Commit 20ddaeba authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents c5f1cdf7 43879b89
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
// SPDX-License-Identifier: MIT
// // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_description/cluster_descriptor.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7r2.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r2.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor/static_tensor.hpp"
#include "ck/utility/common_header.hpp"
namespace ck {
template <typename GridwiseElementwise2dFunctor,
typename InGrid2dDescTuple,
typename OutGrid2dDescTuple,
template <typename GridwiseElementwiseFunctor,
typename InGridDescTuple,
typename OutGridDescTuple,
typename InDataTypePointerTuple,
typename OutDataTypePointerTuple,
typename Block2TileMap,
typename ElementwiseOperation>
__global__ void kernel_elementwise_2d(const InGrid2dDescTuple in_grid_2d_desc_tuple,
const OutGrid2dDescTuple out_grid_2d_desc_tuple,
const InDataTypePointerTuple p_in_global_tuple,
const OutDataTypePointerTuple p_out_global_tuple,
const ElementwiseOperation elementwise_op,
const index_t num_threads_m,
const index_t num_threads_n)
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_elementwise(const InGridDescTuple in_grid_desc_tuple,
const OutGridDescTuple out_grid_desc_tuple,
const InDataTypePointerTuple p_in_global_tuple,
const OutDataTypePointerTuple p_out_global_tuple,
const Block2TileMap block_2_tile_map,
const ElementwiseOperation elementwise_op)
{
GridwiseElementwise2dFunctor::Run(in_grid_2d_desc_tuple,
out_grid_2d_desc_tuple,
p_in_global_tuple,
p_out_global_tuple,
elementwise_op,
num_threads_m,
num_threads_n);
GridwiseElementwiseFunctor::Run(in_grid_desc_tuple,
out_grid_desc_tuple,
p_in_global_tuple,
p_out_global_tuple,
block_2_tile_map,
elementwise_op);
}
template <typename InGrid2dDescTuple,
typename OutGrid2dDescTuple,
template <typename GridwiseElementwiseFunctor,
typename InGridDescTuple,
typename OutGridDescTuple,
typename InDataTypePointerTuple,
typename OutDataTypePointerTuple,
typename Block2TileMap,
typename ElementwiseOperation,
index_t MPerThread,
index_t NPerThread,
index_t NumInputs,
index_t NumOutputs>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_batched_elementwise(const InGridDescTuple in_grid_desc_tuple,
const OutGridDescTuple out_grid_desc_tuple,
const InDataTypePointerTuple p_in_global_tuple,
const OutDataTypePointerTuple p_out_global_tuple,
const Block2TileMap block_2_tile_map,
const ElementwiseOperation elementwise_op,
const index_t batch_count,
const std::array<index_t, NumInputs> input_batch_strides,
const std::array<index_t, NumOutputs> output_batch_strides)
{
static_assert(InGridDescTuple::Size() == NumInputs &&
InDataTypePointerTuple::Size() == NumInputs);
static_assert(OutGridDescTuple::Size() == NumOutputs &&
OutDataTypePointerTuple::Size() == NumOutputs);
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
InDataTypePointerTuple p_in_global_with_offset_tuple;
OutDataTypePointerTuple p_out_global_with_offset_tuple;
static_for<0, InDataTypePointerTuple::Size(), 1>{}([&](auto i) {
p_in_global_with_offset_tuple(i) = p_in_global_tuple.At(i) + input_batch_strides[i] * g_idx;
});
static_for<0, OutDataTypePointerTuple::Size(), 1>{}([&](auto i) {
p_out_global_with_offset_tuple(i) =
p_out_global_tuple.At(i) + output_batch_strides[i] * g_idx;
});
GridwiseElementwiseFunctor::Run(in_grid_desc_tuple,
out_grid_desc_tuple,
p_in_global_with_offset_tuple,
p_out_global_with_offset_tuple,
block_2_tile_map,
elementwise_op);
}
template <typename InGridDescTuple,
typename OutGridDescTuple,
typename InDataTypePointerTuple,
typename OutDataTypePointerTuple,
typename Block2TileMap,
typename ElementwiseOperation,
index_t BlockSize,
index_t M0PerBlock,
index_t M1PerBlock,
index_t M0PerThread,
index_t M1PerThread,
typename ThreadClusterArrangeOrder,
typename InScalarPerVectorSeq,
typename OutScalarPerVectorSeq>
struct GridwiseElementwise_2D
typename OutScalarPerVectorSeq,
index_t SrcVectorDim,
index_t DstVectorDim>
struct GridwiseElementwise
{
static constexpr index_t NumInput = InDataTypePointerTuple::Size();
static constexpr index_t NumOutput = OutDataTypePointerTuple::Size();
static_assert(NumInput == InScalarPerVectorSeq::Size() &&
NumOutput == OutScalarPerVectorSeq::Size() &&
NumInput == InGrid2dDescTuple::Size() &&
NumOutput == OutGrid2dDescTuple::Size(),
NumInput == InGridDescTuple::Size() && NumOutput == OutGridDescTuple::Size(),
"Tuple size is inconsistent with the number of in/out!");
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto thread_buffer_desc_mn =
make_naive_tensor_descriptor_packed(make_tuple(Number<MPerThread>{}, Number<NPerThread>{}));
static_assert((SrcVectorDim == I0 || SrcVectorDim == I1) &&
(DstVectorDim == I0 || DstVectorDim == I1),
"Vector dim must be equal to 0 or 1.");
using PassThroughOp = tensor_operation::element_wise::PassThrough;
__device__ static void Run(const InGrid2dDescTuple in_grid_2d_desc_tuple,
const OutGrid2dDescTuple out_grid_2d_desc_tuple,
const InDataTypePointerTuple p_in_global_tuple,
const OutDataTypePointerTuple p_out_global_tuple,
const ElementwiseOperation elementwise_op,
const index_t num_threads_m,
const index_t num_threads_n)
__device__ static void Run(const InGridDescTuple& in_grid_desc_tuple,
const OutGridDescTuple& out_grid_desc_tuple,
const InDataTypePointerTuple& p_in_global_tuple,
const OutDataTypePointerTuple& p_out_global_tuple,
const Block2TileMap& block_2_tile_map,
const ElementwiseOperation& elementwise_op)
{
auto in_thread_buf_tuple = generate_tuple(
constexpr auto src_datas = generate_tuple(
[&](auto I) {
using DataTypePointer = remove_cvref_t<decltype(InDataTypePointerTuple{}[I])>;
using DataType = remove_cv_t<remove_pointer_t<DataTypePointer>>;
return StaticBuffer<AddressSpaceEnum::Vgpr,
DataType,
MPerThread * NPerThread,
true>{};
return DataType{};
},
Number<NumInput>{});
auto out_thread_buf_tuple = generate_tuple(
constexpr auto dst_datas = generate_tuple(
[&](auto I) {
using DataTypePointer = remove_cvref_t<decltype(OutDataTypePointerTuple{}[I])>;
using DataType = remove_pointer_t<DataTypePointer>;
return StaticBuffer<AddressSpaceEnum::Vgpr,
DataType,
MPerThread * NPerThread,
true>{};
return DataType{};
},
Number<NumOutput>{});
auto in_global_buf_tuple = generate_tuple(
const auto in_global_buf_tuple = generate_tuple(
[&](auto I) {
return make_dynamic_buffer<AddressSpaceEnum::Global>(
p_in_global_tuple[I], in_grid_2d_desc_tuple[I].GetElementSpaceSize());
p_in_global_tuple[I], in_grid_desc_tuple[I].GetElementSpaceSize());
},
Number<NumInput>{});
auto out_global_buf_tuple = generate_tuple(
[&](auto I) {
return make_dynamic_buffer<AddressSpaceEnum::Global>(
p_out_global_tuple[I], out_grid_2d_desc_tuple[I].GetElementSpaceSize());
p_out_global_tuple[I], out_grid_desc_tuple[I].GetElementSpaceSize());
},
Number<NumOutput>{});
const auto M = in_grid_2d_desc_tuple[I0].GetLength(I0);
const auto N = in_grid_2d_desc_tuple[I0].GetLength(I1);
const index_t loop_step_m = num_threads_m * MPerThread;
const index_t loop_step_n = num_threads_n * NPerThread;
const index_t thread_1d_id = get_thread_global_1d_id();
index_t tid_m = thread_1d_id / num_threads_n;
index_t tid_n = thread_1d_id % num_threads_n;
const auto block_work_idx =
block_2_tile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
const auto thread_global_offset = make_multi_index(tid_m * MPerThread, tid_n * NPerThread);
auto in_global_load_tuple = generate_tuple(
[&](auto I) {
using DataTypePointer = remove_cvref_t<decltype(InDataTypePointerTuple{}[I])>;
using DataType = remove_cv_t<remove_pointer_t<DataTypePointer>>;
return ThreadwiseTensorSliceTransfer_v2<
DataType,
DataType,
decltype(in_grid_2d_desc_tuple[I]),
decltype(thread_buffer_desc_mn),
Sequence<MPerThread, NPerThread>, // SliceLengths
Sequence<0, 1>, // DimAccessOrder
0, // SrcVectorDim
InScalarPerVectorSeq::At(I), // ScalarPerVector
1, // SrcScalarStrideInVector
true>{in_grid_2d_desc_tuple[I], thread_global_offset};
const index_t m0_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * M0PerBlock);
const index_t m1_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I1] * M1PerBlock);
const auto input_thread_grid_offset = generate_tuple(
[&](auto) {
return make_multi_index(m0_block_data_idx_on_grid, m1_block_data_idx_on_grid);
},
Number<NumInput>{});
auto out_global_store_tuple = generate_tuple(
[&](auto I) {
using DataTypePointer = remove_cvref_t<decltype(OutDataTypePointerTuple{}[I])>;
using DataType = remove_pointer_t<DataTypePointer>;
return ThreadwiseTensorSliceTransfer_v1r3<
DataType,
DataType,
decltype(thread_buffer_desc_mn),
decltype(out_grid_2d_desc_tuple[I]),
PassThroughOp,
Sequence<MPerThread, NPerThread>, // SliceLengths
Sequence<0, 1>, // DimAccessOrder
1, // SrcVectorDim
1, // OutScalarPerVectorSeq::At(I),
InMemoryDataOperationEnum::Set,
1,
true>(out_grid_2d_desc_tuple[I], thread_global_offset, PassThroughOp{});
const auto output_thread_grid_offset = generate_tuple(
[&](auto) {
return make_multi_index(m0_block_data_idx_on_grid, m1_block_data_idx_on_grid);
},
Number<NumOutput>{});
index_t num_iter_m = M / (loop_step_m);
do
{
index_t num_iter_n = N / (loop_step_n);
do
{
static_for<0, NumInput, 1>{}([&](auto I) {
in_global_load_tuple(I).Run(in_grid_2d_desc_tuple[I],
in_global_buf_tuple[I],
thread_buffer_desc_mn,
make_tuple(I0, I0),
in_thread_buf_tuple(I));
in_global_load_tuple(I).MoveSrcSliceWindow(in_grid_2d_desc_tuple[I],
make_multi_index(0, loop_step_n));
});
static_for<0, MPerThread, 1>{}([&](auto iM) {
static_for<0, NPerThread, 1>{}([&](auto iN) {
constexpr auto offset =
thread_buffer_desc_mn.CalculateOffset(make_tuple(iM, iN));
// get reference to in data
const auto in_data_refs = generate_tie(
// return type should be lvalue
[&](auto I) -> const auto& {
return in_thread_buf_tuple(I)(Number<offset>{});
},
Number<NumInput>{});
// get referenec to dst data
auto out_data_refs = generate_tie(
// return type should be lvalue
[&](auto I) -> auto& {
return out_thread_buf_tuple(I)(Number<offset>{});
},
Number<NumOutput>{});
unpack2(elementwise_op, out_data_refs, in_data_refs);
});
});
static_for<0, NumOutput, 1>{}([&](auto I) {
out_global_store_tuple(I).Run(thread_buffer_desc_mn,
make_tuple(I0, I0),
out_thread_buf_tuple[I],
out_grid_2d_desc_tuple[I],
out_global_buf_tuple(I));
out_global_store_tuple(I).MoveDstSliceWindow(out_grid_2d_desc_tuple[I],
make_multi_index(0, loop_step_n));
});
} while(--num_iter_n);
static_for<0, NumInput, 1>{}([&](auto I) {
in_global_load_tuple(I).MoveSrcSliceWindow(
in_grid_2d_desc_tuple[I],
make_multi_index(loop_step_m, -(N / loop_step_n) * loop_step_n));
});
static_for<0, NumOutput, 1>{}([&](auto I) {
out_global_store_tuple(I).MoveDstSliceWindow(
out_grid_2d_desc_tuple[I],
make_multi_index(loop_step_m, -(N / loop_step_n) * loop_step_n));
});
} while(--num_iter_m);
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
// If src and dst have same vector dim, then:
// M0 dim - for src and dst vector load/store
// else:
// M0 dim - for dst vector load
// M1 dim - for src vector store
using SrcDimAccessOrder =
std::conditional_t<SrcVectorDim == I1, Sequence<0, 1>, Sequence<1, 0>>;
using DstDimAccessOrder =
std::conditional_t<DstVectorDim == I1, Sequence<0, 1>, Sequence<1, 0>>;
using ThreadClusterLengths =
Sequence<Number<M0PerBlock / M0PerThread>{}, Number<M1PerBlock / M1PerThread>{}>;
auto global_to_global_transfer = ThreadGroupTensorSliceTransfer_v4r2<
ThisThreadBlock,
ElementwiseOperation,
uniform_sequence_gen_t<NumOutput, static_cast<index_t>(InMemoryDataOperationEnum::Set)>,
Sequence<M0PerBlock, M1PerBlock>,
ThreadClusterLengths,
ThreadClusterArrangeOrder,
decltype(src_datas),
decltype(dst_datas),
InGridDescTuple,
OutGridDescTuple,
SrcDimAccessOrder,
DstDimAccessOrder,
SrcVectorDim,
DstVectorDim,
InScalarPerVectorSeq,
OutScalarPerVectorSeq,
uniform_sequence_gen_t<NumInput, 1>,
uniform_sequence_gen_t<NumOutput, 1>,
uniform_sequence_gen_t<NumInput, false>,
uniform_sequence_gen_t<NumOutput, false>>{in_grid_desc_tuple,
input_thread_grid_offset,
out_grid_desc_tuple,
output_thread_grid_offset,
elementwise_op};
global_to_global_transfer.Run(
in_grid_desc_tuple, in_global_buf_tuple, out_grid_desc_tuple, out_global_buf_tuple, I0);
}
};
......
// SPDX-License-Identifier: MIT
// // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
//
#pragma once
#include "ck/tensor_description/cluster_descriptor.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace ck {
template <typename GridwiseElementwise3dFunctor,
typename InGrid3dDescTuple,
typename OutGrid3dDescTuple,
typename InDataTypePointerTuple,
typename OutDataTypePointerTuple,
typename ElementwiseOperation>
__global__ void kernel_elementwise_3d(const InGrid3dDescTuple in_grid_3d_desc_tuple,
const OutGrid3dDescTuple out_grid_3d_desc_tuple,
const InDataTypePointerTuple p_in_global_tuple,
const OutDataTypePointerTuple p_out_global_tuple,
const ElementwiseOperation elementwise_op,
const index_t num_threads_m,
const index_t num_threads_n,
const index_t num_threads_k)
{
GridwiseElementwise3dFunctor::Run(in_grid_3d_desc_tuple,
out_grid_3d_desc_tuple,
p_in_global_tuple,
p_out_global_tuple,
elementwise_op,
num_threads_m,
num_threads_n,
num_threads_k);
}
template <typename InGrid3dDescTuple,
typename OutGrid3dDescTuple,
typename InDataTypePointerTuple,
typename OutDataTypePointerTuple,
typename ElementwiseOperation,
index_t MPerThread,
index_t NPerThread,
index_t KPerThread,
typename InScalarPerVectorSeq,
typename OutScalarPerVectorSeq>
struct GridwiseElementwise_3D
{
static constexpr index_t NumInput = InDataTypePointerTuple::Size();
static constexpr index_t NumOutput = OutDataTypePointerTuple::Size();
static_assert(NumInput == InScalarPerVectorSeq::Size() &&
NumOutput == OutScalarPerVectorSeq::Size() &&
NumInput == InGrid3dDescTuple::Size() &&
NumOutput == OutGrid3dDescTuple::Size(),
"Tuple size is inconsistent with the number of in/out!");
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto thread_buffer_desc_mnk = make_naive_tensor_descriptor_packed(
make_tuple(Number<MPerThread>{}, Number<NPerThread>{}, Number<KPerThread>{}));
using PassThroughOp = tensor_operation::element_wise::PassThrough;
__device__ static void Run(const InGrid3dDescTuple in_grid_3d_desc_tuple,
const OutGrid3dDescTuple out_grid_3d_desc_tuple,
const InDataTypePointerTuple p_in_global_tuple,
const OutDataTypePointerTuple p_out_global_tuple,
const ElementwiseOperation elementwise_op,
const index_t num_threads_m,
const index_t num_threads_n,
const index_t num_threads_k)
{
auto in_thread_buf_tuple = generate_tuple(
[&](auto I) {
using DataTypePointer = remove_cvref_t<decltype(InDataTypePointerTuple{}[I])>;
using DataType = remove_cv_t<remove_pointer_t<DataTypePointer>>;
return StaticBuffer<AddressSpaceEnum::Vgpr,
DataType,
MPerThread * NPerThread * KPerThread,
true>{};
},
Number<NumInput>{});
auto out_thread_buf_tuple = generate_tuple(
[&](auto I) {
using DataTypePointer = remove_cvref_t<decltype(OutDataTypePointerTuple{}[I])>;
using DataType = remove_pointer_t<DataTypePointer>;
return StaticBuffer<AddressSpaceEnum::Vgpr,
DataType,
MPerThread * NPerThread * KPerThread,
true>{};
},
Number<NumOutput>{});
auto in_global_buf_tuple = generate_tuple(
[&](auto I) {
return make_dynamic_buffer<AddressSpaceEnum::Global>(
p_in_global_tuple[I], in_grid_3d_desc_tuple[I].GetElementSpaceSize());
},
Number<NumInput>{});
auto out_global_buf_tuple = generate_tuple(
[&](auto I) {
return make_dynamic_buffer<AddressSpaceEnum::Global>(
p_out_global_tuple[I], out_grid_3d_desc_tuple[I].GetElementSpaceSize());
},
Number<NumOutput>{});
const auto M = in_grid_3d_desc_tuple[I0].GetLength(I0);
const auto N = in_grid_3d_desc_tuple[I0].GetLength(I1);
const auto K = in_grid_3d_desc_tuple[I0].GetLength(I2);
const index_t loop_step_m = num_threads_m * MPerThread;
const index_t loop_step_n = num_threads_n * NPerThread;
const index_t loop_step_k = num_threads_k * KPerThread;
const index_t thread_1d_id = get_thread_global_1d_id();
const index_t tid_m = thread_1d_id / (num_threads_n * num_threads_k);
const index_t tid_nk = thread_1d_id % (num_threads_n * num_threads_k);
const index_t tid_n = tid_nk / num_threads_k;
const index_t tid_k = tid_nk % num_threads_k;
const auto thread_global_offset =
make_multi_index(tid_m * MPerThread, tid_n * NPerThread, tid_k * KPerThread);
auto in_global_load_tuple = generate_tuple(
[&](auto I) {
using DataTypePointer = remove_cvref_t<decltype(InDataTypePointerTuple{}[I])>;
using DataType = remove_cv_t<remove_pointer_t<DataTypePointer>>;
return ThreadwiseTensorSliceTransfer_v2<
DataType,
DataType,
decltype(in_grid_3d_desc_tuple[I]),
decltype(thread_buffer_desc_mnk),
Sequence<MPerThread, NPerThread, KPerThread>, // SliceLengths
Sequence<0, 1, 2>, // DimAccessOrder
01, // SrcVectorDim
InScalarPerVectorSeq::At(I), // InScalarPerVectorSeq::At(I), //
// ScalarPerVector
1, // SrcScalarStrideInVector
true>{in_grid_3d_desc_tuple[I], thread_global_offset};
},
Number<NumInput>{});
auto out_global_store_tuple = generate_tuple(
[&](auto I) {
using DataTypePointer = remove_cvref_t<decltype(OutDataTypePointerTuple{}[I])>;
using DataType = remove_pointer_t<DataTypePointer>;
return ThreadwiseTensorSliceTransfer_v1r3<
DataType,
DataType,
decltype(thread_buffer_desc_mnk),
decltype(out_grid_3d_desc_tuple[I]),
PassThroughOp,
Sequence<MPerThread, NPerThread, KPerThread>, // SliceLengths
Sequence<0, 1, 2>, // DimAccessOrder
2, // SrcVectorDim
OutScalarPerVectorSeq::At(I), // OutScalarPerVectorSeq::At(I),
InMemoryDataOperationEnum::Set,
1,
true>(out_grid_3d_desc_tuple[I], thread_global_offset, PassThroughOp{});
},
Number<NumOutput>{});
index_t num_iter_m = M / (loop_step_m);
do
{
index_t num_iter_n = N / (loop_step_n);
do
{
index_t num_iter_k = K / (loop_step_k);
do
{
static_for<0, NumInput, 1>{}([&](auto I) {
in_global_load_tuple(I).Run(in_grid_3d_desc_tuple[I],
in_global_buf_tuple[I],
thread_buffer_desc_mnk,
make_tuple(I0, I0, I0),
in_thread_buf_tuple(I));
in_global_load_tuple(I).MoveSrcSliceWindow(
in_grid_3d_desc_tuple[I], make_multi_index(0, 0, loop_step_k));
});
static_for<0, MPerThread, 1>{}([&](auto iM) {
static_for<0, NPerThread, 1>{}([&](auto iN) {
static_for<0, KPerThread, 1>{}([&](auto iK) {
constexpr auto offset =
thread_buffer_desc_mnk.CalculateOffset(make_tuple(iM, iN, iK));
// get reference to in data
const auto in_data_refs = generate_tie(
// return type should be lvalue
[&](auto I) -> const auto& {
return in_thread_buf_tuple(I)(Number<offset>{});
},
Number<NumInput>{});
// get referenec to dst data
auto out_data_refs = generate_tie(
// return type should be lvalue
[&](auto I) -> auto& {
return out_thread_buf_tuple(I)(Number<offset>{});
},
Number<NumOutput>{});
unpack2(elementwise_op, out_data_refs, in_data_refs);
});
});
});
static_for<0, NumOutput, 1>{}([&](auto I) {
out_global_store_tuple(I).Run(thread_buffer_desc_mnk,
make_tuple(I0, I0, I0),
out_thread_buf_tuple[I],
out_grid_3d_desc_tuple[I],
out_global_buf_tuple(I));
out_global_store_tuple(I).MoveDstSliceWindow(
out_grid_3d_desc_tuple[I], make_multi_index(0, 0, loop_step_k));
});
} while(--num_iter_k);
static_for<0, NumInput, 1>{}([&](auto I) {
in_global_load_tuple(I).MoveSrcSliceWindow(
in_grid_3d_desc_tuple[I],
make_multi_index(0, loop_step_n, -(K / loop_step_k) * loop_step_k));
});
static_for<0, NumOutput, 1>{}([&](auto I) {
out_global_store_tuple(I).MoveDstSliceWindow(
out_grid_3d_desc_tuple[I],
make_multi_index(0, loop_step_n, -(K / loop_step_k) * loop_step_k));
});
} while(--num_iter_n);
static_for<0, NumInput, 1>{}([&](auto I) {
in_global_load_tuple(I).MoveSrcSliceWindow(
in_grid_3d_desc_tuple[I],
make_multi_index(loop_step_m,
-(N / loop_step_n) * loop_step_n,
-(K / loop_step_k) * loop_step_k));
});
static_for<0, NumOutput, 1>{}([&](auto I) {
out_global_store_tuple(I).MoveDstSliceWindow(
out_grid_3d_desc_tuple[I],
make_multi_index(loop_step_m,
-(N / loop_step_n) * loop_step_n,
-(K / loop_step_k) * loop_step_k));
});
} while(--num_iter_m);
}
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_description/cluster_descriptor.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7r2.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r2.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor/static_tensor.hpp"
#include "ck/utility/common_header.hpp"
namespace ck {
template <typename GridwiseElementwiseFunctor,
typename InGridDescTuple,
typename OutGridDescTuple,
typename InDataTypePointerTuple,
typename OutDataTypePointerTuple,
typename Block2TileMap,
typename ElementwiseOperation>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_elementwise(const InGridDescTuple in_grid_desc_tuple,
const OutGridDescTuple out_grid_desc_tuple,
const InDataTypePointerTuple p_in_global_tuple,
const OutDataTypePointerTuple p_out_global_tuple,
const Block2TileMap block_2_tile_map,
const ElementwiseOperation elementwise_op)
{
GridwiseElementwiseFunctor::Run(in_grid_desc_tuple,
out_grid_desc_tuple,
p_in_global_tuple,
p_out_global_tuple,
block_2_tile_map,
elementwise_op);
}
template <typename InGridDescTuple,
typename OutGridDescTuple,
typename InDataTypePointerTuple,
typename OutDataTypePointerTuple,
typename Block2TileMap,
typename ElementwiseOperation,
index_t BlockSize,
index_t M0PerBlock,
index_t M1PerBlock,
index_t M0PerThread,
index_t M1PerThread,
typename ThreadClusterArrangeOrder,
typename InScalarPerVectorSeq,
typename OutScalarPerVectorSeq,
bool InOutSameVectorDim>
struct GridwiseElementwise
{
static constexpr index_t NumInput = InDataTypePointerTuple::Size();
static constexpr index_t NumOutput = OutDataTypePointerTuple::Size();
static_assert(NumInput == InScalarPerVectorSeq::Size() &&
NumOutput == OutScalarPerVectorSeq::Size() &&
NumInput == InGridDescTuple::Size() && NumOutput == OutGridDescTuple::Size(),
"Tuple size is inconsistent with the number of in/out!");
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
using PassThroughOp = tensor_operation::element_wise::PassThrough;
__device__ static void Run(const InGridDescTuple& in_grid_desc_tuple,
const OutGridDescTuple& out_grid_desc_tuple,
const InDataTypePointerTuple& p_in_global_tuple,
const OutDataTypePointerTuple& p_out_global_tuple,
const Block2TileMap& block_2_tile_map,
const ElementwiseOperation& elementwise_op)
{
constexpr auto src_datas = generate_tuple(
[&](auto I) {
using DataTypePointer = remove_cvref_t<decltype(InDataTypePointerTuple{}[I])>;
using DataType = remove_cv_t<remove_pointer_t<DataTypePointer>>;
return DataType{};
},
Number<NumInput>{});
constexpr auto dst_datas = generate_tuple(
[&](auto I) {
using DataTypePointer = remove_cvref_t<decltype(OutDataTypePointerTuple{}[I])>;
using DataType = remove_pointer_t<DataTypePointer>;
return DataType{};
},
Number<NumOutput>{});
const auto in_global_buf_tuple = generate_tuple(
[&](auto I) {
return make_dynamic_buffer<AddressSpaceEnum::Global>(
p_in_global_tuple[I], in_grid_desc_tuple[I].GetElementSpaceSize());
},
Number<NumInput>{});
auto out_global_buf_tuple = generate_tuple(
[&](auto I) {
return make_dynamic_buffer<AddressSpaceEnum::Global>(
p_out_global_tuple[I], out_grid_desc_tuple[I].GetElementSpaceSize());
},
Number<NumOutput>{});
const auto block_work_idx =
block_2_tile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
const index_t m0_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * M0PerBlock);
const index_t m1_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I1] * M1PerBlock);
const auto input_thread_grid_offset = generate_tuple(
[&](auto) {
return make_multi_index(m0_block_data_idx_on_grid, m1_block_data_idx_on_grid);
},
Number<NumInput>{});
const auto output_thread_grid_offset = generate_tuple(
[&](auto) {
return make_multi_index(m0_block_data_idx_on_grid, m1_block_data_idx_on_grid);
},
Number<NumOutput>{});
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
// If src and dst have same vector dim, then:
// M0 dim - for src and dst vector load/store
// else:
// M0 dim - for dst vector load
// M1 dim - for src vector store
using SrcDimAccessOrder = Sequence<0, 1>;
using DstDimAccessOrder =
std::conditional_t<InOutSameVectorDim, Sequence<0, 1>, Sequence<1, 0>>;
using SrcVectorDim = Number<1>;
using DstVectorDim = std::conditional_t<InOutSameVectorDim, Number<1>, Number<0>>;
using ThreadClusterLengths =
Sequence<Number<M0PerBlock / M0PerThread>{}, Number<M1PerBlock / M1PerThread>{}>;
auto global_to_global_transfer = ThreadGroupTensorSliceTransfer_v4r2<
ThisThreadBlock,
ElementwiseOperation,
uniform_sequence_gen_t<NumOutput, static_cast<index_t>(InMemoryDataOperationEnum::Set)>,
Sequence<M0PerBlock, M1PerBlock>,
ThreadClusterLengths,
ThreadClusterArrangeOrder,
decltype(src_datas),
decltype(dst_datas),
InGridDescTuple,
OutGridDescTuple,
SrcDimAccessOrder,
DstDimAccessOrder,
SrcVectorDim{},
DstVectorDim{},
InScalarPerVectorSeq,
OutScalarPerVectorSeq,
uniform_sequence_gen_t<NumInput, 1>,
uniform_sequence_gen_t<NumOutput, 1>,
uniform_sequence_gen_t<NumInput, false>,
uniform_sequence_gen_t<NumOutput, false>>{in_grid_desc_tuple,
input_thread_grid_offset,
out_grid_desc_tuple,
output_thread_grid_offset,
elementwise_op};
global_to_global_transfer.Run(
in_grid_desc_tuple, in_global_buf_tuple, out_grid_desc_tuple, out_global_buf_tuple, I0);
}
};
} // namespace ck
......@@ -439,7 +439,7 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
template <typename BLayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeBGridDescriptor_N_K(index_t KRaw, index_t NRaw, index_t StrideB)
MakeBGridDescriptor_N_K(const index_t NRaw, const index_t KRaw, const index_t StrideB)
{
constexpr auto matrix_padder =
ck::tensor_operation::device::MatrixPadder<GemmSpec, index_t, index_t, index_t>{
......@@ -463,15 +463,15 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
template <typename BsLayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeBsGridDescriptor_N_K(const std::array<index_t, NumBTensor>& KRaws,
const std::array<index_t, NumBTensor>& NRaws,
MakeBsGridDescriptor_N_K(const std::array<index_t, NumBTensor>& NRaws,
const std::array<index_t, NumBTensor>& KRaws,
const std::array<index_t, NumBTensor>& BsStride)
{
return generate_tuple(
[&](auto i) {
using BLayout = remove_cvref_t<tuple_element_t<i.value, BsLayout>>;
return MakeBGridDescriptor_N_K<BLayout, GemmSpec>(KRaws[i], NRaws[i], BsStride[i]);
return MakeBGridDescriptor_N_K<BLayout, GemmSpec>(NRaws[i], KRaws[i], BsStride[i]);
},
Number<NumBTensor>{});
}
......@@ -574,7 +574,6 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
{
return;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
......@@ -595,8 +594,10 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
generate_tuple([&](auto) { return make_multi_index(0, m_block_data_idx_on_grid, 0); },
Number<NumATensor>{});
#if 0
static_assert(ABlockTransferSrcScalarPerVector == ABlockTransferDstScalarPerVector_AK1,
"Src and Dst ScalarPerVector must be the same");
#endif
auto a_blockwise_copy = ThreadGroupTensorSliceTransfer_v7r2<
ThisThreadBlock,
......@@ -626,8 +627,10 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
generate_tuple([&](auto) { return make_multi_index(0, n_block_data_idx_on_grid, 0); },
Number<NumBTensor>{});
#if 0
static_assert(BBlockTransferSrcScalarPerVector == BBlockTransferDstScalarPerVector_BK1,
"Src and Dst ScalarPerVector must be the same");
#endif
auto b_blockwise_copy = ThreadGroupTensorSliceTransfer_v7r2<
ThisThreadBlock,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_selector.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace ck {
// Currently we do not have a elegant way to put single lds buffer & double lds buffer pipe in same
// kernel function Blockers:
// 1. Two separted declaration of __shared__ pointer is the key to make sure data access operate on
// two lds chunks.
// 2. Occupied __shared__ won't release until whole shader end, a.k.a AB and C may not use same lds
// buffer when we declare __shared__ inside blkgemmpipe
template <typename GridwiseGemm,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
index_t MinimumOccupancy = 1,
TailNumber TailNum = TailNumber::Full>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, MinimumOccupancy)
#endif
// __attribute__((amdgpu_waves_per_eu(1, 1)))
kernel_gemm_xdl_cshuffle_v3(typename GridwiseGemm::Argument karg)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
auto splitk_batch_offset = typename GridwiseGemm::SplitKBatchOffset(karg);
GridwiseGemm::template Run<HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
karg.p_a_grid + splitk_batch_offset.a_k_split_offset,
karg.p_b_grid + splitk_batch_offset.b_k_split_offset,
karg.p_c_grid,
p_shared,
karg);
#else
ignore = karg;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template <typename GridwiseGemm,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
index_t MinimumOccupancy = 1,
TailNumber TailNum = TailNumber::Full>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, MinimumOccupancy)
#endif
// __attribute__((amdgpu_waves_per_eu(1, 1)))
kernel_gemm_xdl_cshuffle_v3_2lds(typename GridwiseGemm::Argument karg)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
// Pass two lds pointer is the key to tell compiler that ds_read/write
// operate on different lds chunk at same time without order dependecy
__shared__ char p_shared_0[GridwiseGemm::GetSharedMemoryNumberOfByte()];
__shared__ char p_shared_1[GridwiseGemm::GetSharedMemoryNumberOfByte()];
auto splitk_batch_offset = typename GridwiseGemm::SplitKBatchOffset(karg);
GridwiseGemm::template Run_2Lds<HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
karg.p_a_grid + splitk_batch_offset.a_k_split_offset,
karg.p_b_grid + splitk_batch_offset.b_k_split_offset,
karg.p_c_grid,
p_shared_0,
p_shared_1,
karg);
#else
ignore = karg;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename CDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
tensor_operation::device::GemmSpecialization GemmSpec,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1Value,
index_t BK1Value,
index_t MPerXdl,
index_t NPerXdl,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool AThreadTransferSrcResetCoordinateAfterRun,
index_t ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BThreadTransferSrcResetCoordinateAfterRun,
index_t BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
BlockGemmPipelineScheduler BlkGemmPipeSched = BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion BlkGemmPipelineVer = BlockGemmPipelineVersion::v4,
typename ComputeTypeA = CDataType,
typename ComputeTypeB = ComputeTypeA>
struct GridwiseGemm_xdl_cshuffle_v3
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
static constexpr auto I7 = Number<7>{};
// K1 should be Number<...>
static constexpr auto AK0Number = Number<KPerBlock / AK1Value>{};
static constexpr auto BK0Number = Number<KPerBlock / BK1Value>{};
static constexpr auto AK1Number = Number<AK1Value>{};
static constexpr auto BK1Number = Number<BK1Value>{};
static constexpr index_t KPack =
math::max(math::lcm(AK1Number, BK1Number),
MfmaSelector<ComputeTypeA, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
__host__ static auto CalculateGridSize(index_t M, index_t N, index_t KBatch)
{
return std::make_tuple(Block2CTileMap::CalculateGridSize(M, N), 1, KBatch);
}
__host__ static auto CalculateMPadded(index_t M)
{
return math::integer_least_multiple(M, MPerBlock);
}
__host__ static auto CalculateNPadded(index_t N)
{
return math::integer_least_multiple(N, NPerBlock);
}
__host__ static auto CalculateKPadded(index_t K)
{
return math::integer_divide_ceil(K, KPerBlock) * KPerBlock;
}
__host__ static auto CalculateAK0Padded(index_t K, index_t K_Batch = 1)
{
auto K_t = K_Batch * KPerBlock;
return (K + K_t - 1) / K_t * (KPerBlock / AK1Value);
}
__host__ static auto CalculateBK0Padded(index_t K, index_t K_Batch = 1)
{
auto K_t = K_Batch * KPerBlock;
return (K + K_t - 1) / K_t * (KPerBlock / BK1Value);
}
__host__ static auto CalculateKPadded(index_t K, index_t K_Batch = 1)
{
auto K_t = K_Batch * KPerBlock;
return (K + K_t - 1) / K_t * KPerBlock;
}
__host__ static auto CalculateKRead(index_t K, index_t K_Batch = 1)
{
constexpr auto KReadVec = math::lcm(AK1Number, BK1Number);
auto K_t = K_Batch * KReadVec;
return (K + K_t - 1) / K_t * KReadVec;
}
__host__ static auto CalculateMBlock(index_t M)
{
return math::integer_divide_ceil(M, MPerBlock);
}
__host__ static auto CalculateNBlock(index_t N)
{
return math::integer_divide_ceil(N, NPerBlock);
}
template <index_t MNXdlPerWave, index_t MNWaves, index_t MNPerXdl, typename TileDesc_K0_MN_K1>
__host__ __device__ static constexpr auto MakeGemmMmaTileDescriptor(const TileDesc_K0_MN_K1&)
{
constexpr index_t K0 = TileDesc_K0_MN_K1{}.GetLength(Number<0>{});
constexpr index_t K1 = TileDesc_K0_MN_K1{}.GetLength(Number<2>{});
return transform_tensor_descriptor(
TileDesc_K0_MN_K1{},
make_tuple(make_merge_transform_v3_division_mod(make_tuple(Number<K0>{}, Number<K1>{})),
make_unmerge_transform(make_tuple(
Number<MNXdlPerWave>{}, Number<MNWaves>{}, Number<MNPerXdl>{}))),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}),
make_tuple(Sequence<3>{}, Sequence<0, 1, 2>{}));
}
__device__ static auto MakeAGridDescriptor_AK0_M_AK1(
index_t M, index_t MPad, index_t K, index_t KPad, index_t StrideA, index_t AK0)
{
const auto a_grid_desc_mraw_kraw = [&]() {
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
}
}();
using GemmSpecialization = tensor_operation::device::GemmSpecialization;
if constexpr(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both M and K
const auto a_grid_desc_m_k =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_right_pad_transform(M, MPad - M),
make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 = transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1Value)),
make_pass_through_transform(MPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad M, but not K
const auto a_grid_desc_ak0_m_ak1 = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1Value)),
make_right_pad_transform(M, MPad - M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad K, but not M
const auto a_grid_desc_m_k = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_pass_through_transform(M), make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 = transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1Value)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else
{
// not pad M or K
const auto a_grid_desc_ak0_m_ak1 = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1Value)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
}
__device__ static auto MakeBGridDescriptor_BK0_N_BK1(
index_t K, index_t KPad, index_t N, index_t NPad, index_t StrideB, index_t BK0)
{
const auto b_grid_desc_nraw_kraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(N, K), make_tuple(I1, StrideB));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(N, K), make_tuple(StrideB, I1));
}
}();
using GemmSpecialization = tensor_operation::device::GemmSpecialization;
if constexpr(GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both N and K
const auto b_grid_desc_n_k =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_right_pad_transform(N, NPad - N),
make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 = transform_tensor_descriptor(
b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1Value)),
make_pass_through_transform(NPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad N, but not K
const auto b_grid_desc_bk0_n_bk1 = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1Value)),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad K, but not N
const auto b_grid_desc_n_k = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_pass_through_transform(N), make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 = transform_tensor_descriptor(
b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1Value)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else
{
// not pad N or K
const auto b_grid_desc_bk0_n_bk1 = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1Value)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
}
template <typename ABlockDesc_AK0_M_AK1>
__host__ __device__ static constexpr auto
MakeAMmaTileDescriptor_M0_M1_M2_K(const ABlockDesc_AK0_M_AK1&)
{
constexpr index_t MWaves = MPerBlock / (MXdlPerWave * MPerXdl);
return MakeGemmMmaTileDescriptor<MXdlPerWave, MWaves, MPerXdl>(ABlockDesc_AK0_M_AK1{});
}
template <typename BBlockDesc_BK0_N_BK1>
__host__ __device__ static constexpr auto
MakeBMmaTileDescriptor_N0_N1_N2_K(const BBlockDesc_BK0_N_BK1&)
{
constexpr index_t NWaves = NPerBlock / (NXdlPerWave * NPerXdl);
return MakeGemmMmaTileDescriptor<NXdlPerWave, NWaves, NPerXdl>(BBlockDesc_BK0_N_BK1{});
}
__host__ __device__ static auto
MakeCGridDescriptor_M_N(index_t M, index_t MPad, index_t N, index_t NPad, index_t StrideC)
{
const auto c_grid_desc_mraw_nraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC));
}
}();
using GemmSpecialization = tensor_operation::device::GemmSpecialization;
if constexpr(GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad M and N
return transform_tensor_descriptor(c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(M, MPad - M),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad M, but not N
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(M, MPad - M), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad N, but not M
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_pass_through_transform(M), make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
// not pad M or N
return c_grid_desc_mraw_nraw;
}
}
struct Problem
{
__host__ Problem(index_t M_,
index_t N_,
index_t K_,
index_t StrideA_,
index_t StrideB_,
index_t StrideC_,
index_t KBatch_)
: M{M_},
N{N_},
K{K_},
StrideA{StrideA_},
StrideB{StrideB_},
StrideC{StrideC_},
KBatch{KBatch_},
MPadded{CalculateMPadded(M_)},
NPadded{CalculateNPadded(N_)},
KRead{CalculateKRead(K_, KBatch_)},
KPadded{CalculateKPadded(K_, KBatch_)},
AK0{CalculateAK0Padded(K_, KBatch_)},
BK0{CalculateBK0Padded(K_, KBatch_)},
MBlock{CalculateMBlock(M_)},
NBlock{CalculateNBlock(N_)}
{
}
__host__ void Print() const
{
std::cout << "problem {"
<< "M:" << M << ", "
<< "N:" << N << ", "
<< "K:" << K << ", "
<< "SA:" << StrideA << ", "
<< "SB:" << StrideB << ", "
<< "SC:" << StrideC << ", "
<< "MP:" << MPadded << ", "
<< "NP:" << NPadded << ", "
<< "KRead:" << KRead << ", "
<< "KP:" << KPadded << ", "
<< "AK0:" << AK0 << ", "
<< "BK0:" << BK0 << ", "
<< "MBlock: " << MBlock << ", "
<< "NBlock: " << NBlock << "}" << std::endl;
}
index_t M;
index_t N;
index_t K;
index_t StrideA;
index_t StrideB;
index_t StrideC;
index_t KBatch;
index_t MPadded;
index_t NPadded;
index_t KRead;
index_t KPadded;
index_t AK0;
index_t BK0;
index_t MBlock;
index_t NBlock;
};
// Argument
struct Argument : public tensor_operation::device::BaseArgument, public Problem
{
__host__ Argument(const ADataType* p_a_grid_,
const BDataType* p_b_grid_,
CDataType* p_c_grid_,
index_t M_,
index_t N_,
index_t K_,
index_t StrideA_,
index_t StrideB_,
index_t StrideC_,
index_t k_batch_)
: Problem{M_, N_, K_, StrideA_, StrideB_, StrideC_, k_batch_},
p_a_grid{p_a_grid_},
p_b_grid{p_b_grid_},
p_c_grid{p_c_grid_}
{
}
const ADataType* p_a_grid;
const BDataType* p_b_grid;
CDataType* p_c_grid;
};
struct SplitKBatchOffset
{
__device__ SplitKBatchOffset(Argument& karg)
{
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{
a_k_split_offset = blockIdx.z * karg.KRead;
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
a_k_split_offset = blockIdx.z * karg.KRead * karg.M;
}
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, BLayout>)
{
b_k_split_offset = blockIdx.z * karg.KRead * karg.N;
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, BLayout>)
{
b_k_split_offset = blockIdx.z * karg.KRead;
}
if(blockIdx.z < static_cast<uint32_t>(karg.KBatch - 1))
{
karg.K = karg.KRead;
}
else
{
karg.K = karg.K - karg.KRead * (karg.KBatch - 1);
}
}
index_t a_k_split_offset;
index_t b_k_split_offset;
};
__device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()
{
// A matrix in LDS memory, dst of blockwise copy
if constexpr(ABlockLdsExtraM)
{
return make_naive_tensor_descriptor(
make_tuple(AK0Number, Number<MPerBlock>{}, AK1Number),
make_tuple(AK1Number, Number<KPerBlock + ABlockLdsExtraM>{}, I1));
}
// xor tensor transformation request more unnecessary vgpr usage, would cause register spill
// in some cases.
else if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
constexpr auto MLdsLayer = 32 * 4 / KPerBlock / sizeof(ADataType) < 1
? 1
: 32 * 4 / KPerBlock / sizeof(ADataType);
constexpr auto a_lds_block_desc = make_naive_tensor_descriptor(
make_tuple(
AK0Number * Number<MLdsLayer>{}, Number<MPerBlock / MLdsLayer>{}, AK1Number),
make_tuple(AK1Number, Number<KPerBlock * MLdsLayer>{}, I1));
constexpr auto a_lds_block_desc_permuted = transform_tensor_descriptor(
a_lds_block_desc,
make_tuple(make_xor_transform(make_tuple(Number<MPerBlock / MLdsLayer>{},
Number<AK0Number * MLdsLayer>{})),
make_pass_through_transform(AK1Number)),
make_tuple(Sequence<1, 0>{}, Sequence<2>{}),
make_tuple(Sequence<1, 0>{}, Sequence<2>{}));
constexpr auto a_lds_block_desc_ak0_mldslayer_m_ak1 = transform_tensor_descriptor(
a_lds_block_desc_permuted,
make_tuple(make_unmerge_transform(make_tuple(AK0Number, Number<MLdsLayer>{})),
make_pass_through_transform(Number<MPerBlock / MLdsLayer>{}),
make_pass_through_transform(AK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}, Sequence<3>{}));
constexpr auto a_lds_block_desc_ak0_m_ak1 = transform_tensor_descriptor(
a_lds_block_desc_ak0_mldslayer_m_ak1,
make_tuple(make_pass_through_transform(AK0Number),
make_merge_transform_v3_division_mod(
make_tuple(Number<MPerBlock / MLdsLayer>{}, Number<MLdsLayer>{})),
make_pass_through_transform(AK1Number)),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
return a_lds_block_desc_ak0_m_ak1;
}
else // ColumnMajor A
{
// kfold and mpair dimension is not always required.
// more dimension in merge_transform increase the difficulty of generating immarg offset
// for compiler.
constexpr auto M0 = ABlockTransferThreadClusterLengths_AK0_M_AK1{}.At(I1);
constexpr auto M1 = MPerBlock / M0;
constexpr auto KThreadWrite = ABlockTransferThreadClusterLengths_AK0_M_AK1{}.At(I0);
constexpr auto K0PerThreadWrite = AK0Number / KThreadWrite;
constexpr auto KThreadRead = 64 / MPerXdl;
constexpr auto K0PerThreadRead = AK0Number / KThreadRead;
constexpr auto kfold = (AK1Number * M0 * sizeof(ADataType) > 128)
? 1
: 128 / (AK1Number * M0 * sizeof(ADataType));
constexpr auto KThreadReadPerm =
(kfold * K0PerThreadWrite / K0PerThreadRead) > 1
? KThreadRead / (kfold * K0PerThreadWrite / K0PerThreadRead)
: KThreadRead;
// 1<=mpair<=n0
constexpr auto mpair = (AK1Number * MPerXdl * sizeof(ADataType) > 128)
? 1
: ((128 / (AK1Number * MPerXdl * sizeof(ADataType))) > M0
? M0
: 128 / (AK1Number * MPerXdl * sizeof(ADataType)));
constexpr auto a_lds_block_desc = make_naive_tensor_descriptor_packed(
make_tuple(Number<KThreadWrite / kfold / KThreadReadPerm>{},
Number<K0PerThreadWrite>{},
Number<KThreadReadPerm * M1>{},
Number<kfold * M0 / mpair>{},
Number<mpair>{},
AK1Number));
constexpr auto a_lds_block_desc_permuted = transform_tensor_descriptor(
a_lds_block_desc,
make_tuple(
make_pass_through_transform(Number<KThreadWrite / kfold / KThreadReadPerm>{}),
make_pass_through_transform(Number<K0PerThreadWrite>{}),
make_xor_transform(
make_tuple(Number<KThreadReadPerm * M1>{}, Number<kfold * M0 / mpair>{})),
make_pass_through_transform(Number<mpair>{}),
make_pass_through_transform(AK1Number)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{}, Sequence<5>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{}, Sequence<5>{}));
constexpr auto a_lds_block_desc_unmerged = transform_tensor_descriptor(
a_lds_block_desc_permuted,
make_tuple(
make_pass_through_transform(Number<KThreadWrite / kfold / KThreadReadPerm>{}),
make_pass_through_transform(Number<K0PerThreadWrite>{}),
make_unmerge_transform(make_tuple(Number<KThreadReadPerm>{}, Number<M1>{})),
make_unmerge_transform(make_tuple(Number<kfold>{}, Number<M0 / mpair>{})),
make_pass_through_transform(Number<mpair>{}),
make_pass_through_transform(AK1Number)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{}),
make_tuple(Sequence<1>{},
Sequence<2>{},
Sequence<0, 3>{},
Sequence<4, 5>{},
Sequence<6>{},
Sequence<7>{}));
constexpr auto a_lds_block_desc_ak0_m_ak1 = transform_tensor_descriptor(
a_lds_block_desc_unmerged,
make_tuple(make_merge_transform_v3_division_mod(
make_tuple(Number<KThreadReadPerm>{},
Number<KThreadWrite / kfold / KThreadReadPerm>{},
Number<kfold>{},
Number<K0PerThreadWrite>{})),
make_merge_transform_v3_division_mod(
make_tuple(Number<M0 / mpair>{}, Number<mpair>{}, Number<M1>{})),
make_pass_through_transform(AK1Number)),
make_tuple(Sequence<0, 1, 4, 2>{}, Sequence<5, 6, 3>{}, Sequence<7>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
return a_lds_block_desc_ak0_m_ak1;
}
}
__device__ static constexpr auto GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1()
{
// B matrix in LDS memory, dst of blockwise copy
if constexpr(BBlockLdsExtraN)
{
return make_naive_tensor_descriptor(
make_tuple(BK0Number, Number<NPerBlock>{}, BK1Number),
make_tuple(BK1Number, Number<KPerBlock + BBlockLdsExtraN>{}, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
// NLdsLayer * K0 as logical Bank
constexpr auto NLdsLayer = 32 * 4 / KPerBlock / sizeof(BDataType) < 1
? 1
: 32 * 4 / KPerBlock / sizeof(BDataType);
;
constexpr auto b_lds_block_desc = make_naive_tensor_descriptor(
make_tuple(
BK0Number * Number<NLdsLayer>{}, Number<NPerBlock / NLdsLayer>{}, BK1Number),
make_tuple(BK1Number, Number<KPerBlock * NLdsLayer>{}, I1));
constexpr auto b_lds_block_desc_permuted = transform_tensor_descriptor(
b_lds_block_desc,
make_tuple(make_xor_transform(make_tuple(Number<NPerBlock / NLdsLayer>{},
Number<BK0Number * NLdsLayer>{})),
make_pass_through_transform(BK1Number)),
make_tuple(Sequence<1, 0>{}, Sequence<2>{}),
make_tuple(Sequence<1, 0>{}, Sequence<2>{}));
constexpr auto b_lds_block_desc_bk0_nldslayer_n_bk1 = transform_tensor_descriptor(
b_lds_block_desc_permuted,
make_tuple(make_unmerge_transform(make_tuple(BK0Number, Number<NLdsLayer>{})),
make_pass_through_transform(Number<NPerBlock / NLdsLayer>{}),
make_pass_through_transform(BK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}, Sequence<3>{}));
constexpr auto b_lds_block_desc_bk0_n_bk1 = transform_tensor_descriptor(
b_lds_block_desc_bk0_nldslayer_n_bk1,
make_tuple(make_pass_through_transform(BK0Number),
make_merge_transform_v3_division_mod(
make_tuple(Number<NPerBlock / NLdsLayer>{}, Number<NLdsLayer>{})),
make_pass_through_transform(BK1Number)),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
return b_lds_block_desc_bk0_n_bk1;
}
else // RowMajor B
{
constexpr auto N0 = BBlockTransferThreadClusterLengths_BK0_N_BK1{}.At(I1);
constexpr auto N1 = NPerBlock / N0;
constexpr auto KThreadWrite = BBlockTransferThreadClusterLengths_BK0_N_BK1{}.At(I0);
constexpr auto K0PerThreadWrite = BK0Number / KThreadWrite;
constexpr auto KThreadRead = 64 / NPerXdl;
constexpr auto K0PerThreadRead = BK0Number / KThreadRead;
constexpr auto kfold = (BK1Number * N0 * sizeof(BDataType) > 128)
? 1
: 128 / (BK1Number * N0 * sizeof(BDataType));
constexpr auto KThreadReadPerm =
(kfold * K0PerThreadWrite / K0PerThreadRead) > 1
? KThreadRead / (kfold * K0PerThreadWrite / K0PerThreadRead)
: KThreadRead;
// 1<=npair<=n0
constexpr auto npair = (BK1Number * NPerXdl * sizeof(BDataType) > 128)
? 1
: ((128 / (BK1Number * NPerXdl * sizeof(BDataType))) > N0
? N0
: 128 / (BK1Number * NPerXdl * sizeof(BDataType)));
constexpr auto b_lds_block_desc = make_naive_tensor_descriptor_packed(
make_tuple(Number<KThreadWrite / kfold / KThreadReadPerm>{},
Number<K0PerThreadWrite>{},
Number<KThreadReadPerm * N1>{},
Number<kfold * N0 / npair>{},
Number<npair>{},
BK1Number));
constexpr auto b_lds_block_desc_permuted = transform_tensor_descriptor(
b_lds_block_desc,
make_tuple(
make_pass_through_transform(Number<KThreadWrite / kfold / KThreadReadPerm>{}),
make_pass_through_transform(Number<K0PerThreadWrite>{}),
make_xor_transform(
make_tuple(Number<KThreadReadPerm * N1>{}, Number<kfold * N0 / npair>{})),
make_pass_through_transform(Number<npair>{}),
make_pass_through_transform(BK1Number)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{}, Sequence<5>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{}, Sequence<5>{}));
constexpr auto b_lds_block_desc_unmerged = transform_tensor_descriptor(
b_lds_block_desc_permuted,
make_tuple(
make_pass_through_transform(Number<KThreadWrite / kfold / KThreadReadPerm>{}),
make_pass_through_transform(Number<K0PerThreadWrite>{}),
make_unmerge_transform(make_tuple(Number<KThreadReadPerm>{}, Number<N1>{})),
make_unmerge_transform(make_tuple(Number<kfold>{}, Number<N0 / npair>{})),
make_pass_through_transform(Number<npair>{}),
make_pass_through_transform(BK1Number)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{}),
make_tuple(Sequence<1>{},
Sequence<2>{},
Sequence<0, 3>{},
Sequence<4, 5>{},
Sequence<6>{},
Sequence<7>{}));
constexpr auto b_lds_block_desc_bk0_n_bk1 = transform_tensor_descriptor(
b_lds_block_desc_unmerged,
make_tuple(make_merge_transform_v3_division_mod(
make_tuple(Number<KThreadReadPerm>{},
Number<KThreadWrite / kfold / KThreadReadPerm>{},
Number<kfold>{},
Number<K0PerThreadWrite>{})),
make_merge_transform_v3_division_mod(
make_tuple(Number<N0 / npair>{}, Number<npair>{}, Number<N1>{})),
make_pass_through_transform(BK1Number)),
make_tuple(Sequence<0, 1, 4, 2>{}, Sequence<5, 6, 3>{}, Sequence<7>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
return b_lds_block_desc_bk0_n_bk1;
}
}
__device__ static constexpr auto GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock()
{
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl>{},
I1,
Number<CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>{}));
return c_shuffle_block_desc_mblock_mperblock_nblock_nperblock;
}
using BlockwiseGemmPipe =
remove_cvref_t<decltype(BlockGemmPipeline_Selector<
BlkGemmPipelineVer,
BlkGemmPipeSched,
BlockSize,
ADataType,
BDataType,
ComputeTypeA,
AccDataType,
decltype(GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()),
decltype(GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1()),
decltype(MakeAMmaTileDescriptor_M0_M1_M2_K(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1())),
decltype(MakeBMmaTileDescriptor_N0_N1_N2_K(
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1())),
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXdl,
NPerXdl,
MXdlPerWave,
NXdlPerWave,
KPack>())>;
__device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1Number, BK1Number);
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size_aligned = math::integer_least_multiple(
b_block_desc_bk0_n_bk1.GetElementSpaceSize(), max_lds_align);
// LDS allocation for C shuffle in LDS
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
constexpr auto c_block_size =
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
return math::max((a_block_space_size_aligned * sizeof(ADataType) +
b_block_space_size_aligned * sizeof(BDataType)),
c_block_size * sizeof(CShuffleDataType));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
__host__ static constexpr bool CheckValidity(const Argument& karg)
{
static_assert((MPerBlock % (MPerXdl * MXdlPerWave) == 0) &&
(NPerBlock % (NXdlPerWave * NPerXdl)) == 0,
"Invalid tuning param!");
if constexpr(!(GemmSpec == tensor_operation::device::GemmSpecialization::MPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding))
{
if(!(karg.M % MPerBlock == 0))
{
#if DEBUG_LOG
std::cout << "Arg M value is not a multiple of MPerBlock! M: " << karg.M << " "
<< __FILE__ << ":" << __LINE__ << ", in function: " << __func__
<< std::endl;
#endif // DEBUG_LOG
return false;
}
}
if constexpr(!(GemmSpec == tensor_operation::device::GemmSpecialization::NPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::NKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding))
{
if(!(karg.N % NPerBlock == 0))
{
#if DEBUG_LOG
std::cout << "Arg N value is not a multiple of NPerBlock! N: " << karg.N << " "
<< __FILE__ << ":" << __LINE__ << ", in function: " << __func__
<< std::endl;
#endif // DEBUG_LOG
return false;
}
}
if constexpr(!(GemmSpec == tensor_operation::device::GemmSpecialization::KPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::NKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding))
{
auto K_t = karg.KBatch * KPerBlock;
if(!(karg.K % K_t == 0))
{
#if DEBUG_LOG
std::cout << "Arg K value is not a multiple of K_Batch * K0PerBlock * K1! K: "
<< karg.K << " " << __FILE__ << ":" << __LINE__
<< ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
else
{
constexpr auto KReadVec = math::lcm(AK1Number, BK1Number);
auto K_t = karg.KBatch * KReadVec;
auto KReadPadSplited = math::integer_divide_ceil(karg.K, K_t) * KReadVec;
if((KReadPadSplited * (karg.KBatch - 1)) >= karg.K)
{
return false;
}
}
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
if(karg.K % ABlockTransferSrcScalarPerVector != 0)
{
#if DEBUG_LOG
std::cout << "Arg K (" << karg.K
<< ") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<< ABlockTransferSrcScalarPerVector << " )! " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
else
{
if(karg.M % ABlockTransferSrcScalarPerVector != 0)
{
#if DEBUG_LOG
std::cout << "Arg M (" << karg.M
<< ") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<< ABlockTransferSrcScalarPerVector << " )! " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
if(karg.N % BBlockTransferSrcScalarPerVector != 0)
{
#if DEBUG_LOG
std::cout << "Arg N (" << karg.N
<< ") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<< BBlockTransferSrcScalarPerVector << " )! " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
else
{
if(karg.K % BBlockTransferSrcScalarPerVector != 0)
{
#if DEBUG_LOG
std::cout << "Arg K (" << karg.K
<< ") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<< BBlockTransferSrcScalarPerVector << " )! " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
if(karg.N % CShuffleBlockTransferScalarPerVector_NPerBlock != 0)
{
#if DEBUG_LOG
std::cout << "Arg N (" << karg.N
<< ") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<< CShuffleBlockTransferScalarPerVector_NPerBlock << " )! " << __FILE__
<< ":" << __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
else
{
if(karg.M % CShuffleBlockTransferScalarPerVector_NPerBlock != 0)
{
#if DEBUG_LOG
std::cout << "Arg M (" << karg.M
<< ") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<< CShuffleBlockTransferScalarPerVector_NPerBlock << " )! " << __FILE__
<< ":" << __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
// check gridwise gemm pipeline
const auto num_k_loop = karg.AK0 / (KPerBlock / AK1Value);
if constexpr(BlkGemmPipelineVer != BlockGemmPipelineVersion::v1)
{
if(num_k_loop <= BlockwiseGemmPipe::PrefetchStages)
{
return false;
}
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / KPerBlock;
return BlockwiseGemmPipe::BlockHasHotloop(num_loop);
}
__host__ static constexpr TailNumber CalculateKBlockLoopTailNum(index_t K)
{
const index_t num_loop = K / KPerBlock;
return BlockwiseGemmPipe::BlockLoopTailNum(num_loop);
}
template <typename CGridDesc>
__device__ static constexpr auto MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
const CGridDesc& c_grid_desc_m_n, index_t MBlock, index_t NBlock)
{
const auto c_grid_desc_mblock_mperblock_nblock_nperblock = transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(MBlock, Number<MPerBlock>{})),
make_unmerge_transform(make_tuple(NBlock, Number<NPerBlock>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2, 3>{}));
return c_grid_desc_mblock_mperblock_nblock_nperblock;
}
// return block_id to C matrix tile idx (m0, n0) mapping
// if arch = gfx942
using Block2CTileMap = BlockToCTileMap_Grouped_M00_N0_M01Adapt<8, MPerBlock, NPerBlock>;
// using Block2CTileMap = BlockToCTileMap_3DGrid_KSplit<MPerBlock, NPerBlock>;
template <bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
TailNumber TailNum = TailNumber::Odd>
__device__ static void Run(const ADataType* p_a_grid,
const BDataType* p_b_grid,
CDataType* p_c_grid,
void* p_shared,
const Problem& problem)
{
const auto a_grid_desc_ak0_m_ak1 = MakeAGridDescriptor_AK0_M_AK1(
problem.M, problem.MPadded, problem.K, problem.KPadded, problem.StrideA, problem.AK0);
const auto b_grid_desc_bk0_n_bk1 = MakeBGridDescriptor_BK0_N_BK1(
problem.K, problem.KPadded, problem.N, problem.NPadded, problem.StrideB, problem.BK0);
const auto c_grid_desc_m_n = MakeCGridDescriptor_M_N(
problem.M, problem.MPadded, problem.N, problem.NPadded, problem.StrideC);
const auto c_grid_desc_mblock_mperblock_nblock_nperblock =
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n, problem.MBlock, problem.NBlock);
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_bk0_n_bk1.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_grid, c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
const AElementwiseOperation a_element_op{};
const BElementwiseOperation b_element_op{};
const CElementwiseOperation c_element_op{};
// divide block work by [M, N]
const auto block_2_ctile_map = Block2CTileMap{problem.M, problem.N, 4};
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
make_tuple(c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I0),
c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I2))))
{
return;
}
const index_t block_m_id = __builtin_amdgcn_readfirstlane(block_work_idx[I0]);
const index_t block_n_id = __builtin_amdgcn_readfirstlane(block_work_idx[I1]);
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_m_id * MPerBlock);
const index_t n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_n_id * NPerBlock);
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1Number, BK1Number);
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// A matrix blockwise copy
auto a_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
AElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<AK0Number, MPerBlock, AK1Number>,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ADataType,
ADataType,
decltype(a_grid_desc_ak0_m_ak1),
decltype(a_block_desc_ak0_m_ak1),
ABlockTransferSrcAccessOrder,
Sequence<0, 1, 2>,
ABlockTransferSrcVectorDim,
2,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
1,
1,
AThreadTransferSrcResetCoordinateAfterRun,
true,
BlockwiseGemmPipe::GlobalBufferNum>(
a_grid_desc_ak0_m_ak1,
make_multi_index(0, m_block_data_idx_on_grid, 0),
a_element_op,
a_block_desc_ak0_m_ak1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// B matrix blockwise copy
auto b_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<BK0Number, NPerBlock, BK1Number>,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BDataType,
BDataType,
decltype(b_grid_desc_bk0_n_bk1),
decltype(b_block_desc_bk0_n_bk1),
BBlockTransferSrcAccessOrder,
Sequence<0, 1, 2>,
BBlockTransferSrcVectorDim,
2,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true,
BlockwiseGemmPipe::GlobalBufferNum>(
b_grid_desc_bk0_n_bk1,
make_multi_index(0, n_block_data_idx_on_grid, 0),
b_element_op,
b_block_desc_bk0_n_bk1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
// Cast after lds
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ADataType*>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<BDataType*>(p_shared) +
a_block_space_size_aligned * sizeof(ADataType) / sizeof(BDataType),
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock / AK1Number, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(KPerBlock / BK1Number, 0, 0);
// Blockwise GEMM pipeline
static_assert(std::is_default_constructible_v<BlockwiseGemmPipe>);
auto blockwise_gemm_pipeline = BlockwiseGemmPipe{};
auto c_thread_buf = blockwise_gemm_pipeline.GetCThreadBuffer();
const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane(
(a_grid_desc_ak0_m_ak1.GetLength(I0) * a_grid_desc_ak0_m_ak1.GetLength(I2)) /
KPerBlock);
blockwise_gemm_pipeline.template Run<HasMainKBlockLoop, TailNum>(a_grid_desc_ak0_m_ak1,
a_block_desc_ak0_m_ak1,
a_blockwise_copy,
a_grid_buf,
a_block_buf,
a_block_slice_copy_step,
b_grid_desc_bk0_n_bk1,
b_block_desc_bk0_n_bk1,
b_blockwise_copy,
b_grid_buf,
b_block_buf,
b_block_slice_copy_step,
c_thread_buf,
num_k_block_main_loop);
// shuffle C and write out
{
static_assert(MXdlPerWave % CShuffleMXdlPerWavePerShuffle == 0 &&
NXdlPerWave % CShuffleNXdlPerWavePerShuffle == 0,
"wrong!");
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
// TODO: hacky, fix it!
constexpr auto c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2 =
blockwise_gemm_pipeline.GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp =
blockwise_gemm_pipeline.GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
constexpr auto M0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I0);
constexpr auto N0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I1);
constexpr auto M1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I2);
constexpr auto N1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I3);
constexpr auto M2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I4);
constexpr auto M3 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I5);
constexpr auto M4 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I6);
constexpr auto N2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I7);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
auto c_shuffle_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<CShuffleDataType*>(p_shared),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2 = transform_tensor_descriptor(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
make_tuple(
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleMXdlPerWavePerShuffle>{}, // M0 (MXdlPerWave) per shuffle
M1, // M1 = MWave
M2, // M2 * M3 * M4 = MPerXdl
M3,
M4)),
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleNXdlPerWavePerShuffle>{}, // N0 (NXdlPerWave) per shuffle
N1, // N1 = NWave
N2))), // N2 = NPerXdl
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(
Sequence<>{}, Sequence<0, 2, 4, 5, 6>{}, Sequence<>{}, Sequence<1, 3, 7>{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm_pipeline.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const index_t m_thread_data_on_block = c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_block = c_thread_mtx_on_block[I1];
const auto m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M0, M1, M2, M3, M4))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto m_thread_data_on_block_idx =
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor.CalculateBottomIndex(
make_multi_index(m_thread_data_on_block));
const auto n_thread_data_on_block_to_n0_n1_n2_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(N0, N1, N2))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
const auto n_thread_data_on_block_idx =
n_thread_data_on_block_to_n0_n1_n2_adaptor.CalculateBottomIndex(
make_multi_index(n_thread_data_on_block));
// shuffle: threadwise copy C from VGPR to LDS
auto c_thread_copy_vgpr_to_lds =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
CShuffleDataType,
decltype(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2),
decltype(c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2),
ck::tensor_operation::element_wise::PassThrough,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
I1,
I1,
M2,
I1,
M4,
I1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
7,
1,
InMemoryDataOperationEnum::Set,
1,
true>{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
make_multi_index(0,
0,
m_thread_data_on_block_idx[I1],
n_thread_data_on_block_idx[I1],
m_thread_data_on_block_idx[I2],
m_thread_data_on_block_idx[I3],
m_thread_data_on_block_idx[I4],
n_thread_data_on_block_idx[I2]),
ck::tensor_operation::element_wise::PassThrough{}};
// shuffle: blockwise copy C from LDS to global
auto c_shuffle_block_copy_lds_to_global = ThreadGroupTensorSliceTransfer_v6r1<
ThisThreadBlock, // ThreadGroup
CElementwiseOperation, // ElementwiseOperation,
CGlobalMemoryDataOperation, // DstInMemOp,
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>, // BlockSliceLengths,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
Sequence<0, 1, 2, 3>, // typename ThreadClusterArrangeOrder,
CShuffleDataType, // typename SrcData,
CDataType, // typename DstData,
decltype(c_shuffle_block_desc_mblock_mperblock_nblock_nperblock),
decltype(c_grid_desc_mblock_mperblock_nblock_nperblock),
Sequence<0, 1, 2, 3>, // typename DimAccessOrder,
3, // index_t VectorDim,
CShuffleBlockTransferScalarPerVector_NPerBlock, // index_t ScalarPerVector,
true, // bool ThreadTransferSrcResetCoordinateAfterRun,
false> // bool ThreadTransferDstResetCoordinateAfterRun>
{c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(0, 0, 0, 0),
c_grid_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(block_m_id, 0, block_n_id, 0),
c_element_op};
// space filling curve for threadwise C in VGPR
constexpr auto sfc_c_vgpr =
SpaceFillingCurve<Sequence<MXdlPerWave, NXdlPerWave, 1, 1, M2, 1, M4, 1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
1,
1,
M2,
1,
M4,
1>>{};
// space filling curve for shuffled blockwise C in global mem
constexpr auto sfc_c_global =
SpaceFillingCurve<Sequence<1, MPerBlock, 1, NPerBlock>,
Sequence<0, 2, 1, 3>,
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>>{};
constexpr index_t num_access = sfc_c_vgpr.GetNumOfAccess();
static_assert(num_access == sfc_c_global.GetNumOfAccess(), "wrong!");
static_for<0, num_access, 1>{}([&](auto access_id) {
// make sure it's safe to write to LDS
block_sync_lds();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2,
sfc_c_vgpr.GetIndexTupleOfNumber(access_id),
c_thread_buf,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
c_shuffle_block_buf);
// make sure it's safe to read from LDS
block_sync_lds();
// each block copy its data from LDS to global
c_shuffle_block_copy_lds_to_global.Run(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
c_shuffle_block_buf,
c_grid_desc_mblock_mperblock_nblock_nperblock,
c_grid_buf);
if constexpr(access_id < num_access - 1)
{
constexpr auto c_global_step = sfc_c_global.GetForwardStep(access_id);
// move on C
c_shuffle_block_copy_lds_to_global.MoveDstSliceWindow(
c_grid_desc_mblock_mperblock_nblock_nperblock, c_global_step);
}
});
}
}
template <bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
TailNumber TailNum = TailNumber::Odd>
__device__ static void Run_2Lds(const ADataType* p_a_grid,
const BDataType* p_b_grid,
CDataType* p_c_grid,
void* p_shared_0,
void* p_shared_1,
const Problem& problem)
{
const auto a_grid_desc_ak0_m_ak1 = MakeAGridDescriptor_AK0_M_AK1(
problem.M, problem.MPadded, problem.K, problem.KPadded, problem.StrideA, problem.AK0);
const auto b_grid_desc_bk0_n_bk1 = MakeBGridDescriptor_BK0_N_BK1(
problem.K, problem.KPadded, problem.N, problem.NPadded, problem.StrideB, problem.BK0);
const auto c_grid_desc_m_n = MakeCGridDescriptor_M_N(
problem.M, problem.MPadded, problem.N, problem.NPadded, problem.StrideC);
const auto c_grid_desc_mblock_mperblock_nblock_nperblock =
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n, problem.MBlock, problem.NBlock);
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_bk0_n_bk1.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_grid, c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
const AElementwiseOperation a_element_op{};
const BElementwiseOperation b_element_op{};
const CElementwiseOperation c_element_op{};
// divide block work by [M, N]
const auto block_2_ctile_map = Block2CTileMap{problem.M, problem.N, 4};
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
make_tuple(c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I0),
c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I2))))
{
return;
}
const index_t block_m_id = __builtin_amdgcn_readfirstlane(block_work_idx[I0]);
const index_t block_n_id = __builtin_amdgcn_readfirstlane(block_work_idx[I1]);
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_m_id * MPerBlock);
const index_t n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_n_id * NPerBlock);
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1Number, BK1Number);
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// A matrix blockwise copy
auto a_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
AElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<AK0Number, MPerBlock, AK1Number>,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ADataType,
ADataType,
decltype(a_grid_desc_ak0_m_ak1),
decltype(a_block_desc_ak0_m_ak1),
ABlockTransferSrcAccessOrder,
Sequence<0, 1, 2>,
ABlockTransferSrcVectorDim,
2,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
1,
1,
AThreadTransferSrcResetCoordinateAfterRun,
true,
BlockwiseGemmPipe::GlobalBufferNum>(
a_grid_desc_ak0_m_ak1,
make_multi_index(0, m_block_data_idx_on_grid, 0),
a_element_op,
a_block_desc_ak0_m_ak1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// B matrix blockwise copy
auto b_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<BK0Number, NPerBlock, BK1Number>,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BDataType,
BDataType,
decltype(b_grid_desc_bk0_n_bk1),
decltype(b_block_desc_bk0_n_bk1),
BBlockTransferSrcAccessOrder,
Sequence<0, 1, 2>,
BBlockTransferSrcVectorDim,
2,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true,
BlockwiseGemmPipe::GlobalBufferNum>(
b_grid_desc_bk0_n_bk1,
make_multi_index(0, n_block_data_idx_on_grid, 0),
b_element_op,
b_block_desc_bk0_n_bk1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
auto a_block_buf_ping = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ADataType*>(p_shared_0), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf_ping = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<BDataType*>(p_shared_0) +
a_block_space_size_aligned * sizeof(ADataType) / sizeof(BDataType),
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
auto a_block_buf_pong = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ADataType*>(p_shared_1), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf_pong = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<BDataType*>(p_shared_1) +
a_block_space_size_aligned * sizeof(ADataType) / sizeof(BDataType),
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
auto a_block_bufs = make_tuple(a_block_buf_ping, a_block_buf_pong);
auto b_block_bufs = make_tuple(b_block_buf_ping, b_block_buf_pong);
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock / AK1Number, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(KPerBlock / BK1Number, 0, 0);
// Blockwise GEMM pipeline
static_assert(std::is_default_constructible_v<BlockwiseGemmPipe>);
auto blockwise_gemm_pipeline = BlockwiseGemmPipe{};
auto c_thread_buf = blockwise_gemm_pipeline.GetCThreadBuffer();
const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane(
(a_grid_desc_ak0_m_ak1.GetLength(I0) * a_grid_desc_ak0_m_ak1.GetLength(I2)) /
KPerBlock);
blockwise_gemm_pipeline.template Run<HasMainKBlockLoop, TailNum>(a_grid_desc_ak0_m_ak1,
a_block_desc_ak0_m_ak1,
a_blockwise_copy,
a_grid_buf,
a_block_bufs,
a_block_slice_copy_step,
b_grid_desc_bk0_n_bk1,
b_block_desc_bk0_n_bk1,
b_blockwise_copy,
b_grid_buf,
b_block_bufs,
b_block_slice_copy_step,
c_thread_buf,
num_k_block_main_loop);
// shuffle C and write out
{
static_assert(MXdlPerWave % CShuffleMXdlPerWavePerShuffle == 0 &&
NXdlPerWave % CShuffleNXdlPerWavePerShuffle == 0,
"wrong!");
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
// TODO: hacky, fix it!
constexpr auto c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2 =
blockwise_gemm_pipeline.GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp =
blockwise_gemm_pipeline.GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
constexpr auto M0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I0);
constexpr auto N0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I1);
constexpr auto M1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I2);
constexpr auto N1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I3);
constexpr auto M2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I4);
constexpr auto M3 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I5);
constexpr auto M4 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I6);
constexpr auto N2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I7);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
auto c_shuffle_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<CShuffleDataType*>(p_shared_0),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2 = transform_tensor_descriptor(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
make_tuple(
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleMXdlPerWavePerShuffle>{}, // M0 (MXdlPerWave) per shuffle
M1, // M1 = MWave
M2, // M2 * M3 * M4 = MPerXdl
M3,
M4)),
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleNXdlPerWavePerShuffle>{}, // N0 (NXdlPerWave) per shuffle
N1, // N1 = NWave
N2))), // N2 = NPerXdl
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(
Sequence<>{}, Sequence<0, 2, 4, 5, 6>{}, Sequence<>{}, Sequence<1, 3, 7>{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm_pipeline.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const index_t m_thread_data_on_block = c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_block = c_thread_mtx_on_block[I1];
const auto m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M0, M1, M2, M3, M4))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto m_thread_data_on_block_idx =
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor.CalculateBottomIndex(
make_multi_index(m_thread_data_on_block));
const auto n_thread_data_on_block_to_n0_n1_n2_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(N0, N1, N2))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
const auto n_thread_data_on_block_idx =
n_thread_data_on_block_to_n0_n1_n2_adaptor.CalculateBottomIndex(
make_multi_index(n_thread_data_on_block));
// shuffle: threadwise copy C from VGPR to LDS
auto c_thread_copy_vgpr_to_lds =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
CShuffleDataType,
decltype(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2),
decltype(c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2),
ck::tensor_operation::element_wise::PassThrough,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
I1,
I1,
M2,
I1,
M4,
I1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
7,
1,
InMemoryDataOperationEnum::Set,
1,
true>{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
make_multi_index(0,
0,
m_thread_data_on_block_idx[I1],
n_thread_data_on_block_idx[I1],
m_thread_data_on_block_idx[I2],
m_thread_data_on_block_idx[I3],
m_thread_data_on_block_idx[I4],
n_thread_data_on_block_idx[I2]),
ck::tensor_operation::element_wise::PassThrough{}};
// shuffle: blockwise copy C from LDS to global
auto c_shuffle_block_copy_lds_to_global = ThreadGroupTensorSliceTransfer_v6r1<
ThisThreadBlock, // ThreadGroup
CElementwiseOperation, // ElementwiseOperation,
CGlobalMemoryDataOperation, // DstInMemOp,
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>, // BlockSliceLengths,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
Sequence<0, 1, 2, 3>, // typename ThreadClusterArrangeOrder,
CShuffleDataType, // typename SrcData,
CDataType, // typename DstData,
decltype(c_shuffle_block_desc_mblock_mperblock_nblock_nperblock),
decltype(c_grid_desc_mblock_mperblock_nblock_nperblock),
Sequence<0, 1, 2, 3>, // typename DimAccessOrder,
3, // index_t VectorDim,
CShuffleBlockTransferScalarPerVector_NPerBlock, // index_t ScalarPerVector,
true, // bool ThreadTransferSrcResetCoordinateAfterRun,
false> // bool ThreadTransferDstResetCoordinateAfterRun>
{c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(0, 0, 0, 0),
c_grid_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(block_m_id, 0, block_n_id, 0),
c_element_op};
// space filling curve for threadwise C in VGPR
constexpr auto sfc_c_vgpr =
SpaceFillingCurve<Sequence<MXdlPerWave, NXdlPerWave, 1, 1, M2, 1, M4, 1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
1,
1,
M2,
1,
M4,
1>>{};
// space filling curve for shuffled blockwise C in global mem
constexpr auto sfc_c_global =
SpaceFillingCurve<Sequence<1, MPerBlock, 1, NPerBlock>,
Sequence<0, 2, 1, 3>,
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>>{};
constexpr index_t num_access = sfc_c_vgpr.GetNumOfAccess();
static_assert(num_access == sfc_c_global.GetNumOfAccess(), "wrong!");
static_for<0, num_access, 1>{}([&](auto access_id) {
// make sure it's safe to write to LDS
block_sync_lds();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2,
sfc_c_vgpr.GetIndexTupleOfNumber(access_id),
c_thread_buf,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
c_shuffle_block_buf);
// make sure it's safe to read from LDS
block_sync_lds();
// each block copy its data from LDS to global
c_shuffle_block_copy_lds_to_global.Run(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
c_shuffle_block_buf,
c_grid_desc_mblock_mperblock_nblock_nperblock,
c_grid_buf);
if constexpr(access_id < num_access - 1)
{
constexpr auto c_global_step = sfc_c_global.GetForwardStep(access_id);
// move on C
c_shuffle_block_copy_lds_to_global.MoveDstSliceWindow(
c_grid_desc_mblock_mperblock_nblock_nperblock, c_global_step);
}
});
}
}
};
} // namespace ck
......@@ -10,38 +10,9 @@
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace ck {
// Do following things to avoid "alloca" in LLVM-IR, which would cause scratch memory
// and sometimes useless instructions:
// 1. Don't save a reference to tensor descriptor in class, pass in tensor descriptor as argument
// instead
// 2. Don't construct a new tensor coordinate everytime when using it, update and reuse the same
// tensor coordinate instead
// 3. Don't use a pointer to VGPR buffer, use vector instead
namespace detail {
// TODO: How to fix this? It uses an struct instead of lambda because lambda
// doesn't have constructor
template <index_t VectorDim, index_t ScalarPerVector>
struct lambda_scalar_per_access
{
__host__ __device__ constexpr auto operator()(index_t i) const
{
return (i == VectorDim) ? ScalarPerVector : 1;
}
};
template <index_t VectorDim>
struct lambda_scalar_step_in_vector
{
__host__ __device__ constexpr auto operator()(index_t i) const
{
return (i == VectorDim) ? 1 : 0;
}
};
} // namespace detail
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_util.hpp"
namespace ck {
// Assume:
// 1. src:
// 1. SrcDesc is known at compile-time
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
namespace ck {
// Do following things to avoid "alloca" in LLVM-IR, which would cause scratch memory
// and sometimes useless instructions:
// 1. Don't save a reference to tensor descriptor in class, pass in tensor descriptor as argument
// instead
// 2. Don't construct a new tensor coordinate everytime when using it, update and reuse the same
// tensor coordinate instead
// 3. Don't use a pointer to VGPR buffer, use vector instead
namespace detail {
// TODO: How to fix this? It uses an struct instead of lambda because lambda
// doesn't have constructor
template <index_t VectorDim, index_t ScalarPerVector>
struct lambda_scalar_per_access
{
__host__ __device__ constexpr auto operator()(index_t i) const
{
return (i == VectorDim) ? ScalarPerVector : 1;
}
};
template <index_t VectorDim>
struct lambda_scalar_step_in_vector
{
__host__ __device__ constexpr auto operator()(index_t i) const
{
return (i == VectorDim) ? 1 : 0;
}
};
// TODO: How to fix this? It uses an struct instead of lambda because lambda
// doesn't have constructor
template <index_t SrcVectorDim,
index_t SrcScalarPerVector,
index_t DstVectorDim,
index_t DstScalarPerVector>
struct lambda_scalar_per_access_for_src_and_dst
{
__host__ __device__ constexpr auto operator()(index_t i) const
{
if(i == SrcVectorDim && i == DstVectorDim)
{
return math::lcm(SrcScalarPerVector, DstScalarPerVector);
}
else if(i == SrcVectorDim)
{
return SrcScalarPerVector;
}
else if(i == DstVectorDim)
{
return DstScalarPerVector;
}
else
{
return 1;
}
}
};
} // namespace detail
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -7,43 +7,12 @@
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor/static_tensor.hpp"
#include "ck/utility/is_detected.hpp"
namespace ck {
namespace detail {
// TODO: How to fix this? It uses an struct instead of lambda because lambda
// doesn't have constructor
template <index_t SrcVectorDim,
index_t SrcScalarPerVector,
index_t DstVectorDim,
index_t DstScalarPerVector>
struct lambda_scalar_per_access_for_src_and_dst
{
__host__ __device__ constexpr auto operator()(index_t i) const
{
if(i == SrcVectorDim && i == DstVectorDim)
{
return math::lcm(SrcScalarPerVector, DstScalarPerVector);
}
else if(i == SrcVectorDim)
{
return SrcScalarPerVector;
}
else if(i == DstVectorDim)
{
return DstScalarPerVector;
}
else
{
return 1;
}
}
};
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_util.hpp"
} // namespace detail
namespace ck {
// Assume:
// 1. src_desc and dst_desc are not known at compile-time
......@@ -202,15 +171,17 @@ struct ThreadwiseTensorSliceTransfer_v3r1
constexpr auto src_data_idx_seq = generate_sequence_v2(
[&](auto i) { return Number<src_data_idx[i]>{}; }, Number<src_data_idx.Size()>{});
// maintain a container record is_src_valid, waiting for RunWrite use.
const bool is_src_valid =
coordinate_has_valid_offset_assuming_visible_index_is_valid(src_desc, src_coord_);
src_oob_thread_scratch_tuple_(thread_scratch_id)
.template SetAsType<bool>(src_data_idx_seq, is_src_valid);
using src_vector_type = vector_type_maker_t<SrcData, SrcScalarPerVector>;
using src_vector_t = typename src_vector_type::type;
// copy data from src_buf into src_vector_container
auto src_vector_container = src_vector_type{
src_buf.template Get<src_vector_t>(src_coord_.GetOffset(), is_src_valid)};
auto src_vector_container =
src_vector_type{src_buf.template Get<src_vector_t>(src_coord_.GetOffset(), true)};
using dst_vector_type = vector_type_maker_t<DstData, SrcScalarPerVector>;
using dst_vector_t = typename dst_vector_type::type;
......@@ -305,12 +276,78 @@ struct ThreadwiseTensorSliceTransfer_v3r1
dst_thread_scratch_(idx) = src_thread_scratch_tuple_[thread_scratch_id][idx];
});
#else
// OOB Check
constexpr auto src_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector>{}, Number<nDim>{});
constexpr auto src_access_lengths = SliceLengths{} / src_scalar_per_access;
constexpr auto src_dim_access_order = SrcDimAccessOrder{};
constexpr auto ordered_src_access_lengths =
container_reorder_given_new2old(src_access_lengths, src_dim_access_order);
// loop over tensor and copy
static_ford<decltype(ordered_src_access_lengths)>{}([&](auto ordered_src_access_idx) {
// judge move forward or move backward
constexpr auto forward_sweep = [&]() {
StaticallyIndexedArray<bool, nDim> forward_sweep_;
forward_sweep_(I0) = true;
static_for<1, nDim, 1>{}([&](auto i) {
index_t tmp = ordered_src_access_idx[I0];
static_for<1, i, 1>{}([&](auto j) {
tmp = tmp * ordered_src_access_lengths[j] + ordered_src_access_idx[j];
});
forward_sweep_(i) = tmp % 2 == 0;
});
return forward_sweep_;
}();
// calculate src data index
constexpr auto src_data_idx = [&]() {
Index ordered_idx;
static_for<0, nDim, 1>{}([&](auto i) {
ordered_idx(i) = forward_sweep[i] ? ordered_src_access_idx[i]
: ordered_src_access_lengths[i] - 1 -
ordered_src_access_idx[i];
});
return container_reorder_given_old2new(ordered_idx, src_dim_access_order) *
src_scalar_per_access;
}();
constexpr auto src_data_idx_seq = generate_sequence_v2(
[&](auto i) { return Number<src_data_idx[i]>{}; }, Number<src_data_idx.Size()>{});
using vector_t = typename vector_type_maker<DstData, SrcScalarPerVector>::type::type;
auto op_r = src_thread_scratch_tuple_(thread_scratch_id)
.template GetAsType<vector_t>(src_data_idx_seq);
const bool is_src_valid = src_oob_thread_scratch_tuple_(thread_scratch_id)
.template GetAsType<bool>(src_data_idx_seq);
auto op_r_v = is_src_valid ? op_r : vector_t(0);
src_thread_scratch_tuple_(thread_scratch_id)
.template SetAsType<vector_t>(src_data_idx_seq, op_r_v);
});
// sub-dword transpose between src_thread_scratch_ and dst_thread_scratch_
// TODO make this logic more generic for more sub-dword datatype
if constexpr(SrcVectorDim != DstVectorDim &&
((is_same<half_t, remove_cvref_t<DstData>>::value &&
SrcScalarPerVector % 2 == 0 && DstScalarPerVector % 2 == 0) ||
(is_same<int8_t, remove_cvref_t<DstData>>::value &&
SrcScalarPerVector % 4 == 0 && DstScalarPerVector % 4 == 0) ||
(is_same<f8_t, remove_cvref_t<DstData>>::value &&
SrcScalarPerVector % 4 == 0 && DstScalarPerVector % 4 == 0)))
{
// each transpose does
......@@ -386,6 +423,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
Number<ThreadScratchId> thread_scratch_id = Number<ThreadScratchId>{})
{
// if there is transpose, it's done here
// if there is oob check, it's done here
// TODO move this elsewhere
TransferDataFromSrcThreadScratchToDstThreadScratch(thread_scratch_id);
......@@ -738,6 +776,16 @@ struct ThreadwiseTensorSliceTransfer_v3r1
return transform_tensor_descriptor(desc0, transforms, low_dim_idss, up_dim_idss);
}
__device__ static constexpr auto GetSrcOOBThreadScratchDescriptor()
{
constexpr auto src_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector>{}, Number<nDim>{});
constexpr auto src_access_lengths = SliceLengths{} / src_scalar_per_access;
return make_naive_tensor_descriptor_packed(src_access_lengths);
}
__device__ static constexpr auto GetDstThreadScratchDescriptor()
{
// 1st stage of transforms
......@@ -789,6 +837,8 @@ struct ThreadwiseTensorSliceTransfer_v3r1
private:
static constexpr auto src_thread_scratch_desc_ = decltype(GetSrcThreadScratchDescriptor()){};
static constexpr auto src_oob_thread_scratch_desc_ =
decltype(GetSrcThreadScratchDescriptor()){};
static constexpr auto dst_thread_scratch_desc_ = decltype(GetDstThreadScratchDescriptor()){};
using SrcThreadScratch =
......@@ -798,6 +848,13 @@ struct ThreadwiseTensorSliceTransfer_v3r1
decltype(src_thread_scratch_desc_),
true>;
using SrcOOBThreadScratch =
StaticTensorTupleOfVectorBuffer<AddressSpaceEnum::Vgpr,
bool, // apply data_convert with SrcThreadScratch
1,
decltype(src_oob_thread_scratch_desc_),
true>;
using DstThreadScratch = StaticTensorTupleOfVectorBuffer<AddressSpaceEnum::Vgpr,
DstData,
DstScalarPerVector,
......@@ -805,6 +862,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
true>;
StaticallyIndexedArray<SrcThreadScratch, NumThreadScratch> src_thread_scratch_tuple_;
StaticallyIndexedArray<SrcOOBThreadScratch, NumThreadScratch> src_oob_thread_scratch_tuple_;
DstThreadScratch dst_thread_scratch_;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -8,9 +8,11 @@
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/tensor_space_filling_curve.hpp"
#include "ck/utility/is_detected.hpp"
#include "ck/tensor/static_tensor.hpp"
namespace ck {
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_util.hpp"
namespace ck {
// Thread-level multi-source, multi-destination tensor slice data movement
// Assume:
// 1. All sources and destinations are DynamicBuffer
......@@ -70,16 +72,18 @@ struct ThreadwiseTensorSliceTransfer_v7r2
static constexpr auto src_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector>{}, Number<nDim>{});
using SrcSpaceFillingCurve = SpaceFillingCurve<SliceLengths,
SrcDimAccessOrder,
remove_cv_t<decltype(src_scalar_per_access)>>;
static constexpr auto dst_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<DstVectorDim, DstScalarPerVector>{}, Number<nDim>{});
using SrcSpaceFillingCurve = SpaceFillingCurve<SliceLengths,
SrcDimAccessOrder,
remove_cv_t<decltype(src_scalar_per_access)>,
false>;
using DstSpaceFillingCurve = SpaceFillingCurve<SliceLengths,
DstDimAccessOrder,
remove_cv_t<decltype(dst_scalar_per_access)>>;
remove_cv_t<decltype(dst_scalar_per_access)>,
false>;
__device__ constexpr ThreadwiseTensorSliceTransfer_v7r2(
const SrcDescs& src_descs,
......@@ -139,9 +143,9 @@ struct ThreadwiseTensorSliceTransfer_v7r2
__device__ void RunRead(const SrcDescs& src_descs, const SrcBuffers& src_bufs)
{
// loop over space-filling curve
static_for<0, num_access, 1>{}([&](auto iAccess) {
static_for<0, src_num_access, 1>{}([&](auto iAccess) {
auto src_vectors = generate_vectors<SrcDatas, SrcScalarPerVector>();
auto dst_vectors = generate_vectors<DstDatas, DstScalarPerVector>();
auto elm_vectors = generate_vectors<DstDatas, SrcScalarPerVector>();
// copy data from src_bufs into src_vectors
static_for<0, nSrc, 1>{}([&](auto i) {
......@@ -199,7 +203,7 @@ struct ThreadwiseTensorSliceTransfer_v7r2
using elem_op_vec_t = typename vector_type<DstData, elem_op_vec_len>::type;
return dst_vectors(iDst).template AsType<elem_op_vec_t>()(i);
return elm_vectors(iDst).template AsType<elem_op_vec_t>()(i);
},
Number<nDst>{});
......@@ -214,10 +218,10 @@ struct ThreadwiseTensorSliceTransfer_v7r2
unpack2(element_op_, dst_data_refs, src_data_refs);
});
dst_vectors_tuple_(iAccess) = dst_vectors;
elm_vectors_tuple_(iAccess) = elm_vectors;
// move coordinate
if constexpr(iAccess.value != num_access - 1)
if constexpr(iAccess.value != src_num_access - 1)
{
constexpr auto forward_step = SrcSpaceFillingCurve::GetForwardStep(iAccess);
......@@ -241,15 +245,113 @@ struct ThreadwiseTensorSliceTransfer_v7r2
});
}
__device__ void TransposeFromElmToDst()
{
using DstData = remove_cvref_t<decltype(DstDatas{}[I0])>;
using SrcThreadScratch =
StaticTensorTupleOfVectorBuffer<AddressSpaceEnum::Vgpr,
DstData,
SrcScalarPerVector,
decltype(GetSrcThreadScratchDescriptor()),
true>;
using DstThreadScratch =
StaticTensorTupleOfVectorBuffer<AddressSpaceEnum::Vgpr,
DstData,
DstScalarPerVector,
decltype(GetDstThreadScratchDescriptor()),
true>;
SrcThreadScratch elm_thread_scratch_;
DstThreadScratch dst_thread_scratch_;
elm_thread_scratch_.data_ =
bit_cast<decltype(elm_thread_scratch_.data_)>(elm_vectors_tuple_);
if constexpr(SrcVectorDim != DstVectorDim &&
((is_same<half_t, remove_cvref_t<DstData>>::value &&
SrcScalarPerVector % 2 == 0 && DstScalarPerVector % 2 == 0) ||
(is_same<int8_t, remove_cvref_t<DstData>>::value &&
SrcScalarPerVector % 4 == 0 && DstScalarPerVector % 4 == 0)))
{
// each transpose does
// DstScalarPerVector # of src vectors in src_thread_scratch_
// SrcScalarPerVector # of dst vectors in dst_thread_scratch_
constexpr index_t num_src_vector = Number<DstScalarPerVector>{};
constexpr index_t num_dst_vector = Number<SrcScalarPerVector>{};
// Assume SrcVectorDim is not the same as DstVectorDim, so we do transpose
// TODO: make this logic generic for all scenario
constexpr auto src_scalar_step_in_vector = generate_sequence(
detail::lambda_scalar_step_in_vector<SrcVectorDim>{}, Number<nDim>{});
constexpr auto dst_scalar_step_in_vector = generate_sequence(
detail::lambda_scalar_step_in_vector<DstVectorDim>{}, Number<nDim>{});
constexpr auto scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access_for_src_and_dst<SrcVectorDim,
SrcScalarPerVector,
DstVectorDim,
DstScalarPerVector>{},
Number<nDim>{});
constexpr auto access_lengths = SliceLengths{} / scalar_per_access;
static_ford<decltype(access_lengths)>{}([&](auto access_idx) {
constexpr auto data_idx = access_idx * scalar_per_access;
constexpr auto data_idx_seq = generate_sequence_v2(
[&](auto i) { return Number<data_idx[i]>{}; }, Number<nDim>{});
using src_vector_t = vector_type_maker_t<DstData, SrcScalarPerVector>;
using dst_vector_t = vector_type_maker_t<DstData, DstScalarPerVector>;
// get DstScalarPerVector # of read-only references to src vectors from
// src_thread_scratch_
const auto src_vector_refs = generate_tie(
[&](auto i) -> const src_vector_t& {
// i increment corresponds to movement in DstVectorDim
return elm_thread_scratch_.GetVectorTypeReference(
data_idx_seq + i * dst_scalar_step_in_vector);
},
Number<num_src_vector>{});
// get SrcScalarPerVector # of references to dst vectors from dst_thread_scratch_
auto dst_vector_refs = generate_tie(
[&](auto i) -> dst_vector_t& {
// i increment corresponds to movement in SrcVectorDim
return dst_thread_scratch_.GetVectorTypeReference(
data_idx_seq + i * src_scalar_step_in_vector);
},
Number<num_dst_vector>{});
// do data transpose
transpose_vectors<DstData, DstScalarPerVector, SrcScalarPerVector>{}(
src_vector_refs, dst_vector_refs);
});
}
else
{
static_ford<SliceLengths>{}(
[&](auto idx) { dst_thread_scratch_(idx) = elm_thread_scratch_[idx]; });
}
dst_vectors_tuple_ = bit_cast<decltype(dst_vectors_tuple_)>(dst_thread_scratch_.data_);
}
// DstDescs: Tuple<const DstDesc0&, const DstDesc1&, ...>
// DstBuffers: Tuple<const DstBuffer0&, const DstBuffer1&, ...>
template <typename DstBuffers,
enable_if_t<DstDescs::Size() == DstBuffers::Size(), bool> = false>
enable_if_t<DstDescs::Size() == 1 && DstBuffers::Size() == 1, bool> = false>
__device__ void RunWrite(const DstDescs& dst_descs, DstBuffers dst_bufs)
{
TransposeFromElmToDst();
// loop over space-filling curve
static_for<0, num_access, 1>{}([&](auto iAccess) {
auto dst_vectors = dst_vectors_tuple_[iAccess];
static_for<0, dst_num_access, 1>{}([&](auto iAccess) {
auto dst_vectors = dst_vectors_tuple_[Number<iAccess>{}];
// copy data from buf_vectors into dst_bufs
static_for<0, nDst, 1>{}([&](auto i) {
......@@ -269,7 +371,7 @@ struct ThreadwiseTensorSliceTransfer_v7r2
});
// move coordinate
if constexpr(iAccess.value != num_access - 1)
if constexpr(iAccess.value != dst_num_access - 1)
{
constexpr auto forward_step = DstSpaceFillingCurve::GetForwardStep(iAccess);
......@@ -312,28 +414,126 @@ struct ThreadwiseTensorSliceTransfer_v7r2
__device__ static constexpr auto GetSrcCoordinateResetStep()
{
if constexpr(num_access == 0)
if constexpr(src_num_access == 0)
{
return typename SrcSpaceFillingCurve::Index{};
}
else
{
return SrcSpaceFillingCurve::GetStepBetween(Number<num_access - 1>{}, Number<0>{});
return SrcSpaceFillingCurve::GetStepBetween(Number<src_num_access - 1>{}, Number<0>{});
}
}
__device__ static constexpr auto GetDstCoordinateResetStep()
{
if constexpr(num_access == 0)
if constexpr(dst_num_access == 0)
{
return typename DstSpaceFillingCurve::Index{};
}
else
{
return DstSpaceFillingCurve::GetStepBetween(Number<num_access - 1>{}, Number<0>{});
return DstSpaceFillingCurve::GetStepBetween(Number<dst_num_access - 1>{}, Number<0>{});
}
}
__device__ static constexpr auto GetSrcThreadScratchDescriptor()
{
// constexpr auto src_scalar_per_access = generate_sequence(
// detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector>{}, Number<nDim>{});
constexpr auto src_access_lengths = SliceLengths{} / src_scalar_per_access;
constexpr auto src_access_lengths_and_vector_length = container_push_back(
sequence_to_tuple_of_number(src_access_lengths), Number<SrcScalarPerVector>{});
// 1st stage of transforms
constexpr auto desc0 =
make_naive_tensor_descriptor_packed(src_access_lengths_and_vector_length);
// 2nd stage of transforms
constexpr auto transforms = generate_tuple(
[&](auto i) {
if constexpr(i == SrcVectorDim)
{
return make_merge_transform_v3_division_mod(
make_tuple(src_access_lengths_and_vector_length[i],
src_access_lengths_and_vector_length[Number<nDim>{}]));
}
else
{
return make_pass_through_transform(src_access_lengths_and_vector_length[i]);
}
},
Number<nDim>{});
constexpr auto low_dim_idss = generate_tuple(
[&](auto i) {
if constexpr(i == SrcVectorDim)
{
return Sequence<i.value, nDim>{};
}
else
{
return Sequence<i.value>{};
}
},
Number<nDim>{});
constexpr auto up_dim_idss =
generate_tuple([&](auto i) { return Sequence<i.value>{}; }, Number<nDim>{});
return transform_tensor_descriptor(desc0, transforms, low_dim_idss, up_dim_idss);
}
__device__ static constexpr auto GetDstThreadScratchDescriptor()
{
// 1st stage of transforms
// constexpr auto dst_scalar_per_access = generate_sequence(
// detail::lambda_scalar_per_access<DstVectorDim, DstScalarPerVector>{}, Number<nDim>{});
constexpr auto dst_access_lengths = SliceLengths{} / dst_scalar_per_access;
constexpr auto dst_access_lengths_and_vector_length = container_push_back(
sequence_to_tuple_of_number(dst_access_lengths), Number<DstScalarPerVector>{});
constexpr auto desc0 =
make_naive_tensor_descriptor_packed(dst_access_lengths_and_vector_length);
// 2nd stage of transforms
constexpr auto transforms = generate_tuple(
[&](auto i) {
if constexpr(i == DstVectorDim)
{
return make_merge_transform_v3_division_mod(
make_tuple(dst_access_lengths_and_vector_length[i],
dst_access_lengths_and_vector_length[Number<nDim>{}]));
}
else
{
return make_pass_through_transform(dst_access_lengths_and_vector_length[i]);
}
},
Number<nDim>{});
constexpr auto low_dim_idss = generate_tuple(
[&](auto i) {
if constexpr(i == DstVectorDim)
{
return Sequence<i.value, nDim>{};
}
else
{
return Sequence<i.value>{};
}
},
Number<nDim>{});
constexpr auto up_dim_idss =
generate_tuple([&](auto i) { return Sequence<i.value>{}; }, Number<nDim>{});
return transform_tensor_descriptor(desc0, transforms, low_dim_idss, up_dim_idss);
}
// src_slice_origin_step_idx need to be known at compile-time, for performance reason
template <index_t ISrc>
__device__ void MoveSrcSliceWindow(const SrcDescs& src_descs,
......@@ -372,11 +572,14 @@ struct ThreadwiseTensorSliceTransfer_v7r2
private:
using SrcVectorsType = decltype(generate_vectors<SrcDatas, SrcScalarPerVector>());
using ElmVectorsType = decltype(generate_vectors<DstDatas, SrcScalarPerVector>());
using DstVectorsType = decltype(generate_vectors<DstDatas, DstScalarPerVector>());
static constexpr auto num_access = SrcSpaceFillingCurve::GetNumOfAccess();
static constexpr auto src_num_access = SrcSpaceFillingCurve::GetNumOfAccess();
static constexpr auto dst_num_access = DstSpaceFillingCurve::GetNumOfAccess();
StaticallyIndexedArray<DstVectorsType, num_access> dst_vectors_tuple_;
StaticallyIndexedArray<ElmVectorsType, src_num_access> elm_vectors_tuple_;
StaticallyIndexedArray<DstVectorsType, dst_num_access> dst_vectors_tuple_;
SrcCoords src_coords_;
DstCoords dst_coords_;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/library/utility/numeric.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
namespace ck {
namespace tensor_operation {
template <index_t NDimSpatial,
index_t MPerBlock,
index_t NPerBlock,
index_t GemmK1Number,
index_t K0PerBlock,
device::ConvolutionBackwardWeightSpecialization ConvBackwardWeightSpecialization>
struct TransformConvBwdWeightToGemm
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
template <index_t NDim, typename enable_if<NDim == 2, bool>::type = false>
constexpr static auto
make_out_grid_desc(const index_t N,
const index_t Ho,
const index_t Wo,
const index_t K,
const std::array<index_t, NDimSpatial + 3>& output_strides)
{
const index_t WoStride = output_strides[4];
const auto KStride = Number<1>{};
return make_naive_tensor_descriptor(make_tuple(N * Ho * Wo, K),
make_tuple(WoStride, KStride));
}
template <index_t NDim, typename enable_if<NDim == 2, bool>::type = false>
constexpr static auto
make_in_grid_desc(const index_t N,
const index_t Hi,
const index_t Wi,
const index_t C,
const std::array<index_t, NDimSpatial + 3>& input_strides)
{
const index_t NStride = input_strides[1];
const index_t HiStride = input_strides[3];
const index_t WiStride = input_strides[4];
const auto CStride = input_strides[2];
if constexpr(ConvBackwardWeightSpecialization ==
device::ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
return make_naive_tensor_descriptor(make_tuple(N * Hi * Wi, C),
make_tuple(WiStride, CStride));
}
else
{
return make_naive_tensor_descriptor(make_tuple(N, Hi, Wi, C),
make_tuple(NStride, HiStride, WiStride, CStride));
}
}
template <index_t NDim, typename enable_if<NDim == 2, bool>::type = false>
constexpr static auto
make_wei_grid_desc(const index_t K,
const index_t Y,
const index_t X,
const index_t C,
const std::array<index_t, NDimSpatial + 3>& weights_strides)
{
const auto CStride = Number<1>{};
const auto KStride = weights_strides[1];
return make_naive_tensor_descriptor(make_tuple(K, Y * X * C), make_tuple(KStride, CStride));
}
template <index_t NDim, typename enable_if<NDim == 3, bool>::type = false>
constexpr static auto
make_out_grid_desc(const index_t N,
const index_t Do,
const index_t Ho,
const index_t Wo,
const index_t K,
const std::array<index_t, NDimSpatial + 3>& output_strides)
{
const index_t WoStride = output_strides[5];
const auto KStride = Number<1>{};
return make_naive_tensor_descriptor(make_tuple(N * Do * Ho * Wo, K),
make_tuple(WoStride, KStride));
}
template <index_t NDim, typename enable_if<NDim == 3, bool>::type = false>
constexpr static auto
make_in_grid_desc(const index_t N,
const index_t Di,
const index_t Hi,
const index_t Wi,
const index_t C,
const std::array<index_t, NDimSpatial + 3>& input_strides)
{
const index_t NStride = input_strides[1];
const index_t DiStride = input_strides[3];
const index_t HiStride = input_strides[4];
const index_t WiStride = input_strides[5];
const auto CStride = input_strides[2];
if constexpr(ConvBackwardWeightSpecialization ==
device::ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
return make_naive_tensor_descriptor(make_tuple(N * Di * Hi * Wi, C),
make_tuple(WiStride, CStride));
}
else
{
return make_naive_tensor_descriptor(
make_tuple(N, Di, Hi, Wi, C),
make_tuple(NStride, DiStride, HiStride, WiStride, CStride));
}
}
template <index_t NDim, typename enable_if<NDim == 3, bool>::type = false>
constexpr static auto
make_wei_grid_desc(const index_t K,
const index_t Z,
const index_t Y,
const index_t X,
const index_t C,
const std::array<index_t, NDimSpatial + 3>& weights_strides)
{
const auto CStride = Number<1>{};
const auto KStride = weights_strides[1];
return make_naive_tensor_descriptor(make_tuple(K, Z * Y * X * C),
make_tuple(KStride, CStride));
}
template <index_t NDim, typename enable_if<NDim == 1, bool>::type = false>
static auto MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
const index_t N,
const index_t K,
const index_t C,
const std::array<index_t, NDimSpatial>& input_spatial_lengths,
const std::array<index_t, NDimSpatial>& filter_spatial_lengths,
const std::array<index_t, NDimSpatial>& output_spatial_lengths,
const std::array<index_t, NDimSpatial + 3>& /* input_strides */,
const std::array<index_t, NDimSpatial + 3>& /* weights_strides */,
const std::array<index_t, NDimSpatial + 3>& /* output_strides */,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const index_t batch_k)
{
using namespace ck;
const index_t Wi = input_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[0];
const index_t X = filter_spatial_lengths[0];
const index_t ConvStrideW = conv_filter_strides[0];
const index_t ConvDilationW = conv_filter_dilations[0];
const index_t InLeftPadW = input_left_pads[0];
const index_t InRightPadW = input_right_pads[0];
const index_t GemmKTotal = N * Wo;
const index_t GemmM = K;
const index_t GemmN = C * X;
const auto PadGemmM = MPerBlock - GemmM % MPerBlock;
const auto PadGemmN = NPerBlock - GemmN % NPerBlock;
const index_t GemmKBatch = batch_k;
const index_t GemmK0 =
math::integer_divide_ceil(GemmKTotal, GemmK1Number * K0PerBlock * GemmKBatch) *
K0PerBlock;
const index_t GemmKPad = GemmKBatch * GemmK0 * GemmK1Number;
if constexpr(ConvBackwardWeightSpecialization ==
device::ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
// A: output tensor
const auto out_gemmktotal_gemmm_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Wo, K));
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// B: input tensor
const auto in_gemmktotal_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Wi, C));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// C: weight tensor
const auto wei_gemmm_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, X * C));
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc);
}
else
{
const auto out_gemmktotal_gemmm_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Wo, K));
const auto in_n_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Wi, C));
// A: output tensor
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// B: input tensor
const auto in_n_wip_c_grid_desc = transform_tensor_descriptor(
in_n_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_n_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
const auto in_gemmktotal_gemmn_grid_desc =
transform_tensor_descriptor(in_n_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(X, C)),
make_merge_transform(make_tuple(N, Wo))),
make_tuple(Sequence<1, 3>{}, Sequence<0, 2>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// C: weight tensor
const auto wei_gemmm_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, X * C));
// Padd
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_pad_grid_desc =
transform_tensor_descriptor(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(GemmKBatch),
make_pass_through_transform(GemmK0),
make_right_pad_transform(GemmM, PadGemmM),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_pad_grid_desc =
transform_tensor_descriptor(
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(GemmKBatch),
make_pass_through_transform(GemmK0),
make_right_pad_transform(GemmN, PadGemmN),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto wei_gemmm_gemmn_pad_grid_desc =
transform_tensor_descriptor(wei_gemmm_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmM, PadGemmM),
make_right_pad_transform(GemmN, PadGemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_pad_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_pad_grid_desc,
wei_gemmm_gemmn_pad_grid_desc);
}
}
template <index_t NDim, typename enable_if<NDim == 2, bool>::type = false>
static auto MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
const index_t N,
const index_t K,
const index_t C,
const std::array<index_t, NDimSpatial>& input_spatial_lengths,
const std::array<index_t, NDimSpatial>& filter_spatial_lengths,
const std::array<index_t, NDimSpatial>& output_spatial_lengths,
const std::array<index_t, NDimSpatial + 3>& input_strides,
const std::array<index_t, NDimSpatial + 3>& weights_strides,
const std::array<index_t, NDimSpatial + 3>& output_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const index_t batch_k)
{
using namespace ck;
const index_t Hi = input_spatial_lengths[0];
const index_t Wi = input_spatial_lengths[1];
const index_t Ho = output_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[1];
const index_t Y = filter_spatial_lengths[0];
const index_t X = filter_spatial_lengths[1];
const index_t ConvStrideH = conv_filter_strides[0];
const index_t ConvStrideW = conv_filter_strides[1];
const index_t ConvDilationH = conv_filter_dilations[0];
const index_t ConvDilationW = conv_filter_dilations[1];
const index_t InLeftPadH = input_left_pads[0];
const index_t InLeftPadW = input_left_pads[1];
const index_t InRightPadH = input_right_pads[0];
const index_t InRightPadW = input_right_pads[1];
const index_t GemmKTotal = N * Ho * Wo;
const index_t GemmM = K;
const index_t GemmN = C * X * Y;
const auto PadGemmM = MPerBlock - GemmM % MPerBlock;
const auto PadGemmN = NPerBlock - GemmN % NPerBlock;
const index_t GemmKBatch = batch_k;
const index_t GemmK0 =
math::integer_divide_ceil(GemmKTotal, GemmK1Number * K0PerBlock * GemmKBatch) *
K0PerBlock;
const index_t GemmKPad = GemmKBatch * GemmK0 * GemmK1Number;
const auto out_grid_desc = make_out_grid_desc<NDim>(N, Ho, Wo, K, output_strides);
const auto in_grid_desc = make_in_grid_desc<NDim>(N, Hi, Wi, C, input_strides);
const auto wei_grid_desc = make_wei_grid_desc<NDim>(K, Y, X, C, weights_strides);
if constexpr(ConvBackwardWeightSpecialization ==
device::ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
// A: output tensor
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// B: input tensor
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_grid_desc);
}
else
{
// A: output tensor
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// B: input tensor
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_gemmktotal_gemmn_grid_desc =
transform_tensor_descriptor(in_n_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(Y, X, C)),
make_merge_transform(make_tuple(N, Ho, Wo))),
make_tuple(Sequence<1, 3, 5>{}, Sequence<0, 2, 4>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// Padd
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_pad_grid_desc =
transform_tensor_descriptor(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(GemmKBatch),
make_pass_through_transform(GemmK0),
make_right_pad_transform(GemmM, PadGemmM),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_pad_grid_desc =
transform_tensor_descriptor(
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(GemmKBatch),
make_pass_through_transform(GemmK0),
make_right_pad_transform(GemmN, PadGemmN),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto wei_gemmm_gemmn_pad_grid_desc =
transform_tensor_descriptor(wei_grid_desc,
make_tuple(make_right_pad_transform(GemmM, PadGemmM),
make_right_pad_transform(GemmN, PadGemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_pad_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_pad_grid_desc,
wei_gemmm_gemmn_pad_grid_desc);
}
}
template <index_t NDim, typename enable_if<NDim == 3, bool>::type = false>
static auto MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
const index_t N,
const index_t K,
const index_t C,
const std::array<index_t, NDimSpatial>& input_spatial_lengths,
const std::array<index_t, NDimSpatial>& filter_spatial_lengths,
const std::array<index_t, NDimSpatial>& output_spatial_lengths,
const std::array<index_t, NDimSpatial + 3>& input_strides,
const std::array<index_t, NDimSpatial + 3>& weights_strides,
const std::array<index_t, NDimSpatial + 3>& output_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const index_t batch_k)
{
using namespace ck;
const index_t Di = input_spatial_lengths[0];
const index_t Hi = input_spatial_lengths[1];
const index_t Wi = input_spatial_lengths[2];
const index_t Do = output_spatial_lengths[0];
const index_t Ho = output_spatial_lengths[1];
const index_t Wo = output_spatial_lengths[2];
const index_t Z = filter_spatial_lengths[0];
const index_t Y = filter_spatial_lengths[1];
const index_t X = filter_spatial_lengths[2];
const index_t ConvStrideD = conv_filter_strides[0];
const index_t ConvStrideH = conv_filter_strides[1];
const index_t ConvStrideW = conv_filter_strides[2];
const index_t ConvDilationD = conv_filter_dilations[0];
const index_t ConvDilationH = conv_filter_dilations[1];
const index_t ConvDilationW = conv_filter_dilations[2];
const index_t InLeftPadD = input_left_pads[0];
const index_t InLeftPadH = input_left_pads[1];
const index_t InLeftPadW = input_left_pads[2];
const index_t InRightPadD = input_right_pads[0];
const index_t InRightPadH = input_right_pads[1];
const index_t InRightPadW = input_right_pads[2];
const index_t GemmKTotal = N * Do * Ho * Wo;
const index_t GemmM = K;
const index_t GemmN = C * Z * X * Y;
const auto PadGemmM = MPerBlock - GemmM % MPerBlock;
const auto PadGemmN = NPerBlock - GemmN % NPerBlock;
const index_t GemmKBatch = batch_k;
const index_t GemmK0 =
math::integer_divide_ceil(GemmKTotal, GemmK1Number * K0PerBlock * GemmKBatch) *
K0PerBlock;
const index_t GemmKPad = GemmKBatch * GemmK0 * GemmK1Number;
const auto out_grid_desc = make_out_grid_desc<NDim>(N, Do, Ho, Wo, K, output_strides);
const auto in_grid_desc = make_in_grid_desc<NDim>(N, Di, Hi, Wi, C, input_strides);
const auto wei_grid_desc = make_wei_grid_desc<NDim>(K, Z, Y, X, C, weights_strides);
if constexpr(ConvBackwardWeightSpecialization ==
device::ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
// A: output tensor
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// B: input tensor
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_grid_desc);
}
else
{
// A: output tensor
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// B: input tensor
const auto in_n_dip_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Di, InLeftPadD, InRightPadD),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_n_z_do_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_dip_hip_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Z, Do), make_tuple(ConvDilationD, ConvStrideD)),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{},
Sequence<1, 2>{},
Sequence<3, 4>{},
Sequence<5, 6>{},
Sequence<7>{}));
const auto in_gemmktotal_gemmn_grid_desc = transform_tensor_descriptor(
in_n_z_do_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(Z, Y, X, C)),
make_merge_transform(make_tuple(N, Do, Ho, Wo))),
make_tuple(Sequence<1, 3, 5, 7>{}, Sequence<0, 2, 4, 6>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// Padd
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_pad_grid_desc =
transform_tensor_descriptor(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(GemmKBatch),
make_pass_through_transform(GemmK0),
make_right_pad_transform(GemmM, PadGemmM),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_pad_grid_desc =
transform_tensor_descriptor(
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(GemmKBatch),
make_pass_through_transform(GemmK0),
make_right_pad_transform(GemmN, PadGemmN),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto wei_gemmm_gemmn_pad_grid_desc =
transform_tensor_descriptor(wei_grid_desc,
make_tuple(make_right_pad_transform(GemmM, PadGemmM),
make_right_pad_transform(GemmN, PadGemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_pad_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_pad_grid_desc,
wei_gemmm_gemmn_pad_grid_desc);
}
} // function end
};
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_adaptor.hpp"
namespace ck {
enum struct BlockGemmPipelineScheduler
{
Intrawave,
Interwave,
};
enum struct TailNumber
{
// Single / Double buffer pipeline
Odd,
Even,
// Long prefetch pipeline, up to 8
One,
Two,
Three,
Four,
Five,
Six,
Seven,
// Unroll stages > Prefetch stages, number of loop is multiple of unroll stages
Empty,
// Unroll stages <= Prefetch stages, number of loop is multiple of unroll stages add
// prefetchstages
Full,
};
template <index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t ABufferLoadWidth,
index_t BBufferLoadWidth,
index_t ALDSWriteWidth,
index_t BLDSWriteWidth,
index_t ALDSReadWidth,
index_t BLDSReadWidth,
index_t MRepeat,
index_t NRepeat,
index_t MPerXDL,
index_t NPerXDL,
index_t KPerXDL>
struct BlockwiseGemmXdlops_pipeline_hotloop_inst
{
static constexpr index_t WaveSize = 64;
static constexpr index_t WaveNumM = MPerBlock / (MRepeat * MPerXDL);
static constexpr index_t WaveNumN = NPerBlock / (NRepeat * NPerXDL);
static constexpr index_t A_LDS_Read_Width = ALDSReadWidth;
static constexpr index_t B_LDS_Read_Width = BLDSReadWidth;
static constexpr index_t A_Buffer_Load_Inst_Num =
MPerBlock * KPerBlock / (BlockSize * ABufferLoadWidth);
static constexpr index_t B_Buffer_Load_Inst_Num =
NPerBlock * KPerBlock / (BlockSize * BBufferLoadWidth);
static constexpr index_t A_LDS_Write_Inst_Num =
MPerBlock * KPerBlock / (BlockSize * ALDSWriteWidth);
static constexpr index_t B_LDS_Write_Inst_Num =
NPerBlock * KPerBlock / (BlockSize * BLDSWriteWidth);
static constexpr index_t A_LDS_Read_Inst_Num =
WaveNumN * MPerBlock * KPerBlock / (BlockSize * ALDSReadWidth);
static constexpr index_t B_LDS_Read_Inst_Num =
WaveNumM * MPerBlock * KPerBlock / (BlockSize * BLDSReadWidth);
static constexpr index_t C_MFMA_Inst_Num =
MPerBlock * NPerBlock * KPerBlock / (BlockSize / WaveSize) / (MPerXDL * NPerXDL * KPerXDL);
static constexpr auto Print()
{
printf(" Blk/Wave Size: %d, %d, M/N/K PerBlk: %d, %d, %d, M/N/K PerXdl: %d, %d, %d\n",
BlockSize,
WaveSize,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
KPerXDL);
printf(" A/B buffer load inst: %d, %d\n A/B LDS write inst: %d, %d\n A/B LDS read inst: "
"%d, %d\n C MFMA inst: %d\n",
A_Buffer_Load_Inst_Num,
B_Buffer_Load_Inst_Num,
A_LDS_Write_Inst_Num,
B_LDS_Write_Inst_Num,
A_LDS_Read_Inst_Num,
B_LDS_Read_Inst_Num,
C_MFMA_Inst_Num);
}
};
} // namespace ck
......@@ -163,6 +163,13 @@ struct scalar_type<bf8_t>
static constexpr index_t vector_size = 1;
};
template <>
struct scalar_type<bool>
{
using type = bool;
static constexpr index_t vector_size = 1;
};
template <typename T>
struct vector_type<T, 1>
{
......
......@@ -10,10 +10,12 @@ namespace ck {
__device__ void block_sync_lds()
{
#if CK_EXPERIMENTAL_BLOCK_SYNC_LDS_WITHOUT_SYNC_VMEM
asm volatile("\
s_waitcnt lgkmcnt(0) \n \
s_barrier \
" ::);
// asm volatile("\
// s_waitcnt lgkmcnt(0) \n \
// s_barrier \
// " ::);
__builtin_amdgcn_s_waitcnt(0xc07f);
__builtin_amdgcn_s_barrier();
#else
__syncthreads();
#endif
......
......@@ -162,4 +162,83 @@ struct transpose_vectors<int8_t, NX, NY>
}
};
// transpose f8 4x4
__device__ void transpose_f8_4x4(const f8x4_t& x0,
const f8x4_t& x1,
const f8x4_t& x2,
const f8x4_t& x3,
f8x4_t& y0,
f8x4_t& y1,
f8x4_t& y2,
f8x4_t& y3)
{
int32_t t0, t1;
int32_t z0, z1, z2, z3;
constexpr int32_t m0 = 0x05010400;
constexpr int32_t m1 = 0x05040100;
constexpr int32_t m2 = 0x07060302;
constexpr int32_t m3 = 0x07030602;
// ex: v_perm_b32(0x 11 22 33 44, 0x 55 66 77 88, 0x 05 01 04 00) -> 0x33774488
// -- -- -- -- -- -- -- -- - - - -
// index 7 6 5 4 3 2 1 0 33 77 44 88
// index is reversed because of little endianness (least significant bits first)
t0 = __builtin_amdgcn_perm(bit_cast<int32_t>(x1), bit_cast<int32_t>(x0), m0);
t1 = __builtin_amdgcn_perm(bit_cast<int32_t>(x3), bit_cast<int32_t>(x2), m0);
z0 = __builtin_amdgcn_perm(bit_cast<int32_t>(t1), bit_cast<int32_t>(t0), m1);
z1 = __builtin_amdgcn_perm(bit_cast<int32_t>(t1), bit_cast<int32_t>(t0), m2);
t0 = __builtin_amdgcn_perm(bit_cast<int32_t>(x1), bit_cast<int32_t>(x0), m3);
t1 = __builtin_amdgcn_perm(bit_cast<int32_t>(x3), bit_cast<int32_t>(x2), m3);
z2 = __builtin_amdgcn_perm(bit_cast<int32_t>(t1), bit_cast<int32_t>(t0), m1);
z3 = __builtin_amdgcn_perm(bit_cast<int32_t>(t1), bit_cast<int32_t>(t0), m2);
y0 = bit_cast<f8x4_t>(z0);
y1 = bit_cast<f8x4_t>(z1);
y2 = bit_cast<f8x4_t>(z2);
y3 = bit_cast<f8x4_t>(z3);
}
template <index_t NX, index_t NY>
struct transpose_vectors<f8_t, NX, NY>
{
// we got [NY * NX] amount of S data to be transposed
static constexpr index_t s_per_x = NY;
static constexpr index_t s_per_y = NX;
using S = f8_t;
using VX = vector_type<f8_t, s_per_x>;
using VY = vector_type<f8_t, s_per_y>;
__device__ void operator()(const StaticallyIndexedArray<const VX&, NX>& vx_tuple,
StaticallyIndexedArray<VY&, NY>& vy_tuple)
{
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static_assert((NX % 4 == 0 && NY % 4 == 0), "wrong!");
// loop over 4x4 tile and transpose data from vx_tuple into vy_tuple
static_for<0, NY, 4>{}([&](auto iy) {
static_for<0, NX, 4>{}([&](auto ix) {
// reference to 4 f8 data from vx_tuple
const auto& x_s4_0 = vx_tuple[ix].template AsType<f8x4_t>()[iy / I4];
const auto& x_s4_1 = vx_tuple[ix + I1].template AsType<f8x4_t>()[iy / I4];
const auto& x_s4_2 = vx_tuple[ix + I2].template AsType<f8x4_t>()[iy / I4];
const auto& x_s4_3 = vx_tuple[ix + I3].template AsType<f8x4_t>()[iy / I4];
// reference to 4 f8 data from vy_tuple
auto& y_s4_0 = vy_tuple(iy).template AsType<f8x4_t>()(ix / I4);
auto& y_s4_1 = vy_tuple(iy + I1).template AsType<f8x4_t>()(ix / I4);
auto& y_s4_2 = vy_tuple(iy + I2).template AsType<f8x4_t>()(ix / I4);
auto& y_s4_3 = vy_tuple(iy + I3).template AsType<f8x4_t>()(ix / I4);
// transpose
transpose_f8_4x4(x_s4_0, x_s4_1, x_s4_2, x_s4_3, y_s4_0, y_s4_1, y_s4_2, y_s4_3);
});
});
}
};
} // namespace ck
......@@ -43,6 +43,8 @@ __host__ __device__ constexpr Y bit_cast(const X& x)
#if CK_EXPERIMENTAL_USE_MEMCPY_FOR_BIT_CAST
Y y;
// auto t = reinterpret_cast<const Y*>(&x);
// y = *t;
__builtin_memcpy(&y, &x, sizeof(X));
return y;
......
# ck_tile
## concept
`ck_tile` provides a programming model with templated abstractions to enable users to implement performance-critical kernels for machine learning workloads. introduces following basic concepts to help users building your own operator
- tensor coordinate transformation, this is the core concept of layout/index transform abstraction in both compiler time and run time.
- tile-based programming model, including tile-level api and the concept of distributed tensor.
`ck_tile` is independently from the old ck, located under [/include/ck_tile](/include/ck_tile). You don't need to include anything from old CK, `ck_tile` has similiar (indeed almost the same) implementations for users to build operators. We will have a transition period to pull everything from old ck into `ck_tile`, stay tuned.
## component
`ck_tile` is splitted into several componenets including `core`, `host`, `ops/gemm`, `ops/fmha`... each component you only need to include a single header (e.g `#include "ck_tile/core.hpp"`, `#include "ck_tile/ops/fmha.hpp"`) then you are able to use the function/structure inside (different from old `ck`)
**[core]**
`ck_tile/core` contains all the basic data structure and function to build the kernel, you can only include this header and build your own operators that utilizing all the basic building blocks introduced in ck.
`core/container`
- array, store runtime variables with fixed length (tensor index, register buffer, etc...)
- tuple, same as std::tuple, hold different type of data, and one of the solution to achieve multiple buffer.
- sequence, compile time integer sequence used to build various internal structures, or to describe tile size
- other convenient structure build on top of above 3
`core/numeric`
- gpu data type like `fp16_t`, `bf16_t`, `fp8_t`... and the conversion between each other
- constexpr integer similiar to std::integral_constant to be used as compile time integer.
- math functions and numeric utilities
`core/algorithm`
- coordinate transformation system, used to build tensor transform and compile time indexing. This is the core idea introduced in old `ck` to describe how a tensor is build by several basic transform primitives like `merge`/`unmerge`/`embed` etc... and how we indexing into a ND tensor that finally mapped to 1D memory offset.
`core/tensor`
- tensor descriptor, to describe how a ND tensor
- distributed tensor, describe the storage of this tensor, and the distribution of how a collection of threads collaborately work for this tensor.
- tile level API, including `load_tile`, `store_tile`, `shuffle_tile`, `slice_tile`, etc...
**[host]**
`ck_tile/host` contains all the host side utilities to launch a kernel, create the device buffer, and some reference implementations. This can be used to create examples (like that under ck_tile example folder) and simple executable to invoke this kernel, so if you only need `ck_tile` to build your own device library then it's OK to not include this. Based on this, it is recommended to include the specific header you needed under this folder to avoid including unwanted headers (e.g, only include `ck_tile/host/kernel_launch.hpp`), unless you are writing a host executable.
**[ops/gemm, ops/fmha, ops/reduce...]**
our implementation of different device operators.
- warp, warp tile level operator
- block, block tile level operator
- pipeline, pipeline that can achieve a customized tile level mainloop (or epilogue). By switching different pipeline to the kernel template you can have different kind of pipeline optimizations.
- kernel, template interface for users to instantiate a particular kernel
**[ops/epilogue]**
epilogue part of our kernel. We may extend this epilogue part to let users to build their own cutomized epilogues.
## examples
currently we put all ck_tile related example under [/example/ck_tile](/example/ck_tile/) folder. Please check each example's subfolder.
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core/algorithm/cluster_descriptor.hpp"
#include "ck_tile/core/algorithm/coordinate_transform.hpp"
#include "ck_tile/core/algorithm/space_filling_curve.hpp"
#include "ck_tile/core/arch/amd_buffer_addressing.hpp"
#include "ck_tile/core/arch/arch.hpp"
#include "ck_tile/core/arch/utility.hpp"
#include "ck_tile/core/config.hpp"
#include "ck_tile/core/container/array.hpp"
#include "ck_tile/core/container/container_helper.hpp"
#include "ck_tile/core/container/map.hpp"
#include "ck_tile/core/container/meta_data_buffer.hpp"
#include "ck_tile/core/container/multi_index.hpp"
#include "ck_tile/core/container/sequence.hpp"
#include "ck_tile/core/container/span.hpp"
#include "ck_tile/core/container/statically_indexed_array.hpp"
#include "ck_tile/core/container/thread_buffer.hpp"
#include "ck_tile/core/container/tuple.hpp"
#include "ck_tile/core/numeric/bfloat16.hpp"
#include "ck_tile/core/numeric/float8.hpp"
#include "ck_tile/core/numeric/half.hpp"
#include "ck_tile/core/numeric/integer.hpp"
#include "ck_tile/core/numeric/integral_constant.hpp"
#include "ck_tile/core/numeric/math.hpp"
#include "ck_tile/core/numeric/numeric.hpp"
#include "ck_tile/core/numeric/type_convert.hpp"
#include "ck_tile/core/numeric/vector_type.hpp"
#include "ck_tile/core/tensor/buffer_view.hpp"
#include "ck_tile/core/tensor/load_tile.hpp"
#include "ck_tile/core/tensor/null_tensor.hpp"
#include "ck_tile/core/tensor/null_tile_window.hpp"
#include "ck_tile/core/tensor/shuffle_tile.hpp"
#include "ck_tile/core/tensor/slice_tile.hpp"
#include "ck_tile/core/tensor/static_distributed_tensor.hpp"
#include "ck_tile/core/tensor/store_tile.hpp"
#include "ck_tile/core/tensor/sweep_tile.hpp"
#include "ck_tile/core/tensor/tensor_adaptor.hpp"
#include "ck_tile/core/tensor/tensor_adaptor_coordinate.hpp"
#include "ck_tile/core/tensor/tensor_coordinate.hpp"
#include "ck_tile/core/tensor/tensor_descriptor.hpp"
#include "ck_tile/core/tensor/tensor_view.hpp"
#include "ck_tile/core/tensor/tile_distribution.hpp"
#include "ck_tile/core/tensor/tile_distribution_encoding.hpp"
#include "ck_tile/core/tensor/tile_elementwise.hpp"
#include "ck_tile/core/tensor/tile_window.hpp"
#include "ck_tile/core/utility/bit_cast.hpp"
#include "ck_tile/core/utility/functional.hpp"
#include "ck_tile/core/utility/ignore.hpp"
#include "ck_tile/core/utility/magic_div.hpp"
#include "ck_tile/core/utility/random.hpp"
#include "ck_tile/core/utility/to_sequence.hpp"
#include "ck_tile/core/utility/transpose_vectors.hpp"
#include "ck_tile/core/utility/type_traits.hpp"
#include "ck_tile/core/utility/unary_element_function.hpp"
# ck_tile/core #
`ck_tile/core` contains every basic functions and structures to create a GPU kernel using `ck_tile`. User should only include `ck_tile/core.hpp` this single header to use all the functionality. Everything is under `ck_tile` namespace. The coding style under this folder should be similar to `std` (`snake_case` for structure/function, Camel for template types...)
```
algorithm/
coordinate transform and some other reusable algorithm
arch/
contains some basic device building block like mma, buffer addressing, etc...
container/
contains basic container data structure, array/sequence/tuple/...
numeric/
data type, and data type related math
tensor/
tensor descriptors and tile level API
utility/
other utility function for both host/device
```
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core/config.hpp"
#include "ck_tile/core/algorithm/coordinate_transform.hpp"
#include "ck_tile/core/tensor/tensor_adaptor.hpp"
#include "ck_tile/core/container/container_helper.hpp"
#include "ck_tile/core/utility/functional.hpp"
#include "ck_tile/core/utility/type_traits.hpp"
namespace ck_tile {
template <typename Lengths,
typename ArrangeOrder = typename arithmetic_sequence_gen<0, Lengths::size(), 1>::type>
CK_TILE_HOST_DEVICE constexpr auto make_cluster_descriptor(
const Lengths& lengths,
ArrangeOrder order = typename arithmetic_sequence_gen<0, Lengths::size(), 1>::type{})
{
constexpr index_t ndim_low = Lengths::size();
const auto reordered_lengths = container_reorder_given_new2old(lengths, order);
const auto low_lengths = generate_tuple(
[&](auto idim_low) { return reordered_lengths[idim_low]; }, number<ndim_low>{});
const auto transform = make_merge_transform(low_lengths);
constexpr auto low_dim_old_top_ids = ArrangeOrder{};
constexpr auto up_dim_new_top_ids = sequence<0>{};
return make_single_stage_tensor_adaptor(
make_tuple(transform), make_tuple(low_dim_old_top_ids), make_tuple(up_dim_new_top_ids));
}
} // namespace ck_tile
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment