Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
29dcb956
Unverified
Commit
29dcb956
authored
Feb 08, 2024
by
Illia Silin
Committed by
GitHub
Feb 08, 2024
Browse files
Merge pull request #33 from ROCm/lwpck-1292
Merge from the public repo.
parents
29deceb6
cbcc844e
Changes
393
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1854 additions
and
71 deletions
+1854
-71
library/src/tensor_operation_instance/gpu/normalization_fwd/device_groupnorm_fwd_swish_f16_instance.cpp
...alization_fwd/device_groupnorm_fwd_swish_f16_instance.cpp
+1
-1
library/src/tensor_operation_instance/gpu/normalization_fwd/device_layernorm2d_fwd_f16_instance.cpp
...normalization_fwd/device_layernorm2d_fwd_f16_instance.cpp
+1
-1
library/src/tensor_operation_instance/gpu/normalization_fwd/device_layernorm4d_fwd_f16_instance.cpp
...normalization_fwd/device_layernorm4d_fwd_f16_instance.cpp
+1
-1
library/src/tensor_operation_instance/gpu/normalization_fwd/normalization_fwd_instance_common.hpp
...u/normalization_fwd/normalization_fwd_instance_common.hpp
+37
-37
library/src/tensor_operation_instance/gpu/permute_scale/CMakeLists.txt
...ensor_operation_instance/gpu/permute_scale/CMakeLists.txt
+2
-0
library/src/tensor_operation_instance/gpu/permute_scale/device_permute_scale_instances.cpp
...ance/gpu/permute_scale/device_permute_scale_instances.cpp
+56
-0
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/conv2d_quantization_common.hpp
...pu/quantization/conv2d_fwd/conv2d_quantization_common.hpp
+3
-3
library/src/tensor_operation_instance/gpu/softmax/CMakeLists.txt
.../src/tensor_operation_instance/gpu/softmax/CMakeLists.txt
+1
-3
library/src/tensor_operation_instance/gpu/transpose/device_transpose_instances_3d.cpp
..._instance/gpu/transpose/device_transpose_instances_3d.cpp
+0
-8
library/src/utility/CMakeLists.txt
library/src/utility/CMakeLists.txt
+6
-4
profiler/include/profiler/profile_gemm_add_impl.hpp
profiler/include/profiler/profile_gemm_add_impl.hpp
+232
-0
profiler/include/profiler/profile_gemm_add_relu_impl.hpp
profiler/include/profiler/profile_gemm_add_relu_impl.hpp
+232
-0
profiler/include/profiler/profile_gemm_add_silu_impl.hpp
profiler/include/profiler/profile_gemm_add_silu_impl.hpp
+232
-0
profiler/include/profiler/profile_gemm_impl.hpp
profiler/include/profiler/profile_gemm_impl.hpp
+6
-4
profiler/include/profiler/profile_gemm_splitk_impl.hpp
profiler/include/profiler/profile_gemm_splitk_impl.hpp
+8
-5
profiler/include/profiler/profile_grouped_gemm_impl.hpp
profiler/include/profiler/profile_grouped_gemm_impl.hpp
+7
-4
profiler/include/profiler/profile_groupnorm_bwd_data_impl.hpp
...iler/include/profiler/profile_groupnorm_bwd_data_impl.hpp
+250
-0
profiler/include/profiler/profile_groupnorm_bwd_gamma_beta_impl.hpp
...nclude/profiler/profile_groupnorm_bwd_gamma_beta_impl.hpp
+261
-0
profiler/include/profiler/profile_layernorm_bwd_data_impl.hpp
...iler/include/profiler/profile_layernorm_bwd_data_impl.hpp
+255
-0
profiler/include/profiler/profile_layernorm_bwd_gamma_beta_impl.hpp
...nclude/profiler/profile_layernorm_bwd_gamma_beta_impl.hpp
+263
-0
No files found.
library/src/tensor_operation_instance/gpu/normalization_fwd/device_groupnorm_fwd_swish_f16_instance.cpp
View file @
29dcb956
...
...
@@ -11,7 +11,7 @@ namespace instance {
using
Swish
=
ck
::
tensor_operation
::
element_wise
::
Swish
;
void
add_device_normalization_fwd_rank_5_3_swish_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalizationFwd
<
F16
,
F16
,
F16
,
F16
,
F
32
,
Swish
,
5
,
3
>>>&
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalizationFwd
<
F16
,
F16
,
F16
,
F16
,
F
16
,
Swish
,
5
,
3
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
...
...
library/src/tensor_operation_instance/gpu/normalization_fwd/device_layernorm2d_fwd_f16_instance.cpp
View file @
29dcb956
...
...
@@ -11,7 +11,7 @@ namespace instance {
using
Pass
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
void
add_device_normalization_fwd_rank_2_1_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalizationFwd
<
F16
,
F16
,
F16
,
F16
,
F
32
,
Pass
,
2
,
1
>>>&
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalizationFwd
<
F16
,
F16
,
F16
,
F16
,
F
16
,
Pass
,
2
,
1
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
...
...
library/src/tensor_operation_instance/gpu/normalization_fwd/device_layernorm4d_fwd_f16_instance.cpp
View file @
29dcb956
...
...
@@ -11,7 +11,7 @@ namespace instance {
using
Pass
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
void
add_device_normalization_fwd_rank_4_3_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalizationFwd
<
F16
,
F16
,
F16
,
F16
,
F
32
,
Pass
,
4
,
3
>>>&
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalizationFwd
<
F16
,
F16
,
F16
,
F16
,
F
16
,
Pass
,
4
,
3
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
...
...
library/src/tensor_operation_instance/gpu/normalization_fwd/normalization_fwd_instance_common.hpp
View file @
29dcb956
...
...
@@ -23,24 +23,24 @@ using device_normalization_f16_instances =
// clang-format off
std
::
tuple
<
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
2
,
1
,
2
,
1
,
2
,
1
,
2
,
2
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
64
,
1
,
64
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
2
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
2
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
2
,
1
,
2
,
1
,
2
,
1
,
2
,
2
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
64
,
1
,
64
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
2
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
2
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
// clang-format on
>
;
...
...
@@ -49,31 +49,31 @@ using device_normalization_splitk_f16_instances =
// clang-format off
std
::
tuple
<
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
2
,
1
,
2
,
1
,
2
,
1
,
2
,
2
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
64
,
1
,
64
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
2
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
2
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
2
,
1
,
2
,
1
,
2
,
1
,
2
,
2
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
64
,
1
,
64
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
2
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
2
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
// clang-format on
>
;
template
<
typename
OutElementwise
,
index_t
Rank
,
index_t
Reduce
>
using
device_normalization_f16_generic_instance
=
std
::
tuple
<
// clang-format off
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
32
,
OutElementwise
,
Rank
,
Reduce
,
64
,
1
,
64
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F
16
,
OutElementwise
,
Rank
,
Reduce
,
64
,
1
,
64
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
// clang-format on
>
;
...
...
library/src/tensor_operation_instance/gpu/permute_scale/CMakeLists.txt
0 → 100644
View file @
29dcb956
add_instance_library
(
device_permute_scale_instance
device_permute_scale_instances.cpp
)
library/src/tensor_operation_instance/gpu/permute_scale/device_permute_scale_instances.cpp
0 → 100644
View file @
29dcb956
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_scale_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Pass
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnaryOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
// clang-format off
using
device_permute_scale_f16_instances
=
std
::
tuple
<
DeviceElementwiseImpl
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
Pass
,
UnaryOp
,
Scale
,
4
,
1
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwiseImpl
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
Pass
,
UnaryOp
,
Scale
,
4
,
8
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwiseImpl
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
Pass
,
UnaryOp
,
Scale
,
4
,
4
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwiseImpl
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
Pass
,
UnaryOp
,
Scale
,
4
,
2
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
>
;
using
device_permute_scale_f32_instances
=
std
::
tuple
<
DeviceElementwiseImpl
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
Pass
,
UnaryOp
,
Scale
,
4
,
1
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwiseImpl
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
Pass
,
UnaryOp
,
Scale
,
4
,
8
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwiseImpl
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
Pass
,
UnaryOp
,
Scale
,
4
,
4
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwiseImpl
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
Pass
,
UnaryOp
,
Scale
,
4
,
2
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
>
;
// clang-format on
void
add_device_permute_scale_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
Pass
,
UnaryOp
,
Scale
,
4
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_permute_scale_f16_instances
{});
}
void
add_device_permute_scale_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
Pass
,
UnaryOp
,
Scale
,
4
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_permute_scale_f32_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/conv2d_quantization_common.hpp
View file @
29dcb956
...
...
@@ -22,13 +22,13 @@ using S = ck::Sequence<Is...>;
using
NHWGC
=
ck
::
tensor_layout
::
convolution
::
NHWGC
;
using
GKYXC
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
NHWGK
=
ck
::
tensor_layout
::
convolution
::
NHWGK
;
using
GK
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
G
_
K
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Relu
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
TanH
=
ck
::
tensor_operation
::
element_wise
::
TanH
;
using
GK_Tuple
=
ck
::
Tuple
<
GK
>
;
using
GK_GK_Tuple
=
ck
::
Tuple
<
GK
,
GK
>
;
using
GK_Tuple
=
ck
::
Tuple
<
G
_
K
>
;
using
GK_GK_Tuple
=
ck
::
Tuple
<
G
_
K
,
G
_
K
>
;
using
I32_Tuple
=
ck
::
Tuple
<
int32_t
>
;
using
F32_Tuple
=
ck
::
Tuple
<
float
>
;
using
I32_F32_Tuple
=
ck
::
Tuple
<
int32_t
,
float
>
;
...
...
library/src/tensor_operation_instance/gpu/softmax/CMakeLists.txt
View file @
29dcb956
set
(
DEVICE_SOFTMAX_INSTANCES
)
list
(
APPEND DEVICE_SOFTMAX_INSTANCES
add_instance_library
(
device_softmax_instance
device_softmax_f16_f16_instance_rank3_reduce1.cpp
device_softmax_f16_f16_instance_rank3_reduce2.cpp
device_softmax_f16_f16_instance_rank3_reduce3.cpp
...
...
@@ -14,4 +13,3 @@ list(APPEND DEVICE_SOFTMAX_INSTANCES
device_softmax_f32_f32_instance_rank4_reduce2.cpp
device_softmax_f32_f32_instance_rank4_reduce3.cpp
device_softmax_f32_f32_instance_rank4_reduce4.cpp
)
add_instance_library
(
device_softmax_instance
${
DEVICE_SOFTMAX_INSTANCES
}
)
library/src/tensor_operation_instance/gpu/transpose/device_transpose_instances_3d.cpp
View file @
29dcb956
...
...
@@ -19,22 +19,14 @@ void add_device_transpose_f16_instances(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
PassThrough
,
5
>>>&
instances
)
{
#ifdef CK_ENABLE_FP16
add_device_operation_instances
(
instances
,
device_transpose_f16_instances
{});
#else
ignore
=
instances
;
#endif
}
void
add_device_transpose_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
PassThrough
,
5
>>>&
instances
)
{
#ifdef CK_ENABLE_FP32
add_device_operation_instances
(
instances
,
device_transpose_f32_instances
{});
#else
ignore
=
instances
;
#endif
}
}
// namespace instance
...
...
library/src/utility/CMakeLists.txt
View file @
29dcb956
## utility
set
(
UTILITY_SOURCE
add_library
(
utility STATIC
device_memory.cpp
host_tensor.cpp
convolution_parameter.cpp
)
add_library
(
utility STATIC
${
UTILITY_SOURCE
}
)
add_library
(
composable_kernel::utility ALIAS utility
)
set_target_properties
(
utility PROPERTIES POSITION_INDEPENDENT_CODE ON
)
target_compile_options
(
utility PRIVATE
${
CMAKE_COMPILER_WARNINGS
}
)
target_include_directories
(
utility PUBLIC
"$<INSTALL_INTERFACE:
${
CMAKE_INSTALL_INCLUDEDIR
}
/ck>"
"$<INSTALL_INTERFACE:
${
CMAKE_INSTALL_INCLUDEDIR
}
/ck/library/utility>"
)
if
(
WIN32
)
target_compile_definitions
(
utility PUBLIC NOMINMAX
)
endif
()
rocm_install
(
TARGETS utility
...
...
profiler/include/profiler/profile_gemm_add_impl.hpp
0 → 100644
View file @
29dcb956
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_add.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
D0DataType
,
typename
EDataType
,
typename
ALayout
,
typename
BLayout
,
typename
D0Layout
,
typename
ELayout
>
bool
profile_gemm_add_impl
(
int
do_verification
,
int
init_method
,
bool
/*do_log*/
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideD0
,
int
StrideE
)
{
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
D0DataType
>
d0_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD0
,
D0Layout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_m_n: "
<<
d0_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_device_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
}
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Add
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{};
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
>
,
EDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
Add
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
// run reference
if
(
do_verification
)
{
Tensor
<
AccDataType
>
c_m_n
({
M
,
N
});
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
AccDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d0_m_n
(
m
,
n
));
}
}
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_m_n_device_buf
(
sizeof
(
D0DataType
)
*
d0_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d0_m_n_device_buf
.
ToDevice
(
d0_m_n
.
mData
.
data
());
std
::
string
best_op_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
bool
pass
=
true
;
// profile device operation instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d0_m_n_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
std
::
array
<
ck
::
index_t
,
1
>
{
StrideD0
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init E to zero before profiling a kernel
e_device_buf
.
SetZero
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
);
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profiler/profile_gemm_add_relu_impl.hpp
0 → 100644
View file @
29dcb956
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_add_relu.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
D0DataType
,
typename
EDataType
,
typename
ALayout
,
typename
BLayout
,
typename
D0Layout
,
typename
ELayout
>
bool
profile_gemm_add_relu_impl
(
int
do_verification
,
int
init_method
,
bool
/*do_log*/
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideD0
,
int
StrideE
)
{
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
D0DataType
>
d0_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD0
,
D0Layout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_m_n: "
<<
d0_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_device_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
}
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddRelu
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AddRelu
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{};
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
>
,
EDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
AddRelu
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
// run reference
if
(
do_verification
)
{
Tensor
<
AccDataType
>
c_m_n
({
M
,
N
});
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
AccDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d0_m_n
(
m
,
n
));
}
}
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_m_n_device_buf
(
sizeof
(
D0DataType
)
*
d0_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d0_m_n_device_buf
.
ToDevice
(
d0_m_n
.
mData
.
data
());
std
::
string
best_op_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
bool
pass
=
true
;
// profile device operation instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d0_m_n_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
std
::
array
<
ck
::
index_t
,
1
>
{
StrideD0
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init E to zero before profiling a kernel
e_device_buf
.
SetZero
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
);
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profiler/profile_gemm_add_silu_impl.hpp
0 → 100644
View file @
29dcb956
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_add_silu.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
D0DataType
,
typename
EDataType
,
typename
ALayout
,
typename
BLayout
,
typename
D0Layout
,
typename
ELayout
>
bool
profile_gemm_add_silu_impl
(
int
do_verification
,
int
init_method
,
bool
/*do_log*/
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideD0
,
int
StrideE
)
{
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
D0DataType
>
d0_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD0
,
D0Layout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_m_n: "
<<
d0_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_device_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
}
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddRelu
=
ck
::
tensor_operation
::
element_wise
::
AddSilu
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AddRelu
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{};
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
>
,
EDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
AddSilu
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
// run reference
if
(
do_verification
)
{
Tensor
<
AccDataType
>
c_m_n
({
M
,
N
});
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
AccDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d0_m_n
(
m
,
n
));
}
}
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_m_n_device_buf
(
sizeof
(
D0DataType
)
*
d0_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d0_m_n_device_buf
.
ToDevice
(
d0_m_n
.
mData
.
data
());
std
::
string
best_op_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
bool
pass
=
true
;
// profile device operation instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d0_m_n_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
std
::
array
<
ck
::
index_t
,
1
>
{
StrideD0
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init E to zero before profiling a kernel
e_device_buf
.
SetZero
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
);
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profiler/profile_gemm_impl.hpp
View file @
29dcb956
...
...
@@ -42,7 +42,9 @@ int profile_gemm_impl(int do_verification,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideC
)
int
StrideC
,
int
n_warmup
,
int
n_iter
)
{
bool
pass
=
true
;
...
...
@@ -165,8 +167,8 @@ int profile_gemm_impl(int do_verification,
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
0
,
10
,
50
});
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
0
,
n_warmup
,
n_iter
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
...
...
@@ -296,7 +298,7 @@ int profile_gemm_impl(int do_verification,
}
}
return
pass
?
0
:
1
;
return
pass
;
}
}
// namespace profiler
...
...
profiler/include/profiler/profile_gemm_splitk_impl.hpp
View file @
29dcb956
...
...
@@ -42,7 +42,9 @@ bool profile_gemm_splitk_impl(int do_verification,
int
StrideA
,
int
StrideB
,
int
StrideC
,
int
KBatch
)
int
KBatch
,
int
n_warmup
,
int
n_iter
)
{
bool
pass
=
true
;
...
...
@@ -143,7 +145,7 @@ bool profile_gemm_splitk_impl(int do_verification,
// profile device GEMM instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
std
::
vector
<
int
>
kbatch_list
=
{
1
,
2
,
4
,
8
,
12
,
16
,
20
,
32
,
3
6
,
40
,
64
,
96
,
12
8
};
std
::
vector
<
int
>
kbatch_list
=
{
1
,
2
,
4
,
8
,
12
,
16
,
19
,
20
,
32
,
38
};
if
(
KBatch
>
0
)
{
...
...
@@ -177,7 +179,8 @@ bool profile_gemm_splitk_impl(int do_verification,
// re-init C to zero before profiling next kernel
c_device_buf
.
SetZero
();
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
,
0
,
n_warmup
,
n_iter
});
if
(
do_verification
)
{
...
...
@@ -200,8 +203,8 @@ bool profile_gemm_splitk_impl(int do_verification,
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
0
,
n_warmup
,
n_iter
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
...
...
profiler/include/profiler/profile_grouped_gemm_impl.hpp
View file @
29dcb956
...
...
@@ -42,7 +42,9 @@ bool profile_grouped_gemm_impl(int do_verification,
const
std
::
vector
<
int
>&
StrideAs
,
const
std
::
vector
<
int
>&
StrideBs
,
const
std
::
vector
<
int
>&
StrideCs
,
int
kbatch
=
1
)
int
kbatch
=
1
,
int
n_warmup
=
1
,
int
n_iter
=
10
)
{
bool
pass
=
true
;
...
...
@@ -261,7 +263,8 @@ bool profile_grouped_gemm_impl(int do_verification,
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
c_device_buf
[
i
]
->
SetZero
();
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
,
0
,
n_warmup
,
n_iter
});
if
(
do_verification
)
{
...
...
@@ -307,8 +310,8 @@ bool profile_grouped_gemm_impl(int do_verification,
pass
=
pass
&&
instance_pass
;
}
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
0
,
n_warmup
,
n_iter
});
if
(
time_kernel
)
{
...
...
profiler/include/profiler/profile_groupnorm_bwd_data_impl.hpp
0 → 100644
View file @
29dcb956
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/groupnorm_bwd_data.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_groupnorm_bwd.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
DYDataType
,
typename
XDataType
,
typename
GammaDataType
,
typename
MeanInvStdDataType
,
typename
ComputeDataType
,
typename
DXDataType
>
bool
profile_groupnorm_bwd_data_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
std
::
vector
<
index_t
>
length
)
{
// we don't need DGamma and DBeta here, just for reference class
using
DGammaDataType
=
DXDataType
;
using
DBetaDataType
=
DXDataType
;
if
(
length
.
size
()
!=
5
)
return
false
;
index_t
N
=
length
[
0
];
index_t
G
=
length
[
3
];
index_t
C
=
length
[
4
];
std
::
vector
<
index_t
>
reduce_dim
=
{
1
,
2
,
4
};
std
::
vector
<
index_t
>
gammaLength
=
{
G
,
C
};
Tensor
<
DYDataType
>
dy
(
length
);
Tensor
<
XDataType
>
x
(
length
);
Tensor
<
GammaDataType
>
gamma
({
G
,
C
});
Tensor
<
MeanInvStdDataType
>
mean
({
N
,
G
});
Tensor
<
MeanInvStdDataType
>
inv_std
({
N
,
G
});
Tensor
<
DXDataType
>
dx
(
length
);
Tensor
<
DXDataType
>
host_dx
(
length
);
Tensor
<
DGammaDataType
>
host_dgamma
({
G
,
C
});
Tensor
<
DBetaDataType
>
host_dbeta
({
G
,
C
});
std
::
vector
<
index_t
>
strideDy
=
std
::
vector
<
ck
::
index_t
>
{
dy
.
mDesc
.
GetStrides
().
begin
(),
dy
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
index_t
>
strideX
=
strideDy
;
std
::
vector
<
index_t
>
strideDx
=
strideDy
;
std
::
vector
<
index_t
>
strideGamma
=
{
0
,
0
,
0
,
C
,
1
};
std
::
vector
<
index_t
>
strideMeanInvStd
=
{
G
,
0
,
0
,
1
,
0
};
switch
(
init_method
)
{
case
0
:
dy
.
GenerateTensorValue
(
GeneratorTensor_1
<
DYDataType
>
{});
x
.
GenerateTensorValue
(
GeneratorTensor_1
<
XDataType
>
{});
gamma
.
GenerateTensorValue
(
GeneratorTensor_1
<
GammaDataType
>
{});
mean
.
GenerateTensorValue
(
GeneratorTensor_1
<
MeanInvStdDataType
>
{});
inv_std
.
GenerateTensorValue
(
GeneratorTensor_1
<
MeanInvStdDataType
>
{});
dx
.
GenerateTensorValue
(
GeneratorTensor_1
<
DXDataType
>
{});
break
;
case
1
:
dy
.
GenerateTensorValue
(
GeneratorTensor_2
<
DYDataType
>
{
-
5
,
5
});
x
.
GenerateTensorValue
(
GeneratorTensor_2
<
XDataType
>
{
-
5
,
5
});
gamma
.
GenerateTensorValue
(
GeneratorTensor_2
<
GammaDataType
>
{
-
5
,
5
});
mean
.
GenerateTensorValue
(
GeneratorTensor_2
<
MeanInvStdDataType
>
{
-
5
,
5
});
inv_std
.
GenerateTensorValue
(
GeneratorTensor_2
<
MeanInvStdDataType
>
{
-
5
,
5
});
dx
.
GenerateTensorValue
(
GeneratorTensor_2
<
DXDataType
>
{
-
5
,
5
});
break
;
default:
dy
.
GenerateTensorValue
(
GeneratorTensor_3
<
DYDataType
>
{
0
,
1
});
x
.
GenerateTensorValue
(
GeneratorTensor_3
<
XDataType
>
{
0
,
1
});
gamma
.
GenerateTensorValue
(
GeneratorTensor_3
<
GammaDataType
>
{
-
0.5
,
0.5
});
mean
.
GenerateTensorValue
(
GeneratorTensor_3
<
MeanInvStdDataType
>
{
-
0.5
,
0.5
});
inv_std
.
GenerateTensorValue
(
GeneratorTensor_3
<
MeanInvStdDataType
>
{
-
0.5
,
0.5
});
dx
.
GenerateTensorValue
(
GeneratorTensor_3
<
DXDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
dy_dev
(
sizeof
(
DYDataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
x_dev
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
gamma_dev
(
sizeof
(
GammaDataType
)
*
gamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
mean_dev
(
sizeof
(
MeanInvStdDataType
)
*
mean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
inv_std_dev
(
sizeof
(
MeanInvStdDataType
)
*
inv_std
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dx_dev
(
sizeof
(
DXDataType
)
*
dx
.
mDesc
.
GetElementSpaceSize
());
dy_dev
.
ToDevice
(
dy
.
mData
.
data
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
gamma_dev
.
ToDevice
(
gamma
.
mData
.
data
());
mean_dev
.
ToDevice
(
mean
.
mData
.
data
());
inv_std_dev
.
ToDevice
(
inv_std
.
mData
.
data
());
// add device normalization instances
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationBwdData
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
DXDataType
,
5
,
3
>
;
// get device op instances
const
auto
instance_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
instance_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_instance_name
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
if
(
do_verification
)
{
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGroupnormBwd
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
DGammaDataType
,
DBetaDataType
,
DXDataType
,
ComputeDataType
>
;
ReferenceInstance
ref
;
auto
ref_argument
=
ref
.
MakeArgument
(
dy
,
x
,
gamma
,
mean
,
inv_std
,
host_dgamma
,
host_dbeta
,
host_dx
,
length
);
auto
ref_invoker
=
ref
.
MakeInvoker
();
ref_invoker
.
Run
(
ref_argument
);
}
int
num_kernel
=
0
;
for
(
auto
&
inst_ptr
:
instance_ptrs
)
{
auto
argument_ptr
=
inst_ptr
->
MakeArgumentPointer
(
length
,
strideDy
,
strideX
,
strideGamma
,
strideMeanInvStd
,
strideMeanInvStd
,
strideDx
,
reduce_dim
,
dy_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
gamma_dev
.
GetDeviceBuffer
(),
mean_dev
.
GetDeviceBuffer
(),
inv_std_dev
.
GetDeviceBuffer
(),
dx_dev
.
GetDeviceBuffer
());
if
(
inst_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
++
num_kernel
;
}
else
{
if
(
time_kernel
)
{
std
::
cout
<<
inst_ptr
->
GetTypeString
()
<<
" skipped due to unsupported argument: "
;
LogRange
(
std
::
cout
<<
"input lengths = "
,
length
,
", "
)
<<
std
::
endl
;
}
continue
;
}
size_t
workspace_sz
=
inst_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
DeviceMem
workspace_dev
(
workspace_sz
);
inst_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace_dev
.
GetDeviceBuffer
());
auto
invoker_ptr
=
inst_ptr
->
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
num_bytes
=
dy
.
mDesc
.
GetElementSize
()
*
sizeof
(
DYDataType
)
+
x
.
mDesc
.
GetElementSize
()
*
sizeof
(
XDataType
)
+
gamma
.
mDesc
.
GetElementSize
()
*
sizeof
(
GammaDataType
)
+
mean
.
mDesc
.
GetElementSize
()
*
sizeof
(
MeanInvStdDataType
)
+
inv_std
.
mDesc
.
GetElementSize
()
*
sizeof
(
MeanInvStdDataType
)
+
dx
.
mDesc
.
GetElementSize
()
*
sizeof
(
DXDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
if
(
time_kernel
)
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
inst_ptr
->
GetTypeString
()
<<
std
::
endl
;
if
(
avg_time
<
best_avg_time
)
{
best_instance_name
=
inst_ptr
->
GetTypeString
();
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
dx_dev
.
FromDevice
(
dx
.
mData
.
data
());
bool
pass
=
ck
::
utils
::
check_err
(
dx
.
mData
,
host_dx
.
mData
,
"Error: Incorrect results"
,
1e-3
,
1e-3
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"dy : "
,
dy
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"host_dx : "
,
host_dx
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"dx : "
,
dx
.
mData
,
","
)
<<
std
::
endl
;
}
if
(
!
pass
)
{
std
::
cout
<<
inst_ptr
->
GetTypeString
()
<<
" failed verification: "
;
LogRange
(
std
::
cout
<<
"lengths = ["
,
length
,
", "
)
<<
"]."
<<
std
::
endl
;
return
false
;
}
else
{
if
(
time_kernel
)
std
::
cout
<<
"pass"
<<
std
::
endl
;
}
}
}
if
(
time_kernel
)
{
LogRange
(
std
::
cout
<<
"length = "
,
length
,
","
)
<<
", "
;
LogRange
(
std
::
cout
<<
"reduce dims "
,
reduce_dim
,
","
)
<<
std
::
endl
;
std
::
cout
<<
"best perf = "
<<
best_avg_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s,"
<<
best_instance_name
<<
std
::
endl
;
}
if
(
num_kernel
==
0
)
{
std
::
cout
<<
"Error: No kernel is applicable"
<<
std
::
endl
;
return
false
;
}
return
true
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profiler/profile_groupnorm_bwd_gamma_beta_impl.hpp
0 → 100644
View file @
29dcb956
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/groupnorm_bwd_gamma_beta.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_groupnorm_bwd.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
DYDataType
,
typename
XDataType
,
typename
MeanInvStdDataType
,
typename
ComputeDataType
,
typename
DGammaDataType
,
typename
DBetaDataType
>
bool
profile_groupnorm_bwd_gamma_beta_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
std
::
vector
<
index_t
>
length
)
{
// we don't need GammaDataType and DXDataType here, just for reference class
using
GammaDataType
=
DYDataType
;
using
DXDataType
=
DYDataType
;
if
(
length
.
size
()
!=
5
)
return
false
;
index_t
N
=
length
[
0
];
index_t
G
=
length
[
3
];
index_t
C
=
length
[
4
];
std
::
vector
<
index_t
>
reduce_dim
=
{
0
,
1
,
2
};
std
::
vector
<
index_t
>
gamma_beta_length
=
{
G
,
C
};
Tensor
<
DYDataType
>
dy
(
length
);
Tensor
<
XDataType
>
x
(
length
);
Tensor
<
GammaDataType
>
gamma
(
gamma_beta_length
);
// dummy tensor, for reference
Tensor
<
MeanInvStdDataType
>
mean
({
N
,
G
});
Tensor
<
MeanInvStdDataType
>
inv_std
({
N
,
G
});
Tensor
<
DGammaDataType
>
dgamma
(
gamma_beta_length
);
Tensor
<
DBetaDataType
>
dbeta
(
gamma_beta_length
);
Tensor
<
DXDataType
>
host_dx
(
length
);
// dummy tensor, for reference
Tensor
<
DGammaDataType
>
host_dgamma
(
gamma_beta_length
);
Tensor
<
DBetaDataType
>
host_dbeta
(
gamma_beta_length
);
std
::
vector
<
index_t
>
strideDy
=
std
::
vector
<
ck
::
index_t
>
{
dy
.
mDesc
.
GetStrides
().
begin
(),
dy
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
index_t
>
strideX
=
std
::
vector
<
ck
::
index_t
>
{
x
.
mDesc
.
GetStrides
().
begin
(),
x
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
index_t
>
strideDGamma
{
dgamma
.
mDesc
.
GetStrides
().
begin
(),
dgamma
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
index_t
>
strideDBeta
{
dbeta
.
mDesc
.
GetStrides
().
begin
(),
dbeta
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
index_t
>
strideMeanInvStd
=
{
G
,
0
,
0
,
1
,
0
};
switch
(
init_method
)
{
case
0
:
dy
.
GenerateTensorValue
(
GeneratorTensor_1
<
DYDataType
>
{});
x
.
GenerateTensorValue
(
GeneratorTensor_1
<
XDataType
>
{});
mean
.
GenerateTensorValue
(
GeneratorTensor_1
<
MeanInvStdDataType
>
{});
inv_std
.
GenerateTensorValue
(
GeneratorTensor_1
<
MeanInvStdDataType
>
{});
dgamma
.
GenerateTensorValue
(
GeneratorTensor_1
<
DGammaDataType
>
{});
dbeta
.
GenerateTensorValue
(
GeneratorTensor_1
<
DBetaDataType
>
{});
break
;
case
1
:
dy
.
GenerateTensorValue
(
GeneratorTensor_2
<
DYDataType
>
{
-
5
,
5
});
x
.
GenerateTensorValue
(
GeneratorTensor_2
<
XDataType
>
{
-
5
,
5
});
mean
.
GenerateTensorValue
(
GeneratorTensor_2
<
MeanInvStdDataType
>
{
-
5
,
5
});
inv_std
.
GenerateTensorValue
(
GeneratorTensor_2
<
MeanInvStdDataType
>
{
0
,
5
});
dgamma
.
GenerateTensorValue
(
GeneratorTensor_2
<
DGammaDataType
>
{
-
5
,
5
});
dbeta
.
GenerateTensorValue
(
GeneratorTensor_2
<
DBetaDataType
>
{
-
5
,
5
});
break
;
default:
dy
.
GenerateTensorValue
(
GeneratorTensor_3
<
DYDataType
>
{
0
,
1
});
x
.
GenerateTensorValue
(
GeneratorTensor_3
<
XDataType
>
{
0
,
1
});
mean
.
GenerateTensorValue
(
GeneratorTensor_3
<
MeanInvStdDataType
>
{
-
0.5
,
0.5
});
inv_std
.
GenerateTensorValue
(
GeneratorTensor_3
<
MeanInvStdDataType
>
{
0
,
0.5
});
dgamma
.
GenerateTensorValue
(
GeneratorTensor_3
<
DGammaDataType
>
{
-
0.5
,
0.5
});
dbeta
.
GenerateTensorValue
(
GeneratorTensor_3
<
DBetaDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
dy_dev
(
sizeof
(
DYDataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
x_dev
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
mean_dev
(
sizeof
(
MeanInvStdDataType
)
*
mean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
inv_std_dev
(
sizeof
(
MeanInvStdDataType
)
*
inv_std
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dgamma_dev
(
sizeof
(
DGammaDataType
)
*
dgamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dbeta_dev
(
sizeof
(
DBetaDataType
)
*
dbeta
.
mDesc
.
GetElementSpaceSize
());
dy_dev
.
ToDevice
(
dy
.
mData
.
data
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
mean_dev
.
ToDevice
(
mean
.
mData
.
data
());
inv_std_dev
.
ToDevice
(
inv_std
.
mData
.
data
());
// add device normalization instances
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationBwdGammaBeta
<
DYDataType
,
XDataType
,
MeanInvStdDataType
,
DGammaDataType
,
DBetaDataType
,
5
,
3
>
;
// get device op instances
const
auto
instance_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
instance_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_instance_name
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
if
(
do_verification
)
{
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGroupnormBwd
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
DGammaDataType
,
DBetaDataType
,
DXDataType
,
ComputeDataType
>
;
ReferenceInstance
ref
;
auto
ref_argument
=
ref
.
MakeArgument
(
dy
,
x
,
gamma
,
mean
,
inv_std
,
host_dgamma
,
host_dbeta
,
host_dx
,
length
);
auto
ref_invoker
=
ref
.
MakeInvoker
();
ref_invoker
.
Run
(
ref_argument
);
}
std
::
size_t
num_bytes
=
dy
.
mDesc
.
GetElementSize
()
*
sizeof
(
DYDataType
)
+
x
.
mDesc
.
GetElementSize
()
*
sizeof
(
XDataType
)
+
mean
.
mDesc
.
GetElementSize
()
*
sizeof
(
MeanInvStdDataType
)
+
inv_std
.
mDesc
.
GetElementSize
()
*
sizeof
(
MeanInvStdDataType
)
+
dgamma
.
mDesc
.
GetElementSize
()
*
sizeof
(
DGammaDataType
)
+
dbeta
.
mDesc
.
GetElementSize
()
*
sizeof
(
DBetaDataType
);
int
num_kernel
=
0
;
for
(
auto
&
inst_ptr
:
instance_ptrs
)
{
auto
argument_ptr
=
inst_ptr
->
MakeArgumentPointer
(
length
,
strideDy
,
strideX
,
strideMeanInvStd
,
strideMeanInvStd
,
gamma_beta_length
,
strideDGamma
,
strideDBeta
,
reduce_dim
,
dy_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
mean_dev
.
GetDeviceBuffer
(),
inv_std_dev
.
GetDeviceBuffer
(),
dgamma_dev
.
GetDeviceBuffer
(),
dbeta_dev
.
GetDeviceBuffer
());
if
(
inst_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
++
num_kernel
;
}
else
{
if
(
time_kernel
)
{
std
::
cout
<<
inst_ptr
->
GetTypeString
()
<<
" skipped due to unsupported argument: "
;
LogRange
(
std
::
cout
<<
"input lengths = "
,
length
,
", "
)
<<
std
::
endl
;
}
continue
;
}
size_t
workspace_sz
=
inst_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
DeviceMem
workspace_dev
(
workspace_sz
);
inst_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace_dev
.
GetDeviceBuffer
());
auto
invoker_ptr
=
inst_ptr
->
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
if
(
time_kernel
)
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
inst_ptr
->
GetTypeString
()
<<
std
::
endl
;
if
(
avg_time
<
best_avg_time
)
{
best_instance_name
=
inst_ptr
->
GetTypeString
();
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
dgamma_dev
.
FromDevice
(
dgamma
.
mData
.
data
());
dbeta_dev
.
FromDevice
(
dbeta
.
mData
.
data
());
bool
pass
=
ck
::
utils
::
check_err
(
dgamma
,
host_dgamma
,
"Error: Incorrect dgamma"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dbeta
,
host_dbeta
,
"Error: Incorrect dbeta"
,
1e-3
,
1e-3
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"dy : "
,
dy
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"host_dgamma : "
,
host_dgamma
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"dgamma : "
,
dgamma
.
mData
,
","
)
<<
std
::
endl
;
}
if
(
!
pass
)
{
std
::
cout
<<
inst_ptr
->
GetTypeString
()
<<
" failed verification: "
;
LogRange
(
std
::
cout
<<
"lengths = ["
,
length
,
", "
)
<<
"]."
<<
std
::
endl
;
return
false
;
}
else
{
if
(
time_kernel
)
std
::
cout
<<
"pass"
<<
std
::
endl
;
}
}
}
if
(
time_kernel
)
{
LogRange
(
std
::
cout
<<
"length = "
,
length
,
","
)
<<
", "
;
LogRange
(
std
::
cout
<<
"reduce dims "
,
reduce_dim
,
","
)
<<
std
::
endl
;
std
::
cout
<<
"best perf = "
<<
best_avg_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s,"
<<
best_instance_name
<<
std
::
endl
;
}
if
(
num_kernel
==
0
)
{
std
::
cout
<<
"Error: No kernel is applicable"
<<
std
::
endl
;
return
false
;
}
return
true
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profiler/profile_layernorm_bwd_data_impl.hpp
0 → 100644
View file @
29dcb956
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/layernorm_bwd_data.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm_bwd.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
DYDataType
,
typename
XDataType
,
typename
GammaDataType
,
typename
MeanInvStdDataType
,
typename
ComputeDataType
,
typename
DXDataType
,
index_t
Rank
>
bool
profile_layernorm_bwd_data_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
std
::
vector
<
index_t
>
length
)
{
// we don't need DGamma and DBeta here, just for reference class
using
DGammaDataType
=
DXDataType
;
using
DBetaDataType
=
DXDataType
;
if
(
length
.
size
()
!=
Rank
||
Rank
<
2
)
return
false
;
// Assume normalize dimension except for batch (first) dimension
std
::
vector
<
index_t
>
reduce_length
{
length
.
begin
()
+
1
,
length
.
end
()};
std
::
vector
<
index_t
>
reduce_dim
;
for
(
int
i
=
1
;
i
<
Rank
;
++
i
)
reduce_dim
.
push_back
(
i
);
Tensor
<
DYDataType
>
dy
(
length
);
Tensor
<
XDataType
>
x
(
length
);
Tensor
<
GammaDataType
>
gamma
(
reduce_length
);
Tensor
<
MeanInvStdDataType
>
mean
({
length
[
0
]});
Tensor
<
MeanInvStdDataType
>
inv_std
({
length
[
0
]});
Tensor
<
DXDataType
>
dx
(
length
);
Tensor
<
DXDataType
>
host_dx
(
length
);
Tensor
<
DGammaDataType
>
host_dgamma
(
reduce_length
);
Tensor
<
DBetaDataType
>
host_dbeta
(
reduce_length
);
std
::
vector
<
index_t
>
strideDy
=
std
::
vector
<
ck
::
index_t
>
{
dy
.
mDesc
.
GetStrides
().
begin
(),
dy
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
index_t
>
strideX
=
strideDy
;
std
::
vector
<
index_t
>
strideDx
=
strideDy
;
std
::
vector
<
index_t
>
strideGamma
=
strideDy
;
strideGamma
[
0
]
=
0
;
std
::
vector
<
index_t
>
strideMeanInvStd
{
Rank
,
0
};
strideMeanInvStd
[
0
]
=
1
;
switch
(
init_method
)
{
case
0
:
dy
.
GenerateTensorValue
(
GeneratorTensor_1
<
DYDataType
>
{});
x
.
GenerateTensorValue
(
GeneratorTensor_1
<
XDataType
>
{});
gamma
.
GenerateTensorValue
(
GeneratorTensor_1
<
GammaDataType
>
{});
mean
.
GenerateTensorValue
(
GeneratorTensor_1
<
MeanInvStdDataType
>
{});
inv_std
.
GenerateTensorValue
(
GeneratorTensor_1
<
MeanInvStdDataType
>
{});
dx
.
GenerateTensorValue
(
GeneratorTensor_1
<
DXDataType
>
{});
break
;
case
1
:
dy
.
GenerateTensorValue
(
GeneratorTensor_2
<
DYDataType
>
{
-
5
,
5
});
x
.
GenerateTensorValue
(
GeneratorTensor_2
<
XDataType
>
{
-
5
,
5
});
gamma
.
GenerateTensorValue
(
GeneratorTensor_2
<
GammaDataType
>
{
-
5
,
5
});
mean
.
GenerateTensorValue
(
GeneratorTensor_2
<
MeanInvStdDataType
>
{
-
5
,
5
});
inv_std
.
GenerateTensorValue
(
GeneratorTensor_2
<
MeanInvStdDataType
>
{
-
5
,
5
});
dx
.
GenerateTensorValue
(
GeneratorTensor_2
<
DXDataType
>
{
-
5
,
5
});
break
;
default:
dy
.
GenerateTensorValue
(
GeneratorTensor_3
<
DYDataType
>
{
0
,
1
});
x
.
GenerateTensorValue
(
GeneratorTensor_3
<
XDataType
>
{
0
,
1
});
gamma
.
GenerateTensorValue
(
GeneratorTensor_3
<
GammaDataType
>
{
-
0.5
,
0.5
});
mean
.
GenerateTensorValue
(
GeneratorTensor_3
<
MeanInvStdDataType
>
{
-
0.5
,
0.5
});
inv_std
.
GenerateTensorValue
(
GeneratorTensor_3
<
MeanInvStdDataType
>
{
-
0.5
,
0.5
});
dx
.
GenerateTensorValue
(
GeneratorTensor_3
<
DXDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
dy_dev
(
sizeof
(
DYDataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
x_dev
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
gamma_dev
(
sizeof
(
GammaDataType
)
*
gamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
mean_dev
(
sizeof
(
MeanInvStdDataType
)
*
mean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
inv_std_dev
(
sizeof
(
MeanInvStdDataType
)
*
inv_std
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dx_dev
(
sizeof
(
DXDataType
)
*
dx
.
mDesc
.
GetElementSpaceSize
());
dy_dev
.
ToDevice
(
dy
.
mData
.
data
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
gamma_dev
.
ToDevice
(
gamma
.
mData
.
data
());
mean_dev
.
ToDevice
(
mean
.
mData
.
data
());
inv_std_dev
.
ToDevice
(
inv_std
.
mData
.
data
());
constexpr
int
NumReduceDim
=
Rank
-
1
;
// add device normalization instances
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationBwdData
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
DXDataType
,
Rank
,
NumReduceDim
>
;
// get device op instances
const
auto
instance_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
instance_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_instance_name
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
if
(
do_verification
)
{
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceLayernormBwd
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
DGammaDataType
,
DBetaDataType
,
DXDataType
,
ComputeDataType
>
;
ReferenceInstance
ref
;
auto
ref_argument
=
ref
.
MakeArgument
(
dy
,
x
,
gamma
,
mean
,
inv_std
,
host_dgamma
,
host_dbeta
,
host_dx
,
length
);
auto
ref_invoker
=
ref
.
MakeInvoker
();
ref_invoker
.
Run
(
ref_argument
);
}
int
num_kernel
=
0
;
for
(
auto
&
inst_ptr
:
instance_ptrs
)
{
auto
argument_ptr
=
inst_ptr
->
MakeArgumentPointer
(
length
,
strideDy
,
strideX
,
strideGamma
,
strideMeanInvStd
,
strideMeanInvStd
,
strideDx
,
reduce_dim
,
dy_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
gamma_dev
.
GetDeviceBuffer
(),
mean_dev
.
GetDeviceBuffer
(),
inv_std_dev
.
GetDeviceBuffer
(),
dx_dev
.
GetDeviceBuffer
());
if
(
inst_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
++
num_kernel
;
}
else
{
if
(
time_kernel
)
{
std
::
cout
<<
inst_ptr
->
GetTypeString
()
<<
" skipped due to unsupported argument: "
;
LogRange
(
std
::
cout
<<
"input lengths = "
,
length
,
", "
)
<<
std
::
endl
;
}
continue
;
}
size_t
workspace_sz
=
inst_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
DeviceMem
workspace_dev
(
workspace_sz
);
inst_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace_dev
.
GetDeviceBuffer
());
auto
invoker_ptr
=
inst_ptr
->
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
num_bytes
=
dy
.
mDesc
.
GetElementSize
()
*
sizeof
(
DYDataType
)
+
x
.
mDesc
.
GetElementSize
()
*
sizeof
(
XDataType
)
+
gamma
.
mDesc
.
GetElementSize
()
*
sizeof
(
GammaDataType
)
+
mean
.
mDesc
.
GetElementSize
()
*
sizeof
(
MeanInvStdDataType
)
+
inv_std
.
mDesc
.
GetElementSize
()
*
sizeof
(
MeanInvStdDataType
)
+
dx
.
mDesc
.
GetElementSize
()
*
sizeof
(
DXDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
if
(
time_kernel
)
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
inst_ptr
->
GetTypeString
()
<<
std
::
endl
;
if
(
avg_time
<
best_avg_time
)
{
best_instance_name
=
inst_ptr
->
GetTypeString
();
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
dx_dev
.
FromDevice
(
dx
.
mData
.
data
());
bool
pass
=
ck
::
utils
::
check_err
(
dx
.
mData
,
host_dx
.
mData
,
"Error: Incorrect results"
,
1e-3
,
1e-3
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"dy : "
,
dy
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"host_dx : "
,
host_dx
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"dx : "
,
dx
.
mData
,
","
)
<<
std
::
endl
;
}
if
(
!
pass
)
{
std
::
cout
<<
inst_ptr
->
GetTypeString
()
<<
" failed verification: "
;
LogRange
(
std
::
cout
<<
"lengths = ["
,
length
,
", "
)
<<
"]."
<<
std
::
endl
;
return
false
;
}
else
{
if
(
time_kernel
)
std
::
cout
<<
"pass"
<<
std
::
endl
;
}
}
}
if
(
time_kernel
)
{
LogRange
(
std
::
cout
<<
"length = "
,
length
,
","
)
<<
", "
;
LogRange
(
std
::
cout
<<
"reduce dims "
,
reduce_dim
,
","
)
<<
std
::
endl
;
std
::
cout
<<
"best perf = "
<<
best_avg_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s,"
<<
best_instance_name
<<
std
::
endl
;
}
if
(
num_kernel
==
0
)
{
std
::
cout
<<
"Error: No kernel is applicable"
<<
std
::
endl
;
return
false
;
}
return
true
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profiler/profile_layernorm_bwd_gamma_beta_impl.hpp
0 → 100644
View file @
29dcb956
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/layernorm_bwd_gamma_beta.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm_bwd.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
DYDataType
,
typename
XDataType
,
typename
MeanInvStdDataType
,
typename
ComputeDataType
,
typename
DGammaDataType
,
typename
DBetaDataType
,
index_t
Rank
>
bool
profile_layernorm_bwd_gamma_beta_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
std
::
vector
<
index_t
>
length
)
{
// we don't need GammaDataType and DXDataType here, just for reference class
using
GammaDataType
=
DYDataType
;
using
DXDataType
=
DYDataType
;
if
(
length
.
size
()
!=
Rank
||
Rank
<
2
)
return
false
;
// Assume normalize dimension for first dimension
// Layernorm 2D, input = [M, K], reduce on M axis
// Layernorm 4D, input = [N, H, W, C], redice on N axis
constexpr
int
NumReduceDim
=
Rank
-
1
;
std
::
vector
<
index_t
>
reduce_dim
=
{
0
};
std
::
vector
<
index_t
>
invarient_length
{
length
.
begin
()
+
1
,
length
.
end
()};
Tensor
<
DYDataType
>
dy
(
length
);
Tensor
<
XDataType
>
x
(
length
);
Tensor
<
GammaDataType
>
gamma
(
invarient_length
);
// dummy tensor, for reference
Tensor
<
MeanInvStdDataType
>
mean
({
length
[
0
]});
Tensor
<
MeanInvStdDataType
>
inv_std
({
length
[
0
]});
Tensor
<
DGammaDataType
>
dgamma
(
invarient_length
);
Tensor
<
DBetaDataType
>
dbeta
(
invarient_length
);
Tensor
<
DXDataType
>
host_dx
(
length
);
// dummy tensor, for reference
Tensor
<
DGammaDataType
>
host_dgamma
(
invarient_length
);
Tensor
<
DBetaDataType
>
host_dbeta
(
invarient_length
);
std
::
vector
<
index_t
>
strideDy
=
std
::
vector
<
ck
::
index_t
>
{
dy
.
mDesc
.
GetStrides
().
begin
(),
dy
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
index_t
>
strideX
=
strideDy
;
std
::
vector
<
index_t
>
strideDGamma
{
dgamma
.
mDesc
.
GetStrides
().
begin
(),
dgamma
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
index_t
>
strideDBeta
{
dbeta
.
mDesc
.
GetStrides
().
begin
(),
dbeta
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
index_t
>
strideMeanInvStd
{
Rank
,
0
};
strideMeanInvStd
[
0
]
=
1
;
switch
(
init_method
)
{
case
0
:
dy
.
GenerateTensorValue
(
GeneratorTensor_1
<
DYDataType
>
{});
x
.
GenerateTensorValue
(
GeneratorTensor_1
<
XDataType
>
{});
mean
.
GenerateTensorValue
(
GeneratorTensor_1
<
MeanInvStdDataType
>
{});
inv_std
.
GenerateTensorValue
(
GeneratorTensor_1
<
MeanInvStdDataType
>
{});
dgamma
.
GenerateTensorValue
(
GeneratorTensor_1
<
DGammaDataType
>
{});
dbeta
.
GenerateTensorValue
(
GeneratorTensor_1
<
DBetaDataType
>
{});
break
;
case
1
:
dy
.
GenerateTensorValue
(
GeneratorTensor_2
<
DYDataType
>
{
-
5
,
5
});
x
.
GenerateTensorValue
(
GeneratorTensor_2
<
XDataType
>
{
-
5
,
5
});
mean
.
GenerateTensorValue
(
GeneratorTensor_2
<
MeanInvStdDataType
>
{
-
5
,
5
});
inv_std
.
GenerateTensorValue
(
GeneratorTensor_2
<
MeanInvStdDataType
>
{
0
,
5
});
dgamma
.
GenerateTensorValue
(
GeneratorTensor_2
<
DGammaDataType
>
{
-
5
,
5
});
dbeta
.
GenerateTensorValue
(
GeneratorTensor_2
<
DBetaDataType
>
{
-
5
,
5
});
break
;
default:
dy
.
GenerateTensorValue
(
GeneratorTensor_3
<
DYDataType
>
{
0
,
1
});
x
.
GenerateTensorValue
(
GeneratorTensor_3
<
XDataType
>
{
0
,
1
});
mean
.
GenerateTensorValue
(
GeneratorTensor_3
<
MeanInvStdDataType
>
{
-
0.5
,
0.5
});
inv_std
.
GenerateTensorValue
(
GeneratorTensor_3
<
MeanInvStdDataType
>
{
0
,
0.5
});
dgamma
.
GenerateTensorValue
(
GeneratorTensor_3
<
DGammaDataType
>
{
-
0.5
,
0.5
});
dbeta
.
GenerateTensorValue
(
GeneratorTensor_3
<
DBetaDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
dy_dev
(
sizeof
(
DYDataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
x_dev
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
mean_dev
(
sizeof
(
MeanInvStdDataType
)
*
mean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
inv_std_dev
(
sizeof
(
MeanInvStdDataType
)
*
inv_std
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dgamma_dev
(
sizeof
(
DGammaDataType
)
*
dgamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dbeta_dev
(
sizeof
(
DBetaDataType
)
*
dbeta
.
mDesc
.
GetElementSpaceSize
());
dy_dev
.
ToDevice
(
dy
.
mData
.
data
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
mean_dev
.
ToDevice
(
mean
.
mData
.
data
());
inv_std_dev
.
ToDevice
(
inv_std
.
mData
.
data
());
// add device normalization instances
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationBwdGammaBeta
<
DYDataType
,
XDataType
,
MeanInvStdDataType
,
DGammaDataType
,
DBetaDataType
,
Rank
,
NumReduceDim
>
;
// get device op instances
const
auto
instance_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
instance_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_instance_name
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
if
(
do_verification
)
{
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceLayernormBwd
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
DGammaDataType
,
DBetaDataType
,
DXDataType
,
ComputeDataType
>
;
ReferenceInstance
ref
;
auto
ref_argument
=
ref
.
MakeArgument
(
dy
,
x
,
gamma
,
mean
,
inv_std
,
host_dgamma
,
host_dbeta
,
host_dx
,
length
);
auto
ref_invoker
=
ref
.
MakeInvoker
();
ref_invoker
.
Run
(
ref_argument
);
}
std
::
size_t
num_bytes
=
dy
.
mDesc
.
GetElementSize
()
*
sizeof
(
DYDataType
)
+
x
.
mDesc
.
GetElementSize
()
*
sizeof
(
XDataType
)
+
mean
.
mDesc
.
GetElementSize
()
*
sizeof
(
MeanInvStdDataType
)
+
inv_std
.
mDesc
.
GetElementSize
()
*
sizeof
(
MeanInvStdDataType
)
+
dgamma
.
mDesc
.
GetElementSize
()
*
sizeof
(
DGammaDataType
)
+
dbeta
.
mDesc
.
GetElementSize
()
*
sizeof
(
DBetaDataType
);
int
num_kernel
=
0
;
for
(
auto
&
inst_ptr
:
instance_ptrs
)
{
auto
argument_ptr
=
inst_ptr
->
MakeArgumentPointer
(
length
,
strideDy
,
strideX
,
strideMeanInvStd
,
strideMeanInvStd
,
invarient_length
,
strideDGamma
,
strideDBeta
,
reduce_dim
,
dy_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
mean_dev
.
GetDeviceBuffer
(),
inv_std_dev
.
GetDeviceBuffer
(),
dgamma_dev
.
GetDeviceBuffer
(),
dbeta_dev
.
GetDeviceBuffer
());
if
(
inst_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
++
num_kernel
;
}
else
{
if
(
time_kernel
)
{
std
::
cout
<<
inst_ptr
->
GetTypeString
()
<<
" skipped due to unsupported argument: "
;
LogRange
(
std
::
cout
<<
"input lengths = "
,
length
,
", "
)
<<
std
::
endl
;
}
continue
;
}
size_t
workspace_sz
=
inst_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
DeviceMem
workspace_dev
(
workspace_sz
);
inst_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace_dev
.
GetDeviceBuffer
());
auto
invoker_ptr
=
inst_ptr
->
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
if
(
time_kernel
)
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
inst_ptr
->
GetTypeString
()
<<
std
::
endl
;
if
(
avg_time
<
best_avg_time
)
{
best_instance_name
=
inst_ptr
->
GetTypeString
();
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
dgamma_dev
.
FromDevice
(
dgamma
.
mData
.
data
());
dbeta_dev
.
FromDevice
(
dbeta
.
mData
.
data
());
bool
pass
=
ck
::
utils
::
check_err
(
dgamma
,
host_dgamma
,
"Error: Incorrect dgamma"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dbeta
,
host_dbeta
,
"Error: Incorrect dbeta"
,
1e-3
,
1e-3
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"dy : "
,
dy
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"host_dgamma : "
,
host_dgamma
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"dgamma : "
,
dgamma
.
mData
,
","
)
<<
std
::
endl
;
}
if
(
!
pass
)
{
std
::
cout
<<
inst_ptr
->
GetTypeString
()
<<
" failed verification: "
;
LogRange
(
std
::
cout
<<
"lengths = ["
,
length
,
", "
)
<<
"]."
<<
std
::
endl
;
return
false
;
}
else
{
if
(
time_kernel
)
std
::
cout
<<
"pass"
<<
std
::
endl
;
}
}
}
if
(
time_kernel
)
{
LogRange
(
std
::
cout
<<
"length = "
,
length
,
","
)
<<
", "
;
LogRange
(
std
::
cout
<<
"reduce dims "
,
reduce_dim
,
","
)
<<
std
::
endl
;
std
::
cout
<<
"best perf = "
<<
best_avg_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s,"
<<
best_instance_name
<<
std
::
endl
;
}
if
(
num_kernel
==
0
)
{
std
::
cout
<<
"Error: No kernel is applicable"
<<
std
::
endl
;
return
false
;
}
return
true
;
}
}
// namespace profiler
}
// namespace ck
Prev
1
…
13
14
15
16
17
18
19
20
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment