Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
241c261f
Commit
241c261f
authored
Aug 21, 2024
by
Jun Liu
Browse files
Merge branch 'amd-develop' into amd-master
parents
1762f081
e2eb0418
Changes
204
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1092 additions
and
198 deletions
+1092
-198
profiler/include/profiler/profile_gemm_universal_reduce_impl.hpp
...r/include/profiler/profile_gemm_universal_reduce_impl.hpp
+323
-0
profiler/include/profiler/profile_grouped_conv_fwd_impl.hpp
profiler/include/profiler/profile_grouped_conv_fwd_impl.hpp
+12
-11
profiler/src/CMakeLists.txt
profiler/src/CMakeLists.txt
+15
-0
profiler/src/profile_gemm_ab_scale.cpp
profiler/src/profile_gemm_ab_scale.cpp
+182
-0
profiler/src/profile_gemm_multiply_multiply.cpp
profiler/src/profile_gemm_multiply_multiply.cpp
+169
-0
profiler/src/profile_gemm_universal.cpp
profiler/src/profile_gemm_universal.cpp
+23
-14
profiler/src/profile_gemm_universal_reduce.cpp
profiler/src/profile_gemm_universal_reduce.cpp
+158
-0
profiler/src/profile_grouped_conv_fwd.cpp
profiler/src/profile_grouped_conv_fwd.cpp
+58
-25
python/ck4inductor/universal_gemm/gen_instances.py
python/ck4inductor/universal_gemm/gen_instances.py
+6
-8
python/ck4inductor/universal_gemm/op.py
python/ck4inductor/universal_gemm/op.py
+6
-5
script/check_copyright_year.sh
script/check_copyright_year.sh
+0
-0
script/process_perf_data.py
script/process_perf_data.py
+14
-0
script/process_perf_data.sh
script/process_perf_data.sh
+17
-0
script/process_qa_data.sh
script/process_qa_data.sh
+17
-0
script/test_reduce_with_index.sh
script/test_reduce_with_index.sh
+0
-63
test/CMakeLists.txt
test/CMakeLists.txt
+4
-4
test/conv_util/conv_util.cpp
test/conv_util/conv_util.cpp
+29
-27
test/gemm_universal/test_gemm_universal_util.hpp
test/gemm_universal/test_gemm_universal_util.hpp
+9
-7
test/gemm_universal/test_gemm_universal_xdl.cpp
test/gemm_universal/test_gemm_universal_xdl.cpp
+17
-9
test/grouped_convnd_fwd/test_grouped_convnd_fwd.cpp
test/grouped_convnd_fwd/test_grouped_convnd_fwd.cpp
+33
-25
No files found.
profiler/include/profiler/profile_gemm_universal_reduce_impl.hpp
0 → 100644
View file @
241c261f
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3r1.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_universal_reduce.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
AccDataType
,
typename
CDataType
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
CLayout
>
bool
profile_gemm_universal_reduce_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideC
,
int
KBatch
,
int
n_warmup
,
int
n_iter
,
uint64_t
rotating
=
0
)
{
bool
pass
=
true
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
int
total_gemm_needed
=
a_m_k
.
GetElementSpaceSizeInBytes
()
+
b_k_n
.
GetElementSpaceSizeInBytes
();
int
rotating_count
=
std
::
max
(
1
,
std
::
min
(
n_iter
,
static_cast
<
int
>
(
std
::
ceil
(
static_cast
<
double
>
(
rotating
)
/
total_gemm_needed
))));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_device_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"rotating count: "
<<
rotating_count
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
1
,
2
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
1
,
2
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
}
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmV2R1
<
ALayout
,
BLayout
,
DsLayout
,
CLayout
,
ADataType
,
BDataType
,
DsDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
// Run reference GEMM
if
(
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
}
std
::
string
best_op_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
float
best_kbatch
=
0
;
// profile device GEMM instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
std
::
vector
<
int
>
kbatch_list
=
{
1
,
2
,
4
,
8
,
12
,
16
,
19
,
20
,
32
,
38
};
if
(
KBatch
>
0
)
{
kbatch_list
=
{
KBatch
};
}
for
(
std
::
size_t
i
=
0
;
i
<
kbatch_list
.
size
();
i
++
)
{
auto
kbatch_curr
=
kbatch_list
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
{},
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideC
,
kbatch_curr
,
a_element_op
,
b_element_op
,
c_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
DeviceMem
gemm_workspace_dev
(
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
()));
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
gemm_workspace_dev
.
GetDeviceBuffer
(),
StreamConfig
{});
// re-init C to zero before profiling next kernel
c_device_buf
.
SetZero
();
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
,
0
,
n_warmup
,
n_iter
});
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
c_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
0
,
n_warmup
,
n_iter
,
rotating_count
>
1
,
rotating_count
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
", KBatch "
<<
kbatch_curr
<<
std
::
endl
;
#if defined CK_ENABLE_FP8
// set softer tolerances for fp8
if
constexpr
(
is_same_v
<
ADataType
,
f8_t
>
||
is_same_v
<
BDataType
,
f8_t
>
||
is_same_v
<
CDataType
,
f8_t
>
)
{
std
::
string
msg
=
"Error: Incorrect results!"
;
double
rtol
=
1e-1
;
double
atol
=
1e-1
;
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
,
msg
,
rtol
,
atol
);
}
else
{
#endif
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
#if defined CK_ENABLE_FP8
}
#endif
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
best_kbatch
=
kbatch_curr
;
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
}
if
constexpr
(
is_same
<
CDataType
,
float
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f32"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
half_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
bhalf_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = bf16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
int8_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = int8"
;
}
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" ALayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" ALayout = ColumnMajor"
;
}
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" BLayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" BLayout = ColumnMajor"
;
}
std
::
cout
<<
" M = "
<<
M
<<
" N = "
<<
N
<<
" K = "
<<
K
<<
" StrideA = "
<<
StrideA
<<
" StrideB = "
<<
StrideB
<<
" StrideC = "
<<
StrideC
<<
" KBatch = "
<<
best_kbatch
<<
" : "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profiler/profile_grouped_conv_fwd_impl.hpp
View file @
241c261f
...
...
@@ -33,7 +33,8 @@ template <ck::index_t NDimSpatial,
typename
WeiDataType
,
typename
OutDataType
,
typename
AComputeType
=
InDataType
,
typename
BComputeType
=
AComputeType
>
typename
BComputeType
=
AComputeType
,
typename
IndexType
=
ck
::
index_t
>
bool
profile_grouped_conv_fwd_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
...
...
@@ -57,16 +58,16 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
std
::
array
<
IndexType
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
IndexType
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
IndexType
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
IndexType
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
IndexType
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
IndexType
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
IndexType
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
IndexType
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
IndexType
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
IndexType
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
...
...
profiler/src/CMakeLists.txt
View file @
241c261f
...
...
@@ -46,12 +46,17 @@ if(GPU_TARGETS MATCHES "gfx9")
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_multiply_tile_loop.cpp
)
endif
()
list
(
APPEND PROFILER_SOURCES profile_gemm_multiply_add.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx94"
)
list
(
APPEND PROFILER_SOURCES profile_gemm_multiply_multiply.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_ab_scale.cpp
)
endif
()
list
(
APPEND PROFILER_SOURCES profile_batched_gemm.cpp
)
list
(
APPEND PROFILER_SOURCES profile_batched_gemm_reduce.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_add_multiply.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_bias_add_reduce.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_splitk.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_universal.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_universal_reduce.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_universal_streamk.cpp
)
list
(
APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu.cpp
)
list
(
APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu_add.cpp
)
...
...
@@ -79,6 +84,11 @@ set(PROFILER_EXECUTABLE ckProfiler)
add_executable
(
${
PROFILER_EXECUTABLE
}
${
PROFILER_SOURCES
}
)
target_compile_options
(
${
PROFILER_EXECUTABLE
}
PRIVATE -Wno-global-constructors
)
# flags to compress the library
if
(
NOT WIN32 AND
${
hip_VERSION_FLAT
}
GREATER 600241132
)
message
(
"Adding --offload-compress flag for
${
PROFILER_EXECUTABLE
}
"
)
target_compile_options
(
${
PROFILER_EXECUTABLE
}
PRIVATE --offload-compress
)
endif
()
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE utility getopt::getopt
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_instance
)
...
...
@@ -120,8 +130,13 @@ if(GPU_TARGETS MATCHES "gfx9")
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_multiply_add_instance
)
if
(
GPU_TARGETS MATCHES
"gfx94"
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_multiply_multiply_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_ab_scale_instance
)
endif
()
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_splitk_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_universal_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_universal_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_universal_streamk_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_add_multiply_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_reduce_instance
)
...
...
profiler/src/profile_gemm_ab_scale.cpp
0 → 100644
View file @
241c261f
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_gemm_ab_scale_impl.hpp"
#include "profiler_operation_registry.hpp"
enum
struct
GemmMatrixLayout
{
MK_KN_MN
,
// 0
MK_NK_MN
,
// 1
KM_KN_MN
,
// 2
KM_NK_MN
,
// 3
};
enum
struct
GemmDataType
{
F32_F32_F32
,
// 0
F16_F16_F16
,
// 1
BF16_BF16_BF16
,
// 2
INT8_INT8_INT8
,
// 3
F8_F16_F16
,
// 4
F16_F8_F16
,
// 5
F16_F16_F16_F8
,
// 6
F8_F8_BF16
,
// 7
};
enum
struct
ScaleBlockTile
{
Tile_128_128_128
,
// 0
};
#define OP_NAME "gemm_ab_scale"
#define OP_DESC "GEMM_AB_Scale"
int
profile_gemm_ab_scale
(
int
argc
,
char
*
argv
[])
{
if
(
argc
!=
15
&&
argc
!=
18
)
{
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f8@f16; 5: f16@f8; 6: "
"f16->f8; 7: f8->bf16, "
"comp f8)
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
);
printf
(
" 2: A[k, m] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 3: A[k, m] * B[n, k] = C[m, n])
\n
"
);
printf
(
"arg4: scale block tile (0: ScaleBlockM/N/K = [128, 128, 128];
\n
"
);
printf
(
"arg5: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg6: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg7: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg8: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg9 to 14: M, N, K, StrideA, StrideB, StrideE
\n
"
);
printf
(
"optional:
\n
"
);
printf
(
"arg15: number of warm-up cycles (default 1)
\n
"
);
printf
(
"arg16: number of iterations (default 10)
\n
"
);
printf
(
"arg17: memory for rotating buffer (default 0, size in MB)
\n
"
);
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
GemmDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
GemmMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
auto
scale_block_tile
=
static_cast
<
ScaleBlockTile
>
(
std
::
stoi
(
argv
[
4
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
5
]);
const
int
init_method
=
std
::
stoi
(
argv
[
6
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
7
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
8
]);
const
int
M
=
std
::
stoi
(
argv
[
9
]);
const
int
N
=
std
::
stoi
(
argv
[
10
]);
const
int
K
=
std
::
stoi
(
argv
[
11
]);
const
int
StrideA
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
13
]);
const
int
StrideE
=
std
::
stoi
(
argv
[
14
]);
int
n_warmup
=
1
;
int
n_iter
=
10
;
uint64_t
rotating
=
0
;
if
(
argc
==
18
)
{
n_warmup
=
std
::
stoi
(
argv
[
15
]);
n_iter
=
std
::
stoi
(
argv
[
16
]);
rotating
=
std
::
stoull
(
argv
[
17
])
*
1024
*
1024
;
}
using
F32
=
float
;
using
BF16
=
ck
::
bhalf_t
;
using
F8
=
ck
::
f8_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
auto
profile
=
[
&
](
auto
a0_type
,
auto
a1_type
,
auto
b0_type
,
auto
b1_type
,
auto
comp_type
,
auto
acc_type
,
auto
c_type
,
auto
scale_block_m
,
auto
scale_block_n
,
auto
scale_block_k
,
auto
a_layout
,
auto
b_layout
,
auto
e_layout
)
{
using
A0DataType
=
decltype
(
a0_type
);
using
A1DataType
=
decltype
(
a1_type
);
using
B0DataType
=
decltype
(
b0_type
);
using
B1DataType
=
decltype
(
b1_type
);
using
ComputeDataType
=
decltype
(
comp_type
);
using
AccDataType
=
decltype
(
acc_type
);
using
EDataType
=
decltype
(
c_type
);
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
ELayout
=
decltype
(
e_layout
);
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB
=
ck
::
is_same_v
<
BLayout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideE
=
ck
::
is_same_v
<
ELayout
,
Row
>
?
N
:
M
;
bool
pass
=
ck
::
profiler
::
profile_gemm_ab_scale_impl
<
A0DataType
,
A1DataType
,
B0DataType
,
B1DataType
,
ComputeDataType
,
AccDataType
,
EDataType
,
scale_block_m
,
scale_block_n
,
scale_block_k
,
ALayout
,
BLayout
,
ELayout
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
,
(
StrideB
<
0
)
?
DefaultStrideB
:
StrideB
,
(
StrideE
<
0
)
?
DefaultStrideE
:
StrideE
,
n_warmup
,
n_iter
,
rotating
);
return
pass
?
0
:
1
;
};
if
(
data_type
==
GemmDataType
::
F8_F8_BF16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
&&
scale_block_tile
==
ScaleBlockTile
::
Tile_128_128_128
)
{
return
profile
(
F8
{},
F32
{},
F8
{},
F32
{},
F8
{},
F32
{},
BF16
{},
ck
::
Number
<
128
>
{},
ck
::
Number
<
128
>
{},
ck
::
Number
<
128
>
{},
Row
{},
Col
{},
Row
{});
}
else
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_gemm_ab_scale
);
profiler/src/profile_gemm_multiply_multiply.cpp
0 → 100644
View file @
241c261f
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_gemm_multiply_multiply_impl.hpp"
#include "profiler_operation_registry.hpp"
enum
struct
GemmMatrixLayout
{
MK_KN_MN
,
// 0
MK_NK_MN
,
// 1
KM_KN_MN
,
// 2
KM_NK_MN
,
// 3
};
enum
struct
GemmDataType
{
F32_F32_F32
,
// 0
F16_F16_F16
,
// 1
BF16_BF16_BF16
,
// 2
INT8_INT8_INT8
,
// 3
F8_F16_F16
,
// 4
F16_F8_F16
,
// 5
F16_F16_F16_F8
,
// 6
F8_F8_BF16
,
// 7
};
#define OP_NAME "gemm_multiply_multiply"
#define OP_DESC "GEMM_Multiply_Multiply"
int
profile_gemm_multiply_multiply
(
int
argc
,
char
*
argv
[])
{
if
(
argc
!=
16
&&
argc
!=
19
)
{
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f8@f16; 5: f16@f8; 6: "
"f16->f8; 7: f8->bf16, "
"comp f8)
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
);
printf
(
" 2: A[k, m] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 3: A[k, m] * B[n, k] = C[m, n])
\n
"
);
printf
(
"arg4: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg6: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg8 to 15: M, N, K, StrideA, StrideB, StrideD0, StrideD1, StrideE
\n
"
);
printf
(
"optional:
\n
"
);
printf
(
"arg16: number of warm-up cycles (default 1)
\n
"
);
printf
(
"arg17: number of iterations (default 10)
\n
"
);
printf
(
"arg18: memory for rotating buffer (default 0, size in MB)
\n
"
);
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
GemmDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
GemmMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
M
=
std
::
stoi
(
argv
[
8
]);
const
int
N
=
std
::
stoi
(
argv
[
9
]);
const
int
K
=
std
::
stoi
(
argv
[
10
]);
const
int
StrideA
=
std
::
stoi
(
argv
[
11
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideD0
=
std
::
stoi
(
argv
[
13
]);
const
int
StrideD1
=
std
::
stoi
(
argv
[
14
]);
const
int
StrideE
=
std
::
stoi
(
argv
[
15
]);
int
n_warmup
=
1
;
int
n_iter
=
10
;
uint64_t
rotating
=
0
;
if
(
argc
==
19
)
{
n_warmup
=
std
::
stoi
(
argv
[
16
]);
n_iter
=
std
::
stoi
(
argv
[
17
]);
rotating
=
std
::
stoull
(
argv
[
18
])
*
1024
*
1024
;
}
using
F32
=
float
;
using
BF16
=
ck
::
bhalf_t
;
using
F8
=
ck
::
f8_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
auto
profile
=
[
&
](
auto
a_type
,
auto
b_type
,
auto
comp_type
,
auto
acc_type
,
auto
d0_type
,
auto
d1_type
,
auto
c_type
,
auto
a_layout
,
auto
b_layout
,
auto
d0_layout
,
auto
d1_layout
,
auto
e_layout
)
{
using
ADataType
=
decltype
(
a_type
);
using
BDataType
=
decltype
(
b_type
);
using
ComputeDataType
=
decltype
(
comp_type
);
using
D0DataType
=
decltype
(
d0_type
);
using
D1DataType
=
decltype
(
d1_type
);
using
AccDataType
=
decltype
(
acc_type
);
using
EDataType
=
decltype
(
c_type
);
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
D0Layout
=
decltype
(
d0_layout
);
using
D1Layout
=
decltype
(
d1_layout
);
using
ELayout
=
decltype
(
e_layout
);
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB
=
ck
::
is_same_v
<
BLayout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideD0
=
ck
::
is_same_v
<
D0Layout
,
Row
>
?
N
:
M
;
const
int
DefaultStrideD1
=
ck
::
is_same_v
<
D1Layout
,
Row
>
?
N
:
M
;
const
int
DefaultStrideE
=
ck
::
is_same_v
<
ELayout
,
Row
>
?
N
:
M
;
bool
pass
=
ck
::
profiler
::
profile_gemm_multiply_multiply_impl
<
ADataType
,
BDataType
,
ComputeDataType
,
AccDataType
,
D0DataType
,
D1DataType
,
EDataType
,
ALayout
,
BLayout
,
D0Layout
,
D1Layout
,
ELayout
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
,
(
StrideB
<
0
)
?
DefaultStrideB
:
StrideB
,
(
StrideD0
<
0
)
?
DefaultStrideD0
:
StrideD0
,
(
StrideD1
<
0
)
?
DefaultStrideD1
:
StrideD1
,
(
StrideE
<
0
)
?
DefaultStrideE
:
StrideE
,
n_warmup
,
n_iter
,
rotating
);
return
pass
?
0
:
1
;
};
if
(
data_type
==
GemmDataType
::
F8_F8_BF16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
F8
{},
F8
{},
F8
{},
F32
{},
F32
{},
F32
{},
BF16
{},
Row
{},
Col
{},
Row
{},
Col
{},
Row
{});
}
else
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_gemm_multiply_multiply
);
profiler/src/profile_gemm_universal.cpp
View file @
241c261f
// SPDX-License-Identifier: MIT
// Copyright (c) 20
18
-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 20
23
-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
@@ -26,6 +26,7 @@ enum struct GemmDataType
F8_F16_F16
,
// 4
F16_F8_F16
,
// 5
F16_F16_F16_F8
,
// 6
F8_F8_BF16
,
// 7
};
#define OP_NAME "gemm_universal"
...
...
@@ -36,7 +37,8 @@ int profile_gemm_universal(int argc, char* argv[])
if
(
argc
!=
15
&&
argc
!=
18
)
{
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f8@f16; 5: f16@f8; 6: f16, "
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f8@f16; 5: f16@f8; 6: "
"f16->f8; 7: f8->bf16, "
"comp f8)
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
);
...
...
@@ -91,15 +93,17 @@ int profile_gemm_universal(int argc, char* argv[])
auto
profile
=
[
&
](
auto
a_type
,
auto
b_type
,
auto
comp_type
,
auto
acc_type
,
auto
c_type
,
auto
a_layout
,
auto
b_layout
,
auto
c_layout
)
{
using
ADataType
=
decltype
(
a_type
);
using
BDataType
=
decltype
(
b_type
);
using
AccDataType
=
decltype
(
acc_type
);
using
CDataType
=
decltype
(
c_type
);
using
ADataType
=
decltype
(
a_type
);
using
BDataType
=
decltype
(
b_type
);
using
ComputeDataType
=
decltype
(
comp_type
);
using
AccDataType
=
decltype
(
acc_type
);
using
CDataType
=
decltype
(
c_type
);
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
...
...
@@ -111,6 +115,7 @@ int profile_gemm_universal(int argc, char* argv[])
bool
pass
=
ck
::
profiler
::
profile_gemm_universal_impl
<
ADataType
,
BDataType
,
ComputeDataType
,
AccDataType
,
CDataType
,
ALayout
,
...
...
@@ -136,35 +141,39 @@ int profile_gemm_universal(int argc, char* argv[])
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{});
return
profile
(
F16
{},
F16
{},
F16
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
Row
{},
Col
{},
Row
{});
return
profile
(
F16
{},
F16
{},
F16
{},
F32
{},
F16
{},
Row
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F8_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
F16
{},
F8
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{});
return
profile
(
F16
{},
F8
{},
F16
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F8_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
F16
{},
F8
{},
F32
{},
F16
{},
Row
{},
Col
{},
Row
{});
return
profile
(
F16
{},
F8
{},
F16
{},
F32
{},
F16
{},
Row
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F8_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
F8
{},
F16
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{});
return
profile
(
F8
{},
F16
{},
F16
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F8_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
F8
{},
F16
{},
F32
{},
F16
{},
Row
{},
Col
{},
Row
{});
return
profile
(
F8
{},
F16
{},
F16
{},
F32
{},
F16
{},
Row
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
BF16_BF16_BF16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
BF16
{},
BF16
{},
F32
{},
BF16
{},
Row
{},
Row
{},
Row
{});
return
profile
(
BF16
{},
BF16
{},
BF16
{},
F32
{},
BF16
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
BF16_BF16_BF16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
BF16
{},
BF16
{},
F32
{},
BF16
{},
Row
{},
Col
{},
Row
{});
return
profile
(
BF16
{},
BF16
{},
BF16
{},
F32
{},
BF16
{},
Row
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F8_F8_BF16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
F8
{},
F8
{},
F8
{},
F32
{},
BF16
{},
Row
{},
Col
{},
Row
{});
}
else
{
...
...
profiler/src/profile_gemm_universal_reduce.cpp
0 → 100644
View file @
241c261f
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_gemm_universal_reduce_impl.hpp"
#include "profiler_operation_registry.hpp"
enum
struct
GemmMatrixLayout
{
MK_KN_MN
,
// 0
MK_NK_MN
,
// 1
KM_KN_MN
,
// 2
KM_NK_MN
,
// 3
};
enum
struct
GemmDataType
{
F32_F32_F32
,
// 0
F16_F16_F16
,
// 1
BF16_BF16_BF16
,
// 2
INT8_INT8_INT8
,
// 3
F8_F16_F16
,
// 4
BF16_I8_BF16
,
// 5
F16_F16_F16_F8
,
// 6
};
#define OP_NAME "gemm_universal_reduce"
#define OP_DESC "Universal GEMM"
int
profile_gemm_universal_reduce
(
int
argc
,
char
*
argv
[])
{
if
(
argc
!=
15
&&
argc
!=
18
)
{
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f8@f16; 5: f16@i8; 6: f16, "
"comp f8)
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
"arg4: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg6: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg8 to 13: M, N, K, StrideA, StrideB, StrideC
\n
"
);
printf
(
"arg14: split k into mulitiple batch
\n
"
);
printf
(
"optional:
\n
"
);
printf
(
"arg15: number of warm-up cycles (default 1)
\n
"
);
printf
(
"arg16: number of iterations (default 10)
\n
"
);
printf
(
"arg17: memory for rotating buffer (default 0, size in MB)
\n
"
);
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
GemmDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
GemmMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
M
=
std
::
stoi
(
argv
[
8
]);
const
int
N
=
std
::
stoi
(
argv
[
9
]);
const
int
K
=
std
::
stoi
(
argv
[
10
]);
const
int
StrideA
=
std
::
stoi
(
argv
[
11
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideC
=
std
::
stoi
(
argv
[
13
]);
const
int
KBatch
=
std
::
stoi
(
argv
[
14
]);
int
n_warmup
=
1
;
int
n_iter
=
10
;
uint64_t
rotating
=
0
;
if
(
argc
==
18
)
{
n_warmup
=
std
::
stoi
(
argv
[
15
]);
n_iter
=
std
::
stoi
(
argv
[
16
]);
rotating
=
std
::
stoull
(
argv
[
17
])
*
1024
*
1024
;
}
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
DsLayout
=
ck
::
Tuple
<>
;
auto
profile
=
[
&
](
auto
a_type
,
auto
b_type
,
auto
acc_type
,
auto
c_type
,
auto
a_layout
,
auto
b_layout
,
auto
c_layout
)
{
using
ADataType
=
decltype
(
a_type
);
using
BDataType
=
decltype
(
b_type
);
using
AccDataType
=
decltype
(
acc_type
);
using
CDataType
=
decltype
(
c_type
);
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
CLayout
=
decltype
(
c_layout
);
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB
=
ck
::
is_same_v
<
BLayout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideC
=
ck
::
is_same_v
<
CLayout
,
Row
>
?
N
:
M
;
bool
pass
=
ck
::
profiler
::
profile_gemm_universal_reduce_impl
<
ADataType
,
BDataType
,
DsDataType
,
AccDataType
,
CDataType
,
ALayout
,
BLayout
,
DsLayout
,
CLayout
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
,
(
StrideB
<
0
)
?
DefaultStrideB
:
StrideB
,
(
StrideC
<
0
)
?
DefaultStrideC
:
StrideC
,
KBatch
,
n_warmup
,
n_iter
,
rotating
);
return
pass
?
0
:
1
;
};
if
(
data_type
==
GemmDataType
::
BF16_I8_BF16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
BF16
{},
I8
{},
F32
{},
BF16
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
BF16_BF16_BF16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
BF16
{},
BF16
{},
F32
{},
BF16
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{});
}
else
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_gemm_universal_reduce
);
profiler/src/profile_grouped_conv_fwd.cpp
View file @
241c261f
...
...
@@ -29,6 +29,12 @@ enum struct ConvDataType
BF8_F8_F8
,
// 7
};
enum
struct
IndexType
{
INDEX_T
,
// 0
LONG_INDEX_T
,
// 1
};
#define OP_NAME "grouped_conv_fwd"
#define OP_DESC "Grouped Convolution Forward"
...
...
@@ -45,12 +51,13 @@ static void print_helper_msg()
<<
" 5: Input bf8, Weight bf8, Output fp8
\n
"
<<
" 6: Input fp8, Weight bf8, Output fp8
\n
"
<<
" 7: Input bf8, Weight fp8, Output fp8)
\n
"
<<
"arg3: tensor layout (0: Input[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Output[G, N, Ho, Wo, K]
\n
"
<<
"arg3: indexing data type (0: 32-bit, 1: 64-bit)
\n
"
<<
"arg4: tensor layout (0: Input[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Output[G, N, Ho, Wo, K]
\n
"
<<
" 1: Input[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Output[N, Ho, Wo, G, K])
\n
"
<<
"arg
4
: verification (0: no, 1: yes)
\n
"
<<
"arg
5
: initialization (0: no init, 1: integer value, 2: decimal value)
\n
"
<<
"arg
6
: print tensor value (0: no; 1: yes)
\n
"
<<
"arg
7
: time kernel (0: no, 1: yes)
\n
"
<<
"arg
5
: verification (0: no, 1: yes)
\n
"
<<
"arg
6
: initialization (0: no init, 1: integer value, 2: decimal value)
\n
"
<<
"arg
7
: print tensor value (0: no; 1: yes)
\n
"
<<
"arg
8
: time kernel (0: no, 1: yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
// clang-format on
}
...
...
@@ -60,7 +67,7 @@ static void print_helper_msg()
int
profile_grouped_conv_fwd
(
int
argc
,
char
*
argv
[])
{
// 8 for control, 1 for num_dim_spatial
if
(
argc
<
9
)
if
(
argc
<
10
)
{
print_helper_msg
();
return
1
;
...
...
@@ -68,20 +75,21 @@ int profile_grouped_conv_fwd(int argc, char* argv[])
const
auto
data_type
=
static_cast
<
ConvDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
ConvLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
num_dim_spatial
=
std
::
stoi
(
argv
[
8
]);
const
auto
index_type
=
static_cast
<
IndexType
>
(
std
::
stoi
(
argv
[
4
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
5
]);
const
int
init_method
=
std
::
stoi
(
argv
[
6
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
7
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
8
]);
const
int
num_dim_spatial
=
std
::
stoi
(
argv
[
9
]);
//
8
for control, 1 for num_dim_spatial, 4 for G/N/K/C, and 6 * num_dim_spatial
if
(
argc
!=
8
+
1
+
4
+
6
*
num_dim_spatial
)
//
9
for control, 1 for num_dim_spatial, 4 for G/N/K/C, and 6 * num_dim_spatial
if
(
argc
!=
9
+
1
+
4
+
6
*
num_dim_spatial
)
{
print_helper_msg
();
return
1
;
}
const
auto
params
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
9
,
argv
);
const
auto
params
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
10
,
argv
);
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
...
...
@@ -138,18 +146,43 @@ int profile_grouped_conv_fwd(int argc, char* argv[])
using
AComputeType
=
decltype
(
a_compute_type
);
using
BComputeType
=
decltype
(
b_compute_type
);
bool
pass
=
ck
::
profiler
::
profile_grouped_conv_fwd_impl
<
NDimSpatial
,
InLayout
,
WeiLayout
,
OutLayout
,
InDataType
,
WeiDataType
,
OutDataType
,
AComputeType
,
BComputeType
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
params
);
if
(
index_type
==
IndexType
::
INDEX_T
)
{
bool
pass
=
ck
::
profiler
::
profile_grouped_conv_fwd_impl
<
NDimSpatial
,
InLayout
,
WeiLayout
,
OutLayout
,
InDataType
,
WeiDataType
,
OutDataType
,
AComputeType
,
BComputeType
,
ck
::
index_t
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
params
);
return
pass
?
0
:
1
;
}
else
if
(
index_type
==
IndexType
::
LONG_INDEX_T
)
{
bool
pass
=
ck
::
profiler
::
profile_grouped_conv_fwd_impl
<
NDimSpatial
,
InLayout
,
WeiLayout
,
OutLayout
,
InDataType
,
WeiDataType
,
OutDataType
,
AComputeType
,
BComputeType
,
ck
::
long_index_t
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
params
);
return
pass
?
0
:
1
;
return
pass
?
0
:
1
;
}
else
{
std
::
cout
<<
"this indexing data type is not implemented"
<<
std
::
endl
;
return
1
;
}
};
// GNHWC_GKYXC_GNHWK
...
...
python/ck4inductor/universal_gemm/gen_instances.py
View file @
241c261f
...
...
@@ -62,17 +62,13 @@ def parse_instances(str_instances: List[str]) -> List[CKGemmOperation]:
i_current
=
i_next
+
1
if
i_next
==
-
1
:
break
# pad with `None`s for the fields which are not defined in the instance
template_args
.
insert
(
2
,
tuple
())
# ds layout
template_args
.
insert
(
6
,
tuple
())
# ds dtype
new_instance
=
CKGemmOperation
(
*
template_args
,
# type: ignore[arg-type]
*
((
None
,)
*
(
len
(
fields
(
CKGemmOperation
))
-
len
(
template_args
))),
)
# the last 2 template parameters are optional
# if they are absent, substitute them with default values from Universal Gemm C++ template declaration
if
new_instance
.
a_compute_dtype
is
None
:
new_instance
.
a_compute_dtype
=
new_instance
.
c_element_dtype
if
new_instance
.
b_compute_dtype
is
None
:
new_instance
.
b_compute_dtype
=
new_instance
.
c_element_dtype
op_instances
.
append
(
new_instance
)
return
op_instances
...
...
@@ -208,6 +204,8 @@ def gen_ops_preselected() -> List[CKGemmOperation]:
a_layout
=
"Row"
,
b_layout
=
"Col"
,
c_layout
=
"Row"
,
ds_element_dtypes
=
tuple
(),
ds_layouts
=
tuple
(),
a_element_dtype
=
"F16"
,
b_element_dtype
=
"F16"
,
c_element_dtype
=
"F16"
,
...
...
python/ck4inductor/universal_gemm/op.py
View file @
241c261f
...
...
@@ -10,10 +10,12 @@ class CKGemmOperation:
a_layout
:
str
b_layout
:
str
ds_layouts
:
Tuple
[
str
]
# addmm specific
c_layout
:
str
a_element_dtype
:
str
b_element_dtype
:
str
ds_element_dtypes
:
Tuple
[
str
]
# addmm specific
c_element_dtype
:
str
acc_dtype
:
str
...
...
@@ -64,16 +66,15 @@ class CKGemmOperation:
Tuple
[
int
,
int
,
int
,
int
]
)
c_shuffle_block_transfer_scalar_per_vector_n_per_block
:
int
block_gemm_pipeline_scheduler
:
str
block_gemm_pipeline_version
:
Optional
[
str
]
block_gemm_pipeline_version
:
str
a_compute_dtype
:
Optional
[
str
]
b_compute_dtype
:
Optional
[
str
]
a_compute_dtype
:
Optional
[
str
]
=
None
b_compute_dtype
:
Optional
[
str
]
=
None
def
name
(
self
):
# cpp alias for template instance
return
f
"ck_devicegemm_xdl_shuffle_v3_
{
self
.
key_name
()
}
"
return
f
"ck_devicegemm_
multid_
xdl_shuffle_v3_
{
self
.
key_name
()
}
"
def
key_name
(
self
):
# TBD; must be unique per instance. Intended to use as dict key
...
...
script/check_copyright_year.sh
100644 → 100755
View file @
241c261f
File mode changed from 100644 to 100755
script/process_perf_data.py
View file @
241c261f
...
...
@@ -143,6 +143,12 @@ def parse_logfile(logfile):
if
'Best Perf'
in
line
:
lst
=
line
.
split
()
res
.
append
(
lst
[
36
])
elif
'perf_fmha'
in
logfile
:
for
line
in
open
(
logfile
):
if
'TFlops'
in
line
:
lst
=
line
.
split
()
line_dict
=
dict
(
zip
(
lst
[
1
:],
lst
))
res
.
append
(
line_dict
[
'TFlops,'
])
return
res
...
...
@@ -304,6 +310,14 @@ def main():
for
i
in
range
(
1
,
len
(
results
)
+
1
):
testlist
.
append
(
"Test%i"
%
i
)
table_name
=
"ck_mixed_gemm_tflops"
if
'fmha_fwd'
in
filename
:
for
i
in
range
(
1
,
len
(
results
)
+
1
):
testlist
.
append
(
"Test%i"
%
i
)
table_name
=
"ck_fmha_fwd_tflops"
if
'fmha_bwd'
in
filename
:
for
i
in
range
(
1
,
len
(
results
)
+
1
):
testlist
.
append
(
"Test%i"
%
i
)
table_name
=
"ck_fmha_bwd_tflops"
tflops_base
=
get_baseline
(
table_name
,
conn
)
store_new_test_result
(
table_name
,
results
,
testlist
,
branch_name
,
node_id
,
gpu_arch
,
compute_units
,
rocm_vers
,
hip_vers
,
environment
,
conn
)
...
...
script/process_perf_data.sh
View file @
241c261f
...
...
@@ -13,3 +13,20 @@
python3 process_perf_data.py perf_gemm.log
python3 process_perf_data.py perf_resnet50_N256.log
python3 process_perf_data.py perf_resnet50_N4.log
file
=
./perf_fmha_fwd_gfx942.log
if
[
-e
"
$file
"
]
;
then
python3 process_perf_data.py perf_fmha_fwd_gfx942.log
fi
file
=
./perf_fmha_bwd_gfx942.log
if
[
-e
"
$file
"
]
;
then
python3 process_perf_data.py perf_fmha_bwd_gfx942.log
fi
file
=
./perf_fmha_fwd_gfx90a.log
if
[
-e
"
$file
"
]
;
then
python3 process_perf_data.py perf_fmha_fwd_gfx90a.log
fi
file
=
./perf_fmha_bwd_gfx90a.log
if
[
-e
"
$file
"
]
;
then
python3 process_perf_data.py perf_fmha_bwd_gfx90a.log
fi
script/process_qa_data.sh
View file @
241c261f
...
...
@@ -21,3 +21,20 @@ python3 process_perf_data.py perf_gemm_bilinear.log
python3 process_perf_data.py perf_reduction.log
python3 process_perf_data.py perf_splitK_gemm.log
python3 process_perf_data.py perf_onnx_gemm.log
file
=
./perf_fmha_fwd_gfx942.log
if
[
-e
"
$file
"
]
;
then
python3 process_perf_data.py perf_fmha_fwd_gfx942.log
fi
file
=
./perf_fmha_bwd_gfx942.log
if
[
-e
"
$file
"
]
;
then
python3 process_perf_data.py perf_fmha_bwd_gfx942.log
fi
file
=
./perf_fmha_fwd_gfx90a.log
if
[
-e
"
$file
"
]
;
then
python3 process_perf_data.py perf_fmha_fwd_gfx90a.log
fi
file
=
./perf_fmha_bwd_gfx90a.log
if
[
-e
"
$file
"
]
;
then
python3 process_perf_data.py perf_fmha_bwd_gfx90a.log
fi
script/test_reduce_with_index.sh
deleted
100755 → 0
View file @
1762f081
#!/bin/bash
## The following will be used for CI
set
-x
## for float
bin/test_reduce_with_index
-D
64,4,280,82
-R
0,1,2,3 0 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
0,1,2 0 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
0,1,3 0 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
0,2,3 0 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
1,2,3 0 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
0 0 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
1 0 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
2 0 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
3 0 2
## for float64
bin/test_reduce_with_index
-D
64,4,280,82
-R
0,1,2,3 6 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
0,1,2 6 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
0,1,3 6 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
0,2,3 6 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
1,2,3 6 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
0 6 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
1 6 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
2 6 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
3 6 2
## for float16
bin/test_reduce_with_index
-D
64,4,280,82
-R
0,1,2,3 1 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
0,1,2 1 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
0,1,3 1 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
0,2,3 1 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
1,2,3 1 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
0 1 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
1 1 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
2 1 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
3 1 2
## for int8_t
bin/test_reduce_with_index
-D
64,4,280,82
-R
0,1,2,3 3 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
0,1,2 3 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
0,1,3 3 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
0,2,3 3 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
1,2,3 3 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
0 3 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
1 3 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
2 3 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
3 3 2
## for bfloat16
bin/test_reduce_with_index
-D
64,4,280,82
-R
0,1,2,3 5 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
0,1,2 5 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
0,1,3 5 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
0,2,3 5 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
1,2,3 5 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
0 5 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
1 5 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
2 5 2
bin/test_reduce_with_index
-D
64,4,280,82
-R
3 5 2
set
+x
test/CMakeLists.txt
View file @
241c261f
...
...
@@ -68,11 +68,11 @@ function(add_test_executable TEST_NAME)
#only continue if there are some source files left on the list
if
(
ARGN
)
if
(
ARGN MATCHES
"_xdl"
)
list
(
REMOVE_ITEM TEST_TARGETS gfx1030 gfx1100 gfx1101 gfx1102 gfx1103
)
list
(
REMOVE_ITEM TEST_TARGETS gfx1030 gfx1100 gfx1101 gfx1102 gfx1103
gfx1200 gfx1201
)
elseif
(
ARGN MATCHES
"_wmma"
)
list
(
REMOVE_ITEM TEST_TARGETS gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030
)
elseif
(
ARGN MATCHES
"_smfmac"
)
list
(
REMOVE_ITEM TEST_TARGETS gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx908 gfx90a
)
list
(
REMOVE_ITEM TEST_TARGETS gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx908 gfx90a
gfx1200 gfx1201
)
endif
()
set_source_files_properties
(
${
ARGN
}
PROPERTIES LANGUAGE HIP
)
add_executable
(
${
TEST_NAME
}
${
ARGN
}
)
...
...
@@ -149,11 +149,11 @@ function(add_gtest_executable TEST_NAME)
#only continue if there are some source files left on the list
if
(
ARGN
)
if
(
ARGN MATCHES
"_xdl"
)
list
(
REMOVE_ITEM TEST_TARGETS gfx900 gfx906 gfx1030 gfx1100 gfx1101 gfx1102 gfx1103
)
list
(
REMOVE_ITEM TEST_TARGETS gfx900 gfx906 gfx1030 gfx1100 gfx1101 gfx1102 gfx1103
gfx1200 gfx1201
)
elseif
(
ARGN MATCHES
"_wmma"
)
list
(
REMOVE_ITEM TEST_TARGETS gfx900 gfx906 gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030
)
elseif
(
ARGN MATCHES
"_smfmac"
)
list
(
REMOVE_ITEM TEST_TARGETS gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx908 gfx90a
)
list
(
REMOVE_ITEM TEST_TARGETS gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx908 gfx90a
gfx1200 gfx1201
)
endif
()
set_source_files_properties
(
${
ARGN
}
PROPERTIES LANGUAGE HIP
)
add_executable
(
${
TEST_NAME
}
${
ARGN
}
)
...
...
test/conv_util/conv_util.cpp
View file @
241c261f
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <string>
...
...
@@ -24,12 +24,12 @@ class TestConvUtil : public ::testing::Test
128
,
192
,
256
,
std
::
vector
<
ck
::
index_t
>
(
ndims
,
3
),
std
::
vector
<
ck
::
index_t
>
(
ndims
,
71
),
std
::
vector
<
ck
::
index_t
>
(
ndims
,
s
),
std
::
vector
<
ck
::
index_t
>
(
ndims
,
d
),
std
::
vector
<
ck
::
index_t
>
(
ndims
,
p
),
std
::
vector
<
ck
::
index_t
>
(
ndims
,
p
));
std
::
vector
<
ck
::
long_
index_t
>
(
ndims
,
3
),
std
::
vector
<
ck
::
long_
index_t
>
(
ndims
,
71
),
std
::
vector
<
ck
::
long_
index_t
>
(
ndims
,
s
),
std
::
vector
<
ck
::
long_
index_t
>
(
ndims
,
d
),
std
::
vector
<
ck
::
long_
index_t
>
(
ndims
,
p
),
std
::
vector
<
ck
::
long_
index_t
>
(
ndims
,
p
));
}
protected:
...
...
@@ -48,35 +48,35 @@ TEST_F(TestConvUtil, ConvParamsGetOutputSpatialLengths1D)
{
// stride 2, dilation 1, pad 1
SetNDParams
(
1
,
2
,
1
,
1
);
std
::
vector
<
ck
::
index_t
>
out_spatial_len
=
conv_params
.
GetOutputSpatialLengths
();
std
::
vector
<
ck
::
long_
index_t
>
out_spatial_len
=
conv_params
.
GetOutputSpatialLengths
();
EXPECT_TRUE
(
ck
::
utils
::
check_err
(
out_spatial_len
,
std
::
vector
<
ck
::
index_t
>
{
36
},
"Error: ConvParams 1D."
));
out_spatial_len
,
std
::
vector
<
ck
::
long_
index_t
>
{
36
},
"Error: ConvParams 1D."
));
// stride 1, dilation 1, pad 1
SetNDParams
(
1
,
1
,
1
,
1
);
out_spatial_len
=
conv_params
.
GetOutputSpatialLengths
();
EXPECT_TRUE
(
ck
::
utils
::
check_err
(
out_spatial_len
,
std
::
vector
<
ck
::
index_t
>
{
71
},
"Error: ConvParams 1D stride {1}."
));
out_spatial_len
,
std
::
vector
<
ck
::
long_
index_t
>
{
71
},
"Error: ConvParams 1D stride {1}."
));
// stride 2, dilation 1, pad 2
SetNDParams
(
1
,
2
,
1
,
2
);
out_spatial_len
=
conv_params
.
GetOutputSpatialLengths
();
EXPECT_TRUE
(
ck
::
utils
::
check_err
(
out_spatial_len
,
std
::
vector
<
ck
::
index_t
>
{
37
},
std
::
vector
<
ck
::
long_
index_t
>
{
37
},
"Error: ConvParams 1D padding left/right {2}."
));
// stride 2, dilation 2, pad 2
SetNDParams
(
1
,
2
,
2
,
2
);
out_spatial_len
=
conv_params
.
GetOutputSpatialLengths
();
EXPECT_TRUE
(
ck
::
utils
::
check_err
(
out_spatial_len
,
std
::
vector
<
ck
::
index_t
>
{
36
},
"Error: ConvParams 1D dilation {2}."
));
out_spatial_len
,
std
::
vector
<
ck
::
long_
index_t
>
{
36
},
"Error: ConvParams 1D dilation {2}."
));
// stride 3, dilation 2, pad 1
SetNDParams
(
1
,
3
,
2
,
1
);
out_spatial_len
=
conv_params
.
GetOutputSpatialLengths
();
EXPECT_TRUE
(
ck
::
utils
::
check_err
(
out_spatial_len
,
std
::
vector
<
ck
::
index_t
>
{
23
},
std
::
vector
<
ck
::
long_
index_t
>
{
23
},
"Error: ConvParams 1D strides{3}, padding {1}, dilations {2}."
));
}
...
...
@@ -84,36 +84,38 @@ TEST_F(TestConvUtil, ConvParamsGetOutputSpatialLengths2D)
{
// stride 2, dilation 1, pad 1
SetNDParams
(
2
,
2
,
1
,
1
);
std
::
vector
<
ck
::
index_t
>
out_spatial_len
=
conv_params
.
GetOutputSpatialLengths
();
std
::
vector
<
ck
::
long_
index_t
>
out_spatial_len
=
conv_params
.
GetOutputSpatialLengths
();
EXPECT_TRUE
(
ck
::
utils
::
check_err
(
out_spatial_len
,
std
::
vector
<
ck
::
index_t
>
{
36
,
36
},
std
::
vector
<
ck
::
long_
index_t
>
{
36
,
36
},
"Error: ConvParams 2D default constructor."
));
// stride 1, dilation 1, pad 1
SetNDParams
(
2
,
1
,
1
,
1
);
out_spatial_len
=
conv_params
.
GetOutputSpatialLengths
();
EXPECT_TRUE
(
ck
::
utils
::
check_err
(
out_spatial_len
,
std
::
vector
<
ck
::
index_t
>
{
71
,
71
},
"Error: ConvParams 2D stride {1,1}."
));
EXPECT_TRUE
(
ck
::
utils
::
check_err
(
out_spatial_len
,
std
::
vector
<
ck
::
long_index_t
>
{
71
,
71
},
"Error: ConvParams 2D stride {1,1}."
));
// stride 2, dilation 1, pad 2
SetNDParams
(
2
,
2
,
1
,
2
);
out_spatial_len
=
conv_params
.
GetOutputSpatialLengths
();
EXPECT_TRUE
(
ck
::
utils
::
check_err
(
out_spatial_len
,
std
::
vector
<
ck
::
index_t
>
{
37
,
37
},
std
::
vector
<
ck
::
long_
index_t
>
{
37
,
37
},
"Error: ConvParams 2D padding left/right {2,2}."
));
// stride 2, dilation 2, pad 2
SetNDParams
(
2
,
2
,
2
,
2
);
out_spatial_len
=
conv_params
.
GetOutputSpatialLengths
();
EXPECT_TRUE
(
ck
::
utils
::
check_err
(
out_spatial_len
,
std
::
vector
<
ck
::
index_t
>
{
36
,
36
},
"Error: ConvParams 2D dilation {2,2}."
));
EXPECT_TRUE
(
ck
::
utils
::
check_err
(
out_spatial_len
,
std
::
vector
<
ck
::
long_index_t
>
{
36
,
36
},
"Error: ConvParams 2D dilation {2,2}."
));
// stride 3, dilation 2, pad 1
SetNDParams
(
2
,
3
,
2
,
1
);
out_spatial_len
=
conv_params
.
GetOutputSpatialLengths
();
EXPECT_TRUE
(
ck
::
utils
::
check_err
(
out_spatial_len
,
std
::
vector
<
ck
::
index_t
>
{
23
,
23
},
std
::
vector
<
ck
::
long_
index_t
>
{
23
,
23
},
"Error: ConvParams 2D strides{3,3}, padding {1,1}, dilations {2,2}."
));
}
...
...
@@ -121,29 +123,29 @@ TEST_F(TestConvUtil, ConvParamsGetOutputSpatialLengths3D)
{
// stride 2, dilation 1, pad 1
SetNDParams
(
3
,
2
,
1
,
1
);
std
::
vector
<
ck
::
index_t
>
out_spatial_len
=
conv_params
.
GetOutputSpatialLengths
();
std
::
vector
<
ck
::
long_
index_t
>
out_spatial_len
=
conv_params
.
GetOutputSpatialLengths
();
EXPECT_TRUE
(
ck
::
utils
::
check_err
(
out_spatial_len
,
std
::
vector
<
ck
::
index_t
>
{
36
,
36
,
36
},
"Error: ConvParams 3D."
));
out_spatial_len
,
std
::
vector
<
ck
::
long_
index_t
>
{
36
,
36
,
36
},
"Error: ConvParams 3D."
));
// stride 1, dilation 1, pad 1
SetNDParams
(
3
,
1
,
1
,
1
);
out_spatial_len
=
conv_params
.
GetOutputSpatialLengths
();
EXPECT_TRUE
(
ck
::
utils
::
check_err
(
out_spatial_len
,
std
::
vector
<
ck
::
index_t
>
{
71
,
71
,
71
},
std
::
vector
<
ck
::
long_
index_t
>
{
71
,
71
,
71
},
"Error: ConvParams 3D stride {1, 1, 1}."
));
// stride 2, dilation 1, pad 2
SetNDParams
(
3
,
2
,
1
,
2
);
out_spatial_len
=
conv_params
.
GetOutputSpatialLengths
();
EXPECT_TRUE
(
ck
::
utils
::
check_err
(
out_spatial_len
,
std
::
vector
<
ck
::
index_t
>
{
37
,
37
,
37
},
std
::
vector
<
ck
::
long_
index_t
>
{
37
,
37
,
37
},
"Error: ConvParams 3D padding left/right {2, 2, 2}."
));
// stride 2, dilation 2, pad 2
SetNDParams
(
3
,
2
,
2
,
2
);
out_spatial_len
=
conv_params
.
GetOutputSpatialLengths
();
EXPECT_TRUE
(
ck
::
utils
::
check_err
(
out_spatial_len
,
std
::
vector
<
ck
::
index_t
>
{
36
,
36
,
36
},
std
::
vector
<
ck
::
long_
index_t
>
{
36
,
36
,
36
},
"Error: ConvParams 3D dilation {2, 2, 2}."
));
// stride 3, dilation 2, pad 1
...
...
@@ -151,6 +153,6 @@ TEST_F(TestConvUtil, ConvParamsGetOutputSpatialLengths3D)
out_spatial_len
=
conv_params
.
GetOutputSpatialLengths
();
EXPECT_TRUE
(
ck
::
utils
::
check_err
(
out_spatial_len
,
std
::
vector
<
ck
::
index_t
>
{
23
,
23
,
23
},
std
::
vector
<
ck
::
long_
index_t
>
{
23
,
23
,
23
},
"Error: ConvParams 3D strides{3, 3, 3}, padding {1, 1, 1}, dilations {2, 2, 2}."
));
}
test/gemm_universal/test_gemm_universal_util.hpp
View file @
241c261f
// SPDX-License-Identifier: MIT
// Copyright (c) 20
18
-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 20
23
-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -25,12 +25,13 @@ class TestGemmUniversal : public testing::Test
using
F32
=
float
;
protected:
using
ALayout
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
BLayout
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
CLayout
=
Row
;
using
ADataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
BDataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
CDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
ALayout
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
BLayout
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
CLayout
=
Row
;
using
ADataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
BDataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
ComputeDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
CDataType
=
std
::
tuple_element_t
<
5
,
Tuple
>
;
public:
static
constexpr
bool
verify_
=
true
;
...
...
@@ -66,6 +67,7 @@ class TestGemmUniversal : public testing::Test
{
bool
pass
=
ck
::
profiler
::
profile_gemm_universal_impl
<
ADataType
,
BDataType
,
ComputeDataType
,
F32
,
CDataType
,
ALayout
,
...
...
test/gemm_universal/test_gemm_universal_xdl.cpp
View file @
241c261f
// SPDX-License-Identifier: MIT
// Copyright (c) 20
18
-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 20
23
-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
...
...
@@ -41,16 +41,24 @@ class TestGemmUniversal_MK_NK
};
// clang-format off
using
KernelTypes
=
::
testing
::
Types
<
// ADataType, BDataType, CDataType
std
::
tuple
<
F16
,
F16
,
F16
>
,
std
::
tuple
<
F16
,
F8
,
F16
>
,
std
::
tuple
<
F8
,
F16
,
F16
>
,
std
::
tuple
<
BF16
,
BF16
,
BF16
>
using
KernelTypes_MK_KN
=
::
testing
::
Types
<
// ADataType, BDataType, ComputeDataType, CDataType
std
::
tuple
<
F16
,
F16
,
F16
,
F16
>
,
std
::
tuple
<
F16
,
F8
,
F16
,
F16
>
,
std
::
tuple
<
F8
,
F16
,
F16
,
F16
>
,
std
::
tuple
<
BF16
,
BF16
,
BF16
,
BF16
>
>
;
using
KernelTypes_MK_NK
=
::
testing
::
Types
<
// ADataType, BDataType, ComputeDataType, CDataType
std
::
tuple
<
F16
,
F16
,
F16
,
F16
>
,
std
::
tuple
<
F16
,
F8
,
F16
,
F16
>
,
std
::
tuple
<
F8
,
F16
,
F16
,
F16
>
,
std
::
tuple
<
BF16
,
BF16
,
BF16
,
BF16
>
,
std
::
tuple
<
F8
,
F8
,
F8
,
BF16
>
>
;
// clang-format on
TYPED_TEST_SUITE
(
TestGemmUniversal_MK_KN
,
KernelTypes
);
TYPED_TEST_SUITE
(
TestGemmUniversal_MK_NK
,
KernelTypes
);
TYPED_TEST_SUITE
(
TestGemmUniversal_MK_KN
,
KernelTypes
_MK_KN
);
TYPED_TEST_SUITE
(
TestGemmUniversal_MK_NK
,
KernelTypes
_MK_NK
);
#include "test_gemm_universal_ut_cases.inc"
test/grouped_convnd_fwd/test_grouped_convnd_fwd.cpp
View file @
241c261f
...
...
@@ -17,6 +17,7 @@ class TestGroupedConvndFwd : public ::testing::Test
using
InLayout
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
WeiLayout
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
OutLayout
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
IndexType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
std
::
vector
<
ck
::
utils
::
conv
::
ConvParam
>
conv_params
;
...
...
@@ -33,7 +34,10 @@ class TestGroupedConvndFwd : public ::testing::Test
OutLayout
,
DataType
,
DataType
,
DataType
>
(
DataType
,
DataType
,
DataType
,
IndexType
>
(
true
,
// do_verification
1
,
// init_method: integer value
false
,
// do_log
...
...
@@ -46,30 +50,31 @@ class TestGroupedConvndFwd : public ::testing::Test
using
namespace
ck
::
tensor_layout
::
convolution
;
using
KernelTypes1d
=
::
testing
::
Types
<
std
::
tuple
<
float
,
GNWC
,
GKXC
,
GNWK
>
,
std
::
tuple
<
ck
::
half_t
,
GNWC
,
GKXC
,
GNWK
>
,
std
::
tuple
<
ck
::
bhalf_t
,
GNWC
,
GKXC
,
GNWK
>
,
std
::
tuple
<
int8_t
,
GNWC
,
GKXC
,
GNWK
>>
;
using
KernelTypes2d
=
::
testing
::
Types
<
std
::
tuple
<
float
,
GNHWC
,
GKYXC
,
GNHWK
>
,
std
::
tuple
<
ck
::
half_t
,
GNHWC
,
GKYXC
,
GNHWK
>
,
std
::
tuple
<
ck
::
bhalf_t
,
GNHWC
,
GKYXC
,
GNHWK
>
,
std
::
tuple
<
int8_t
,
GNHWC
,
GKYXC
,
GNHWK
>
,
std
::
tuple
<
float
,
NHWGC
,
GKYXC
,
NHWGK
>
,
std
::
tuple
<
ck
::
half_t
,
NHWGC
,
GKYXC
,
NHWGK
>
,
std
::
tuple
<
ck
::
bhalf_t
,
NHWGC
,
GKYXC
,
NHWGK
>
,
std
::
tuple
<
int8_t
,
NHWGC
,
GKYXC
,
NHWGK
>>
;
using
KernelTypes3d
=
::
testing
::
Types
<
std
::
tuple
<
float
,
GNDHWC
,
GKZYXC
,
GNDHWK
>
,
std
::
tuple
<
ck
::
half_t
,
GNDHWC
,
GKZYXC
,
GNDHWK
>
,
std
::
tuple
<
ck
::
bhalf_t
,
GNDHWC
,
GKZYXC
,
GNDHWK
>
,
std
::
tuple
<
int8_t
,
GNDHWC
,
GKZYXC
,
GNDHWK
>
,
std
::
tuple
<
float
,
NDHWGC
,
GKZYXC
,
NDHWGK
>
,
std
::
tuple
<
ck
::
half_t
,
NDHWGC
,
GKZYXC
,
NDHWGK
>
,
std
::
tuple
<
ck
::
bhalf_t
,
NDHWGC
,
GKZYXC
,
NDHWGK
>
,
std
::
tuple
<
int8_t
,
NDHWGC
,
GKZYXC
,
NDHWGK
>>
;
using
KernelTypes2dLargeCases
=
::
testing
::
Types
<
std
::
tuple
<
float
,
NHWGC
,
GKYXC
,
NHWGK
>>
;
using
KernelTypes1d
=
::
testing
::
Types
<
std
::
tuple
<
float
,
GNWC
,
GKXC
,
GNWK
,
ck
::
index_t
>
,
std
::
tuple
<
ck
::
half_t
,
GNWC
,
GKXC
,
GNWK
,
ck
::
index_t
>
,
std
::
tuple
<
ck
::
bhalf_t
,
GNWC
,
GKXC
,
GNWK
,
ck
::
index_t
>
,
std
::
tuple
<
int8_t
,
GNWC
,
GKXC
,
GNWK
,
ck
::
index_t
>>
;
using
KernelTypes2d
=
::
testing
::
Types
<
std
::
tuple
<
float
,
GNHWC
,
GKYXC
,
GNHWK
,
ck
::
index_t
>
,
std
::
tuple
<
ck
::
half_t
,
GNHWC
,
GKYXC
,
GNHWK
,
ck
::
index_t
>
,
std
::
tuple
<
ck
::
bhalf_t
,
GNHWC
,
GKYXC
,
GNHWK
,
ck
::
index_t
>
,
std
::
tuple
<
int8_t
,
GNHWC
,
GKYXC
,
GNHWK
,
ck
::
index_t
>
,
std
::
tuple
<
float
,
NHWGC
,
GKYXC
,
NHWGK
,
ck
::
index_t
>
,
std
::
tuple
<
ck
::
half_t
,
NHWGC
,
GKYXC
,
NHWGK
,
ck
::
index_t
>
,
std
::
tuple
<
ck
::
bhalf_t
,
NHWGC
,
GKYXC
,
NHWGK
,
ck
::
index_t
>
,
std
::
tuple
<
int8_t
,
NHWGC
,
GKYXC
,
NHWGK
,
ck
::
index_t
>>
;
using
KernelTypes3d
=
::
testing
::
Types
<
std
::
tuple
<
float
,
GNDHWC
,
GKZYXC
,
GNDHWK
,
ck
::
index_t
>
,
std
::
tuple
<
ck
::
half_t
,
GNDHWC
,
GKZYXC
,
GNDHWK
,
ck
::
index_t
>
,
std
::
tuple
<
ck
::
bhalf_t
,
GNDHWC
,
GKZYXC
,
GNDHWK
,
ck
::
index_t
>
,
std
::
tuple
<
int8_t
,
GNDHWC
,
GKZYXC
,
GNDHWK
,
ck
::
index_t
>
,
std
::
tuple
<
float
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ck
::
index_t
>
,
std
::
tuple
<
ck
::
half_t
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ck
::
index_t
>
,
std
::
tuple
<
ck
::
bhalf_t
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ck
::
index_t
>
,
std
::
tuple
<
int8_t
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ck
::
index_t
>>
;
using
KernelTypes2dLargeCases
=
::
testing
::
Types
<
std
::
tuple
<
float
,
NHWGC
,
GKYXC
,
NHWGK
,
ck
::
long_index_t
>>
;
template
<
typename
Tuple
>
class
TestGroupedConvndFwd1d
:
public
TestGroupedConvndFwd
<
Tuple
>
...
...
@@ -153,5 +158,8 @@ TYPED_TEST(TestGroupedConvndFwd2dLargeCases, Test2DLargeCases)
// With supported NumGroupsToMerge > 1
this
->
conv_params
.
push_back
(
{
2
,
32
,
64
,
1
,
1
,
{
2
,
2
},
{
672
,
672
},
{
672
,
672
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}});
// When image is larger than 2GB
this
->
conv_params
.
push_back
(
{
2
,
1
,
1
,
256
,
256
,
{
3
,
3
},
{
4096
,
2048
},
{
1024
,
1024
},
{
3
,
3
},
{
1
,
1
},
{
1
,
1
}});
this
->
template
Run
<
2
>();
}
Prev
1
…
6
7
8
9
10
11
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment