compute_data_type
==
ContractionComputeDataType
::
F32
)
{
return
run_profile_for_datatype
(
BF16
{},
F32
{});
}
else
{
std
::
cout
<<
"Incorrect combination of data type and compute data type."
<<
std
::
endl
;
return
1
;
}
}
return
1
;
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_contraction_bilinear
);
profiler/src/profile_contraction_scale.cpp
View file @
29deceb6
...
...
@@ -17,8 +17,9 @@
static
void
print_helper_msg
()
{
std
::
cout
<<
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
<<
"arg2: data type (0: fp32; 1: f64)
\n
"
<<
"arg3: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
<<
"arg2: data type (0: fp32; 1: f64; 2: f16; 3: bf16)
\n
"
<<
"arg3: compute data type (0: fp32; 1: f64; 2: f16; 3: bf16)
\n
"
<<
"arg4: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
\n
"
<<
" 1: A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
\n
"
...
...
@@ -26,39 +27,40 @@ static void print_helper_msg()
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
\n
"
<<
" 3: A[k0, k1, m0, m1] * B[n0, n1, k0, k1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1])
\n
"
<<
"arg
4
: verification (0: no; 1: yes)
\n
"
<<
"arg
5
: initialization (0: no init; 1: integer value; 2: decimal "
<<
"arg
5
: verification (0: no; 1: yes)
\n
"
<<
"arg
6
: initialization (0: no init; 1: integer value; 2: decimal "
<<
"value)
\n
"
<<
"arg
6
: print tensor value (0: no; 1: yes)
\n
"
<<
"arg
7
: time kernel (0: no, 1: yes)
\n
"
<<
"arg
8
: alpha
\n
"
<<
"arg
9
to 1
4
: M0, M1, N0, N1, K0, K1
\n
"
<<
"arg1
5
to 3
0
: Strides for A, B, D and E (skip for default)
\n
"
<<
"arg
7
: print tensor value (0: no; 1: yes)
\n
"
<<
"arg
8
: time kernel (0: no, 1: yes)
\n
"
<<
"arg
9
: alpha
\n
"
<<
"arg
10
to 1
5
: M0, M1, N0, N1, K0, K1
\n
"
<<
"arg1
6
to 3
1
: Strides for A, B, D and E (skip for default)
\n
"
<<
std
::
endl
;
}
int
profile_contraction_scale
(
int
argc
,
char
*
argv
[])
{
const
bool
default_strides
=
argc
==
1
5
;
const
bool
default_strides
=
argc
==
1
6
;
if
(
argc
!=
3
1
&&
argc
!=
1
5
)
if
(
argc
!=
3
2
&&
argc
!=
1
6
)
{
print_helper_msg
();
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
ContractionDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
ContractionMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
ck
::
index_t
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
float
alpha
=
std
::
stof
(
argv
[
8
]);
const
auto
compute_data_type
=
static_cast
<
ContractionComputeDataType
>
(
std
::
stoi
(
argv
[
3
]));
const
auto
layout
=
static_cast
<
ContractionMatrixLayout
>
(
std
::
stoi
(
argv
[
4
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
5
]);
const
ck
::
index_t
init_method
=
std
::
stoi
(
argv
[
6
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
7
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
8
]);
const
float
alpha
=
std
::
stof
(
argv
[
9
]);
std
::
vector
<
ck
::
index_t
>
M
;
std
::
vector
<
ck
::
index_t
>
N
;
std
::
vector
<
ck
::
index_t
>
K
;
const
ck
::
index_t
dims_arg_num
=
9
;
const
ck
::
index_t
dims_arg_num
=
10
;
collect_index_params
(
argv
,
M
,
dims_arg_num
,
2
);
collect_index_params
(
argv
,
N
,
dims_arg_num
+
2
,
2
);
collect_index_params
(
argv
,
K
,
dims_arg_num
+
4
,
2
);
...
...
@@ -75,88 +77,131 @@ int profile_contraction_scale(int argc, char* argv[])
collect_index_params
(
argv
,
StridesD
,
dims_arg_num
+
18
,
4
);
}
using
F32
=
float
;
using
F64
=
double
;
auto
profile
=
[
&
](
auto
a_layout
,
auto
b_layout
,
auto
cde_layout
,
auto
type
)
{
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
CDELayout
=
decltype
(
cde_layout
);
using
DataType
=
decltype
(
type
);
if
(
default_strides
)
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
F64
=
double
;
auto
profile
=
[
&
](
auto
a_layout
,
auto
b_layout
,
auto
cde_layout
,
auto
type
,
auto
compute_type
)
{
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
CDELayout
=
decltype
(
cde_layout
);
using
DataType
=
decltype
(
type
);
using
ComputeDataType
=
decltype
(
compute_type
);
if
(
default_strides
)
{
assign_default_strides
(
a_layout
,
StridesA
,
{
M
[
0
],
M
[
1
],
K
[
0
],
K
[
1
]});
assign_default_strides
(
b_layout
,
StridesB
,
{
N
[
0
],
N
[
1
],
K
[
0
],
K
[
1
]});
assign_default_strides
(
cde_layout
,
StridesE
,
{
M
[
0
],
M
[
1
],
N
[
0
],
N
[
1
]});
assign_default_strides
(
cde_layout
,
StridesD
,
{
M
[
0
],
M
[
1
],
N
[
0
],
N
[
1
]});
}
bool
pass
=
ck
::
profiler
::
profile_contraction_impl
<
ALayout
,
BLayout
,
CDELayout
,
DataType
,
ComputeDataType
,
ck
::
Tuple
<>
,
Scale
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Scale
{
alpha
},
M
,
N
,
K
,
StridesA
,
StridesB
,
StridesE
,
StridesD
);
return
pass
;
};
auto
run_profile_for_datatype
=
[
&
](
auto
type
,
auto
compute_type
)
{
if
(
layout
==
ContractionMatrixLayout
::
MK_KN_MN_MN
)
{
assign_default_strides
(
a_layout
,
StridesA
,
{
M
[
0
],
M
[
1
],
K
[
0
],
K
[
1
]});
assign_default_strides
(
b_layout
,
StridesB
,
{
K
[
0
],
K
[
1
],
N
[
0
],
N
[
1
]});
assign_default_strides
(
cde_layout
,
StridesE
,
{
M
[
0
],
M
[
1
],
N
[
0
],
N
[
1
]});
assign_default_strides
(
cde_layout
,
StridesD
,
{
M
[
0
],
M
[
1
],
N
[
0
],
N
[
1
]});
return
profile
(
Row
{},
Row
{},
Row
{},
type
,
compute_type
);
}
bool
pass
=
ck
::
profiler
::
profile_contraction_impl
<
ALayout
,
BLayout
,
CDELayout
,
DataType
,
ck
::
Tuple
<>
,
Scale
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Scale
{
alpha
},
M
,
N
,
K
,
StridesA
,
StridesB
,
StridesE
,
StridesD
);
return
pass
;
else
if
(
layout
==
ContractionMatrixLayout
::
MK_NK_MN_MN
)
{
return
profile
(
Row
{},
Col
{},
Row
{},
type
,
compute_type
);
}
else
if
(
layout
==
ContractionMatrixLayout
::
KM_KN_MN_MN
)
{
return
profile
(
Col
{},
Row
{},
Row
{},
type
,
compute_type
);
}
else
if
(
layout
==
ContractionMatrixLayout
::
KM_NK_MN_MN
)
{
return
profile
(
Col
{},
Col
{},
Row
{},
type
,
compute_type
);
}
return
false
;
};
if
(
data_type
==
ContractionDataType
::
F32_F32_F32_F32
&&
layout
==
ContractionMatrixLayout
::
MK_KN_MN_MN
)
{
return
profile
(
Row
{},
Row
{},
Row
{},
F32
{});
}
else
if
(
data_type
==
ContractionDataType
::
F32_F32_F32_F32
&&
layout
==
ContractionMatrixLayout
::
MK_NK_MN_MN
)
{
return
profile
(
Row
{},
Col
{},
Row
{},
F32
{});
}
else
if
(
data_type
==
ContractionDataType
::
F32_F32_F32_F32
&&
layout
==
ContractionMatrixLayout
::
KM_KN_MN_MN
)
if
(
data_type
==
ContractionDataType
::
F32_F32_F32_F32
)
{
return
profile
(
Col
{},
Row
{},
Row
{},
F32
{});
}
else
if
(
data_type
==
ContractionDataType
::
F32_F32_F32_F32
&&
layout
==
ContractionMatrixLayout
::
KM_NK_MN_MN
)
{
return
profile
(
Col
{},
Col
{},
Row
{},
F32
{});
}
else
if
(
data_type
==
ContractionDataType
::
F64_F64_F64_F64
&&
layout
==
ContractionMatrixLayout
::
MK_KN_MN_MN
)
{
return
profile
(
Row
{},
Row
{},
Row
{},
F64
{});
}
else
if
(
data_type
==
ContractionDataType
::
F64_F64_F64_F64
&&
layout
==
ContractionMatrixLayout
::
MK_NK_MN_MN
)
{
return
profile
(
Row
{},
Col
{},
Row
{},
F64
{});
if
(
compute_data_type
==
ContractionComputeDataType
::
F32
)
{
return
run_profile_for_datatype
(
F32
{},
F32
{});
}
else
if
(
compute_data_type
==
ContractionComputeDataType
::
F16
)
{
return
run_profile_for_datatype
(
F32
{},
F16
{});
}
else
if
(
compute_data_type
==
ContractionComputeDataType
::
BF16
)
{
return
run_profile_for_datatype
(
F32
{},
BF16
{});
}
else
{
std
::
cout
<<
"Incorrect combination of data type and compute data type."
<<
std
::
endl
;
return
1
;
}
}
else
if
(
data_type
==
ContractionDataType
::
F64_F64_F64_F64
&&
layout
==
ContractionMatrixLayout
::
KM_KN_MN_MN
)
else
if
(
data_type
==
ContractionDataType
::
F64_F64_F64_F64
)
{
return
profile
(
Col
{},
Row
{},
Row
{},
F64
{});
if
(
compute_data_type
==
ContractionComputeDataType
::
F64
)
{
return
run_profile_for_datatype
(
F64
{},
F64
{});
}
else
if
(
compute_data_type
==
ContractionComputeDataType
::
F32
)
{
return
run_profile_for_datatype
(
F64
{},
F32
{});
}
else
{
std
::
cout
<<
"Incorrect combination of data type and compute data type."
<<
std
::
endl
;
return
1
;
}
}
else
if
(
data_type
==
ContractionDataType
::
F64_F64_F64_F64
&&
layout
==
ContractionMatrixLayout
::
KM_NK_MN_MN
)
else
if
(
data_type
==
ContractionDataType
::
F16_F16_F16_F16
)
{
return
profile
(
Col
{},
Col
{},
Row
{},
F64
{});
if
(
compute_data_type
==
ContractionComputeDataType
::
F32
)
{
return
run_profile_for_datatype
(
F16
{},
F32
{});
}
else
{
std
::
cout
<<
"Incorrect combination of data type and compute data type."
<<
std
::
endl
;
return
1
;
}
}
else
else
if
(
data_type
==
ContractionDataType
::
BF16_BF16_BF16_BF16
)
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
if
(
compute_data_type
==
ContractionComputeDataType
::
F32
)
{
return
run_profile_for_datatype
(
BF16
{},
F32
{});
}
else
{
std
::
cout
<<
"Incorrect combination of data type and compute data type."
<<
std
::
endl
;
return
1
;
}
}
return
1
;
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_contraction_scale
);
profiler/src/profile_grouped_gemm.cpp
View file @
29deceb6
...
...
@@ -27,6 +27,8 @@ enum struct GemmDataType
F16_F16_F16
,
// 1
BF16_BF16_BF16
,
// 2
INT8_INT8_INT8
,
// 3
F8_F16_F16
,
// 4
F16_F8_F16
,
// 5
};
#define OP_NAME "grouped_gemm"
...
...
@@ -56,7 +58,7 @@ int profile_grouped_gemm(int argc, char* argv[])
{
std
::
cout
<<
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
<<
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)
\n
"
<<
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8
; 4: fp8@fp6; 5: f16@f8
)
\n
"
<<
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
<<
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
<<
" 2: A[k, m] * B[k, n] = C[m, n];
\n
"
...
...
@@ -169,6 +171,46 @@ int profile_grouped_gemm(int argc, char* argv[])
StrideCs
,
kbatch
);
}
else
if
(
data_type
==
GemmDataType
::
F8_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
ck
::
profiler
::
profile_grouped_gemm_impl
<
ck
::
f8_t
,
ck
::
half_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
);
}
else
if
(
data_type
==
GemmDataType
::
F16_F8_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
ck
::
profiler
::
profile_grouped_gemm_impl
<
ck
::
half_t
,
ck
::
f8_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
);
}
else
{
throw
std
::
runtime_error
(
"wrong! this GEMM data_type & layout is not implemented"
);
...
...
Prev
1
…
16
17
18
19
20
21
22
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment