Commit 1e054452 authored by Andriy Roshchenko's avatar Andriy Roshchenko
Browse files

WIP: Reduce output and narrow down value variations

parent 70c70d6c
......@@ -879,27 +879,34 @@ struct TestMXMFMA
break;
case 2:
// expect small round off errors
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{-0.5, 0.5});
// a_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1.9f});
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{-2.0, 2.0});
a_scales.GenerateTensorValue(
GeneratorTensor_2<ScaleType>{127, 129}); // scales: {0.5, 1, 2}
// a_scales.GenerateTensorValue(GeneratorTensor_1<ScaleType>{ScaleType{1.0f}});
// b_n_k.GenerateTensorValue(GeneratorTensor_3<BDataType>{-5, 5});
// b_scales.GenerateTensorValue(
// GeneratorTensor_2<ScaleType>{125, 128}); // scales: {0.5, 1, 2}
GeneratorTensor_2<ScaleType>{127, 129}); // 1, 2 // scales: {0.5, 1, 2}
b_n_k.GenerateTensorValue(GeneratorTensor_1<BDataType>{1.0f});
b_scales.GenerateTensorValue(GeneratorTensor_1<ScaleType>{ScaleType{1.0f}});
break;
case 3:
// expect small round off errors
a_m_k.GenerateTensorValue(GeneratorTensor_4<ADataType>(-1, 3));
a_scales.GenerateTensorValue(
GeneratorTensor_2<ScaleType>{126, 129}); // scales: {0.5, 1, 2}
b_n_k.GenerateTensorValue(GeneratorTensor_4<BDataType>(1, 3));
b_scales.GenerateTensorValue(
GeneratorTensor_2<ScaleType>{126, 129}); // scales: {0.5, 1, 2}
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{-2.0, 2.0});
a_scales.GenerateTensorValue(GeneratorTensor_2<ScaleType>{128, 129}); // 2
// a_scales.GenerateTensorValue(GeneratorTensor_1<ScaleType>{ScaleType{1.0f}});
b_n_k.GenerateTensorValue(GeneratorTensor_1<BDataType>{1.0f});
b_scales.GenerateTensorValue(GeneratorTensor_1<ScaleType>{ScaleType{1.0f}});
break;
// case 3:
// // expect small round off errors
// a_m_k.GenerateTensorValue(GeneratorTensor_4<ADataType>(-1, 3));
// a_scales.GenerateTensorValue(
// GeneratorTensor_2<ScaleType>{126, 129}); // scales: {0.5, 1, 2}
// b_n_k.GenerateTensorValue(GeneratorTensor_4<BDataType>(1, 3));
// b_scales.GenerateTensorValue(
// GeneratorTensor_2<ScaleType>{126, 129}); // scales: {0.5, 1, 2}
// break;
case 4:
a_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1.0f});
a_scales.GenerateTensorValue(GeneratorTensor_Sequential<ScaleType, 0>{-9});
......@@ -993,12 +1000,14 @@ struct TestMXMFMA
std::cout << type_convert<float>(a(i, j)) << " ";
}
std::cout << std::endl;
break;
}
std::cout << "b:" << std::endl;
for(size_t i = 0; i < BLOCK_K; i++)
{
for(size_t j = 0; j < BLOCK_N; j++)
{
if(j == 0)
std::cout << type_convert<float>(b(i, j)) << " ";
}
std::cout << std::endl;
......@@ -1032,6 +1041,7 @@ struct TestMXMFMA
std::cout << type_convert<float>(c_device(i, j)) << " ";
}
std::cout << std::endl;
break;
}
#endif
......@@ -1054,6 +1064,7 @@ struct TestMXMFMA
std::cout << type_convert<float>(c_host(i, j)) << " ";
}
std::cout << std::endl;
break;
}
}
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment