Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
29dcb956
Unverified
Commit
29dcb956
authored
Feb 08, 2024
by
Illia Silin
Committed by
GitHub
Feb 08, 2024
Browse files
Merge pull request #33 from ROCm/lwpck-1292
Merge from the public repo.
parents
29deceb6
cbcc844e
Changes
393
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1245 additions
and
18 deletions
+1245
-18
include/ck/wrapper/utils/tensor_partition.hpp
include/ck/wrapper/utils/tensor_partition.hpp
+390
-0
include/ck/wrapper/utils/tensor_utils.hpp
include/ck/wrapper/utils/tensor_utils.hpp
+274
-0
library/include/ck/library/reference_tensor_operation/cpu/reference_column_to_image.hpp
...erence_tensor_operation/cpu/reference_column_to_image.hpp
+2
-0
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp
...eference_tensor_operation/cpu/reference_conv_bwd_data.hpp
+3
-0
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_bwd_weight.hpp
...erence_tensor_operation/cpu/reference_conv_bwd_weight.hpp
+2
-0
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp
...ary/reference_tensor_operation/cpu/reference_conv_fwd.hpp
+2
-0
library/include/ck/library/reference_tensor_operation/cpu/reference_gemm.hpp
...library/reference_tensor_operation/cpu/reference_gemm.hpp
+3
-4
library/include/ck/library/reference_tensor_operation/cpu/reference_groupnorm_bwd.hpp
...eference_tensor_operation/cpu/reference_groupnorm_bwd.hpp
+25
-0
library/include/ck/library/reference_tensor_operation/cpu/reference_image_to_column.hpp
...erence_tensor_operation/cpu/reference_image_to_column.hpp
+4
-1
library/include/ck/library/reference_tensor_operation/cpu/reference_layernorm_bwd.hpp
...eference_tensor_operation/cpu/reference_layernorm_bwd.hpp
+24
-0
library/include/ck/library/tensor_operation_instance/device_operation_instance_factory.hpp
..._operation_instance/device_operation_instance_factory.hpp
+6
-4
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_gemm.hpp
...brary/tensor_operation_instance/gpu/batched_gemm_gemm.hpp
+1
-2
library/include/ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp
..._instance/gpu/contraction/device_contraction_instance.hpp
+20
-4
library/include/ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_instance.hpp
...e_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_instance.hpp
+59
-0
library/include/ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_interwave_instance.hpp
..._c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_interwave_instance.hpp
+59
-0
library/include/ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_instance.hpp
...e_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_instance.hpp
+59
-0
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
...include/ck/library/tensor_operation_instance/gpu/gemm.hpp
+29
-2
library/include/ck/library/tensor_operation_instance/gpu/gemm_add.hpp
...ude/ck/library/tensor_operation_instance/gpu/gemm_add.hpp
+114
-0
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_fastgelu.hpp
...brary/tensor_operation_instance/gpu/gemm_add_fastgelu.hpp
+53
-1
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_relu.hpp
...k/library/tensor_operation_instance/gpu/gemm_add_relu.hpp
+116
-0
No files found.
include/ck/wrapper/utils/tensor_partition.hpp
0 → 100644
View file @
29dcb956
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "tensor_utils.hpp"
#include "layout_utils.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_description/cluster_descriptor.hpp"
namespace
ck
{
namespace
wrapper
{
namespace
{
namespace
detail
{
/**
* \brief Calculate shape for partition based on number of threads per each dim and
* previous shape
*
* \param shape Base tensor shape.
* \param thread_lengths Tuple of thread lengths.
* \return Partition shape.
*/
template
<
typename
...
Ts
,
typename
...
Ls
>
__host__
__device__
constexpr
auto
CalculateLocalPartitionShape
(
const
Tuple
<
Ts
...
>&
shape
,
const
Tuple
<
Ls
...
>&
thread_lengths
)
{
static_assert
(
Tuple
<
Ts
...
>::
Size
()
==
Tuple
<
Ls
...
>::
Size
(),
"Wrong thread_lengths shape."
);
return
generate_tuple
(
[
&
](
auto
i
)
{
constexpr
auto
num_i
=
Number
<
i
>
{};
const
auto
slice_len
=
ck
::
math
::
integer_divide_ceil
(
size
<
num_i
>
(
shape
),
thread_lengths
.
At
(
num_i
));
return
slice_len
;
},
Number
<
Tuple
<
Ls
...
>::
Size
()
>
{});
}
/**
* \brief Apply projection.
*
* \param base_tuple Tuple to apply projection.
* \param projection Projection to remove selected dim from partitioning.
* slice(X) to remove, where X is dim size, Number<1>{} to keep.
* \return Multi index after projection.
*/
template
<
typename
MultiIndex
,
typename
ProjectionTuple
>
__host__
__device__
constexpr
auto
ApplyProjection
([[
maybe_unused
]]
const
MultiIndex
&
base_tuple
,
[[
maybe_unused
]]
const
ProjectionTuple
&
projection
)
{
if
constexpr
(
is_same_v
<
ProjectionTuple
,
Tuple
<>>
)
{
return
Tuple
<>
{};
}
else
{
auto
base_tuple_after_projection
=
generate_tuple
(
[
&
](
auto
i
)
{
const
auto
i_num
=
Number
<
i
.
value
>
{};
static_assert
(
is_detected
<
is_slice
,
tuple_element_t
<
i_num
,
ProjectionTuple
>>::
value
||
is_same_v
<
tuple_element_t
<
i_num
,
ProjectionTuple
>
,
Number
<
1
>>
);
if
constexpr
(
is_detected
<
is_slice
,
tuple_element_t
<
i_num
,
ProjectionTuple
>>::
value
)
{
// When slice (to remove), then insert empty tuple (will be removed in next
// step).
return
Tuple
<>
{};
}
else
{
return
base_tuple
.
At
(
i_num
);
}
},
Number
<
MultiIndex
::
Size
()
>
{});
// Remove empty tuples
return
UnrollNestedTuple
<
0
,
1
>
(
base_tuple_after_projection
);
}
}
/**
* \brief Calculate shape with dims from projection.
*
* \param shape Base tensor shape.
* \param projection Projection to remove selected dim from partitioning.
* slice(X) to remove, where X is dim size, Number<1>{} to keep.
* \return Shape with dims from projection
*/
template
<
typename
...
Ts
,
typename
...
Ps
>
__host__
__device__
constexpr
auto
CalculateShapeWithProjection
(
const
Tuple
<
Ts
...
>&
shape
,
const
Tuple
<
Ps
...
>&
projection
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
is_detected
<
is_slice
,
tuple_element_t
<
i
,
Tuple
<
Ps
...
>>>::
value
)
{
return
size
<
i
>
(
projection
).
to_
;
}
else
{
// number of shape element in actual fragment of shape and projection (method to
// calculate shape idx)
constexpr
index_t
shape_i
=
detail
::
ApplyProjection
(
TupleSlice
<
0
,
i
>
(
Tuple
<
Ts
...
>
{}),
TupleSlice
<
0
,
i
>
(
Tuple
<
Ps
...
>
{}))
.
Size
();
return
size
<
shape_i
>
(
shape
);
}
},
Number
<
Tuple
<
Ps
...
>::
Size
()
>
{});
}
/**
* \brief Calculate total number of blocks.
*
* \param shape Base tensor shape.
* \param tile_shape Tile shape.
* \param projection Projection is used to remove selected dim from
* partitioning. Use `slice(X)` to remove dimension, where X is dim
* size. Use `Number<1>{}` to keep it.
* \return Tuple with blocks number.
*/
template
<
typename
...
Ts
,
typename
...
Ls
,
typename
...
Ps
>
__host__
__device__
constexpr
auto
CalculateGridSize
(
const
Tuple
<
Ts
...
>&
shape
,
const
Tuple
<
Ls
...
>&
tile_shape
,
const
Tuple
<
Ps
...
>&
projection
)
{
auto
shape_with_projection
=
CalculateShapeWithProjection
(
shape
,
projection
);
return
generate_tuple
(
[
&
](
auto
i
)
{
return
ck
::
math
::
integer_divide_ceil
(
size
<
i
>
(
shape_with_projection
),
size
<
i
>
(
tile_shape
));
},
Number
<
Tuple
<
Ls
...
>::
Size
()
>
{});
}
/**
* \brief Calculate scaled offset for new partition/tile.
*
* \param thread_idxs Thread 1d id.
* \param partition_lengths_seq Sequence of partition shape.
* \param old_offset_idxs Multi index offset from base tensor to shift values.
* \return Partition shape.
*/
template
<
typename
ThreadIdxs
,
typename
PartitionLengthsSeq
,
typename
OldOffsetIdxs
>
__host__
__device__
constexpr
auto
CalculateOffsetMultiIdxs
(
const
ThreadIdxs
&
thread_idxs
,
const
PartitionLengthsSeq
&
partition_lengths_seq
,
const
OldOffsetIdxs
&
old_offset_idxs
)
{
return
thread_idxs
*
partition_lengths_seq
+
old_offset_idxs
;
}
/**
* \brief Calculate default projection.
*
* \param tile_shape Tile shape.
* \return Default projection (filled with Number<1>{}).
*/
template
<
typename
TileShape
>
__host__
__device__
constexpr
auto
GenerateDefaultProjection
([[
maybe_unused
]]
const
TileShape
tile_shape
)
{
return
generate_tuple
([
&
](
auto
)
{
return
Number
<
1
>
{};
},
Number
<
TileShape
::
Size
()
>
{});
}
}
// namespace detail
}
// namespace
/**
* \brief Create local partition for thread (At now only packed partition
* is supported).
*
* \param tensor Tensor for partition.
* \param thread_lengths Layout of threads (could not be nested).
* \param thread_id Thread index represented as integer.
* \param projection Projection is used to remove selected dim from
* partitioning. Use `slice(X)` to remove dimension, where X is dim
* size. Use `Number<1>{}` to keep it.
* \return Partition tensor.
*/
template
<
typename
TensorType
,
typename
ThreadLengthsTuple
,
typename
ProjectionTuple
>
__host__
__device__
constexpr
auto
make_local_partition
(
TensorType
&
tensor
,
[[
maybe_unused
]]
const
ThreadLengthsTuple
&
thread_lengths
,
const
index_t
thread_id
,
const
ProjectionTuple
&
projection
)
{
static_assert
(
!
IsNestedTuple
(
ThreadLengthsTuple
{}));
// Calculate new partition shape
const
auto
&
tensor_shape
=
shape
(
tensor
);
// Calculate projected thread lengths
constexpr
auto
projected_thread_lengths
=
detail
::
ApplyProjection
(
ThreadLengthsTuple
{},
ProjectionTuple
{});
constexpr
auto
partition_shape
=
detail
::
CalculateLocalPartitionShape
(
decltype
(
tensor_shape
){},
projected_thread_lengths
);
// Create Thread Cluster Descriptor
constexpr
auto
partition_shape_seq
=
generate_sequence_v2
([
&
](
auto
I
)
{
return
size
<
I
>
(
partition_shape
);
},
Number
<
decltype
(
partition_shape
)
::
Size
()
>
{});
constexpr
auto
thread_lengths_seq
=
generate_sequence_v2
([
&
](
auto
I
)
{
return
size
<
I
>
(
ThreadLengthsTuple
{});
},
Number
<
ThreadLengthsTuple
::
Size
()
>
{});
constexpr
auto
thread_cluster_desc_
=
make_cluster_descriptor
(
thread_lengths_seq
);
// Calculate thread idxs and offsets
const
auto
thread_idxs
=
thread_cluster_desc_
.
CalculateBottomIndex
(
make_multi_index
(
thread_id
));
// Apply projection on thread idxs to remove not needed idxs
const
auto
projected_thread_idxs
=
detail
::
ApplyProjection
(
thread_idxs
,
projection
);
const
auto
offset_multi_idxs
=
detail
::
CalculateOffsetMultiIdxs
(
projected_thread_idxs
,
partition_shape_seq
,
tensor
.
GetMultiIdxOffsets
());
// Create new layout and tensor
auto
&
unrolled_desc
=
layout
(
tensor
).
GetUnrolledDescriptor
();
const
auto
partition_layout
=
Layout
<
remove_reference_t
<
decltype
(
partition_shape
)
>
,
decltype
(
unrolled_desc
)
>
(
partition_shape
,
unrolled_desc
);
auto
partition_tensor
=
make_tensor
<
TensorType
::
TensorBufferAddressSpace
>
(
tensor
.
GetPointer
(),
partition_layout
);
// Apply offsets
partition_tensor
.
SetMultiIdxOffset
(
to_multi_index
(
offset_multi_idxs
));
return
partition_tensor
;
}
/**
* \brief Create local partition for thread (At now only packed partition
* is supported).
*
* \param tensor Tensor for partition.
* \param thread_lengths Layout of threads (could not be nested).
* \param thread_id Thread index represented as integer.
* \return Partition tensor.
*/
template
<
typename
TensorType
,
typename
ThreadLengthsTuple
>
__host__
__device__
constexpr
auto
make_local_partition
(
TensorType
&
tensor
,
const
ThreadLengthsTuple
&
thread_lengths
,
const
index_t
thread_id
)
{
const
auto
projection
=
detail
::
GenerateDefaultProjection
(
ThreadLengthsTuple
{});
return
make_local_partition
(
tensor
,
thread_lengths
,
thread_id
,
projection
);
}
/**
* \brief Create local tile for thread block. (At now only packed tile
* is supported).
*
* \note Temporary to gain the best performance use 2d
* tile_shape.
*
*
* \param tensor Tensor for partition.
* \param tile_shape Shapes of requested tile.
* \param block_id Block index represented as integer.
* \param projection Projection to remove selected dim from partitioning.
* slice(X) to remove, where X is dim size, Number<1>{} to keep.
* \return Tile tensor.
*/
template
<
typename
TensorType
,
typename
BlockShapeTuple
,
typename
ProjectionTuple
>
__host__
__device__
constexpr
auto
make_local_tile
(
const
TensorType
&
tensor
,
const
BlockShapeTuple
&
tile_shape
,
const
index_t
block_id
,
const
ProjectionTuple
&
projection
)
{
static_assert
(
!
IsNestedTuple
(
BlockShapeTuple
{}));
constexpr
bool
is_default_projection
=
is_same_v
<
ProjectionTuple
,
decltype
(
detail
::
GenerateDefaultProjection
(
BlockShapeTuple
{}))
>
;
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
auto
&
aligned_desc
=
layout
(
tensor
).
GetMergedNestingDescriptor
();
// TODO: Enable block_2_tile_map partitioning for non-default projection.
if
constexpr
(
BlockShapeTuple
::
Size
()
==
I2
&&
is_default_projection
)
{
// Optimized version for 2d tile shape [MxK]
const
auto
block_2_tile_map
=
BlockToCTileMap_M00_N0_M01Adapt
<
BlockShapeTuple
{}.
At
(
I0
),
BlockShapeTuple
{}.
At
(
I1
),
remove_cvref_t
<
decltype
(
aligned_desc
)
>>
(
aligned_desc
);
const
auto
block_work_idx
=
block_2_tile_map
.
CalculateBottomIndex
(
make_multi_index
(
block_id
));
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]
*
size
<
0
>
(
tile_shape
));
const
index_t
k_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I1
]
*
size
<
1
>
(
tile_shape
));
const
auto
offset_multi_idxs
=
make_tuple
(
m_block_data_idx_on_grid
,
k_block_data_idx_on_grid
);
// Create new layout and tensor
const
auto
tile_layout
=
Layout
<
remove_reference_t
<
decltype
(
tile_shape
)
>
,
decltype
(
aligned_desc
)
>
(
tile_shape
,
aligned_desc
);
auto
tile_tensor
=
make_tensor
<
TensorType
::
TensorBufferAddressSpace
>
(
tensor
.
GetPointer
(),
tile_layout
);
// Apply offsets
tile_tensor
.
SetMultiIdxOffset
(
to_multi_index
(
offset_multi_idxs
));
return
tile_tensor
;
}
else
{
// Calculate offsets
// Sequence with data to process per block
constexpr
auto
projected_tile_shape
=
detail
::
ApplyProjection
(
BlockShapeTuple
{},
ProjectionTuple
{});
using
ProjectedTileShapeTuple
=
decltype
(
projected_tile_shape
);
constexpr
auto
projected_tile_shape_seq
=
generate_sequence_v2
([](
auto
I
)
{
return
ProjectedTileShapeTuple
{}.
At
(
I
);
},
Number
<
ProjectedTileShapeTuple
::
Size
()
>
{});
// Tuple with number of blocks
const
auto
block_lengths
=
detail
::
CalculateGridSize
(
shape
(
tensor
),
tile_shape
,
projection
);
const
auto
block_cluster_desc_
=
make_cluster_descriptor
(
block_lengths
);
const
auto
block_idxs
=
block_cluster_desc_
.
CalculateBottomIndex
(
make_multi_index
(
block_id
));
const
auto
projected_block_idxs
=
detail
::
ApplyProjection
(
block_idxs
,
projection
);
const
auto
offset_multi_idxs
=
detail
::
CalculateOffsetMultiIdxs
(
projected_block_idxs
,
projected_tile_shape_seq
,
tensor
.
GetMultiIdxOffsets
());
// Create new layout and tensor
const
auto
tile_layout
=
Layout
<
remove_reference_t
<
ProjectedTileShapeTuple
>
,
decltype
(
aligned_desc
)
>
(
projected_tile_shape
,
aligned_desc
);
auto
tile_tensor
=
make_tensor
<
TensorType
::
TensorBufferAddressSpace
>
(
tensor
.
GetPointer
(),
tile_layout
);
// Apply offsets
tile_tensor
.
SetMultiIdxOffset
(
to_multi_index
(
offset_multi_idxs
));
return
tile_tensor
;
}
}
/**
* \brief Create local tile for thread block. (At now only packed tile
* is supported).
*
* \note Currently to get the best performance please use 2d shape.
*
* \param tensor Tensor for partition.
* \param tile_shape Shapes of requested tile.
* \param block_id Block index represented as integer.
* \return Tile tensor.
*/
template
<
typename
TensorType
,
typename
BlockShapeTuple
>
__host__
__device__
constexpr
auto
make_local_tile
(
const
TensorType
&
tensor
,
const
BlockShapeTuple
&
tile_shape
,
const
index_t
block_id
)
{
const
auto
projection
=
detail
::
GenerateDefaultProjection
(
BlockShapeTuple
{});
return
make_local_tile
(
tensor
,
tile_shape
,
block_id
,
projection
);
}
/**
* \brief Pad tensor shapes to be adjusted to tile lengths.
*
*
* \param tensor Tensor to pad.
* \param tile_lengths Tile lengths to align tensor shape.
* \return Padded tensor.
*/
template
<
typename
TensorType
,
typename
TileLengths
>
__host__
__device__
constexpr
auto
pad
(
const
TensorType
&
tensor
,
const
TileLengths
&
tile_lengths
)
{
const
auto
&
tensor_shape
=
shape
(
tensor
);
using
TensorShapeType
=
remove_reference_t
<
decltype
(
tensor_shape
)
>
;
auto
&
unrolled_desc
=
layout
(
tensor
).
GetUnrolledDescriptor
();
// Generate sequence with ones to mark that all dims will be padded
constexpr
auto
do_pads_seq
=
generate_sequence_v2
([](
auto
)
{
return
Number
<
1
>
{};
},
Number
<
TensorShapeType
::
Size
()
>
{});
// Create descriptor with padding
auto
padded_desc
=
tensor_operation
::
device
::
PadTensorDescriptor
(
unrolled_desc
,
tile_lengths
,
do_pads_seq
);
// Generate padded shape
const
auto
padded_shape
=
generate_tuple
(
[
&
](
auto
i
)
{
const
auto
&
dim
=
size
<
i
>
(
tensor_shape
);
const
auto
&
tile_length
=
size
<
i
>
(
tile_lengths
);
return
ck
::
math
::
integer_divide_ceil
(
dim
,
tile_length
)
*
tile_length
;
},
Number
<
TileLengths
::
Size
()
>
{});
// Create layout and tensor
const
auto
padded_layout
=
Layout
<
decltype
(
padded_shape
),
decltype
(
padded_desc
)
>
(
padded_shape
,
padded_desc
);
auto
partition_tensor
=
make_tensor
<
TensorType
::
TensorBufferAddressSpace
>
(
tensor
.
GetPointer
(),
padded_layout
);
partition_tensor
.
SetMultiIdxOffset
(
tensor
.
GetMultiIdxOffsets
());
return
partition_tensor
;
}
}
// namespace wrapper
}
// namespace ck
include/ck/wrapper/utils/tensor_utils.hpp
0 → 100644
View file @
29dcb956
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/number.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/utility/tuple_helper.hpp"
#include "ck/utility/dynamic_buffer.hpp"
#include "ck/utility/amd_address_space.hpp"
#include "ck/utility/multi_index.hpp"
namespace
ck
{
namespace
wrapper
{
/**
* \brief Memory type, allowed members:
* - Generic,
* - Global,
* - Lds,
* - Sgpr,
* - Vgpr,
*/
using
MemoryTypeEnum
=
AddressSpaceEnum
;
// Disable from doxygen docs generation
/// @cond
// forward declarations
template
<
typename
Shape
,
typename
UnrolledDescriptorType
>
struct
Layout
;
template
<
MemoryTypeEnum
BufferAddressSpace
,
typename
ElementType
,
typename
Shape
,
typename
UnrolledDescriptorType
>
struct
Tensor
;
template
<
typename
FromType
,
typename
ToType
>
struct
Slice
{
__host__
__device__
constexpr
Slice
()
:
from_
(),
to_
()
{}
__host__
__device__
constexpr
Slice
(
FromType
from
,
ToType
to
)
:
from_
(
from
),
to_
(
to
)
{}
/**
* \brief Calculate slice range.
*
* \param dim Dimension size.
* \return Slice range.
*/
template
<
typename
T
>
__host__
__device__
constexpr
auto
range
(
const
T
&
dim
)
const
{
if
constexpr
(
is_same_v
<
FromType
,
index_t
>
||
is_same_v
<
ToType
,
index_t
>
||
is_same_v
<
std
::
remove_const_t
<
T
>
,
index_t
>
)
{
if
(
to_
<
0
)
{
return
dim
-
from_
+
to_
+
1
;
}
else
{
// workaround if one end of the interval is index_t and the second one is Number
return
static_cast
<
index_t
>
(
to_
)
-
static_cast
<
index_t
>
(
from_
);
}
}
else
{
static_assert
(
T
{}
>=
ToType
{}
&&
FromType
{}
>=
Number
<
0
>
{}
&&
(
ToType
{}
<
0
||
ToType
{}
>
FromType
{}),
"Invalid range"
);
if
constexpr
(
ToType
{}
<
0
)
{
return
dim
-
from_
+
to_
+
Number
<
1
>
{};
}
else
{
return
to_
-
from_
;
}
}
}
__host__
__device__
static
constexpr
bool
IsSlice
()
{
return
true
;
}
const
FromType
from_
;
const
ToType
to_
;
};
template
<
typename
T
>
using
is_slice
=
decltype
(
std
::
declval
<
T
&>
().
IsSlice
());
template
<
typename
T
>
using
is_tuple
=
decltype
(
std
::
declval
<
T
&>
().
IsTuple
());
/// @endcond
/**
* \brief Make tensor function.
*
* \tparam MemoryType Type of memory.
* \param pointer Pointer to the memory.
* \param layout Tensor layout.
* \return Constructed tensor.
*/
template
<
MemoryTypeEnum
MemoryType
,
typename
ElementType
,
typename
Shape
,
typename
UnrolledDescriptorType
>
constexpr
auto
make_tensor
(
ElementType
*
pointer
,
const
Layout
<
Shape
,
UnrolledDescriptorType
>&
layout
)
{
return
Tensor
<
MemoryType
,
ElementType
,
Shape
,
UnrolledDescriptorType
>
(
pointer
,
layout
);
}
/**
* \brief Make SGPR or VGPR tensor function.
*
* \tparam MemoryType Type of memory.
* \tparam ElementType Memory data type.
* \return Constructed tensor.
*/
template
<
MemoryTypeEnum
MemoryType
,
typename
ElementType
,
typename
Shape
,
typename
UnrolledDescriptorType
>
constexpr
auto
make_register_tensor
(
const
Layout
<
Shape
,
UnrolledDescriptorType
>&
layout
)
{
return
Tensor
<
MemoryType
,
ElementType
,
Shape
,
UnrolledDescriptorType
>
(
layout
);
}
/**
* \brief Clear tensor. (Only for Vpgr/Sgpr)
*
* \param tensor Tensor to be cleared.
*/
template
<
MemoryTypeEnum
BufferAddressSpace
,
typename
ElementType
,
typename
Shape
,
typename
UnrolledDescriptorType
>
__host__
__device__
void
clear
(
Tensor
<
BufferAddressSpace
,
ElementType
,
Shape
,
UnrolledDescriptorType
>&
tensor
)
{
static_assert
(
!
Tensor
<
BufferAddressSpace
,
ElementType
,
Shape
,
UnrolledDescriptorType
>::
IsDynamicBuffer
);
return
tensor
.
GetBuffer
().
Clear
();
}
/**
* \brief Get Tensor Layout.
*
* \param tensor Tensor to get layout of.
* \return Requsted layout.
*/
template
<
MemoryTypeEnum
BufferAddressSpace
,
typename
ElementType
,
typename
Shape
,
typename
UnrolledDescriptorType
>
__host__
__device__
constexpr
const
auto
&
layout
(
const
Tensor
<
BufferAddressSpace
,
ElementType
,
Shape
,
UnrolledDescriptorType
>&
tensor
)
{
return
tensor
.
GetLayout
();
}
/**
* \brief Product of tensor shape dims.
*
* \tparam Idxs Indexes to access specific shape dim (optional).
* \param tensor Tensor to get Shape of.
* \return Requsted size.
*/
template
<
index_t
...
Idxs
,
MemoryTypeEnum
BufferAddressSpace
,
typename
ElementType
,
typename
Shape
,
typename
UnrolledDescriptorType
>
__host__
__device__
constexpr
auto
size
(
const
Tensor
<
BufferAddressSpace
,
ElementType
,
Shape
,
UnrolledDescriptorType
>&
tensor
)
{
return
size
<
Idxs
...
>
(
tensor
.
GetLayout
());
}
/**
* \brief Rank of Shape tuple.
*
* \tparam Idxs Indexes to access specific shape dim (optional).
* \param tensor Tensor to get rank of.
* \return Requsted rank.
*/
template
<
index_t
...
Idxs
,
MemoryTypeEnum
BufferAddressSpace
,
typename
ElementType
,
typename
Shape
,
typename
UnrolledDescriptorType
>
__host__
__device__
constexpr
auto
rank
(
const
Tensor
<
BufferAddressSpace
,
ElementType
,
Shape
,
UnrolledDescriptorType
>&
tensor
)
{
return
rank
<
Idxs
...
>
(
tensor
.
GetLayout
());
}
/**
* \brief Depth of Shape tuple.
*
* \tparam Idxs Indexes to access specific shape dim (optional).
* \param tensor Tensor to get depth of.
* \return Requsted depth.
*/
template
<
index_t
...
Idxs
,
MemoryTypeEnum
BufferAddressSpace
,
typename
ElementType
,
typename
Shape
,
typename
UnrolledDescriptorType
>
__host__
__device__
constexpr
auto
depth
(
const
Tensor
<
BufferAddressSpace
,
ElementType
,
Shape
,
UnrolledDescriptorType
>&
tensor
)
{
return
depth
<
Idxs
...
>
(
tensor
.
GetLayout
());
}
/**
* \brief Get Tensor shape.
*
* \param tensor Tensor to get shape from.
* \return Requsted shape.
*/
template
<
MemoryTypeEnum
BufferAddressSpace
,
typename
ElementType
,
typename
Shape
,
typename
UnrolledDescriptorType
>
__host__
__device__
constexpr
const
auto
&
shape
(
const
Tensor
<
BufferAddressSpace
,
ElementType
,
Shape
,
UnrolledDescriptorType
>&
tensor
)
{
return
shape
(
tensor
.
GetLayout
());
}
/**
* \brief Get dim slice.
*
* \param from Beginning of the interval.
* \param to End of the interval. (could be also negative to index from the end)
* \return Requested slice. Could be used to create sliced tensor from other tensor.
*/
template
<
typename
FromType
,
typename
ToType
>
constexpr
auto
slice
(
const
FromType
from
,
const
ToType
to
)
{
return
Slice
<
FromType
,
ToType
>
(
from
,
to
);
}
/**
* \brief Get dim slice. (Assumed that from is equal to 1)
*
* \param to End of the interval. (could be also negative to index from the end)
* \return Requested slice. Could be used to create sliced tensor from other tensor.
*/
template
<
typename
ToType
>
constexpr
auto
slice
(
const
ToType
to
)
{
if
constexpr
(
is_same_v
<
ToType
,
index_t
>
)
{
return
Slice
<
index_t
,
ToType
>
(
0
,
to
);
}
else
{
return
Slice
<
Number
<
0
>
,
ToType
>
(
Number
<
0
>
{},
to
);
}
}
/**
* \brief Get whole dim slice (from = 0, to = -1).
*
* \return Requested slice. Could be used to create sliced tensor from other tensor.
*/
constexpr
auto
slice
()
{
return
Slice
<
Number
<
0
>
,
Number
<-
1
>>
(
Number
<
0
>
{},
Number
<-
1
>
{});
}
}
// namespace wrapper
}
// namespace ck
library/include/ck/library/reference_tensor_operation/cpu/reference_column_to_image.hpp
View file @
29dcb956
...
...
@@ -265,6 +265,8 @@ struct ReferenceColumnToImage : public device::BaseOperator
return
0
;
}
throw
std
::
runtime_error
(
"Col2Img: number of dimensions should be between 1 and 3."
);
return
1
;
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp
View file @
29dcb956
...
...
@@ -313,6 +313,9 @@ struct ReferenceConvBwdData : public device::BaseOperator
return
0
;
}
throw
std
::
runtime_error
(
"Conv_bwd_data: number of dimensions must be between 1 and 3."
);
return
1
;
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_bwd_weight.hpp
View file @
29dcb956
...
...
@@ -265,6 +265,8 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
return
0
;
}
throw
std
::
runtime_error
(
"Conv_bwd: number of dimensions must be between 1 and 3."
);
return
1
;
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp
View file @
29dcb956
...
...
@@ -360,6 +360,8 @@ struct ReferenceConvFwd : public device::BaseOperator
return
0
;
}
throw
std
::
runtime_error
(
"Conv_fwd: number of dimensions must be between 1 and 3."
);
return
1
;
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_gemm.hpp
View file @
29dcb956
...
...
@@ -63,12 +63,11 @@ struct ReferenceGemm : public device::BaseOperator
const
int
K
=
arg
.
a_m_k_
.
mDesc
.
GetLengths
()[
1
];
AccDataType
v_acc
=
0
;
ComputeTypeA
v_a
=
0
;
ComputeTypeB
v_b
=
0
;
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
ComputeTypeA
v_a
;
ComputeTypeB
v_b
;
// use PassThrough instead of ConvertBF16RTN for reference calculation
if
constexpr
(
is_same_v
<
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
ConvertBF16RTN
>
)
...
...
@@ -94,7 +93,7 @@ struct ReferenceGemm : public device::BaseOperator
ck
::
type_convert
<
AccDataType
>
(
v_a
)
*
ck
::
type_convert
<
AccDataType
>
(
v_b
);
}
CDataType
v_c
;
CDataType
v_c
=
0
;
arg
.
c_element_op_
(
v_c
,
v_acc
);
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_groupnorm_bwd.hpp
View file @
29dcb956
...
...
@@ -16,6 +16,31 @@ namespace ck {
namespace
tensor_operation
{
namespace
host
{
// def normalization_backward_x(dy, x, gamma, x_mean, rstd, reduce_axis, reduce_size):
// ds = np.sum(dy * gamma * x, axis=reduce_axis, keepdims=True)
// db = np.sum(dy * gamma, axis=reduce_axis, keepdims=True)
// b = (db * x_mean - ds) * rstd ** (3) / reduce_size
// c = -b * x_mean - db * rstd / reduce_size
// dx = rstd * dy * gamma + b * x + c
// return dx
// def normalization_backward_gamma_beta(dy, x, x_mean, rstd, reduce_axis):
// # Assume shape of gamma and beta are the same
// dgamma = np.sum(dy * (x - x_mean) * rstd, axis=reduce_axis, keepdims=True)
// dbeta = np.sum(dy, axis=reduce_axis, keepdims=True)
// return dgamma, dbeta
// def groupnorm_backward(dy, x, gamma, x_mean, rstd):
// # dy, x = [N, H, W, G, C], gamma = [1, 1, 1, G, C], x_mean, rstd = [N, 1, 1, G, 1]
// N, H, W, G, C = x.shape
// dx = normalization_input_backward(
// dy, x, gamma, x_mean, rstd, (1, 2, 4), H * W * C)
// dgamma, dbeta = normalization_gamma_beta_backward(
// dy, x, x_mean, rstd, (0, 1, 2))
// return dx, dgamma, dbeta
// Reference (Layernorm and groupnorm):
// https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/cpu/group_norm_kernel.cpp#L655
template
<
typename
DYDataType
,
typename
XDataType
,
typename
GammaDataType
,
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_image_to_column.hpp
View file @
29dcb956
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -10,6 +10,7 @@
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/numeric.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
@@ -229,6 +230,8 @@ struct ReferenceImageToColumn : public device::BaseOperator
return
0
;
}
throw
std
::
runtime_error
(
"Img2Col: number of dimensions should be between 1 and 3."
);
return
1
;
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_layernorm_bwd.hpp
View file @
29dcb956
...
...
@@ -16,6 +16,30 @@ namespace ck {
namespace
tensor_operation
{
namespace
host
{
// def normalization_backward_x(dy, x, gamma, x_mean, rstd, reduce_axis, reduce_size):
// ds = np.sum(dy * gamma * x, axis=reduce_axis, keepdims=True)
// db = np.sum(dy * gamma, axis=reduce_axis, keepdims=True)
// b = (db * x_mean - ds) * rstd ** (3) / reduce_size
// c = -b * x_mean - db * rstd / reduce_size
// dx = rstd * dy * gamma + b * x + c
// return dx
// def normalization_beta_backward_gamma_beta(dy, x, x_mean, rstd, reduce_axis):
// # Assume shape of gamma and beta are the same
// dgamma = np.sum(dy * (x - x_mean) * rstd, axis=reduce_axis, keepdims=True)
// dbeta = np.sum(dy, axis=reduce_axis, keepdims=True)
// return dgamma, dbeta
// def layernorm_backward(dy, x, gamma, x_mean, rstd):
// # dy, x = [M, K], gamma = [1, K], x_mean, rstd = [M, 1]
// # dx = [M, K], dgamma, dbeta = [1, K]
// M, K = x.shape
// dx = normalization_input_backward(dy, x, gamma, x_mean, rstd, 1, K)
// dgamma, dbeta = normalization_gamma_beta_backward(dy, x, x_mean, rstd, 0)
// return dx, dgamma, dbeta
// Reference (Layernorm and groupnorm):
// https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/cpu/layer_norm_kernel.cpp#L196
template
<
typename
DYDataType
,
typename
XDataType
,
typename
GammaDataType
,
...
...
library/include/ck/library/tensor_operation_instance/device_operation_instance_factory.hpp
View file @
29dcb956
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -86,9 +86,9 @@ using NHWGK = ck::tensor_layout::convolution::NHWGK;
using
NDHWGK
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
//
using
GK
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
GK_Tuple
=
ck
::
Tuple
<
GK
>
;
using
GK_GK_Tuple
=
ck
::
Tuple
<
GK
,
GK
>
;
using
G
_
K
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
GK_Tuple
=
ck
::
Tuple
<
G
_
K
>
;
using
GK_GK_Tuple
=
ck
::
Tuple
<
G
_
K
,
G
_
K
>
;
// pointwise functor
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
...
...
@@ -98,6 +98,8 @@ using Scale = ck::tensor_operation::element_wise::Scale;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
using
AddAddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
AddAddFastGelu
;
using
AddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
AddFastGelu
;
using
AddRelu
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
using
AddSilu
=
ck
::
tensor_operation
::
element_wise
::
AddSilu
;
using
AddReluAdd
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
using
FastGelu
=
ck
::
tensor_operation
::
element_wise
::
FastGelu
;
using
AddMultiply
=
ck
::
tensor_operation
::
element_wise
::
AddMultiply
;
...
...
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_gemm.hpp
View file @
29dcb956
...
...
@@ -106,9 +106,8 @@ struct DeviceOperationInstanceFactory<
return
op_ptrs
;
}
};
#endif
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
library/include/ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp
View file @
29dcb956
...
...
@@ -61,7 +61,11 @@ using device_contraction_kk_instance = std::tuple<
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
128
,
128
,
32
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
,
ComputeDataType
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
128
,
32
,
128
,
16
,
4
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
4
,
ComputeDataType
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
,
ComputeDataType
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
64
,
32
,
64
,
16
,
4
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
,
ComputeDataType
>
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
64
,
32
,
64
,
16
,
4
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
,
ComputeDataType
>
,
// Small scalar per vector
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
,
ComputeDataType
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
128
,
128
,
32
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
2
,
ComputeDataType
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
,
ComputeDataType
>
// clang-format on
>
;
...
...
@@ -96,7 +100,11 @@ using device_contraction_kn_instance = std::tuple<
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
4
,
1
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
,
ComputeDataType
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
,
ComputeDataType
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
4
,
1
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
,
ComputeDataType
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
4
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
,
ComputeDataType
>
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
4
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
,
ComputeDataType
>
,
// Small scalar per vector
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
,
ComputeDataType
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
128
,
128
,
32
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
2
,
ComputeDataType
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
,
ComputeDataType
>
// clang-format on
>
;
...
...
@@ -131,7 +139,11 @@ using device_contraction_mk_instance = std::tuple<
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
1
,
4
,
32
,
32
,
2
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
,
ComputeDataType
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
,
ComputeDataType
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
1
,
4
,
32
,
32
,
1
,
2
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
,
ComputeDataType
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
4
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
,
ComputeDataType
>
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
4
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
,
ComputeDataType
>
,
// Small scalar per vector
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
,
ComputeDataType
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
128
,
128
,
32
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
2
,
ComputeDataType
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
,
ComputeDataType
>
// clang-format on
>
;
...
...
@@ -166,7 +178,11 @@ using device_contraction_mn_instance = std::tuple<
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
1
,
1
,
32
,
32
,
2
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
,
ComputeDataType
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
,
ComputeDataType
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
1
,
1
,
32
,
32
,
1
,
2
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
,
ComputeDataType
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
4
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
,
ComputeDataType
>
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
4
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
,
ComputeDataType
>
,
// Small scalar per vector
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
,
ComputeDataType
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
128
,
128
,
32
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
2
,
ComputeDataType
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOp
,
BElementwiseOp
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
,
ComputeDataType
>
// clang-format on
>
;
...
...
library/include/ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_instance.hpp
0 → 100644
View file @
29dcb956
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#ifdef CK_ENABLE_FP8
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F32
=
float
;
using
F8
=
f8_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
template
<
ck
::
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
>
using
device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_instances
=
std
::
tuple
<
// clang-format off
//#####################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//#####################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//#####################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//#####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
4
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
16
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
64
,
16
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
64
,
64
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
64
,
128
,
64
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
// clang-format on
>
;
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
library/
src
/tensor_operation_instance/gpu/
gemm/
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_instance.
c
pp
→
library/
include/ck/library
/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_
v1_interwave_
instance.
h
pp
View file @
29dcb956
...
...
@@ -25,38 +25,15 @@ using S = ck::Sequence<Is...>;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
MNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
template
<
ck
::
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
>
using
device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_instances
=
std
::
tuple
<
using
device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_
v1_interwave_
instances
=
std
::
tuple
<
// clang-format off
//#####################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//#####################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//#####################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//#####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
4
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
16
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
64
,
16
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
64
,
64
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
64
,
128
,
64
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
#if CK_EXPERIMENTAL_INTER_WAVE_INSTANCES
// pipeline v1, 2 waves
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
4
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
...
...
@@ -73,42 +50,8 @@ using device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_instances = std::tuple<
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
#endif
#if CK_EXPERIMENTAL_PIPELINE_V2_INSTANCES
// pipeline v2, 1 wave
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
4
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
16
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
64
,
16
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
64
,
64
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
64
,
128
,
64
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
#endif
// clang-format on
>
;
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_instances
<
GemmDefault
>
{});
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_instances
<
MNKPadding
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
...
...
library/include/ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_instance.hpp
0 → 100644
View file @
29dcb956
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#ifdef CK_ENABLE_FP8
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F32
=
float
;
using
F8
=
f8_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
template
<
ck
::
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
>
using
device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v2_instances
=
std
::
tuple
<
// clang-format off
//#####################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//#####################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//#####################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//#####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v2, 1 wave
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
4
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
16
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
64
,
16
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
64
,
64
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
64
,
128
,
64
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
F32
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
// clang-format on
>
;
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
View file @
29dcb956
...
...
@@ -345,7 +345,27 @@ void add_device_gemm_xdl_c_shuffle_f8_f8_f8_km_nk_mn_instances(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Col
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_instances
(
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_default_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_interwave_default_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v2_default_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_padded_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_interwave_padded_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v2_padded_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
...
...
@@ -575,7 +595,14 @@ struct DeviceOperationInstanceFactory<
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_padded_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_interwave_padded_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v2_padded_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_default_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_interwave_default_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v2_default_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
...
...
library/include/ck/library/tensor_operation_instance/gpu/gemm_add.hpp
0 → 100644
View file @
29dcb956
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
Add
>>>&
);
void
add_device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
Add
>>>&
);
// GEMM + Add +
template
<
typename
ALayout
,
typename
BLayout
,
typename
D0Layout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
D0DataType
,
typename
EDataType
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
>
,
EDataType
,
PassThrough
,
PassThrough
,
Add
>>
{
using
DeviceOp
=
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
>
,
EDataType
,
PassThrough
,
PassThrough
,
Add
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#if defined(CK_ENABLE_INT8) && defined(CK_ENABLE_FP16)
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
#if defined(CK_ENABLE_INT8) && defined(CK_ENABLE_BF16)
if
constexpr
(
is_same_v
<
ADataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
EDataType
,
ck
::
bhalf_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_fastgelu.hpp
View file @
29dcb956
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -68,6 +68,32 @@ void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_inst
PassThrough
,
AddFastGelu
>>>&
);
void
add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
AddFastGelu
>>>&
);
void
add_device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
AddFastGelu
>>>&
);
// GEMM + Add + FastGelu
template
<
typename
ALayout
,
typename
BLayout
,
...
...
@@ -106,6 +132,32 @@ struct DeviceOperationInstanceFactory<
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#if defined(CK_ENABLE_INT8) && defined(CK_ENABLE_FP16)
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
#if defined(CK_ENABLE_BF16) && defined(CK_ENABLE_INT8)
if
constexpr
(
is_same_v
<
ADataType
,
bhalf_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
bhalf_t
>
&&
is_same_v
<
EDataType
,
bhalf_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
half_t
>
&&
is_same_v
<
D0DataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
...
...
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_relu.hpp
0 → 100644
View file @
29dcb956
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
AddRelu
>>>&
);
void
add_device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
AddRelu
>>>&
);
// GEMM + Add + Relu
template
<
typename
ALayout
,
typename
BLayout
,
typename
D0Layout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
D0DataType
,
typename
EDataType
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
>
,
EDataType
,
PassThrough
,
PassThrough
,
AddRelu
>>
{
using
DeviceOp
=
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
>
,
EDataType
,
PassThrough
,
PassThrough
,
AddRelu
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#if defined(CK_ENABLE_INT8) && defined(CK_ENABLE_FP16)
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
#if defined(CK_ENABLE_INT8) && defined(CK_ENABLE_BF16)
if
constexpr
(
is_same_v
<
ADataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
EDataType
,
ck
::
bhalf_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Prev
1
…
7
8
9
10
11
12
13
14
15
…
20
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment