Commit 20ddaeba authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents c5f1cdf7 43879b89
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
template <typename AType_,
typename BType_,
typename CType_,
typename BlockWarps_,
typename WarpGemm_>
struct BlockGemmARegBSmemCRegV2CustomPolicy
{
using AType = remove_cvref_t<AType_>;
using BType = remove_cvref_t<BType_>;
using CType = remove_cvref_t<CType_>;
using BlockWarps = remove_cvref_t<BlockWarps_>;
static constexpr index_t kMWarps = BlockWarps::at(number<0>{});
static constexpr index_t kNWarps = BlockWarps::at(number<1>{});
static constexpr index_t kKWarps = BlockWarps::at(number<2>{});
using WarpGemm = remove_cvref_t<WarpGemm_>;
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetWarpGemmMWarpNWarp()
{
return make_tuple(WarpGemm{}, kMWarps, kNWarps);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/gemm/warp/warp_gemm.hpp"
namespace ck_tile {
// Default policy for BlockGemmARegBSmemCRegV2
// Default policy class should not be templated, put template on member functions instead
struct BlockGemmARegBSmemCRegV2DefaultPolicy
{
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetWarpGemmMWarpNWarp()
{
#if 0
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t kNPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
static_assert(kBlockSize % get_warp_size() == 0, "wrong!");
constexpr index_t NumWarp = kBlockSize / get_warp_size();
// FIXME
if constexpr(NumWarp == 4 && kMPerBlock % 128 == 0 &&
kNPerBlock % 128 == 0 % kKPerBlock % 16 == 0)
{
return make_tuple(WarpGemmMfmaF16F16F32M32N32K8{}, 4, 1);
}
else
{
return make_tuple(WarpGemmMfmaF16F16F32M32N32K8{}, 4, 1);
}
#else
return make_tuple(WarpGemmMfmaF16F16F32M32N32K8TransposedCDistribution{}, 4, 1);
#endif
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
// Problem Description for BlockGemmASmemBSmemCRegV1
template <typename ADataType_,
typename BDataType_,
typename CDataType_,
index_t kBlockSize_,
typename BlockGemmShape_>
struct BlockGemmASmemBSmemCRegProblem
{
using ADataType = remove_cvref_t<ADataType_>;
using BDataType = remove_cvref_t<BDataType_>;
using CDataType = remove_cvref_t<CDataType_>;
using BlockGemmShape = remove_cvref_t<BlockGemmShape_>;
static constexpr index_t kBlockSize = kBlockSize_;
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/gemm/block/block_gemm_asmem_bsmem_creg_v1_default_policy.hpp"
namespace ck_tile {
// A is block window on shared memory
// B is block window on shared memory
// C is block distributed tensor
template <typename Problem_, typename Policy_ = BlockGemmASmemBSmemCRegV1DefaultPolicy>
struct BlockGemmASmemBSmemCRegV1
{
using Problem = remove_cvref_t<Problem_>;
using Policy = remove_cvref_t<Policy_>;
using ADataType = remove_cvref_t<typename Problem::ADataType>;
using BDataType = remove_cvref_t<typename Problem::BDataType>;
using CDataType = remove_cvref_t<typename Problem::CDataType>;
using BlockGemmShape = remove_cvref_t<typename Problem::BlockGemmShape>;
static constexpr index_t kBlockSize = Problem::kBlockSize;
// C += A * B
template <typename CBlockTensor, typename ABlockWindowTmp, typename BBlockWindowTmp>
CK_TILE_DEVICE void operator()(CBlockTensor& c_block_tensor,
const ABlockWindowTmp& a_block_window_tmp,
const BBlockWindowTmp& b_block_window_tmp) const
{
static_assert(std::is_same_v<ADataType, typename ABlockWindowTmp::DataType> &&
std::is_same_v<BDataType, typename BBlockWindowTmp::DataType> &&
std::is_same_v<CDataType, typename CBlockTensor::DataType>,
"wrong!");
constexpr index_t MPerBlock = ABlockWindowTmp{}.get_window_lengths()[number<0>{}];
constexpr index_t NPerBlock = BBlockWindowTmp{}.get_window_lengths()[number<0>{}];
constexpr index_t KPerBlock = ABlockWindowTmp{}.get_window_lengths()[number<1>{}];
static_assert(MPerBlock == BlockGemmShape::kM && NPerBlock == BlockGemmShape::kN &&
KPerBlock == BlockGemmShape::kK,
"wrong!");
constexpr auto config = Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t NWarp = config.template at<2>();
constexpr index_t MIterPerWarp = MPerBlock / (MWarp * WG::kM);
constexpr index_t NIterPerWarp = NPerBlock / (NWarp * WG::kN);
constexpr index_t KIterPerWarp = KPerBlock / WG::kK;
constexpr index_t MPerBlockPerIter = MPerBlock / MIterPerWarp;
constexpr index_t NPerBlockPerIter = NPerBlock / NIterPerWarp;
constexpr index_t KPerBlockPerIter = KPerBlock / KIterPerWarp;
const index_t iMWarp = get_warp_id() / NWarp;
const index_t iNWarp = get_warp_id() % NWarp;
// construct A-warp-window
auto a_warp_window_tmp = make_tile_window(
a_block_window_tmp.get_bottom_tensor_view(),
make_tuple(number<WG::kM>{}, number<WG::kK>{}),
a_block_window_tmp.get_window_origin() + multi_index<2>{iMWarp * WG::kM, 0},
make_static_tile_distribution(typename WG::AWarpDstrEncoding{}));
#if 0 // FIXME: using array will cause register spill
array<array<decltype(a_warp_window_tmp), KIterPerWarp>, MIterPerWarp> a_warp_windows{
{a_warp_window_tmp}};
for(index_t mIter = 0; mIter < MIterPerWarp; mIter++)
{
for(index_t kIter = 0; kIter < KIterPerWarp; kIter++)
{
move_tile_window(a_warp_windows(mIter)(kIter),
{mIter * MPerBlockPerIter, kIter * KPerBlockPerIter});
}
}
#else
statically_indexed_array<
statically_indexed_array<decltype(a_warp_window_tmp), KIterPerWarp>,
MIterPerWarp>
a_warp_windows;
static_for<0, MIterPerWarp, 1>{}([&](auto mIter) {
static_for<0, KIterPerWarp, 1>{}([&](auto kIter) {
a_warp_windows(mIter)(kIter) = a_warp_window_tmp;
move_tile_window(a_warp_windows(mIter)(kIter),
{mIter * MPerBlockPerIter, kIter * KPerBlockPerIter});
});
});
#endif
// construct B-warp-window
auto b_warp_window_tmp = make_tile_window(
b_block_window_tmp.get_bottom_tensor_view(),
make_tuple(number<WG::kN>{}, number<WG::kK>{}),
b_block_window_tmp.get_window_origin() + multi_index<2>{iNWarp * WG::kN, 0},
make_static_tile_distribution(typename WG::BWarpDstrEncoding{}));
#if 0 // FIXME: using array will cause register spill
array<array<decltype(b_warp_window_tmp), KIterPerWarp>, NIterPerWarp> b_warp_windows{
{b_warp_window_tmp}};
for(index_t nIter = 0; nIter < NIterPerWarp; nIter++)
{
for(index_t kIter = 0; kIter < KIterPerWarp; kIter++)
{
move_tile_window(b_warp_windows(nIter)(kIter),
{nIter * NPerBlockPerIter, kIter * KPerBlockPerIter});
}
}
#else
statically_indexed_array<
statically_indexed_array<decltype(b_warp_window_tmp), KIterPerWarp>,
NIterPerWarp>
b_warp_windows;
static_for<0, NIterPerWarp, 1>{}([&](auto nIter) {
static_for<0, KIterPerWarp, 1>{}([&](auto kIter) {
b_warp_windows(nIter)(kIter) = b_warp_window_tmp;
move_tile_window(b_warp_windows(nIter)(kIter),
{nIter * NPerBlockPerIter, kIter * KPerBlockPerIter});
});
});
#endif
using CWarpDstr = typename WG::CWarpDstr;
using CWarpTensor = typename WG::CWarpTensor;
constexpr auto c_warp_y_lengths =
to_sequence(CWarpDstr{}.get_ys_to_d_descriptor().get_lengths());
constexpr auto c_warp_y_index_zeros = uniform_sequence_gen_t<CWarpDstr::NDimY, 0>{};
// hot loop:
static_for<0, KIterPerWarp, 1>{}([&](auto kIter) {
static_for<0, MIterPerWarp, 1>{}([&](auto mIter) {
// read A warp tensor from A block window
const auto a_warp_tensor = load_tile(a_warp_windows(mIter)(kIter));
static_for<0, NIterPerWarp, 1>{}([&](auto nIter) {
// read B warp tensor from B Block window
const auto b_warp_tensor = load_tile(b_warp_windows(nIter)(kIter));
// read C warp tensor from C block tensor
CWarpTensor c_warp_tensor;
c_warp_tensor.get_thread_buffer() = c_block_tensor.get_y_sliced_thread_data(
merge_sequences(sequence<mIter, nIter>{}, c_warp_y_index_zeros),
merge_sequences(sequence<1, 1>{}, c_warp_y_lengths));
// warp GEMM
WG{}(c_warp_tensor, a_warp_tensor, b_warp_tensor);
// write C warp tensor into C block tensor
c_block_tensor.set_y_sliced_thread_data(
merge_sequences(sequence<mIter, nIter>{}, c_warp_y_index_zeros),
merge_sequences(sequence<1, 1>{}, c_warp_y_lengths),
c_warp_tensor.get_thread_buffer());
});
});
});
}
CK_TILE_DEVICE constexpr auto MakeCBlockTile() const
{
constexpr index_t MPerBlock = BlockGemmShape::kM;
constexpr index_t NPerBlock = BlockGemmShape::kN;
constexpr auto config = Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t NWarp = config.template at<2>();
constexpr index_t MIterPerWarp = MPerBlock / (MWarp * WG::kM);
constexpr index_t NIterPerWarp = NPerBlock / (NWarp * WG::kN);
constexpr auto c_block_outer_dstr_encoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<MIterPerWarp, MWarp>, sequence<NIterPerWarp, NWarp>>,
tuple<sequence<1, 2>>,
tuple<sequence<1, 1>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto c_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
c_block_outer_dstr_encoding, typename WG::CWarpDstrEncoding{});
constexpr auto c_block_dstr = make_static_tile_distribution(c_block_dstr_encode);
auto c_block_tensor = make_static_distributed_tensor<CDataType>(c_block_dstr);
return c_block_tensor;
}
// C = A * B
template <typename ABlockTensorTmp, typename BBlockWindowTmp>
CK_TILE_DEVICE auto operator()(const ABlockTensorTmp& a_block_tensor_tmp,
const BBlockWindowTmp& b_block_window_tmp) const
{
auto c_block_tensor = MakeCBlockTile();
operator()(c_block_tensor, a_block_tensor_tmp, b_block_window_tmp);
return c_block_tensor;
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
// Default policy for BlockGemmASmemBSmemCRegV1
// Default policy class should not be templated, put template on member functions instead
template <typename AType_,
typename BType_,
typename CType_,
typename BlockWarps_,
typename WarpGemm_>
struct BlockGemmASmemBSmemCRegV1CustomPolicy
{
using AType = remove_cvref_t<AType_>;
using BType = remove_cvref_t<BType_>;
using CType = remove_cvref_t<CType_>;
using BlockWarps = remove_cvref_t<BlockWarps_>;
static constexpr index_t kMWarps = BlockWarps::at(number<0>{});
static constexpr index_t kNWarps = BlockWarps::at(number<1>{});
static constexpr index_t kKWarps = BlockWarps::at(number<2>{});
using WarpGemm = remove_cvref_t<WarpGemm_>;
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetWarpGemmMWarpNWarp()
{
return make_tuple(WarpGemm{}, kMWarps, kNWarps);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/gemm/warp/warp_gemm.hpp"
namespace ck_tile {
// Default policy for BlockGemmASmemBSmemCRegV1
// Default policy class should not be templated, put template on member functions instead
struct BlockGemmASmemBSmemCRegV1DefaultPolicy
{
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetWarpGemmMWarpNWarp()
{
if constexpr(std::is_same_v<typename Problem::ADataType, half_t> &&
std::is_same_v<typename Problem::BDataType, half_t> &&
std::is_same_v<typename Problem::CDataType, float>)
{
#if 0
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t kNPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
static_assert(kBlockSize % get_warp_size() == 0, "wrong!");
constexpr index_t NumWarp = kBlockSize / get_warp_size();
if constexpr(NumWarp == 4 && kMPerBlock % 128 == 0 &&
kNPerBlock % 128 == 0 % kKPerBlock % 16 == 0)
{
return make_tuple(WarpGemmMfmaF16F16F32M32N32K16{}, 2, 2);
}
else
{
return make_tuple(WarpGemmMfmaF16F16F32M32N32K16{}, 2, 2);
}
#else
return make_tuple(WarpGemmMfmaF16F16F32M32N32K16TransposedCDistribution{}, 4, 1);
#endif
}
else if constexpr(std::is_same_v<typename Problem::ADataType, bf16_t> &&
std::is_same_v<typename Problem::BDataType, bf16_t> &&
std::is_same_v<typename Problem::CDataType, float>)
{
return make_tuple(WarpGemmMfmaBf16Bf16F32M32N32K16TransposedCDistribution{}, 4, 1);
}
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
// A Tile Window: global memory
// B Tile Window: global memory
// C Distributed tensor: register
template <typename Problem, typename Policy = BlockGemmPipelineAGmemBGmemCRegV1DefaultPolicy>
struct BlockGemmPipelineAGmemBGmemCRegV1
{
using ADataType = remove_cvref_t<typename Problem::ADataType>;
using BDataType = remove_cvref_t<typename Problem::BDataType>;
using CDataType = remove_cvref_t<typename Problem::CDataType>;
using BlockGemmShape = remove_cvref_t<typename Problem::BlockGemmShape>;
static constexpr index_t kBlockSize = Problem::kBlockSize;
static constexpr index_t kMPerBlock = BlockGemmShape::kM;
static constexpr index_t kNPerBlock = BlockGemmShape::kN;
static constexpr index_t kKPerBlock = BlockGemmShape::kK;
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetStaticLdsSize()
{
return ck_tile::integer_divide_ceil(
sizeof(ADataType) *
Policy::template MakeALdsBlockDescriptor<Problem>().get_element_space_size(),
16) *
16 +
sizeof(BDataType) *
Policy::template MakeBLdsBlockDescriptor<Problem>().get_element_space_size();
}
template <typename ADramBlockWindowTmp,
typename BDramBlockWindowTmp,
typename AElementFunction,
typename BElementFunction>
CK_TILE_HOST_DEVICE auto operator()(const ADramBlockWindowTmp& a_dram_block_window_tmp,
const AElementFunction& a_element_func,
const BDramBlockWindowTmp& b_dram_block_window_tmp,
const BElementFunction& b_element_func,
index_t num_loop,
void* p_smem) const
{
static_assert(
std::is_same_v<ADataType, remove_cvref_t<typename ADramBlockWindowTmp::DataType>> &&
std::is_same_v<BDataType, remove_cvref_t<typename BDramBlockWindowTmp::DataType>>,
"wrong!");
static_assert(kMPerBlock == ADramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kNPerBlock == BDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kKPerBlock == ADramBlockWindowTmp{}.get_window_lengths()[number<1>{}],
"wrong!");
// A tile in LDS
ADataType* p_a_lds = static_cast<ADataType*>(p_smem);
constexpr auto a_lds_block_desc = Policy::template MakeALdsBlockDescriptor<Problem>();
auto a_lds_block = make_tensor_view<address_space_enum::lds>(p_a_lds, a_lds_block_desc);
constexpr index_t a_lds_block_space_size_aligned =
integer_divide_ceil(sizeof(ADataType) * a_lds_block_desc.get_element_space_size(), 16) *
16;
// B tile in LDS
BDataType* p_b_lds = static_cast<BDataType*>(
static_cast<void*>(static_cast<char*>(p_smem) + a_lds_block_space_size_aligned));
constexpr auto b_lds_block_desc = Policy::template MakeBLdsBlockDescriptor<Problem>();
auto b_lds_block = make_tensor_view<address_space_enum::lds>(p_b_lds, b_lds_block_desc);
// A DRAM tile window for load
auto a_copy_dram_window =
make_tile_window(a_dram_block_window_tmp.get_bottom_tensor_view(),
make_tuple(number<kMPerBlock>{}, number<kKPerBlock>{}),
a_dram_block_window_tmp.get_window_origin(),
Policy::template MakeADramTileDistribution<Problem>());
// A LDS tile window for store
auto a_copy_lds_window =
make_tile_window(a_lds_block,
make_tuple(number<kMPerBlock>{}, number<kKPerBlock>{}),
{0, 0},
a_copy_dram_window.get_tile_distribution());
// B DRAM tile window for load
auto b_copy_dram_window =
make_tile_window(b_dram_block_window_tmp.get_bottom_tensor_view(),
make_tuple(number<kNPerBlock>{}, number<kKPerBlock>{}),
b_dram_block_window_tmp.get_window_origin(),
Policy::template MakeBDramTileDistribution<Problem>());
// B LDS tile window for store
auto b_copy_lds_window =
make_tile_window(b_lds_block,
make_tuple(number<kNPerBlock>{}, number<kKPerBlock>{}),
{0, 0},
b_copy_dram_window.get_tile_distribution());
// A LDS tile for block GEMM
auto a_lds_gemm_window = make_tile_window(
a_lds_block, make_tuple(number<kMPerBlock>{}, number<kKPerBlock>{}), {0, 0});
// B LDS tile for block GEMM
auto b_lds_gemm_window = make_tile_window(
b_lds_block, make_tuple(number<kNPerBlock>{}, number<kKPerBlock>{}), {0, 0});
// Block GEMM
constexpr auto block_gemm = Policy::template GetBlockGemm<Problem>();
// Acc register tile
auto c_block_tile = decltype(block_gemm(a_lds_gemm_window, b_lds_gemm_window)){};
// prefetch
// global read 0
auto a_block_tile = load_tile(a_copy_dram_window);
auto b_block_tile = load_tile(b_copy_dram_window);
{
// move to 1
move_tile_window(a_copy_dram_window, {0, kKPerBlock});
move_tile_window(b_copy_dram_window, {0, kKPerBlock});
// initialize C
tile_elementwise_inout([](auto& c) { c = 0; }, c_block_tile);
// LDS write 0
const auto a_block_tile_tmp = tile_elementwise_in(a_element_func, a_block_tile);
store_tile(a_copy_lds_window, a_block_tile_tmp);
// LDS write 0
const auto b_block_tile_tmp = tile_elementwise_in(b_element_func, b_block_tile);
store_tile(b_copy_lds_window, b_block_tile_tmp);
}
index_t iCounter = num_loop - 1;
do
{
// global read i + 1
a_block_tile = load_tile(a_copy_dram_window);
b_block_tile = load_tile(b_copy_dram_window);
block_sync_lds();
// GEMM i
block_gemm(c_block_tile, a_lds_gemm_window, b_lds_gemm_window);
block_sync_lds();
// move to i + 2
move_tile_window(a_copy_dram_window, {0, kKPerBlock});
move_tile_window(b_copy_dram_window, {0, kKPerBlock});
// LDS write i + 1
const auto a_block_tile_tmp = tile_elementwise_in(a_element_func, a_block_tile);
store_tile(a_copy_lds_window, a_block_tile_tmp);
// LDS write i + 1
const auto b_block_tile_tmp = tile_elementwise_in(b_element_func, b_block_tile);
store_tile(b_copy_lds_window, b_block_tile_tmp);
iCounter--;
} while(iCounter > 0);
// tail
{
block_sync_lds();
// GEMM num_loop - 1
block_gemm(c_block_tile, a_lds_gemm_window, b_lds_gemm_window);
}
return c_block_tile;
}
template <typename ADramBlockWindowTmp, typename BDramBlockWindowTmp>
CK_TILE_DEVICE auto operator()(const ADramBlockWindowTmp& a_dram_block_window_tmp,
const BDramBlockWindowTmp& b_dram_block_window_tmp,
index_t num_loop,
void* p_smem) const
{
return operator()(
a_dram_block_window_tmp,
[](const ADataType& a) { return a; },
b_dram_block_window_tmp,
[](const BDataType& b) { return b; },
num_loop,
p_smem);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
// Default policy for BlockGemmPipelineAGmemBGmemCRegV1
// Default policy class should not be templated, put template on member functions instead
struct BlockGemmPipelineAGmemBGmemCRegV1DefaultPolicy
{
#if 0
// 2d
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeALdsBlockDescriptor()
{
using namespace ck_tile;
constexpr index_t kMPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
constexpr auto a_lds_block_desc =
make_naive_tensor_descriptor_packed(make_tuple(kMPerBlock, kKPerBlock), number<32>{});
return a_lds_block_desc;
}
// 2d
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeBLdsBlockDescriptor()
{
using namespace ck_tile;
constexpr index_t kNPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
constexpr auto b_lds_block_desc =
make_naive_tensor_descriptor_packed(make_tuple(kNPerBlock, kKPerBlock), number<32>{});
return b_lds_block_desc;
}
#elif 1
// 3d + padding
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeALdsBlockDescriptor()
{
using namespace ck_tile;
constexpr index_t kMPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
constexpr auto a_lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<kKPerBlock / 8>{}, number<kMPerBlock>{}, number<8>{}),
make_tuple(number<(kMPerBlock + 1) * 8>{}, number<8>{}, number<1>{}),
number<8>{},
number<1>{});
constexpr auto a_lds_block_desc = transform_tensor_descriptor(
a_lds_block_desc_0,
make_tuple(make_pass_through_transform(kMPerBlock),
make_merge_transform(make_tuple(kKPerBlock / 8, 8))),
make_tuple(sequence<1>{}, sequence<0, 2>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return a_lds_block_desc;
}
// 3d + padding
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeBLdsBlockDescriptor()
{
using namespace ck_tile;
constexpr index_t kNPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
constexpr auto b_lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<kKPerBlock / 8>{}, number<kNPerBlock>{}, number<8>{}),
make_tuple(number<(kNPerBlock + 1) * 8>{}, number<8>{}, number<1>{}),
number<8>{},
number<1>{});
constexpr auto b_lds_block_desc = transform_tensor_descriptor(
b_lds_block_desc_0,
make_tuple(make_pass_through_transform(kNPerBlock),
make_merge_transform(make_tuple(kKPerBlock / 8, 8))),
make_tuple(sequence<1>{}, sequence<0, 2>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return b_lds_block_desc;
}
#elif 1
// fake XOR
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeALdsBlockDescriptor()
{
using namespace ck_tile;
using ADataType = remove_cvref_t<typename Problem::ADataType>;
constexpr index_t kMPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
constexpr auto a_lds_block_desc_d1_d2_d3 = make_naive_tensor_descriptor_packed(
make_tuple(number<kMPerBlock / 2>{}, number<2>{}, number<kKPerBlock>{}),
number<kKPerBlock>{});
constexpr index_t kK1 = 16 / sizeof(ADataType);
constexpr auto a_lds_block_desc_d4_d5_d6 = transform_tensor_descriptor(
a_lds_block_desc_d1_d2_d3,
make_tuple(
make_xor_transform(make_tuple(number<kMPerBlock / 2>{}, number<kKPerBlock>{}), kK1),
make_pass_through_transform(2)),
make_tuple(sequence<0, 2>{}, sequence<1>{}),
make_tuple(sequence<0, 2>{}, sequence<1>{}));
constexpr auto a_lds_block_desc_m_k = transform_tensor_descriptor(
a_lds_block_desc_d4_d5_d6,
make_tuple(make_merge_transform(make_tuple(number<kMPerBlock / 2>{}, number<2>{})),
make_pass_through_transform(kKPerBlock)),
make_tuple(sequence<0, 1>{}, sequence<2>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return a_lds_block_desc_m_k;
}
// fake XOR
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeBLdsBlockDescriptor()
{
using namespace ck_tile;
using BDataType = remove_cvref_t<typename Problem::BDataType>;
constexpr index_t kNPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
constexpr auto b_lds_block_desc_d1_d2_d3 = make_naive_tensor_descriptor_packed(
make_tuple(number<kNPerBlock / 2>{}, number<2>{}, number<kKPerBlock>{}),
number<kKPerBlock>{});
constexpr index_t kK1 = 16 / sizeof(BDataType);
constexpr auto b_lds_block_desc_d4_d5_d6 = transform_tensor_descriptor(
b_lds_block_desc_d1_d2_d3,
make_tuple(
make_xor_transform(make_tuple(number<kNPerBlock / 2>{}, number<kKPerBlock>{}), kK1),
make_pass_through_transform(2)),
make_tuple(sequence<0, 2>{}, sequence<1>{}),
make_tuple(sequence<0, 2>{}, sequence<1>{}));
constexpr auto b_lds_block_desc_n_k = transform_tensor_descriptor(
b_lds_block_desc_d4_d5_d6,
make_tuple(make_merge_transform(make_tuple(number<kNPerBlock / 2>{}, number<2>{})),
make_pass_through_transform(kKPerBlock)),
make_tuple(sequence<0, 1>{}, sequence<2>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return b_lds_block_desc_n_k;
}
#endif
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeADramTileDistribution()
{
using ADataType = remove_cvref_t<typename Problem::ADataType>;
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t K1 = 16 / sizeof(ADataType);
constexpr index_t K0 = kKPerBlock / K1;
constexpr index_t M2 = get_warp_size() / K0;
#if 1 // coalesce reading for each blocks
constexpr index_t M1 = kBlockSize / get_warp_size();
constexpr index_t M0 = kMPerBlock / (M2 * M1);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
#else // coalesce reading for each warps
constexpr index_t M0 = kBlockSize / get_warp_size();
constexpr index_t M1 = kMPerBlock / (M2 * M0);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<0>, sequence<2, 0>>,
sequence<1, 2>,
sequence<1, 1>>{});
#endif
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeBDramTileDistribution()
{
using BDataType = remove_cvref_t<typename Problem::BDataType>;
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t K1 = 16 / sizeof(BDataType);
constexpr index_t K0 = kKPerBlock / K1;
constexpr index_t N2 = get_warp_size() / K0;
#if 1 // coalesce reading for each blocks
constexpr index_t N1 = kBlockSize / get_warp_size();
constexpr index_t N0 = kNPerBlock / (N2 * N1);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1, N2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
#else // coalesce reading for each warps
constexpr index_t N0 = kBlockSize / get_warp_size();
constexpr index_t N1 = kNPerBlock / (N2 * N0);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1, N2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<0>, sequence<2, 0>>,
sequence<1, 2>,
sequence<1, 1>>{});
#endif
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetBlockGemm()
{
using BlockGemmPolicy = BlockGemmASmemBSmemCRegV1DefaultPolicy;
return BlockGemmASmemBSmemCRegV1<Problem, BlockGemmPolicy>{};
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
// A Tile Window: global memory
// B Tile Window: global memory
// C Distributed tensor: register
template <typename Problem, typename Policy = BlockGemmPipelineAGmemBGmemCRegV2DefaultPolicy>
struct BlockGemmPipelineAGmemBGmemCRegV2
{
using ADataType = remove_cvref_t<typename Problem::ADataType>;
using BDataType = remove_cvref_t<typename Problem::BDataType>;
using CDataType = remove_cvref_t<typename Problem::CDataType>;
using BlockGemmShape = remove_cvref_t<typename Problem::BlockGemmShape>;
static constexpr index_t kBlockSize = Problem::kBlockSize;
static constexpr index_t kMPerBlock = BlockGemmShape::kM;
static constexpr index_t kNPerBlock = BlockGemmShape::kN;
static constexpr index_t kKPerBlock = BlockGemmShape::kK;
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetStaticLdsSize()
{
return ck_tile::integer_divide_ceil(
sizeof(ADataType) *
Policy::template MakeALdsBlockDescriptor<Problem>().get_element_space_size(),
16) *
16 +
sizeof(BDataType) *
Policy::template MakeBLdsBlockDescriptor<Problem>().get_element_space_size();
}
template <typename ADramBlockWindowTmp,
typename BDramBlockWindowTmp,
typename AElementFunction,
typename BElementFunction>
CK_TILE_HOST_DEVICE auto operator()(const ADramBlockWindowTmp& a_dram_block_window_tmp,
const AElementFunction& a_element_func,
const BDramBlockWindowTmp& b_dram_block_window_tmp,
const BElementFunction& b_element_func,
index_t num_loop,
void* p_smem) const
{
static_assert(
std::is_same_v<ADataType, remove_cvref_t<typename ADramBlockWindowTmp::DataType>> &&
std::is_same_v<BDataType, remove_cvref_t<typename BDramBlockWindowTmp::DataType>>,
"wrong!");
static_assert(kMPerBlock == ADramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kNPerBlock == BDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kKPerBlock == ADramBlockWindowTmp{}.get_window_lengths()[number<1>{}],
"wrong!");
// A tile in LDS
ADataType* p_a_lds = static_cast<ADataType*>(p_smem);
constexpr auto a_lds_block_desc = Policy::template MakeALdsBlockDescriptor<Problem>();
auto a_lds_block = make_tensor_view<address_space_enum::lds>(p_a_lds, a_lds_block_desc);
constexpr index_t a_lds_block_space_size_aligned =
integer_divide_ceil(sizeof(ADataType) * a_lds_block_desc.get_element_space_size(), 16) *
16;
// B tile in LDS
BDataType* p_b_lds = static_cast<BDataType*>(
static_cast<void*>(static_cast<char*>(p_smem) + a_lds_block_space_size_aligned));
constexpr auto b_lds_block_desc = Policy::template MakeBLdsBlockDescriptor<Problem>();
auto b_lds_block = make_tensor_view<address_space_enum::lds>(p_b_lds, b_lds_block_desc);
// A DRAM tile window for load
auto a_copy_dram_window =
make_tile_window(a_dram_block_window_tmp.get_bottom_tensor_view(),
make_tuple(number<kMPerBlock>{}, number<kKPerBlock>{}),
a_dram_block_window_tmp.get_window_origin(),
Policy::template MakeADramTileDistribution<Problem>());
// A LDS tile window for store
auto a_copy_lds_window =
make_tile_window(a_lds_block,
make_tuple(number<kMPerBlock>{}, number<kKPerBlock>{}),
{0, 0},
a_copy_dram_window.get_tile_distribution());
// B DRAM tile window for load
auto b_copy_dram_window =
make_tile_window(b_dram_block_window_tmp.get_bottom_tensor_view(),
make_tuple(number<kNPerBlock>{}, number<kKPerBlock>{}),
b_dram_block_window_tmp.get_window_origin(),
Policy::template MakeBDramTileDistribution<Problem>());
// B LDS tile window for store
auto b_copy_lds_window =
make_tile_window(b_lds_block,
make_tuple(number<kNPerBlock>{}, number<kKPerBlock>{}),
{0, 0},
b_copy_dram_window.get_tile_distribution());
// A LDS tile for block GEMM
auto a_lds_gemm_window = make_tile_window(
a_lds_block, make_tuple(number<kMPerBlock>{}, number<kKPerBlock>{}), {0, 0});
// B LDS tile for block GEMM
auto b_lds_gemm_window = make_tile_window(
b_lds_block, make_tuple(number<kNPerBlock>{}, number<kKPerBlock>{}), {0, 0});
// Block GEMM
constexpr auto block_gemm = Policy::template GetBlockGemm<Problem>();
// Acc register tile
auto c_block_tile = decltype(block_gemm(a_lds_gemm_window, b_lds_gemm_window)){};
// prefetch
// global read 0
auto a_block_tile = load_tile(a_copy_dram_window);
auto b_block_tile = load_tile(b_copy_dram_window);
{
// move to 1
move_tile_window(a_copy_dram_window, {0, kKPerBlock});
move_tile_window(b_copy_dram_window, {0, kKPerBlock});
// initialize C
tile_elementwise_inout([](auto& c) { c = 0; }, c_block_tile);
// LDS write 0
const auto a_block_tile_tmp = tile_elementwise_in(a_element_func, a_block_tile);
store_tile(a_copy_lds_window, a_block_tile_tmp);
// global read 1
a_block_tile = load_tile(a_copy_dram_window);
// LDS write 0
const auto b_block_tile_tmp = tile_elementwise_in(b_element_func, b_block_tile);
store_tile(b_copy_lds_window, b_block_tile_tmp);
// global read 1
b_block_tile = load_tile(b_copy_dram_window);
}
index_t iCounter = num_loop - 2;
do
{
block_sync_lds();
// GEMM i
block_gemm(c_block_tile, a_lds_gemm_window, b_lds_gemm_window);
block_sync_lds();
// move to i + 2
move_tile_window(a_copy_dram_window, {0, kKPerBlock});
move_tile_window(b_copy_dram_window, {0, kKPerBlock});
// LDS write i + 1
const auto a_block_tile_tmp = tile_elementwise_in(a_element_func, a_block_tile);
store_tile(a_copy_lds_window, a_block_tile_tmp);
// global read i + 2
a_block_tile = load_tile(a_copy_dram_window);
// LDS write i + 1
const auto b_block_tile_tmp = tile_elementwise_in(b_element_func, b_block_tile);
store_tile(b_copy_lds_window, b_block_tile_tmp);
// global read i + 2
b_block_tile = load_tile(b_copy_dram_window);
iCounter--;
} while(iCounter > 0);
// tail
{
block_sync_lds();
// GEMM num_loop - 2
block_gemm(c_block_tile, a_lds_gemm_window, b_lds_gemm_window);
block_sync_lds();
// LDS write num_loop - 1
const auto a_block_tile_tmp = tile_elementwise_in(a_element_func, a_block_tile);
store_tile(a_copy_lds_window, a_block_tile_tmp);
const auto b_block_tile_tmp = tile_elementwise_in(b_element_func, b_block_tile);
store_tile(b_copy_lds_window, b_block_tile_tmp);
block_sync_lds();
// GEMM num_loop - 1
block_gemm(c_block_tile, a_lds_gemm_window, b_lds_gemm_window);
}
return c_block_tile;
}
template <typename ADramBlockWindowTmp, typename BDramBlockWindowTmp>
CK_TILE_DEVICE auto operator()(const ADramBlockWindowTmp& a_dram_block_window_tmp,
const BDramBlockWindowTmp& b_dram_block_window_tmp,
index_t num_loop,
void* p_smem) const
{
return operator()(
a_dram_block_window_tmp,
[](const ADataType& a) { return a; },
b_dram_block_window_tmp,
[](const BDataType& b) { return b; },
num_loop,
p_smem);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
// Default policy for BlockGemmPipelineAGmemBGmemCRegV2
// Default policy class should not be templated, put template on member functions instead
// NOTE: policy should be binded to its corresponding operation. It's just a coincidence that
// BlockGemmPipelineAGmemBGmemCRegV2DefaultPolicy is the same as
// BlockGemmPipelineAGmemBGmemCRegV1DefaultPolicy
using BlockGemmPipelineAGmemBGmemCRegV2DefaultPolicy =
BlockGemmPipelineAGmemBGmemCRegV1DefaultPolicy;
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
template <typename ADataType_,
typename BDataType_,
typename CDataType_,
index_t kBlockSize_,
typename BlockGemmShape_>
struct BlockGemmPipelineProblem
{
using ADataType = remove_cvref_t<ADataType_>;
using BDataType = remove_cvref_t<BDataType_>;
using CDataType = remove_cvref_t<CDataType_>;
using BlockGemmShape = remove_cvref_t<BlockGemmShape_>;
static constexpr index_t kBlockSize = kBlockSize_;
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
template <index_t kMPerTile, index_t kNPerTile, index_t kKPerTile>
struct TileGemmShape
{
static constexpr index_t kM = kMPerTile;
static constexpr index_t kN = kNPerTile;
static constexpr index_t kK = kKPerTile;
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/gemm/warp/warp_gemm_impl.hpp"
#include "ck_tile/ops/gemm/warp/warp_gemm_attribute_mfma.hpp"
namespace ck_tile {
// fp16
using WarpGemmMfmaF16F16F32M32N32K8 =
WarpGemmImpl<WarpGemmAtrributeMfma<WarpGemmAttributeMfmaImplF16F16F32M32N32K8>>;
using WarpGemmMfmaF16F16F32M16N16K16 =
WarpGemmImpl<WarpGemmAtrributeMfma<WarpGemmAttributeMfmaImplF16F16F32M16N16K16>>;
using WarpGemmMfmaF16F16F32M32N32K16 =
WarpGemmImpl<WarpGemmAtrributeMfmaIterateK<WarpGemmAttributeMfmaImplF16F16F32M32N32K8, 2>>;
using WarpGemmMfmaF16F16F32M16N16K32 =
WarpGemmImpl<WarpGemmAtrributeMfmaIterateK<WarpGemmAttributeMfmaImplF16F16F32M16N16K16, 2>>;
using WarpGemmMfmaF16F16F32M32N32K8TransposedCDistribution = WarpGemmImpl<
WarpGemmAtrributeMfmaTransposedCDistribution<WarpGemmAttributeMfmaImplF16F16F32M32N32K8>>;
using WarpGemmMfmaF16F16F32M16N16K16TransposedCDistribution = WarpGemmImpl<
WarpGemmAtrributeMfmaTransposedCDistribution<WarpGemmAttributeMfmaImplF16F16F32M16N16K16>>;
using WarpGemmMfmaF16F16F32M32N32K16TransposedCDistribution =
WarpGemmImpl<WarpGemmAtrributeMfmaIterateKAndTransposedCDistribution<
WarpGemmAttributeMfmaImplF16F16F32M32N32K8,
2>>;
using WarpGemmMfmaF16F16F32M16N16K32TransposedCDistribution =
WarpGemmImpl<WarpGemmAtrributeMfmaIterateKAndTransposedCDistribution<
WarpGemmAttributeMfmaImplF16F16F32M16N16K16,
2>>;
using WarpGemmMfmaF16F16F32M16N16K32SwizzleBTransposedCDistribution =
WarpGemmImpl<WarpGemmAtrributeMfmaIterateKAndTransposedCDistribution_SwizzleB<
WarpGemmAttributeMfmaImplF16F16F32M32N32K8,
2>>;
// bf16
using WarpGemmMfmaBf16Bf16F32M32N32K8 =
WarpGemmImpl<WarpGemmAtrributeMfma<WarpGemmAttributeMfmaImplBf16Bf16F32M32N32K8>>;
using WarpGemmMfmaBf16Bf16F32M16N16K16 =
WarpGemmImpl<WarpGemmAtrributeMfma<WarpGemmAttributeMfmaImplBf16Bf16F32M16N16K16>>;
using WarpGemmMfmaBf16Bf16F32M32N32K16 =
WarpGemmImpl<WarpGemmAtrributeMfmaIterateK<WarpGemmAttributeMfmaImplBf16Bf16F32M32N32K8, 2>>;
using WarpGemmMfmaBf16Bf16F32M16N16K32 =
WarpGemmImpl<WarpGemmAtrributeMfmaIterateK<WarpGemmAttributeMfmaImplBf16Bf16F32M16N16K16, 2>>;
using WarpGemmMfmaBf16Bf16F32M32N32K8TransposedCDistribution = WarpGemmImpl<
WarpGemmAtrributeMfmaTransposedCDistribution<WarpGemmAttributeMfmaImplBf16Bf16F32M32N32K8>>;
using WarpGemmMfmaBf16Bf16F32M16N16K16TransposedCDistribution = WarpGemmImpl<
WarpGemmAtrributeMfmaTransposedCDistribution<WarpGemmAttributeMfmaImplBf16Bf16F32M16N16K16>>;
using WarpGemmMfmaBf16Bf16F32M32N32K16TransposedCDistribution =
WarpGemmImpl<WarpGemmAtrributeMfmaIterateKAndTransposedCDistribution<
WarpGemmAttributeMfmaImplBf16Bf16F32M32N32K8,
2>>;
using WarpGemmMfmaBf16Bf16F32M16N16K32TransposedCDistribution =
WarpGemmImpl<WarpGemmAtrributeMfmaIterateKAndTransposedCDistribution<
WarpGemmAttributeMfmaImplBf16Bf16F32M16N16K16,
2>>;
using WarpGemmMfmaBf16Bf16F32M16N16K32SwizzleBTransposedCDistribution =
WarpGemmImpl<WarpGemmAtrributeMfmaIterateKAndTransposedCDistribution_SwizzleB<
WarpGemmAttributeMfmaImplBf16Bf16F32M32N32K8,
2>>;
// fp8
using WarpGemmMfma_f32_32x32x16_fp8_fp8 =
WarpGemmImpl<WarpGemmAtrributeMfma<WarpGemmAttributeMfmaImpl_f32_32x32x16_fp8_fp8>>;
using WarpGemmMfma_f32_32x32x16_fp8_bf8 =
WarpGemmImpl<WarpGemmAtrributeMfma<WarpGemmAttributeMfmaImpl_f32_32x32x16_fp8_bf8>>;
using WarpGemmMfma_f32_32x32x16_bf8_fp8 =
WarpGemmImpl<WarpGemmAtrributeMfma<WarpGemmAttributeMfmaImpl_f32_32x32x16_bf8_fp8>>;
using WarpGemmMfma_f32_32x32x16_bf8_bf8 =
WarpGemmImpl<WarpGemmAtrributeMfma<WarpGemmAttributeMfmaImpl_f32_32x32x16_bf8_bf8>>;
using WarpGemmMfma_f32_32x32x16_fp8_fp8_CTransposed = WarpGemmImpl<
WarpGemmAtrributeMfmaTransposedCDistribution<WarpGemmAttributeMfmaImpl_f32_32x32x16_fp8_fp8>>;
using WarpGemmMfma_f32_32x32x16_fp8_bf8_CTransposed = WarpGemmImpl<
WarpGemmAtrributeMfmaTransposedCDistribution<WarpGemmAttributeMfmaImpl_f32_32x32x16_fp8_bf8>>;
using WarpGemmMfma_f32_32x32x16_bf8_fp8_CTransposed = WarpGemmImpl<
WarpGemmAtrributeMfmaTransposedCDistribution<WarpGemmAttributeMfmaImpl_f32_32x32x16_bf8_fp8>>;
using WarpGemmMfma_f32_32x32x16_bf8_bf8_CTransposed = WarpGemmImpl<
WarpGemmAtrributeMfmaTransposedCDistribution<WarpGemmAttributeMfmaImpl_f32_32x32x16_bf8_bf8>>;
template <index_t swizzle_factor = 2>
using WarpGemmMfmaFp8Fp8F32M32N32K16SwizzleBTransposedCDistribution =
WarpGemmImpl<WarpGemmAtrributeMfmaIterateKAndTransposedCDistribution_SwizzleB<
WarpGemmAttributeMfmaImpl_f32_32x32x16_f8_base<fp8_t, fp8_t>,
2,
swizzle_factor>>;
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/gemm/warp/warp_gemm_attribute_mfma_impl.hpp"
namespace ck_tile {
template <typename WarpGemmAttributeMfmaImpl_>
struct WarpGemmAtrributeMfma
{
using Impl = remove_cvref_t<WarpGemmAttributeMfmaImpl_>;
using ADataType = typename Impl::ADataType;
using BDataType = typename Impl::BDataType;
using CDataType = typename Impl::CDataType;
using AVecType = typename Impl::AVecType;
using BVecType = typename Impl::BVecType;
using CVecType = typename Impl::CVecType;
static constexpr index_t kM = Impl::kM;
static constexpr index_t kN = Impl::kN;
static constexpr index_t kK = Impl::kK;
using AWarpDstrEncoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Impl::kAMLane>, sequence<Impl::kABKLane, Impl::kABKPerLane>>,
tuple<sequence<2, 1>>,
tuple<sequence<0, 0>>,
sequence<2>,
sequence<1>>;
using BWarpDstrEncoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Impl::kBNLane>, sequence<Impl::kABKLane, Impl::kABKPerLane>>,
tuple<sequence<2, 1>>,
tuple<sequence<0, 0>>,
sequence<2>,
sequence<1>>;
using CWarpDstrEncoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Impl::kCM0PerLane, Impl::kCMLane, Impl::kCM1PerLane>,
sequence<Impl::kCNLane>>,
tuple<sequence<1, 2>>,
tuple<sequence<1, 0>>,
sequence<1, 1>,
sequence<0, 2>>;
// c_vec += a_vec * b_vec
CK_TILE_DEVICE void
operator()(CVecType& c_vec, const AVecType& a_vec, const BVecType& b_vec) const
{
Impl{}(c_vec, a_vec, b_vec);
}
// c_vec = a_vec * b_vec
CK_TILE_DEVICE CVecType operator()(const AVecType& a_vec, const BVecType& b_vec) const
{
return Impl{}(a_vec, b_vec);
}
};
template <typename WarpGemmAttributeMfmaImpl_, index_t kKIter>
struct WarpGemmAtrributeMfmaIterateK
{
static_assert(kKIter > 0, "wrong!");
using Impl = remove_cvref_t<WarpGemmAttributeMfmaImpl_>;
using ADataType = typename Impl::ADataType;
using BDataType = typename Impl::BDataType;
using CDataType = typename Impl::CDataType;
using AVecType =
ext_vector_t<ADataType, vector_traits<typename Impl::AVecType>::vector_size * kKIter>;
using BVecType =
ext_vector_t<BDataType, vector_traits<typename Impl::BVecType>::vector_size * kKIter>;
using CVecType = typename Impl::CVecType;
static constexpr index_t kM = Impl::kM;
static constexpr index_t kN = Impl::kN;
static constexpr index_t kK = Impl::kK * kKIter;
using AWarpDstrEncoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Impl::kAMLane>, sequence<Impl::kABKLane, Impl::kABKPerLane * kKIter>>,
tuple<sequence<2, 1>>,
tuple<sequence<0, 0>>,
sequence<2>,
sequence<1>>;
using BWarpDstrEncoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Impl::kBNLane>, sequence<Impl::kABKLane, Impl::kABKPerLane * kKIter>>,
tuple<sequence<2, 1>>,
tuple<sequence<0, 0>>,
sequence<2>,
sequence<1>>;
using CWarpDstrEncoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Impl::kCM0PerLane, Impl::kCMLane, Impl::kCM1PerLane>,
sequence<Impl::kCNLane>>,
tuple<sequence<1, 2>>,
tuple<sequence<1, 0>>,
sequence<1, 1>,
sequence<0, 2>>;
// c_vec += a_vec * b_vec
CK_TILE_DEVICE void
operator()(CVecType& c_vec, const AVecType& a_vec, const BVecType& b_vec) const
{
using buf_a = thread_buffer<typename Impl::AVecType, kKIter>;
using buf_b = thread_buffer<typename Impl::BVecType, kKIter>;
static_for<0, kKIter, 1>{}([&](auto iKIter) {
Impl{}(c_vec,
reinterpret_cast<const buf_a>(a_vec)
.template get_as<typename Impl::AVecType>()[iKIter],
reinterpret_cast<const buf_b>(b_vec)
.template get_as<typename Impl::BVecType>()[iKIter]);
});
}
// c_vec = a_vec * b_vec
CK_TILE_DEVICE CVecType operator()(const AVecType& a_vec, const BVecType& b_vec) const
{
constexpr auto I0 = number<0>{};
using buf_a = thread_buffer<typename Impl::AVecType, kKIter>;
using buf_b = thread_buffer<typename Impl::BVecType, kKIter>;
// c = a * b
auto c_vec = Impl{}(
reinterpret_cast<const buf_a>(a_vec).template get_as<typename Impl::AVecType>()[I0],
reinterpret_cast<const buf_b>(b_vec).template get_as<typename Impl::BVecType>()[I0]);
// c += a * b
static_for<1, kKIter, 1>{}([&](auto iKIter) {
Impl{}(c_vec,
reinterpret_cast<const buf_a>(a_vec)
.template get_as<typename Impl::AVecType>()[iKIter],
reinterpret_cast<const buf_b>(b_vec)
.template get_as<typename Impl::BVecType>()[iKIter]);
});
return c_vec;
}
};
template <typename WarpGemmAttributeMfmaImpl_>
struct WarpGemmAtrributeMfmaTransposedCDistribution
{
using Impl = remove_cvref_t<WarpGemmAttributeMfmaImpl_>;
using ADataType = typename Impl::BDataType;
using BDataType = typename Impl::ADataType;
using CDataType = typename Impl::CDataType;
using AVecType = typename Impl::BVecType;
using BVecType = typename Impl::AVecType;
using CVecType = typename Impl::CVecType;
static constexpr index_t kM = Impl::kN;
static constexpr index_t kN = Impl::kM;
static constexpr index_t kK = Impl::kK;
using AWarpDstrEncoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Impl::kBNLane>, sequence<Impl::kABKLane, Impl::kABKPerLane>>,
tuple<sequence<2, 1>>,
tuple<sequence<0, 0>>,
sequence<2>,
sequence<1>>;
using BWarpDstrEncoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Impl::kAMLane>, sequence<Impl::kABKLane, Impl::kABKPerLane>>,
tuple<sequence<2, 1>>,
tuple<sequence<0, 0>>,
sequence<2>,
sequence<1>>;
using CWarpDstrEncoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Impl::kCNLane>,
sequence<Impl::kCM0PerLane, Impl::kCMLane, Impl::kCM1PerLane>>,
tuple<sequence<2, 1>>,
tuple<sequence<1, 0>>,
sequence<2, 2>,
sequence<0, 2>>;
// c_vec += a_vec * b_vec
CK_TILE_DEVICE void
operator()(CVecType& c_vec, const AVecType& a_vec, const BVecType& b_vec) const
{
// swap A and B
Impl{}(c_vec, b_vec, a_vec);
}
// c_vec = a_vec * b_vec
CK_TILE_DEVICE CVecType operator()(const AVecType& a_vec, const BVecType& b_vec) const
{
// swap A and B
return Impl{}(b_vec, a_vec);
}
};
template <typename WarpGemmAttributeMfmaImpl_>
struct WarpGemmAtrributeMfmaTransposedCDistribution_SwizzleB
{
using Impl = remove_cvref_t<WarpGemmAttributeMfmaImpl_>;
using ADataType = typename Impl::BDataType;
using BDataType = typename Impl::ADataType;
using CDataType = typename Impl::CDataType;
using AVecType = typename Impl::BVecType;
using BVecType = typename Impl::AVecType;
using CVecType = typename Impl::CVecType;
static constexpr index_t kM = Impl::kN;
static constexpr index_t kN = Impl::kM;
static constexpr index_t kK = Impl::kK;
using AWarpDstrEncoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Impl::kBNLane>, sequence<Impl::kABKLane, Impl::kABKPerLane>>,
tuple<sequence<2, 1>>,
tuple<sequence<0, 0>>,
sequence<2>,
sequence<1>>;
using BWarpDstrEncoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Impl::kAMLane / (Impl::kABKPerLane * Impl::kABKLane * 2),
Impl::kABKLane,
2,
Impl::kABKPerLane>,
sequence<Impl::kABKLane, Impl::kABKPerLane>>,
tuple<sequence<2, 1, 1, 1, 1>>,
tuple<sequence<0, 0, 2, 1, 3>>,
sequence<2>,
sequence<1>>;
using CWarpDstrEncoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Impl::kCNLane>,
sequence<Impl::kCM0PerLane / 2, Impl::kCMLane, Impl::kCM1PerLane * 2>>,
tuple<sequence<2, 1>>,
tuple<sequence<1, 0>>,
sequence<2, 2>,
sequence<0, 2>>;
// c_vec += a_vec * b_vec
CK_TILE_DEVICE void
operator()(CVecType& c_vec, const AVecType& a_vec, const BVecType& b_vec) const
{
// swap A and B
Impl{}(c_vec, b_vec, a_vec);
}
// c_vec = a_vec * b_vec
CK_TILE_DEVICE CVecType operator()(const AVecType& a_vec, const BVecType& b_vec) const
{
// swap A and B
return Impl{}(b_vec, a_vec);
}
};
template <typename WarpGemmAttributeMfmaImpl_, index_t kKIter>
struct WarpGemmAtrributeMfmaIterateKAndTransposedCDistribution
{
using Impl = remove_cvref_t<WarpGemmAttributeMfmaImpl_>;
// swap A and B
using ADataType = typename Impl::BDataType;
using BDataType = typename Impl::ADataType;
using CDataType = typename Impl::CDataType;
using AVecType =
ext_vector_t<ADataType, vector_traits<typename Impl::AVecType>::vector_size * kKIter>;
using BVecType =
ext_vector_t<BDataType, vector_traits<typename Impl::BVecType>::vector_size * kKIter>;
using CVecType = typename Impl::CVecType;
static constexpr index_t kM = Impl::kN;
static constexpr index_t kN = Impl::kM;
static constexpr index_t kK = Impl::kK * kKIter;
using AWarpDstrEncoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Impl::kBNLane>, sequence<Impl::kABKLane, Impl::kABKPerLane * kKIter>>,
tuple<sequence<2, 1>>,
tuple<sequence<0, 0>>,
sequence<2>,
sequence<1>>;
using BWarpDstrEncoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Impl::kAMLane>, sequence<Impl::kABKLane, Impl::kABKPerLane * kKIter>>,
tuple<sequence<2, 1>>,
tuple<sequence<0, 0>>,
sequence<2>,
sequence<1>>;
using CWarpDstrEncoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Impl::kCNLane>,
sequence<Impl::kCM0PerLane, Impl::kCMLane, Impl::kCM1PerLane>>,
tuple<sequence<2, 1>>,
tuple<sequence<1, 0>>,
sequence<2, 2>,
sequence<0, 2>>;
// c_vec += a_vec * b_vec
CK_TILE_DEVICE void
operator()(CVecType& c_vec, const AVecType& a_vec, const BVecType& b_vec) const
{
using buf_a = thread_buffer<typename Impl::AVecType, kKIter>;
using buf_b = thread_buffer<typename Impl::BVecType, kKIter>;
// swap A and B, value and type
static_for<0, kKIter, 1>{}([&](auto iKIter) {
Impl{}(c_vec,
reinterpret_cast<const buf_b&>(b_vec)
.template get_as<typename Impl::BVecType>()[iKIter],
reinterpret_cast<const buf_a&>(a_vec)
.template get_as<typename Impl::AVecType>()[iKIter]);
});
}
// c_vec = a_vec * b_vec
CK_TILE_DEVICE CVecType operator()(const AVecType& a_vec, const BVecType& b_vec) const
{
constexpr auto I0 = number<0>{};
using buf_a = thread_buffer<typename Impl::AVecType, kKIter>;
using buf_b = thread_buffer<typename Impl::BVecType, kKIter>;
// swap A and B, value and type
auto c_vec = Impl{}(
reinterpret_cast<const buf_b&>(b_vec).template get_as<typename Impl::BVecType>()[I0],
reinterpret_cast<const buf_a&>(a_vec).template get_as<typename Impl::AVecType>()[I0]);
static_for<1, kKIter, 1>{}([&](auto iKIter) {
Impl{}(c_vec,
reinterpret_cast<const buf_b&>(b_vec)
.template get_as<typename Impl::BVecType>()[iKIter],
reinterpret_cast<const buf_a&>(a_vec)
.template get_as<typename Impl::AVecType>()[iKIter]);
});
return c_vec;
}
};
template <typename WarpGemmAttributeMfmaImpl_, index_t kKIter, index_t SFactor_ = 2>
struct WarpGemmAtrributeMfmaIterateKAndTransposedCDistribution_SwizzleB
{
using Impl = remove_cvref_t<WarpGemmAttributeMfmaImpl_>;
// swap A and B
using ADataType = typename Impl::BDataType;
using BDataType = typename Impl::ADataType;
using CDataType = typename Impl::CDataType;
using AVecType =
ext_vector_t<ADataType, vector_traits<typename Impl::AVecType>::vector_size * kKIter>;
using BVecType =
ext_vector_t<BDataType, vector_traits<typename Impl::BVecType>::vector_size * kKIter>;
using CVecType = typename Impl::CVecType;
static constexpr index_t kM = Impl::kN;
static constexpr index_t kN = Impl::kM;
static constexpr index_t kK = Impl::kK * kKIter;
static constexpr index_t SFactor = SFactor_; // group how many CM1 together
using AWarpDstrEncoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Impl::kBNLane>, sequence<Impl::kABKLane, Impl::kABKPerLane * kKIter>>,
tuple<sequence<2, 1>>,
tuple<sequence<0, 0>>,
sequence<2>,
sequence<1>>;
#if 0
using BWarpDstrEncoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Impl::kAMLane / (Impl::kABKPerLane * Impl::kABKLane * 2),
Impl::kABKLane,
2,
Impl::kABKPerLane>,
sequence<Impl::kABKLane, Impl::kABKPerLane * kKIter>>,
tuple<sequence<2, 1, 1, 1, 1>>,
tuple<sequence<0, 0, 2, 1, 3>>,
sequence<2>,
sequence<1>>;
using CWarpDstrEncoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Impl::kCNLane>,
sequence<Impl::kCM0PerLane / 2, Impl::kCMLane, Impl::kCM1PerLane * 2>>,
tuple<sequence<2, 1>>,
tuple<sequence<1, 0>>,
sequence<2, 2>,
sequence<0, 2>>;
#else
// TODO: more test not only 32x32
using BWarpDstrEncoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Impl::kAMLane / (Impl::kCMLane * SFactor * Impl::kCM1PerLane),
Impl::kCMLane,
SFactor,
Impl::kCM1PerLane>,
sequence<Impl::kABKLane, Impl::kABKPerLane * kKIter>>,
tuple<sequence<2, 1, 1, 1, 1>>,
tuple<sequence<0, 0, 2, 1, 3>>,
sequence<2>,
sequence<1>>;
using CWarpDstrEncoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<Impl::kCNLane>,
sequence<Impl::kCM0PerLane / SFactor, Impl::kCMLane, Impl::kCM1PerLane * SFactor>>,
tuple<sequence<2, 1>>,
tuple<sequence<1, 0>>,
sequence<2, 2>,
sequence<0, 2>>;
#endif
// c_vec += a_vec * b_vec
CK_TILE_DEVICE void
operator()(CVecType& c_vec, const AVecType& a_vec, const BVecType& b_vec) const
{
using buf_a = thread_buffer<typename Impl::AVecType, kKIter>;
using buf_b = thread_buffer<typename Impl::BVecType, kKIter>;
// swap A and B, value and type
static_for<0, kKIter, 1>{}([&](auto iKIter) {
Impl{}(c_vec,
reinterpret_cast<const buf_b&>(b_vec)
.template get_as<typename Impl::BVecType>()[iKIter],
reinterpret_cast<const buf_a&>(a_vec)
.template get_as<typename Impl::AVecType>()[iKIter]);
});
}
// c_vec = a_vec * b_vec
CK_TILE_DEVICE CVecType operator()(const AVecType& a_vec, const BVecType& b_vec) const
{
using buf_a = thread_buffer<typename Impl::AVecType, kKIter>;
using buf_b = thread_buffer<typename Impl::BVecType, kKIter>;
constexpr auto I0 = number<0>{};
// swap A and B, value and type
auto c_vec = Impl{}(
reinterpret_cast<const buf_b&>(b_vec).template get_as<typename Impl::BVecType>()[I0],
reinterpret_cast<const buf_a&>(a_vec).template get_as<typename Impl::AVecType>()[I0]);
static_for<1, kKIter, 1>{}([&](auto iKIter) {
Impl{}(c_vec,
reinterpret_cast<const buf_b&>(b_vec)
.template get_as<typename Impl::BVecType>()[iKIter],
reinterpret_cast<const buf_a&>(a_vec)
.template get_as<typename Impl::AVecType>()[iKIter]);
});
return c_vec;
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
// FP16
struct WarpGemmAttributeMfmaImplF16F16F32M32N32K8
{
using ADataType = fp16_t;
using BDataType = fp16_t;
using CDataType = float;
using AVecType = ext_vector_t<fp16_t, 4>;
using BVecType = ext_vector_t<fp16_t, 4>;
using CVecType = ext_vector_t<float, 16>;
static constexpr index_t kM = 32;
static constexpr index_t kN = 32;
static constexpr index_t kK = 8;
static constexpr index_t kAMLane = 32;
static constexpr index_t kBNLane = 32;
static constexpr index_t kABKLane = 2;
static constexpr index_t kABKPerLane = 4;
static constexpr index_t kCMLane = 2;
static constexpr index_t kCNLane = 32;
static constexpr index_t kCM0PerLane = 4;
static constexpr index_t kCM1PerLane = 4;
// c_vec += a_vec * b_vec
CK_TILE_DEVICE void
operator()(CVecType& c_vec, const AVecType& a_vec, const BVecType& b_vec) const
{
#if defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || \
defined(__gfx942__)
c_vec = __builtin_amdgcn_mfma_f32_32x32x8f16(a_vec, b_vec, c_vec, 0, 0, 0);
#else
ck_tile::ignore = c_vec;
ck_tile::ignore = a_vec;
ck_tile::ignore = b_vec;
#endif
}
// c_vec = a_vec * b_vec
CK_TILE_DEVICE CVecType operator()(const AVecType& a_vec, const BVecType& b_vec) const
{
#if defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || \
defined(__gfx942__)
return bit_cast<CVecType>(
__builtin_amdgcn_mfma_f32_32x32x8f16(a_vec, b_vec, fp32x16_t{0.f}, 0, 0, 0));
#else
ck_tile::ignore = a_vec;
ck_tile::ignore = b_vec;
return CVecType{0.f};
#endif
}
};
struct WarpGemmAttributeMfmaImplF16F16F32M16N16K16
{
using ADataType = fp16_t;
using BDataType = fp16_t;
using CDataType = float;
using AVecType = ext_vector_t<fp16_t, 4>;
using BVecType = ext_vector_t<fp16_t, 4>;
using CVecType = ext_vector_t<float, 4>;
static constexpr index_t kM = 16;
static constexpr index_t kN = 16;
static constexpr index_t kK = 16;
static constexpr index_t kAMLane = 16;
static constexpr index_t kBNLane = 16;
static constexpr index_t kABKLane = 4;
static constexpr index_t kABKPerLane = 4;
static constexpr index_t kCMLane = 4;
static constexpr index_t kCNLane = 16;
static constexpr index_t kCM0PerLane = 1;
static constexpr index_t kCM1PerLane = 4;
// c_vec += a_vec * b_vec
CK_TILE_DEVICE void
operator()(CVecType& c_vec, const AVecType& a_vec, const BVecType& b_vec) const
{
#if defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || \
defined(__gfx942__)
c_vec = __builtin_amdgcn_mfma_f32_16x16x16f16(a_vec, b_vec, c_vec, 0, 0, 0);
#else
ck_tile::ignore = c_vec;
ck_tile::ignore = a_vec;
ck_tile::ignore = b_vec;
#endif
}
// c_vec = a_vec * b_vec
CK_TILE_DEVICE CVecType operator()(const AVecType& a_vec, const BVecType& b_vec) const
{
#if defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || \
defined(__gfx942__)
return bit_cast<CVecType>(
__builtin_amdgcn_mfma_f32_16x16x16f16(a_vec, b_vec, fp32x4_t{0.f}, 0, 0, 0));
#else
ck_tile::ignore = a_vec;
ck_tile::ignore = b_vec;
return CVecType{0.f};
#endif
}
};
// Bf16
struct WarpGemmAttributeMfmaImplBf16Bf16F32M32N32K8
{
using ADataType = bf16_t;
using BDataType = bf16_t;
using CDataType = float;
using AVecType = ext_vector_t<bf16_t, 4>;
using BVecType = ext_vector_t<bf16_t, 4>;
using CVecType = ext_vector_t<float, 16>;
static constexpr index_t kM = 32;
static constexpr index_t kN = 32;
static constexpr index_t kK = 8;
static constexpr index_t kAMLane = 32;
static constexpr index_t kBNLane = 32;
static constexpr index_t kABKLane = 2;
static constexpr index_t kABKPerLane = 4;
static constexpr index_t kCMLane = 2;
static constexpr index_t kCNLane = 32;
static constexpr index_t kCM0PerLane = 4;
static constexpr index_t kCM1PerLane = 4;
// c_vec += a_vec * b_vec
CK_TILE_DEVICE void
operator()(CVecType& c_vec, const AVecType& a_vec, const BVecType& b_vec) const
{
#if defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
c_vec = __builtin_amdgcn_mfma_f32_32x32x8bf16_1k(a_vec, b_vec, c_vec, 0, 0, 0);
#elif defined(__gfx908__)
static_for<0, 2, 1>{}([&](auto k) {
c_vec = __builtin_amdgcn_mfma_f32_32x32x4bf16(
reinterpret_cast<const thread_buffer<ADataType, 4>&>(a_vec)
.template get_as<ext_vector_t<bf16_t, 2>>()[number<k>{}],
reinterpret_cast<const thread_buffer<BDataType, 4>&>(b_vec)
.template get_as<ext_vector_t<bf16_t, 2>>()[number<k>{}],
c_vec,
0,
0,
0);
});
#else
ck_tile::ignore = c_vec;
ck_tile::ignore = a_vec;
ck_tile::ignore = b_vec;
#endif
}
// c_vec = a_vec * b_vec
CK_TILE_DEVICE CVecType operator()(const AVecType& a_vec, const BVecType& b_vec) const
{
#if defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
return bit_cast<CVecType>(
__builtin_amdgcn_mfma_f32_32x32x8bf16_1k(a_vec, b_vec, fp32x16_t{0.f}, 0, 0, 0));
#elif defined(__gfx908__)
CVecType c_vec{0.f};
static_for<0, 2, 1>{}([&](auto k) {
c_vec = __builtin_amdgcn_mfma_f32_32x32x4bf16(
reinterpret_cast<const thread_buffer<ADataType, 4>&>(a_vec)
.template get_as<ext_vector_t<bf16_t, 2>>()[number<k>{}],
reinterpret_cast<const thread_buffer<BDataType, 4>&>(b_vec)
.template get_as<ext_vector_t<bf16_t, 2>>()[number<k>{}],
c_vec,
0,
0,
0);
});
return c_vec;
#else
ck_tile::ignore = a_vec;
ck_tile::ignore = b_vec;
return CVecType{0.f};
#endif
}
};
struct WarpGemmAttributeMfmaImplBf16Bf16F32M16N16K16
{
using ADataType = bf16_t;
using BDataType = bf16_t;
using CDataType = float;
using AVecType = ext_vector_t<bf16_t, 4>;
using BVecType = ext_vector_t<bf16_t, 4>;
using CVecType = ext_vector_t<float, 4>;
static constexpr index_t kM = 16;
static constexpr index_t kN = 16;
static constexpr index_t kK = 16;
static constexpr index_t kAMLane = 16;
static constexpr index_t kBNLane = 16;
static constexpr index_t kABKLane = 4;
static constexpr index_t kABKPerLane = 4;
static constexpr index_t kCMLane = 4;
static constexpr index_t kCNLane = 16;
static constexpr index_t kCM0PerLane = 1;
static constexpr index_t kCM1PerLane = 4;
// c_vec += a_vec * b_vec
CK_TILE_DEVICE void
operator()(CVecType& c_vec, const AVecType& a_vec, const BVecType& b_vec) const
{
#if defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
c_vec = __builtin_amdgcn_mfma_f32_16x16x16bf16_1k(a_vec, b_vec, c_vec, 0, 0, 0);
#elif defined(__gfx908__)
static_for<0, 2, 1>{}([&](auto k) {
c_vec = __builtin_amdgcn_mfma_f32_16x16x8bf16(
reinterpret_cast<const thread_buffer<ADataType, 4>&>(a_vec)
.template get_as<ext_vector_t<bf16_t, 2>>()[number<k>{}],
reinterpret_cast<const thread_buffer<BDataType, 4>&>(b_vec)
.template get_as<ext_vector_t<bf16_t, 2>>()[number<k>{}],
c_vec,
0,
0,
0);
});
#else
ck_tile::ignore = c_vec;
ck_tile::ignore = a_vec;
ck_tile::ignore = b_vec;
#endif
}
// c_vec = a_vec * b_vec
CK_TILE_DEVICE CVecType operator()(const AVecType& a_vec, const BVecType& b_vec) const
{
#if defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
return bit_cast<CVecType>(
__builtin_amdgcn_mfma_f32_16x16x16bf16_1k(a_vec, b_vec, fp32x4_t{0.f}, 0, 0, 0));
#elif defined(__gfx908__)
CVecType c_vec{0.f};
static_for<0, 2, 1>{}([&](auto k) {
c_vec = __builtin_amdgcn_mfma_f32_16x16x8bf16(
reinterpret_cast<const thread_buffer<ADataType, 4>&>(a_vec)
.template get_as<ext_vector_t<bf16_t, 2>>()[number<k>{}],
reinterpret_cast<const thread_buffer<BDataType, 4>&>(b_vec)
.template get_as<ext_vector_t<bf16_t, 2>>()[number<k>{}],
c_vec,
0,
0,
0);
});
return c_vec;
#else
ck_tile::ignore = a_vec;
ck_tile::ignore = b_vec;
return CVecType{0.f};
#endif
}
};
// FP8
template <typename AType_, typename BType_>
struct WarpGemmAttributeMfmaImpl_f32_32x32x16_f8_base
{
using ADataType = AType_;
using BDataType = BType_;
using CDataType = float;
using AVecType = ext_vector_t<ADataType, 8>;
using BVecType = ext_vector_t<BDataType, 8>;
using CVecType = ext_vector_t<CDataType, 16>;
static constexpr index_t kM = 32;
static constexpr index_t kN = 32;
static constexpr index_t kK = 16;
static constexpr index_t kAMLane = 32;
static constexpr index_t kBNLane = 32;
static constexpr index_t kABKLane = 2;
static constexpr index_t kABKPerLane = 8;
static constexpr index_t kCMLane = 2;
static constexpr index_t kCNLane = 32;
static constexpr index_t kCM0PerLane = 4;
static constexpr index_t kCM1PerLane = 4;
// c_vec += a_vec * b_vec
CK_TILE_DEVICE void
operator()(CVecType& c_vec, const AVecType& a_vec, const BVecType& b_vec) const
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
if constexpr(std::is_same_v<ADataType, fp8_t> && std::is_same_v<BDataType, fp8_t>)
c_vec = __builtin_amdgcn_mfma_f32_32x32x16_fp8_fp8(
bit_cast<long>(a_vec), bit_cast<long>(b_vec), c_vec, 0, 0, 0);
else if constexpr(std::is_same_v<ADataType, fp8_t> && std::is_same_v<BDataType, bf8_t>)
c_vec = __builtin_amdgcn_mfma_f32_32x32x16_fp8_bf8(
bit_cast<long>(a_vec), bit_cast<long>(b_vec), c_vec, 0, 0, 0);
else if constexpr(std::is_same_v<ADataType, bf8_t> && std::is_same_v<BDataType, fp8_t>)
c_vec = __builtin_amdgcn_mfma_f32_32x32x16_bf8_fp8(
bit_cast<long>(a_vec), bit_cast<long>(b_vec), c_vec, 0, 0, 0);
else if constexpr(std::is_same_v<ADataType, bf8_t> && std::is_same_v<BDataType, bf8_t>)
c_vec = __builtin_amdgcn_mfma_f32_32x32x16_bf8_bf8(
bit_cast<long>(a_vec), bit_cast<long>(b_vec), c_vec, 0, 0, 0);
#elif defined(__gfx908__) || defined(__gfx90a__)
static_for<0, 8, 1>{}([&](auto k) {
float a_f32 =
type_convert<float>(reinterpret_cast<const thread_buffer<ADataType, 8>&>(a_vec)
.template get_as<ADataType>()[number<k>{}]);
float b_f32 =
type_convert<float>(reinterpret_cast<const thread_buffer<BDataType, 8>&>(b_vec)
.template get_as<BDataType>()[number<k>{}]);
c_vec = __builtin_amdgcn_mfma_f32_32x32x2f32(a_f32, b_f32, c_vec, 0, 0, 0);
});
#else
ck_tile::ignore = c_vec;
ck_tile::ignore = a_vec;
ck_tile::ignore = b_vec;
#endif
}
// c_vec = a_vec * b_vec
CK_TILE_DEVICE CVecType operator()(const AVecType& a_vec, const BVecType& b_vec) const
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
if constexpr(std::is_same_v<ADataType, fp8_t> && std::is_same_v<BDataType, fp8_t>)
return bit_cast<CVecType>(__builtin_amdgcn_mfma_f32_32x32x16_fp8_fp8(
bit_cast<long>(a_vec), bit_cast<long>(b_vec), CVecType{0.f}, 0, 0, 0));
else if constexpr(std::is_same_v<ADataType, fp8_t> && std::is_same_v<BDataType, bf8_t>)
return bit_cast<CVecType>(__builtin_amdgcn_mfma_f32_32x32x16_fp8_bf8(
bit_cast<long>(a_vec), bit_cast<long>(b_vec), CVecType{0.f}, 0, 0, 0));
else if constexpr(std::is_same_v<ADataType, bf8_t> && std::is_same_v<BDataType, fp8_t>)
return bit_cast<CVecType>(__builtin_amdgcn_mfma_f32_32x32x16_bf8_fp8(
bit_cast<long>(a_vec), bit_cast<long>(b_vec), CVecType{0.f}, 0, 0, 0));
else if constexpr(std::is_same_v<ADataType, bf8_t> && std::is_same_v<BDataType, bf8_t>)
return bit_cast<CVecType>(__builtin_amdgcn_mfma_f32_32x32x16_bf8_bf8(
bit_cast<long>(a_vec), bit_cast<long>(b_vec), CVecType{0.f}, 0, 0, 0));
#elif defined(__gfx908__) || defined(__gfx90a__)
CVecType c_vec{0.f};
static_for<0, 8, 1>{}([&](auto k) {
float a_f32 =
type_convert<float>(reinterpret_cast<const thread_buffer<ADataType, 8>&>(a_vec)
.template get_as<ADataType>()[number<k>{}]);
float b_f32 =
type_convert<float>(reinterpret_cast<const thread_buffer<BDataType, 8>&>(b_vec)
.template get_as<BDataType>()[number<k>{}]);
c_vec = __builtin_amdgcn_mfma_f32_32x32x2f32(a_f32, b_f32, c_vec, 0, 0, 0);
});
return c_vec;
#else
ck_tile::ignore = a_vec;
ck_tile::ignore = b_vec;
return CVecType{0.f};
#endif
}
};
using WarpGemmAttributeMfmaImpl_f32_32x32x16_fp8_fp8 =
WarpGemmAttributeMfmaImpl_f32_32x32x16_f8_base<fp8_t, fp8_t>;
using WarpGemmAttributeMfmaImpl_f32_32x32x16_fp8_bf8 =
WarpGemmAttributeMfmaImpl_f32_32x32x16_f8_base<fp8_t, bf8_t>;
using WarpGemmAttributeMfmaImpl_f32_32x32x16_bf8_fp8 =
WarpGemmAttributeMfmaImpl_f32_32x32x16_f8_base<bf8_t, fp8_t>;
using WarpGemmAttributeMfmaImpl_f32_32x32x16_bf8_bf8 =
WarpGemmAttributeMfmaImpl_f32_32x32x16_f8_base<bf8_t, bf8_t>;
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/gemm/warp/warp_gemm.hpp"
namespace ck_tile {
namespace impl {
template <typename AType,
typename BType,
typename CType,
index_t MPerWave,
index_t NPerWave,
index_t KPerWave,
bool TransposeC>
struct WarpGemmMfmaDispatcher;
// clang-format off
// fp16
template<> struct WarpGemmMfmaDispatcher<ck_tile::half_t, ck_tile::half_t, float, 32, 32, 8, false> { using Type = WarpGemmMfmaF16F16F32M32N32K8; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::half_t, ck_tile::half_t, float, 32, 32, 8, true> { using Type = WarpGemmMfmaF16F16F32M32N32K8TransposedCDistribution; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::half_t, ck_tile::half_t, float, 32, 32, 16, false> { using Type = WarpGemmMfmaF16F16F32M32N32K16; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::half_t, ck_tile::half_t, float, 32, 32, 16, true> { using Type = WarpGemmMfmaF16F16F32M32N32K16TransposedCDistribution; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::half_t, ck_tile::half_t, float, 16, 16, 16, false> { using Type = WarpGemmMfmaF16F16F32M16N16K16; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::half_t, ck_tile::half_t, float, 16, 16, 16, true> { using Type = WarpGemmMfmaF16F16F32M16N16K16TransposedCDistribution; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::half_t, ck_tile::half_t, float, 16, 16, 32, false> { using Type = WarpGemmMfmaF16F16F32M16N16K32; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::half_t, ck_tile::half_t, float, 16, 16, 32, true> { using Type = WarpGemmMfmaF16F16F32M16N16K32TransposedCDistribution; };
// bf16
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf16_t, ck_tile::bf16_t, float, 32, 32, 8, false> { using Type = WarpGemmMfmaBf16Bf16F32M32N32K8; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf16_t, ck_tile::bf16_t, float, 32, 32, 8, true> { using Type = WarpGemmMfmaBf16Bf16F32M32N32K8TransposedCDistribution; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf16_t, ck_tile::bf16_t, float, 32, 32, 16, false> { using Type = WarpGemmMfmaBf16Bf16F32M32N32K16; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf16_t, ck_tile::bf16_t, float, 32, 32, 16, true> { using Type = WarpGemmMfmaBf16Bf16F32M32N32K16TransposedCDistribution; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf16_t, ck_tile::bf16_t, float, 16, 16, 16, false> { using Type = WarpGemmMfmaBf16Bf16F32M16N16K16; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf16_t, ck_tile::bf16_t, float, 16, 16, 16, true> { using Type = WarpGemmMfmaBf16Bf16F32M16N16K16TransposedCDistribution; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf16_t, ck_tile::bf16_t, float, 16, 16, 32, false> { using Type = WarpGemmMfmaBf16Bf16F32M16N16K32; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf16_t, ck_tile::bf16_t, float, 16, 16, 32, true> { using Type = WarpGemmMfmaBf16Bf16F32M16N16K32TransposedCDistribution; };
// fp8
template<> struct WarpGemmMfmaDispatcher<ck_tile::fp8_t, ck_tile::fp8_t, float, 32, 32, 16, false> { using Type = WarpGemmMfma_f32_32x32x16_fp8_fp8; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::fp8_t, ck_tile::fp8_t, float, 32, 32, 16, true> { using Type = WarpGemmMfma_f32_32x32x16_fp8_fp8_CTransposed; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::fp8_t, ck_tile::bf8_t, float, 32, 32, 16, false> { using Type = WarpGemmMfma_f32_32x32x16_fp8_bf8; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::fp8_t, ck_tile::bf8_t, float, 32, 32, 16, true> { using Type = WarpGemmMfma_f32_32x32x16_fp8_bf8_CTransposed; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf8_t, ck_tile::fp8_t, float, 32, 32, 16, false> { using Type = WarpGemmMfma_f32_32x32x16_bf8_fp8; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf8_t, ck_tile::fp8_t, float, 32, 32, 16, true> { using Type = WarpGemmMfma_f32_32x32x16_bf8_fp8_CTransposed; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf8_t, ck_tile::bf8_t, float, 32, 32, 16, false> { using Type = WarpGemmMfma_f32_32x32x16_bf8_bf8; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf8_t, ck_tile::bf8_t, float, 32, 32, 16, true> { using Type = WarpGemmMfma_f32_32x32x16_bf8_bf8_CTransposed; };
// clang-format on
} // namespace impl
template <typename AType,
typename BType,
typename CType,
index_t MPerWave,
index_t NPerWave,
index_t KPerWave,
bool TransposeC>
using WarpGemmMfmaDispatcher = typename impl::
WarpGemmMfmaDispatcher<AType, BType, CType, MPerWave, NPerWave, KPerWave, TransposeC>::Type;
} // namespace ck_tile
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment