Commit 1b616990 authored by aska-0096's avatar aska-0096
Browse files

Merge branch 'develop' of https://github.com/ROCm/composable_kernel into update_cka8w8_uc

parents af30d6b6 800cf897
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/gemm/warp/warp_gemm_dispatcher.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
namespace ck_tile {
// UniversalGemm Policy
struct UniversalGemmPipelineAgBgCrPolicy
{
static constexpr auto I0 = number<0>{};
static constexpr auto I1 = number<1>{};
static constexpr auto I2 = number<2>{};
static constexpr bool TransposeC = true;
template <typename Problem, typename DataType, index_t MNPerBlock>
CK_TILE_HOST_DEVICE static constexpr auto GetVectorLoadSize()
static constexpr auto ATileAccessPattern = tile_distribution_pattern::thread_raked;
static constexpr auto BTileAccessPattern = tile_distribution_pattern::thread_raked;
/**
* @brief Get the maximum global memory vector load size.
*
* @tparam Problem The UniversalGemmPipelineProblem object.
* @tparam DataType The tensor data type we're considering.
* @tparam MNPerBlock The MPerBlock or NPerBlock value depending on tensor (A/B).
* @tparam XPerTile The contiguous Tile dimension size.
* @return Maximum DRAM vector load size.
*/
template <typename Problem, typename DataType, index_t MNPerBlock, index_t XPerTile>
CK_TILE_HOST_DEVICE static constexpr auto GetGlobalVectorLoadSize()
{
constexpr index_t BlockSize = Problem::kBlockSize;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t elements_per_thread = MNPerBlock * KPerBlock / BlockSize;
if constexpr(elements_per_thread % (16 / sizeof(DataType)) == 0)
// Assume DataType is even!
if constexpr(XPerTile % (16 / sizeof(DataType)) == 0 &&
elements_per_thread % (16 / sizeof(DataType)) == 0)
{
return (16 / sizeof(DataType));
}
else if constexpr(elements_per_thread % (8 / sizeof(DataType)) == 0)
else if constexpr(XPerTile % (8 / sizeof(DataType)) == 0 &&
elements_per_thread % (8 / sizeof(DataType)) == 0)
{
return (8 / sizeof(DataType));
}
else if constexpr(elements_per_thread % (4 / sizeof(DataType)) == 0 &&
sizeof(DataType) >= 4)
else if constexpr(sizeof(DataType) >= 4 && XPerTile % (4 / sizeof(DataType)) == 0 &&
elements_per_thread % (4 / sizeof(DataType)) == 0)
{
return (4 / sizeof(DataType));
}
else if constexpr(elements_per_thread % (2 / sizeof(DataType)) == 0 &&
sizeof(DataType) >= 2)
else if constexpr(sizeof(DataType) >= 2 && XPerTile % (2 / sizeof(DataType)) == 0 &&
elements_per_thread % (2 / sizeof(DataType)) == 0)
{
return (2 / sizeof(DataType));
}
......@@ -49,6 +62,126 @@ struct UniversalGemmPipelineAgBgCrPolicy
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetVectorSizeA()
{
using ALayout = remove_cvref_t<typename Problem::ALayout>;
using ADataType = remove_cvref_t<typename Problem::ADataType>;
constexpr index_t MPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
if constexpr(std::is_same_v<ALayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
return GetGlobalVectorLoadSize<Problem, ADataType, MPerBlock, KPerBlock>();
}
else
{
return GetGlobalVectorLoadSize<Problem, ADataType, MPerBlock, MPerBlock>();
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetVectorSizeB()
{
using BLayout = remove_cvref_t<typename Problem::BLayout>;
using BDataType = remove_cvref_t<typename Problem::BDataType>;
constexpr index_t NPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
if constexpr(std::is_same_v<BLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
return GetGlobalVectorLoadSize<Problem, BDataType, NPerBlock, NPerBlock>();
}
else
{
return GetGlobalVectorLoadSize<Problem, BDataType, NPerBlock, KPerBlock>();
}
}
/**
* @brief Get the vector store size for C tensor.
*
* @tparam Problem - Gemm pipeline problem class.
*
* @note The vector store size for output C tensor would depend on multiple factors
* like its data layout and warp gemm C transposition. In general it would
* be the number of consecutive elements in contiguous C dimension hold by
* single thread.
*
* @return The vector store size for C tensor.
*/
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetVectorSizeC()
{
using BlockGemm = remove_cvref_t<decltype(GetBlockGemm<Problem>())>;
using WG = typename BlockGemm::WarpGemm;
constexpr bool TransposeC = Problem::TransposeC;
using CLayout = typename Problem::CLayout;
using CWarpDstr = typename WG::CWarpDstr;
// N is contiguous dimension
if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
{
if constexpr(TransposeC)
{
// In this case each thread has multiple consecutive elements in
// N dimension, however consecutive threads' elements have stride.
constexpr index_t NDimY = CWarpDstr::NDimY;
constexpr auto c_warp_y_lengths =
CWarpDstr{}.get_ys_to_d_descriptor().get_lengths();
static_assert(WG::WarpGemmAttribute::Impl::kCM1PerLane ==
c_warp_y_lengths.get(number<NDimY - 1>{}));
return c_warp_y_lengths.get(number<NDimY - 1>{});
}
else
{
// In this case each thread has just a single item in Ndim
return WG::WarpGemmAttribute::Impl::kCNLane / WG::kN;
}
}
// M is contiguous dimension
else if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::ColumnMajor>)
{
if constexpr(TransposeC)
{
// In this case each thread has just a single item in Mdim
return WG::WarpGemmAttribute::Impl::kCNLane / WG::kN;
}
else
{
// In this case each thread has multiple consecutive elements in
// M dimension, however consecutive threads' elements have stride.
constexpr index_t NDimY = CWarpDstr::NDimY;
constexpr auto c_warp_y_lengths =
CWarpDstr{}.get_ys_to_d_descriptor().get_lengths();
static_assert(WG::WarpGemmAttribute::Impl::kCM1PerLane ==
c_warp_y_lengths.get(number<NDimY - 1>{}));
return c_warp_y_lengths.get(number<NDimY - 1>{});
}
}
else
{
static_assert(false, "Unsupported CLayout!");
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemPackA()
{
using BlockGemm = decltype(GetBlockGemm<Problem>());
constexpr index_t KPack = BlockGemm::Traits::KPack;
return KPack;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemPackB()
{
using BlockGemm = decltype(GetBlockGemm<Problem>());
constexpr index_t KPack = BlockGemm::Traits::KPack;
return KPack;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeALdsBlockDescriptor()
{
......@@ -57,7 +190,7 @@ struct UniversalGemmPipelineAgBgCrPolicy
constexpr index_t MPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t KPack = GetVectorLoadSize<Problem, ADataType, MPerBlock>();
constexpr index_t KPack = GetSmemPackA<Problem>();
constexpr auto DataTypeSize = sizeof(ADataType);
constexpr auto MLdsLayer =
......@@ -100,54 +233,193 @@ struct UniversalGemmPipelineAgBgCrPolicy
return a_lds_block_desc;
}
/**
* @brief Create LDS block descriptor for B tensor.
*
* @tparam Problem Gemm pipeline problem.
* @return B tensor LDS block descriptor.
*/
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeBLdsBlockDescriptor()
{
// using BLayout = remove_cvref_t<typename Problem::BLayout>;
using BDataType = remove_cvref_t<typename Problem::BDataType>;
constexpr index_t NPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t KPack = GetVectorLoadSize<Problem, BDataType, NPerBlock>();
constexpr auto DataTypeSize = sizeof(BDataType);
constexpr auto NLdsLayer =
(32 * 4 / KPerBlock / DataTypeSize) < 1 ? 1 : (32 * 4 / KPerBlock / DataTypeSize);
constexpr auto b_lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<KPerBlock / KPack * NLdsLayer>{},
number<NPerBlock / NLdsLayer>{},
number<KPack>{}),
make_tuple(number<KPack>{}, number<KPerBlock * NLdsLayer>{}, number<1>{}),
number<KPack>{},
number<1>{});
constexpr auto b_lds_block_desc_permuted = transform_tensor_descriptor(
b_lds_block_desc_0,
make_tuple(make_xor_transform(make_tuple(number<NPerBlock / NLdsLayer>{},
number<KPerBlock / KPack * NLdsLayer>{})),
make_pass_through_transform(number<KPack>{})),
make_tuple(sequence<1, 0>{}, sequence<2>{}),
make_tuple(sequence<1, 0>{}, sequence<2>{}));
constexpr auto b_lds_block_desc_xk0_mnldslayer_mn_xk1 = transform_tensor_descriptor(
b_lds_block_desc_permuted,
make_tuple(make_unmerge_transform(
make_tuple(number<KPerBlock / KPack>{}, number<NLdsLayer>{})),
make_pass_through_transform(number<NPerBlock / NLdsLayer>{}),
make_pass_through_transform(number<KPack>{})),
make_tuple(sequence<0>{}, sequence<1>{}, sequence<2>{}),
make_tuple(sequence<0, 2>{}, sequence<1>{}, sequence<3>{}));
constexpr auto b_lds_block_desc = transform_tensor_descriptor(
b_lds_block_desc_xk0_mnldslayer_mn_xk1,
make_tuple(make_merge_transform_v3_division_mod(
make_tuple(number<NPerBlock / NLdsLayer>{}, number<NLdsLayer>{})),
make_merge_transform_v3_division_mod(
make_tuple(number<KPerBlock / KPack>{}, number<KPack>{}))),
make_tuple(sequence<1, 2>{}, sequence<0, 3>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return b_lds_block_desc;
#if 1
// if constexpr(std::is_same_v<BLayout, ck_tile::tensor_layout::gemm::ColumnMajor>)
{
constexpr index_t KPack = GetSmemPackB<Problem>();
constexpr auto BK0 = number<KPerBlock / KPack>{};
constexpr auto DataTypeSize = sizeof(BDataType);
constexpr auto NLdsLayer =
(32 * 4 / KPerBlock / DataTypeSize) < 1 ? 1 : (32 * 4 / KPerBlock / DataTypeSize);
constexpr auto b_lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(
BK0 * number<NLdsLayer>{}, number<NPerBlock / NLdsLayer>{}, number<KPack>{}),
make_tuple(number<KPack>{}, number<KPerBlock * NLdsLayer>{}, number<1>{}),
number<KPack>{},
number<1>{});
constexpr auto b_lds_block_desc_permuted = transform_tensor_descriptor(
b_lds_block_desc_0,
make_tuple(make_xor_transform(make_tuple(number<NPerBlock / NLdsLayer>{},
BK0 * number<NLdsLayer>{})),
make_pass_through_transform(number<KPack>{})),
make_tuple(sequence<1, 0>{}, sequence<2>{}),
make_tuple(sequence<1, 0>{}, sequence<2>{}));
constexpr auto b_lds_block_desc_bk0_nldslayer_n_bk1 = transform_tensor_descriptor(
b_lds_block_desc_permuted,
make_tuple(make_unmerge_transform(make_tuple(BK0, number<NLdsLayer>{})),
make_pass_through_transform(number<NPerBlock / NLdsLayer>{}),
make_pass_through_transform(number<KPack>{})),
make_tuple(sequence<0>{}, sequence<1>{}, sequence<2>{}),
make_tuple(sequence<0, 2>{}, sequence<1>{}, sequence<3>{}));
constexpr auto b_lds_block_desc = transform_tensor_descriptor(
b_lds_block_desc_bk0_nldslayer_n_bk1,
make_tuple(make_merge_transform_v3_division_mod(
make_tuple(number<NPerBlock / NLdsLayer>{}, number<NLdsLayer>{})),
make_merge_transform_v3_division_mod(make_tuple(BK0, number<KPack>{}))),
make_tuple(sequence<1, 2>{}, sequence<0, 3>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return b_lds_block_desc;
}
#else
else // B is Row Major
{
constexpr index_t BlockSize = Problem::kBlockSize;
constexpr index_t VecLoadSize = GetVectorSizeB<Problem>();
using TileEncodingPattern = TileDistributionEncodingPattern2D<BlockSize,
KPerBlock,
NPerBlock,
VecLoadSize,
BTileAccessPattern>;
constexpr auto BK0 = number<TileEncodingPattern::X1>{};
constexpr auto BK1 = number<TileEncodingPattern::Y0>{};
// constexpr auto N0 = BBlockTransferThreadClusterLengths_BK0_N_BK1{}.At(I1);
constexpr auto N0 = TileEncodingPattern::X0;
constexpr auto N1 = NPerBlock / N0;
using WarpTile = typename Problem::BlockGemmShape::WarpTile;
constexpr auto NPerXdl = number<WarpTile::at(I1)>{};
// constexpr auto KThreadWrite =
// BBlockTransferThreadClusterLengths_BK0_N_BK1{}.At(I0);
constexpr auto KThreadWrite = TileEncodingPattern::Y2;
constexpr auto K0PerThreadWrite = BK0 / KThreadWrite;
constexpr auto KThreadRead = 64 / NPerXdl;
constexpr auto K0PerThreadRead = BK0 / KThreadRead;
constexpr auto kfold =
(BK1 * N0 * sizeof(BDataType) > 128) ? 1 : 128 / (BK1 * N0 * sizeof(BDataType));
constexpr auto KThreadReadPerm =
(kfold * K0PerThreadWrite / K0PerThreadRead) > 1
? KThreadRead / (kfold * K0PerThreadWrite / K0PerThreadRead)
: KThreadRead;
// 1<=npair<=n0
constexpr auto npair = (BK1 * NPerXdl * sizeof(BDataType) > 128)
? 1
: ((128 / (BK1 * NPerXdl * sizeof(BDataType))) > N0
? N0
: 128 / (BK1 * NPerXdl * sizeof(BDataType)));
constexpr auto b_lds_block_desc = make_naive_tensor_descriptor_packed(
make_tuple(number<KThreadWrite / kfold / KThreadReadPerm>{},
number<K0PerThreadWrite>{},
number<KThreadReadPerm * N1>{},
number<kfold * N0 / npair>{},
number<npair>{},
BK1));
constexpr auto b_lds_block_desc_permuted = transform_tensor_descriptor(
b_lds_block_desc,
make_tuple(
make_pass_through_transform(number<KThreadWrite / kfold / KThreadReadPerm>{}),
make_pass_through_transform(number<K0PerThreadWrite>{}),
make_xor_transform(
make_tuple(number<KThreadReadPerm * N1>{}, number<kfold * N0 / npair>{})),
make_pass_through_transform(number<npair>{}),
make_pass_through_transform(BK1)),
make_tuple(
sequence<0>{}, sequence<1>{}, sequence<2, 3>{}, sequence<4>{}, sequence<5>{}),
make_tuple(
sequence<0>{}, sequence<1>{}, sequence<2, 3>{}, sequence<4>{}, sequence<5>{}));
constexpr auto b_lds_block_desc_unmerged = transform_tensor_descriptor(
b_lds_block_desc_permuted,
make_tuple(
make_pass_through_transform(number<KThreadWrite / kfold / KThreadReadPerm>{}),
make_pass_through_transform(number<K0PerThreadWrite>{}),
make_unmerge_transform(make_tuple(number<KThreadReadPerm>{}, number<N1>{})),
make_unmerge_transform(make_tuple(number<kfold>{}, number<N0 / npair>{})),
make_pass_through_transform(number<npair>{}),
make_pass_through_transform(BK1)),
make_tuple(sequence<0>{},
sequence<1>{},
sequence<2>{},
sequence<3>{},
sequence<4>{},
sequence<5>{}),
make_tuple(sequence<1>{},
sequence<2>{},
sequence<0, 3>{},
sequence<4, 5>{},
sequence<6>{},
sequence<7>{}));
// constexpr auto b_lds_block_desc_bk0_n_bk1 = transform_tensor_descriptor(
// b_lds_block_desc_unmerged,
// make_tuple(make_merge_transform_v3_division_mod(
// make_tuple(number<KThreadReadPerm>{},
// number<KThreadWrite / kfold / KThreadReadPerm>{},
// number<kfold>{},
// number<K0PerThreadWrite>{})),
// make_merge_transform_v3_division_mod(
// make_tuple(number<N0 / npair>{}, number<npair>{}, number<N1>{})),
// make_pass_through_transform(BK1)),
// make_tuple(sequence<0, 1, 4, 2>{}, sequence<5, 6, 3>{}, sequence<7>{}),
// make_tuple(sequence<0>{}, sequence<1>{}, sequence<2>{}));
constexpr auto b_lds_block_desc_kn = transform_tensor_descriptor(
b_lds_block_desc_unmerged,
make_tuple(make_merge_transform_v3_division_mod(
make_tuple(number<KThreadReadPerm>{},
number<KThreadWrite / kfold / KThreadReadPerm>{},
number<kfold>{},
number<K0PerThreadWrite>{},
BK1)),
make_merge_transform_v3_division_mod(
make_tuple(number<N0 / npair>{}, number<npair>{}, number<N1>{}))),
make_tuple(sequence<0, 1, 4, 2, 7>{}, sequence<5, 6, 3>{}),
make_tuple(sequence<1>{}, sequence<0>{}));
// return b_lds_block_desc_bk0_n_bk1;
return b_lds_block_desc_kn;
// constexpr auto b_lds_block_desc_bk0_n_bk1 = make_naive_tensor_descriptor(
// make_tuple(BK0, number<NPerBlock>{}, number<KPack>{}),
// make_tuple(number<KPack>{}, number<KPerBlock>{}, number<1>{}),
// number<KPack>{},
// number<1>{});
// constexpr auto b_lds_block_desc = transform_tensor_descriptor(
// b_lds_block_desc_bk0_n_bk1,
// make_tuple(make_pass_through_transform(number<NPerBlock>{}),
// make_merge_transform_v3_division_mod(make_tuple(BK0,
// number<KPack>{}))),
// make_tuple(sequence<1>{}, sequence<0, 2>{}),
// make_tuple(sequence<0>{}, sequence<1>{}));
// return b_lds_block_desc;
}
#endif
}
template <typename Problem>
......@@ -180,289 +452,121 @@ struct UniversalGemmPipelineAgBgCrPolicy
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeADramTileDistribution()
{
using ADataType = remove_cvref_t<typename Problem::ADataType>;
using ALayout = remove_cvref_t<typename Problem::ALayout>;
constexpr index_t BlockSize = Problem::kBlockSize;
using ALayout = remove_cvref_t<typename Problem::ALayout>;
constexpr index_t MPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t BlockSize = Problem::kBlockSize;
constexpr index_t MPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t VecLoadSize = GetVectorSizeA<Problem>();
if constexpr(std::is_same_v<ALayout, ck_tile::tensor_layout::gemm::ColumnMajor>)
// Tile: MPerBlock X KPerBlock
if constexpr(std::is_same_v<ALayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
constexpr index_t M1 = Problem::VectorLoadSize / sizeof(ADataType);
constexpr index_t M0 = MPerBlock / M1;
constexpr index_t total_pixels = MPerBlock * KPerBlock / BlockSize;
static_assert(total_pixels % M1 == 0);
constexpr index_t K3 = total_pixels / M1;
constexpr index_t KPack = GetVectorLoadSize<Problem, ADataType, MPerBlock>();
static_assert(KPack % K3 == 0);
constexpr index_t K2 = KPack / K3;
if constexpr(get_warp_size() % (K2 * M0) == 0)
{
constexpr index_t K1 = get_warp_size() / (K2 * M0);
constexpr index_t K0 = BlockSize / get_warp_size();
static_assert(KPerBlock == K0 * K1 * K2 * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1>, sequence<K0, K1, K2, K3>>,
tuple<sequence<2>, sequence<2, 1, 2>>,
tuple<sequence<0>, sequence<1, 0, 2>>,
sequence<2, 1>,
sequence<3, 1>>{});
}
else
{
constexpr index_t K1 = (K2 * M0) / get_warp_size();
constexpr index_t K2_m = K2 / K1;
constexpr index_t K0 = BlockSize / get_warp_size() / K1;
static_assert(KPerBlock == K0 * K1 * K2_m * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1>, sequence<K0, K1, K2_m, K3>>,
tuple<sequence<2, 2>, sequence<1, 2>>,
tuple<sequence<0, 1>, sequence<0, 2>>,
sequence<2, 1>,
sequence<3, 1>>{});
}
using TileEncodingPattern = TileDistributionEncodingPattern2D<BlockSize,
MPerBlock,
KPerBlock,
VecLoadSize,
ATileAccessPattern>;
return TileEncodingPattern::Make2DStaticTileDistribution();
}
// Tile: KPerBlock X MPerBlock
else
{
constexpr index_t K1 = Problem::VectorLoadSize / sizeof(ADataType);
constexpr index_t K0 = KPerBlock / K1;
constexpr index_t M2 = get_warp_size() / K0;
if constexpr(get_warp_size() % (M2 * K0) == 0)
{
constexpr index_t M1 = BlockSize / get_warp_size();
static_assert(M2 != 0, "M2 is zero, which will lead to a division by zero error.");
static_assert(M1 != 0, "M1 is zero, which will lead to a division by zero error.");
constexpr index_t M0 = MPerBlock / (M2 * M1);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
else
{
constexpr index_t M0 = BlockSize / get_warp_size();
constexpr index_t M1 = MPerBlock / (M2 * M0);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<0>, sequence<2, 0>>,
sequence<1, 2>,
sequence<1, 1>>{});
}
using TileEncodingPattern = TileDistributionEncodingPattern2D<BlockSize,
KPerBlock,
MPerBlock,
VecLoadSize,
ATileAccessPattern>;
return TileEncodingPattern::Make2DStaticTileDistribution();
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeBDramTileDistribution()
{
using BDataType = remove_cvref_t<typename Problem::BDataType>;
using BLayout = remove_cvref_t<typename Problem::BLayout>;
constexpr index_t BlockSize = Problem::kBlockSize;
using BLayout = remove_cvref_t<typename Problem::BLayout>;
constexpr index_t NPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t BlockSize = Problem::kBlockSize;
constexpr index_t NPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t VecLoadSize = GetVectorSizeB<Problem>();
// Tile: KPerBlock X NPerBlock
if constexpr(std::is_same_v<BLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
constexpr index_t N1 = Problem::VectorLoadSize / sizeof(BDataType);
constexpr index_t N0 = NPerBlock / N1;
constexpr index_t total_pixels = NPerBlock * KPerBlock / BlockSize;
static_assert(total_pixels % N1 == 0);
constexpr index_t K3 = total_pixels / N1;
constexpr index_t KPack = GetVectorLoadSize<Problem, BDataType, NPerBlock>();
static_assert(KPack % K3 == 0);
constexpr index_t K2 = KPack / K3;
if constexpr(get_warp_size() % (K2 * N0) == 0)
{
constexpr index_t K1 = get_warp_size() / (K2 * N0);
constexpr index_t K0 = BlockSize / get_warp_size();
static_assert(KPerBlock == K0 * K1 * K2 * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1>, sequence<K0, K1, K2, K3>>,
tuple<sequence<2>, sequence<2, 1, 2>>,
tuple<sequence<0>, sequence<1, 0, 2>>,
sequence<2, 1>,
sequence<3, 1>>{});
}
else
{
constexpr index_t K1 = (K2 * N0) / get_warp_size();
constexpr index_t K2_m = K2 / K1;
constexpr index_t K0 = BlockSize / get_warp_size() / K1;
static_assert(KPerBlock == K0 * K1 * K2_m * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1>, sequence<K0, K1, K2_m, K3>>,
tuple<sequence<2, 2>, sequence<1, 2>>,
tuple<sequence<0, 1>, sequence<0, 2>>,
sequence<2, 1>,
sequence<3, 1>>{});
}
using TileEncodingPattern = TileDistributionEncodingPattern2D<BlockSize,
KPerBlock,
NPerBlock,
VecLoadSize,
BTileAccessPattern>;
return TileEncodingPattern::Make2DStaticTileDistribution();
}
// Tile: NPerBlock X KPerBlock
else
{
constexpr index_t K1 = Problem::VectorLoadSize / sizeof(BDataType);
constexpr index_t K0 = KPerBlock / K1;
constexpr index_t N2 = get_warp_size() / K0;
// coalesce reading for each blocks
if constexpr(get_warp_size() % (N2 * K0) == 0)
{
constexpr index_t N1 = BlockSize / get_warp_size();
static_assert(N2 != 0, "N2 is zero, which will lead to a division by zero error.");
static_assert(N1 != 0, "N1 is zero, which will lead to a division by zero error.");
constexpr index_t N0 = NPerBlock / (N2 * N1);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1, N2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
// coalesce reading for each warps
else
{
constexpr index_t N0 = BlockSize / get_warp_size();
constexpr index_t N1 = NPerBlock / (N2 * N0);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1, N2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<0>, sequence<2, 0>>,
sequence<1, 2>,
sequence<1, 1>>{});
}
using TileEncodingPattern = TileDistributionEncodingPattern2D<BlockSize,
NPerBlock,
KPerBlock,
VecLoadSize,
BTileAccessPattern>;
return TileEncodingPattern::Make2DStaticTileDistribution();
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffledARegBlockDescriptor()
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffledARegTileDistribution()
{
using ALayout = remove_cvref_t<typename Problem::ALayout>;
using ADataType = remove_cvref_t<typename Problem::ADataType>;
using ALayout = remove_cvref_t<typename Problem::ALayout>;
static_assert(std::is_same_v<ALayout, ck_tile::tensor_layout::gemm::ColumnMajor>);
constexpr index_t BlockSize = Problem::kBlockSize;
constexpr index_t MPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t M1 = Problem::VectorLoadSize / sizeof(ADataType);
constexpr index_t M0 = MPerBlock / M1;
constexpr index_t total_pixels = MPerBlock * KPerBlock / BlockSize;
static_assert(total_pixels % M1 == 0);
constexpr index_t K3 = total_pixels / M1;
constexpr index_t kKPack = GetVectorLoadSize<Problem, ADataType, MPerBlock>();
static_assert(kKPack % K3 == 0);
constexpr index_t K2 = kKPack / K3; // TODO: this dimention could be outside single wave
constexpr index_t warp_size = get_warp_size();
if constexpr(warp_size % (K2 * M0) == 0)
{
constexpr index_t K1 = warp_size / (K2 * M0);
constexpr index_t K0 = BlockSize / warp_size;
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1>, sequence<K0, K1, K2, K3>>,
tuple<sequence<2>, sequence<2, 1, 2>>,
tuple<sequence<0>, sequence<1, 0, 2>>,
sequence<1, 2>,
sequence<1, 3>>{});
}
else
{
constexpr index_t K1 = (K2 * M0) / get_warp_size();
constexpr index_t K2_m = K2 / K1;
constexpr index_t K0 = BlockSize / get_warp_size() / K1;
static_assert(KPerBlock == K0 * K1 * K2_m * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1>, sequence<K0, K1, K2_m, K3>>,
tuple<sequence<2, 2>, sequence<1, 2>>,
tuple<sequence<0, 1>, sequence<0, 2>>,
sequence<1, 2>,
sequence<1, 3>>{});
}
constexpr index_t BlockSize = Problem::kBlockSize;
constexpr index_t MPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t VecLoadSize = GetVectorSizeA<Problem>();
using TileEncodingPattern = TileDistributionEncodingPattern2D<BlockSize,
KPerBlock,
MPerBlock,
VecLoadSize,
ATileAccessPattern>;
return TileEncodingPattern::MakeShuffled2DStaticTileDistribution();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffledBRegBlockDescriptor()
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffledBRegTileDistribution()
{
using BLayout = remove_cvref_t<typename Problem::BLayout>;
using BDataType = remove_cvref_t<typename Problem::BDataType>;
using BLayout = remove_cvref_t<typename Problem::BLayout>;
static_assert(std::is_same_v<BLayout, ck_tile::tensor_layout::gemm::RowMajor>);
constexpr index_t BlockSize = Problem::kBlockSize;
constexpr index_t NPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t N1 = Problem::VectorLoadSize / sizeof(BDataType);
constexpr index_t N0 = NPerBlock / N1;
constexpr index_t total_pixels = NPerBlock * KPerBlock / BlockSize;
static_assert(total_pixels % N1 == 0);
constexpr index_t K3 = total_pixels / N1;
constexpr index_t kKPack = GetVectorLoadSize<Problem, BDataType, NPerBlock>();
static_assert(kKPack % K3 == 0);
constexpr index_t K2 = kKPack / K3; // TODO: this dimention could be outside single wave
constexpr index_t warp_size = get_warp_size();
if constexpr(warp_size % (K2 * N0) == 0)
{
constexpr index_t K1 = warp_size / (K2 * N0);
constexpr index_t K0 = BlockSize / warp_size;
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1>, sequence<K0, K1, K2, K3>>,
tuple<sequence<2>, sequence<2, 1, 2>>,
tuple<sequence<0>, sequence<1, 0, 2>>,
sequence<1, 2>,
sequence<1, 3>>{});
}
else
{
constexpr index_t K1 = (K2 * N0) / get_warp_size();
constexpr index_t K2_m = K2 / K1;
constexpr index_t K0 = BlockSize / get_warp_size() / K1;
static_assert(KPerBlock == K0 * K1 * K2_m * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1>, sequence<K0, K1, K2_m, K3>>,
tuple<sequence<2, 2>, sequence<1, 2>>,
tuple<sequence<0, 1>, sequence<0, 2>>,
sequence<1, 2>,
sequence<1, 3>>{});
}
constexpr index_t BlockSize = Problem::kBlockSize;
constexpr index_t NPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t VecLoadSize = GetVectorSizeB<Problem>();
using TileEncodingPattern = TileDistributionEncodingPattern2D<BlockSize,
KPerBlock,
NPerBlock,
VecLoadSize,
BTileAccessPattern>;
return TileEncodingPattern::MakeShuffled2DStaticTileDistribution();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetBlockGemm()
{
using AccDataType = float;
using BlockWarps = typename Problem::BlockGemmShape::BlockWarps;
using WarpTile = typename Problem::BlockGemmShape::WarpTile;
using WarpGemm = WarpGemmMfmaDispatcher<typename Problem::ADataType,
typename Problem::BDataType,
AccDataType,
typename Problem::CDataType,
WarpTile::at(I0),
WarpTile::at(I1),
WarpTile::at(I2),
TransposeC>;
Problem::TransposeC>;
using BlockGemmPolicy = BlockGemmASmemBSmemCRegV1CustomPolicy<typename Problem::ADataType,
typename Problem::BDataType,
typename Problem::CDataType,
BlockWarps,
WarpGemm>;
return BlockGemmASmemBSmemCRegV1<Problem, BlockGemmPolicy>{};
return BlockUniversalGemmAsBsCr<Problem, BlockGemmPolicy>{};
}
};
......
......@@ -19,11 +19,34 @@ struct TileGemmTraits
static constexpr bool kPadN = kPadN_;
static constexpr bool kPadK = kPadK_;
// TODO this can't be hardcoded here! Should be in policy!
static constexpr int _VectorSize = 16;
using ALayout = ALayout_;
using BLayout = BLayout_;
using CLayout = CLayout_;
static constexpr bool TransposeC = false;
};
template <bool kPadM_,
bool kPadN_,
bool kPadK_,
typename ALayout_,
typename BLayout_,
typename CLayout_,
bool TransposeC_ = false>
struct TileGemmUniversalTraits
{
static constexpr bool kPadM = kPadM_;
static constexpr bool kPadN = kPadN_;
static constexpr bool kPadK = kPadK_;
using ALayout = ALayout_;
using BLayout = BLayout_;
using CLayout = CLayout_;
static constexpr bool TransposeC = TransposeC_;
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -14,7 +14,8 @@ struct Layernorm2dFwdHostArgs
{
const void* p_x; // [m ,n], input, fp16/bf16
const void* p_x_residual; // [m ,n], shortcut input, prec same as input, nullptr if not used
const void* p_x_scale; // [1 ,n], smooth scale input, fp32, nullptr if not used
const void* p_sm_scale; // [1 ,n], smooth scale input, fp32, nullptr if not used
const void* p_x_bias; // [1, n], bias, prec same as input
const void* p_gamma; // [1, n], gamma, prec same as input
const void* p_beta; // [1, n], beta, prec same as input
......@@ -42,15 +43,16 @@ struct Layernorm2dFwd
using Epilogue = remove_cvref_t<Epilogue_>;
using Problem = typename Pipeline::Problem;
using XDataType = remove_cvref_t<typename Problem::XDataType>;
using GammaDataType = remove_cvref_t<typename Problem::GammaDataType>;
using BetaDataType = remove_cvref_t<typename Problem::BetaDataType>;
using ComputeDataType = remove_cvref_t<typename Problem::ComputeDataType>;
using YDataType = remove_cvref_t<typename Problem::YDataType>;
using MeanDataType = remove_cvref_t<typename Problem::MeanDataType>;
using InvStdDataType = remove_cvref_t<typename Problem::InvStdDataType>;
using XScaleDataType = remove_cvref_t<typename Problem::XScaleDataType>;
using YScaleDataType = remove_cvref_t<typename Problem::YScaleDataType>;
using XDataType = remove_cvref_t<typename Problem::XDataType>;
using XBiasDataType = remove_cvref_t<typename Problem::XBiasDataType>;
using GammaDataType = remove_cvref_t<typename Problem::GammaDataType>;
using BetaDataType = remove_cvref_t<typename Problem::BetaDataType>;
using ComputeDataType = remove_cvref_t<typename Problem::ComputeDataType>;
using YDataType = remove_cvref_t<typename Problem::YDataType>;
using MeanDataType = remove_cvref_t<typename Problem::MeanDataType>;
using InvStdDataType = remove_cvref_t<typename Problem::InvStdDataType>;
using SmoothScaleDataType = remove_cvref_t<typename Problem::SmoothScaleDataType>;
using YScaleDataType = remove_cvref_t<typename Problem::YScaleDataType>;
// for simplicity, shortcut input/output type is same as X
using XResidualDataType = XDataType;
......@@ -67,6 +69,7 @@ struct Layernorm2dFwd
static constexpr bool kPadM = false; // always no need to pad along M
static constexpr bool kPadN = Problem::Traits::kPadN;
static constexpr bool kTwoPass = Problem::Traits::kTwoPass;
static constexpr auto kXbias = Problem::Traits::kXbias;
static constexpr auto kFusedAdd = Problem::Traits::kFusedAdd;
static constexpr auto kFusedQuant = Problem::Traits::kFusedQuant;
......@@ -81,7 +84,8 @@ struct Layernorm2dFwd
{
const void* p_x; // [m ,n], input, fp16/bf16
const void* p_x_residual; // [m ,n], shortcut input, prec same as input, nullptr if not used
const void* p_x_scale; // [1 ,n], smooth scale input, fp32, nullptr if not used
const void* p_sm_scale; // [1 ,n], smooth scale input, fp32, nullptr if not used
const void* p_x_bias; // [1, n], bias, prec same as input
const void* p_gamma; // [1, n], gamma, prec same as input
const void* p_beta; // [1, n], beta, prec same as input
......@@ -107,7 +111,8 @@ struct Layernorm2dFwd
{
return Kargs{hargs.p_x,
hargs.p_x_residual,
hargs.p_x_scale,
hargs.p_sm_scale,
hargs.p_x_bias,
hargs.p_gamma,
hargs.p_beta,
hargs.p_y,
......@@ -152,6 +157,7 @@ struct Layernorm2dFwd
using S_ = typename Problem::BlockShape;
auto surfix = [&] () {
std::string n;
if (kXbias != Layernorm2dXBiasEnum::NO_BIAS) n += _SS_("_") + Layernorm2dXBiasEnumName<kXbias>::name;
if (kFusedAdd != Layernorm2dFusedAddEnum::NO_ADD) n += _SS_("_") + Layernorm2dFusedAddEnumName<kFusedAdd>::name;
if (kFusedQuant != Layernorm2dFusedQuantEnum::NO_SWEEP) n += _SS_("_") + Layernorm2dFusedQuantEnumName<kFusedQuant>::name;
if (kPadN) n += "_pn";
......@@ -165,7 +171,7 @@ struct Layernorm2dFwd
base_str += _SS_("_") + _SS_(t2s<YDataType>::name);
}
if (kFusedQuant == Layernorm2dFusedQuantEnum::SMOOTH_DYNAMIC_QUANT) {
base_str += _SS_("_sx") + _SS_(t2s<XScaleDataType>::name);
base_str += _SS_("_sx") + _SS_(t2s<SmoothScaleDataType>::name);
base_str += _SS_("_sy") + _SS_(t2s<YScaleDataType>::name);
}
if (kFusedQuant == Layernorm2dFusedQuantEnum::DYNAMIC_QUANT) {
......@@ -228,6 +234,27 @@ struct Layernorm2dFwd
}
}();
const auto x_bias_window = [&]() {
if constexpr(kXbias == Layernorm2dXBiasEnum::ADD_BIAS)
{
const auto tmp_ = make_naive_tensor_view<address_space_enum::global>(
static_cast<const XBiasDataType*>(kargs.p_x_bias),
make_tuple(kargs.n),
make_tuple(1),
number<Vector_N>{},
number<1>{});
const auto tmp2_ =
pad_tensor_view(tmp_, make_tuple(number<Block_N>{}), sequence<false>{});
return make_tile_window(tmp2_, make_tuple(number<Block_N>{}), {0});
}
else
{
return make_null_tile_window(make_tuple(number<Block_N>{}));
}
}();
const auto gamma_window = [&]() {
const auto tmp_ = make_naive_tensor_view<address_space_enum::global>(
static_cast<const GammaDataType*>(kargs.p_gamma),
......@@ -329,18 +356,18 @@ struct Layernorm2dFwd
return make_null_tile_window(make_tuple(number<Block_M>{}));
}();
auto x_scale_window = [&]() {
auto sm_scale_window = [&]() {
if constexpr(kFusedQuant == Layernorm2dFusedQuantEnum::SMOOTH_DYNAMIC_QUANT)
{
const auto win_ = [&]() {
const auto tmp_0_ = make_naive_tensor_view_packed<address_space_enum::global>(
static_cast<const XScaleDataType*>(kargs.p_x_scale),
static_cast<const SmoothScaleDataType*>(kargs.p_sm_scale),
make_tuple(kargs.n),
number<Vector_N>{});
return pad_tensor_view(tmp_0_,
make_tuple(number<Block_N>{}),
sequence<false>{}); // x_scale no need pad
sequence<false>{}); // sm_scale no need pad
}();
return make_tile_window(win_, make_tuple(number<Block_N>{}), {0});
}
......@@ -371,13 +398,14 @@ struct Layernorm2dFwd
Pipeline{}(x_window,
x_residual_window,
x_bias_window,
gamma_window,
beta_window,
y_window,
y_residual_window,
mean_window,
inv_std_window,
x_scale_window,
sm_scale_window,
y_scale_window,
static_cast<const ComputeDataType>(kargs.epsilon),
kargs.n,
......
......@@ -4,8 +4,8 @@
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/welford/block/block_welford_problem.hpp"
#include "ck_tile/ops/welford/block/block_welford.hpp"
#include "ck_tile/ops/norm_reduce/block/block_norm_reduce_problem.hpp"
#include "ck_tile/ops/norm_reduce/block/block_norm_reduce.hpp"
namespace ck_tile {
......@@ -43,36 +43,38 @@ struct Layernorm2dFwdPipelineDefaultPolicy
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetBlockWelford()
CK_TILE_HOST_DEVICE static constexpr auto GetBlockNormReduce()
{
using P_ = BlockWelfordProblem<typename Problem::ComputeDataType,
typename Problem::ComputeDataType,
typename Problem::BlockShape,
Problem::Traits::kFastFDiv>;
return BlockWelford<P_>{};
using P_ = BlockNormReduceProblem<typename Problem::ComputeDataType,
typename Problem::ComputeDataType,
typename Problem::BlockShape,
Problem::Traits::kFastFDiv,
Problem::Traits::kWelford>;
return BlockNormReduce<P_>{};
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetBlockWelfordSync()
CK_TILE_HOST_DEVICE static constexpr auto GetBlockNormReduceSync()
{
using P_ = BlockWelfordProblem<typename Problem::ComputeDataType,
typename Problem::ComputeDataType,
typename Problem::BlockShape,
Problem::Traits::kFastFDiv>;
using P_ = BlockNormReduceProblem<typename Problem::ComputeDataType,
typename Problem::ComputeDataType,
typename Problem::BlockShape,
Problem::Traits::kFastFDiv,
Problem::Traits::kWelford>;
return BlockWelfordSync<P_>{};
return BlockNormReduceSync<P_>{};
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetBlockWelfordCrossWarpSync()
CK_TILE_HOST_DEVICE static constexpr auto GetBlockNormReduceCrossWarpSync()
{
using P_ = BlockWelfordProblem<typename Problem::ComputeDataType,
typename Problem::ComputeDataType,
typename Problem::BlockShape,
Problem::Traits::kFastFDiv>;
using P_ = BlockNormReduceProblem<typename Problem::ComputeDataType,
typename Problem::ComputeDataType,
typename Problem::BlockShape,
Problem::Traits::kFastFDiv,
Problem::Traits::kWelford>;
return BlockWelfordCrossWarpSync<P_>{};
return BlockNormReduceCrossWarpSync<P_>{};
}
template <typename Problem>
......@@ -80,19 +82,20 @@ struct Layernorm2dFwdPipelineDefaultPolicy
{
if constexpr(Problem::kNeedCrossWarpSync)
{
using P_ = BlockWelfordProblem<typename Problem::ComputeDataType,
typename Problem::ComputeDataType,
typename Problem::BlockShape,
Problem::Traits::kFastFDiv>;
using P_ = BlockNormReduceProblem<typename Problem::ComputeDataType,
typename Problem::ComputeDataType,
typename Problem::BlockShape,
Problem::Traits::kFastFDiv,
Problem::Traits::kWelford>;
using block_welford = BlockWelford<P_>;
using block_welford = BlockNormReduce<P_>;
using x_block_tile =
decltype(make_static_distributed_tensor<typename Problem::ComputeDataType>(
MakeXBlockTileDistribution<Problem>()));
using mean_var_block_tile =
decltype(block_welford::template MakeMeanVarBlockTile<x_block_tile>());
return GetBlockWelfordCrossWarpSync<Problem>()
return GetBlockNormReduceCrossWarpSync<Problem>()
.template GetSmemSize<mean_var_block_tile>();
}
else
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -18,6 +18,7 @@ struct Layernorm2dFwdPipelineOnePass
using Policy = ck_tile::remove_cvref_t<Policy_>;
using XDataType = ck_tile::remove_cvref_t<typename Problem::XDataType>;
using XBiasDataType = ck_tile::remove_cvref_t<typename Problem::XBiasDataType>;
using GammaDataType = ck_tile::remove_cvref_t<typename Problem::GammaDataType>;
using BetaDataType = ck_tile::remove_cvref_t<typename Problem::BetaDataType>;
using ComputeDataType = ck_tile::remove_cvref_t<typename Problem::ComputeDataType>;
......@@ -37,6 +38,8 @@ struct Layernorm2dFwdPipelineOnePass
static constexpr bool kPadM = false; // TODO - BlockLayernorm2dFwdProblem::kPadM
static constexpr bool kPadN = Problem::Traits::kPadN;
static constexpr bool kFastFDiv = Problem::Traits::kFastFDiv;
static constexpr bool kWelford = Problem::Traits::kWelford;
static constexpr auto kXbias = Problem::Traits::kXbias;
static constexpr auto kFusedAdd = Problem::Traits::kFusedAdd;
static constexpr auto kFusedQuant = Problem::Traits::kFusedQuant;
......@@ -54,24 +57,26 @@ struct Layernorm2dFwdPipelineOnePass
template <typename XWindow,
typename XResidualWindow,
typename XBiasWindow,
typename GammaWindow,
typename BetaWindow,
typename YWindow,
typename YResidualWindow,
typename MeanWindow,
typename InvStdWindow,
typename XScaleWindow,
typename SmoothScaleWindow,
typename YScaleWindow,
typename Epilogue>
CK_TILE_DEVICE auto operator()(const XWindow& x_window_,
const XResidualWindow& x_residual_window_,
const XBiasWindow& x_bias_window_,
const GammaWindow& gamma_window_,
const BetaWindow& beta_window_,
YWindow& y_window_,
const YResidualWindow& y_residual_window_,
MeanWindow& mean_window,
InvStdWindow& inv_std_window,
const XScaleWindow& x_scale_window_,
const SmoothScaleWindow& sm_scale_window_,
YScaleWindow& y_scale_window,
ComputeDataType epsilon,
ck_tile::index_t row_size,
......@@ -80,6 +85,8 @@ struct Layernorm2dFwdPipelineOnePass
{
const auto x_window =
make_tile_window(x_window_, Policy::template MakeXBlockTileDistribution<Problem>());
const auto x_bias_window = make_tile_window(
x_bias_window_, Policy::template MakeGammaBetaBlockTileDistribution<Problem>());
const auto gamma_window = make_tile_window(
gamma_window_, Policy::template MakeGammaBetaBlockTileDistribution<Problem>());
const auto beta_window = make_tile_window(
......@@ -89,23 +96,38 @@ struct Layernorm2dFwdPipelineOnePass
auto y_residual_window = make_tile_window(
y_residual_window_, Policy::template MakeXBlockTileDistribution<Problem>());
auto x = load_tile(x_window);
auto x_resi = load_tile(x_residual_window);
auto x = load_tile(x_window);
auto x_resi = load_tile(x_residual_window);
const auto x_bias = load_tile(x_bias_window);
int cur_count = 0;
int max_count =
block_tile_welford_calculate_max_count<typename Problem::BlockShape>(row_size);
auto block_welford = Policy::template GetBlockWelford<Problem>();
auto block_welford_sync = Policy::template GetBlockWelfordSync<Problem>();
auto block_welford_cross_warp_sync =
Policy::template GetBlockWelfordCrossWarpSync<Problem>();
auto block_norm_reduce = Policy::template GetBlockNormReduce<Problem>();
auto block_norm_reduce_sync = Policy::template GetBlockNormReduceSync<Problem>();
auto block_norm_reduce_cross_warp_sync =
Policy::template GetBlockNormReduceCrossWarpSync<Problem>();
using XTensorType = decltype(cast_tile<ComputeDataType>(x));
auto mean = block_norm_reduce.template MakeMeanVarBlockTile<XTensorType>();
auto var = block_norm_reduce.template MakeMeanVarBlockTile<XTensorType>();
clear_tile(mean);
clear_tile(var);
// load gamma/beta (TODO: support no gamma/beta?)
const auto gamma = load_tile(gamma_window);
const auto beta = load_tile(beta_window);
auto acc = cast_tile<ComputeDataType>(x);
if constexpr(kXbias == Layernorm2dXBiasEnum::ADD_BIAS)
{
sweep_tile(x, [&](auto idx) {
// compute x = bias + x
constexpr auto j_idx = make_tuple(idx[number<1>{}]);
acc(idx) = type_convert<ComputeDataType>(x_bias[j_idx]) + acc(idx);
});
}
if constexpr(kFusedAdd == Layernorm2dFusedAddEnum::PRE_ADD_STORE ||
kFusedAdd == Layernorm2dFusedAddEnum::PRE_ADD)
{
......@@ -117,12 +139,21 @@ struct Layernorm2dFwdPipelineOnePass
store_tile(y_residual_window, cast_tile<YResidualDataType>(acc));
}
// compute welford each-thread->cross-lane->cross-warp
auto [mean, var] = block_welford(acc, cur_count, max_count);
block_welford_sync(mean, var, cur_count);
block_welford_cross_warp_sync(mean, var, cur_count, smem);
block_tile_welford_post_scale_var(var, cur_count, constant<kFastFDiv>{});
// compute reduce each-thread->cross-lane->cross-warp
block_norm_reduce(acc, mean, var, cur_count, max_count);
block_norm_reduce_sync(mean, var, cur_count);
block_norm_reduce_cross_warp_sync(mean, var, cur_count, smem);
if(kWelford)
{
block_tile_welford_post_scale_var(var, cur_count, constant<kFastFDiv>{});
}
else
{
sweep_tile(mean, [&](auto idx) {
mean(idx) = mean(idx) / type_convert<MeanDataType>(row_size);
var(idx) = var(idx) / type_convert<MeanDataType>(row_size) - mean(idx) * mean(idx);
});
}
// compute inv-std
auto inv_std = tile_elementwise_in(
[&](const auto& v_) {
......@@ -153,14 +184,13 @@ struct Layernorm2dFwdPipelineOnePass
const auto beta_ = type_convert<ComputeDataType>(beta[j_idx]);
auto ln_ = (acc[idx] - mean_[i_idx]) * inv_std[i_idx] * gamma_ + beta_;
ln(idx) = ln_;
ln(idx) = ln_;
});
if constexpr(kFusedQuant == Layernorm2dFusedQuantEnum::DYNAMIC_QUANT ||
kFusedQuant == Layernorm2dFusedQuantEnum::SMOOTH_DYNAMIC_QUANT)
{
Epilogue{}(y_window_, x_scale_window_, y_scale_window, ln, smem);
Epilogue{}(y_window_, sm_scale_window_, y_scale_window, ln, smem);
}
else
Epilogue{}(y_window_, ln);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -8,28 +8,30 @@
namespace ck_tile {
template <typename XDataType_,
typename XBiasDataType_,
typename GammaDataType_,
typename BetaDataType_,
typename ComputeDataType_,
typename YDataType_,
typename MeanDataType_,
typename InvStdDataType_,
typename XScaleDataType_,
typename SmoothScaleDataType_,
typename YScaleDataType_,
typename BlockShape_,
typename Traits_>
struct Layernorm2dFwdPipelineProblem
{
using XDataType = remove_cvref_t<XDataType_>;
using GammaDataType = remove_cvref_t<GammaDataType_>;
using BetaDataType = remove_cvref_t<BetaDataType_>;
using ComputeDataType = remove_cvref_t<ComputeDataType_>;
using YDataType = remove_cvref_t<YDataType_>;
using MeanDataType = remove_cvref_t<MeanDataType_>;
using InvStdDataType = remove_cvref_t<InvStdDataType_>;
using XScaleDataType = remove_cvref_t<XScaleDataType_>;
using YScaleDataType = remove_cvref_t<YScaleDataType_>;
using BlockShape = remove_cvref_t<BlockShape_>;
using XDataType = remove_cvref_t<XDataType_>;
using XBiasDataType = remove_cvref_t<XBiasDataType_>;
using GammaDataType = remove_cvref_t<GammaDataType_>;
using BetaDataType = remove_cvref_t<BetaDataType_>;
using ComputeDataType = remove_cvref_t<ComputeDataType_>;
using YDataType = remove_cvref_t<YDataType_>;
using MeanDataType = remove_cvref_t<MeanDataType_>;
using InvStdDataType = remove_cvref_t<InvStdDataType_>;
using SmoothScaleDataType = remove_cvref_t<SmoothScaleDataType_>;
using YScaleDataType = remove_cvref_t<YScaleDataType_>;
using BlockShape = remove_cvref_t<BlockShape_>;
static constexpr bool kNeedCrossLaneSync = BlockShape::ThreadPerWarp_N > 1;
static constexpr bool kNeedCrossWarpSync = BlockShape::WarpPerBlock_N > 1;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -17,6 +17,7 @@ struct Layernorm2dFwdPipelineTwoPass
using Policy = ck_tile::remove_cvref_t<Policy_>;
using XDataType = ck_tile::remove_cvref_t<typename Problem::XDataType>;
using XBiasDataType = ck_tile::remove_cvref_t<typename Problem::XBiasDataType>;
using GammaDataType = ck_tile::remove_cvref_t<typename Problem::GammaDataType>;
using BetaDataType = ck_tile::remove_cvref_t<typename Problem::BetaDataType>;
using ComputeDataType = ck_tile::remove_cvref_t<typename Problem::ComputeDataType>;
......@@ -36,6 +37,8 @@ struct Layernorm2dFwdPipelineTwoPass
static constexpr bool kPadM = false; // TODO - BlockLayernorm2dFwdProblem::kPadM
static constexpr bool kPadN = Problem::Traits::kPadN;
static constexpr bool kFastFDiv = Problem::Traits::kFastFDiv;
static constexpr bool kWelford = Problem::Traits::kWelford;
static constexpr auto kXbias = Problem::Traits::kXbias;
static constexpr auto kFusedAdd = Problem::Traits::kFusedAdd;
static constexpr auto kFusedQuant = Problem::Traits::kFusedQuant;
......@@ -53,32 +56,37 @@ struct Layernorm2dFwdPipelineTwoPass
template <typename XWindow,
typename XResidualWindow,
typename XBiasWindow,
typename GammaWindow,
typename BetaWindow,
typename YWindow,
typename YResidualWindow,
typename MeanWindow,
typename InvStdWindow,
typename XScaleWindow,
typename SmoothScaleWindow,
typename YScaleWindow,
typename Epilogue>
CK_TILE_DEVICE auto operator()(const XWindow& x_window_,
const XResidualWindow& x_residual_window_,
const XBiasWindow& x_bias_window_,
const GammaWindow& gamma_window_,
const BetaWindow& beta_window_,
YWindow& y_window,
const YResidualWindow& y_residual_window_,
MeanWindow& mean_window,
InvStdWindow& inv_std_window,
const XScaleWindow& /*x_scale_window*/,
const SmoothScaleWindow& /*sm_scale_window*/,
YScaleWindow& /*y_scale_window*/,
ComputeDataType epsilon,
ck_tile::index_t row_size,
void* smem,
Epilogue) const
{
static_assert(kWelford == true, "2 pass only supports welford merge");
auto x_window =
make_tile_window(x_window_, Policy::template MakeXBlockTileDistribution<Problem>());
auto x_bias_window = make_tile_window(
x_bias_window_, Policy::template MakeGammaBetaBlockTileDistribution<Problem>());
auto gamma_window = make_tile_window(
gamma_window_, Policy::template MakeGammaBetaBlockTileDistribution<Problem>());
auto beta_window = make_tile_window(
......@@ -102,24 +110,35 @@ struct Layernorm2dFwdPipelineTwoPass
int max_count =
(num_n_tile_iteration - 1) * count_per_iter +
block_tile_welford_calculate_max_count<typename Problem::BlockShape>(last_iter_n);
auto block_welford = Policy::template GetBlockWelford<Problem>();
auto block_welford_sync = Policy::template GetBlockWelfordSync<Problem>();
auto block_welford_cross_warp_sync =
Policy::template GetBlockWelfordCrossWarpSync<Problem>();
auto block_norm_reduce = Policy::template GetBlockNormReduce<Problem>();
auto block_norm_reduce_sync = Policy::template GetBlockNormReduceSync<Problem>();
auto block_norm_reduce_cross_warp_sync =
Policy::template GetBlockNormReduceCrossWarpSync<Problem>();
using XTensorType = decltype(cast_tile<ComputeDataType>(load_tile(x_window)));
auto mean = block_welford.template MakeMeanVarBlockTile<XTensorType>();
auto var = block_welford.template MakeMeanVarBlockTile<XTensorType>();
auto mean = block_norm_reduce.template MakeMeanVarBlockTile<XTensorType>();
auto var = block_norm_reduce.template MakeMeanVarBlockTile<XTensorType>();
for(int iN = __builtin_amdgcn_readfirstlane(0); iN < num_n_tile_iteration; ++iN)
{
auto x = load_tile(x_window);
auto x_resi = load_tile(x_residual_window);
auto x = load_tile(x_window);
auto x_resi = load_tile(x_residual_window);
const auto x_bias = load_tile(x_bias_window);
move_tile_window(x_window, {0, Block_N});
move_tile_window(x_residual_window, {0, Block_N});
move_tile_window(x_bias_window, {Block_N});
auto acc = cast_tile<ComputeDataType>(x);
if constexpr(kXbias == Layernorm2dXBiasEnum::ADD_BIAS)
{
sweep_tile(x, [&](auto idx) {
// compute x = bias + x
constexpr auto j_idx = make_tuple(idx[number<1>{}]);
acc(idx) = type_convert<ComputeDataType>(x_bias[j_idx]) + acc(idx);
});
}
if constexpr(kFusedAdd == Layernorm2dFusedAddEnum::PRE_ADD_STORE ||
kFusedAdd == Layernorm2dFusedAddEnum::PRE_ADD)
{
......@@ -133,11 +152,11 @@ struct Layernorm2dFwdPipelineTwoPass
move_tile_window(y_residual_window, {0, Block_N});
}
}
block_welford(acc, mean, var, cur_count, max_count);
block_norm_reduce(acc, mean, var, cur_count, max_count);
}
block_welford_sync(mean, var, cur_count);
block_welford_cross_warp_sync(mean, var, cur_count, smem);
block_norm_reduce_sync(mean, var, cur_count);
block_norm_reduce_cross_warp_sync(mean, var, cur_count, smem);
block_tile_welford_post_scale_var(var, cur_count, constant<kFastFDiv>{});
// compute inv-std
......@@ -165,6 +184,7 @@ struct Layernorm2dFwdPipelineTwoPass
move_tile_window(x_window, {0, -Block_N});
move_tile_window(x_residual_window, {0, -Block_N});
move_tile_window(x_bias_window, {-Block_N});
move_tile_window(gamma_window, {stride_to_right_most_window});
move_tile_window(beta_window, {stride_to_right_most_window});
move_tile_window(y_window, {0, stride_to_right_most_window});
......@@ -172,9 +192,19 @@ struct Layernorm2dFwdPipelineTwoPass
// layernorm computation
for(int iN = __builtin_amdgcn_readfirstlane(0); iN < num_n_tile_iteration; ++iN)
{
auto x = load_tile(x_window);
auto x_resi = load_tile(x_residual_window);
auto acc = cast_tile<ComputeDataType>(x);
auto x = load_tile(x_window);
auto x_resi = load_tile(x_residual_window);
const auto x_bias = load_tile(x_bias_window);
auto acc = cast_tile<ComputeDataType>(x);
if constexpr(kXbias == Layernorm2dXBiasEnum::ADD_BIAS)
{
sweep_tile(x, [&](auto idx) {
// compute x = bias + x
constexpr auto j_idx = make_tuple(idx[number<1>{}]);
acc(idx) = type_convert<ComputeDataType>(x_bias[j_idx]) + acc(idx);
});
}
if constexpr(kFusedAdd == Layernorm2dFusedAddEnum::PRE_ADD_STORE ||
kFusedAdd == Layernorm2dFusedAddEnum::PRE_ADD)
......@@ -207,6 +237,7 @@ struct Layernorm2dFwdPipelineTwoPass
move_tile_window(x_window, {0, -Block_N});
move_tile_window(x_residual_window, {0, -Block_N});
move_tile_window(x_bias_window, {-Block_N});
move_tile_window(gamma_window, {-Block_N});
move_tile_window(beta_window, {-Block_N});
move_tile_window(y_window, {0, -Block_N});
......
......@@ -7,6 +7,19 @@
namespace ck_tile {
enum class Layernorm2dXBiasEnum
{
NO_BIAS = 0,
// add bias before fused add
ADD_BIAS = 1,
};
// clang-format off
template<Layernorm2dXBiasEnum> struct Layernorm2dXBiasEnumName;
template<> struct Layernorm2dXBiasEnumName<Layernorm2dXBiasEnum::NO_BIAS> { static constexpr const char * name = "no"; };
template<> struct Layernorm2dXBiasEnumName<Layernorm2dXBiasEnum::ADD_BIAS> { static constexpr const char * name = "xbias"; };
// clang-format on
enum class Layernorm2dFusedAddEnum
{
NO_ADD = 0,
......@@ -40,7 +53,9 @@ template<> struct Layernorm2dFusedQuantEnumName<Layernorm2dFusedQuantEnum::SMOOT
template <bool kPadN_,
bool kSaveMeanInvStd_,
bool kFastFDiv_,
bool kWelford_,
bool kTwoPass_,
Layernorm2dXBiasEnum kXbias_,
Layernorm2dFusedAddEnum kFusedAdd_,
Layernorm2dFusedQuantEnum kFusedQuant_>
struct Layernorm2dFwdTraits
......@@ -48,7 +63,9 @@ struct Layernorm2dFwdTraits
static constexpr bool kPadN = kPadN_;
static constexpr bool kSaveMeanInvStd = kSaveMeanInvStd_;
static constexpr bool kFastFDiv = kFastFDiv_;
static constexpr bool kWelford = kWelford_;
static constexpr bool kTwoPass = kTwoPass_;
static constexpr Layernorm2dXBiasEnum kXbias = kXbias_;
static constexpr Layernorm2dFusedAddEnum kFusedAdd = kFusedAdd_;
static constexpr Layernorm2dFusedQuantEnum kFusedQuant = kFusedQuant_;
};
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/ops/norm_reduce/block/block_norm_reduce.hpp"
#include "ck_tile/ops/norm_reduce/block/block_norm_reduce_problem.hpp"
#include "ck_tile/ops/norm_reduce/thread/thread_welford.hpp"
#include "ck_tile/ops/common/generic_2d_block_shape.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
......@@ -4,22 +4,23 @@
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/welford/thread/thread_welford.hpp"
#include "ck_tile/ops/norm_reduce/thread/thread_welford.hpp"
namespace ck_tile {
template <typename Problem_, typename Policy_ = void>
struct BlockWelford
struct BlockNormReduce
{
using Problem = remove_cvref_t<Problem_>;
using XDataType = typename Problem::XDataType;
using ComputeDataType = typename Problem::ComputeDataType;
static constexpr bool kFastFDiv = Problem::kFastFDiv;
static constexpr bool kWelford = Problem::kWelford;
CK_TILE_DEVICE constexpr BlockWelford() {}
CK_TILE_DEVICE constexpr BlockNormReduce() {}
// [CAUSION] - max_count_ is to deal with the padding problem
// max_count_ is depend on caller, eg: naive and splitN welford will have different
// max_count_ is depend on caller, eg: naive and splitN norm_reduce will have different
// calculation of max_count_
// -> use block_welford_calculate_max_count to compute
template <typename XDistributedTensor_,
......@@ -40,18 +41,24 @@ struct BlockWelford
if(cur_count_ < max_count_)
{
++cur_count_;
sweep_tile_span(spans[I0], [&](auto dstr_idx_i0) {
constexpr auto in_dstr_idx = make_tuple(dstr_idx_i0, dstr_idx_i1);
constexpr auto out_dstr_idx = make_tuple(dstr_idx_i0);
auto x = ck_tile::type_convert<ComputeDataType>(x_tensor[in_dstr_idx]);
welford_update(mean_tensor(out_dstr_idx),
var_tensor(out_dstr_idx),
x,
cur_count_,
constant<kFastFDiv>{});
if(kWelford)
{
welford_update(mean_tensor(out_dstr_idx),
var_tensor(out_dstr_idx),
x,
cur_count_,
constant<kFastFDiv>{});
}
else
{
mean_tensor(out_dstr_idx) += x;
var_tensor(out_dstr_idx) += x * x;
}
});
}
});
......@@ -91,10 +98,11 @@ struct BlockWelford
};
template <typename Problem_, typename Policy_ = void>
struct BlockWelfordSync
struct BlockNormReduceSync
{
using Problem = remove_cvref_t<Problem_>;
static constexpr bool kFastFDiv = Problem::kFastFDiv;
static constexpr bool kWelford = Problem::kWelford;
template <typename MeanDistributedTensor_, typename VarDistributedTensor_>
CK_TILE_DEVICE void
......@@ -152,36 +160,48 @@ struct BlockWelfordSync
(number<lid_over_rid_derivative << istage.value>{}.value);
// pull data from remote lane
const auto v_remote_mean = warp_shuffle(v_local_mean, src_lane);
const auto v_remote_var = warp_shuffle(v_local_var, src_lane);
const auto v_remote_count = warp_shuffle(v_local_count, src_lane);
// welford merge
welford_merge(v_local_mean,
v_local_var,
v_local_count,
v_remote_mean,
v_remote_var,
v_remote_count,
constant<kFastFDiv>{});
const auto v_remote_mean = warp_shuffle(v_local_mean, src_lane);
const auto v_remote_var = warp_shuffle(v_local_var, src_lane);
if(kWelford)
{
const auto v_remote_count = warp_shuffle(v_local_count, src_lane);
// norm_reduce merge
welford_merge(v_local_mean,
v_local_var,
v_local_count,
v_remote_mean,
v_remote_var,
v_remote_count,
constant<kFastFDiv>{});
}
else
{
v_local_mean += v_remote_mean;
v_local_var += v_remote_var;
}
});
}
});
mean_tensor.get_thread_buffer()(i) = v_local_mean;
var_tensor.get_thread_buffer()(i) = v_local_var;
count = v_local_count;
if(kWelford)
{
count = v_local_count;
}
});
}
};
template <typename Problem_, typename Policy_ = void>
struct BlockWelfordCrossWarpSync
struct BlockNormReduceCrossWarpSync
{
using Problem = remove_cvref_t<Problem_>;
using BlockShape = typename Problem::BlockShape;
static constexpr bool kFastFDiv = Problem::kFastFDiv;
static constexpr bool kWelford = Problem::kWelford;
using smem_dtype = std::conditional_t<kWelford, fp32x4_t, fp32x2_t>;
template <typename MeanDistributedTensor_>
CK_TILE_DEVICE static constexpr index_t GetReduceWarps()
......@@ -252,7 +272,7 @@ struct BlockWelfordCrossWarpSync
static_assert(thread_buf_size == VarDistributedTensor_::get_thread_buffer_size());
// Note: we always pack everything into fp32x4
fp32x4_t* smem_ptr = reinterpret_cast<fp32x4_t*>(smem);
smem_dtype* smem_ptr = reinterpret_cast<smem_dtype*>(smem);
const index_t lane_id = get_lane_id();
const index_t warp_id = get_warp_id();
constexpr auto num_reduce_warps = GetReduceWarps<MeanDistributedTensor_>();
......@@ -267,11 +287,13 @@ struct BlockWelfordCrossWarpSync
if(lane_id == 0)
{
static_for<0, thread_buf_size, 1>{}([&](auto i) {
fp32x4_t local_scratch_;
smem_dtype local_scratch_;
local_scratch_[0] = bit_cast<float>(mean_tensor.get_thread_buffer()[i]);
local_scratch_[1] = bit_cast<float>(var_tensor.get_thread_buffer()[i]);
local_scratch_[2] = bit_cast<float>(count);
if(kWelford)
{
local_scratch_[2] = bit_cast<float>(count);
}
smem_ptr[smem_offset + i * num_warps] = local_scratch_;
});
}
......@@ -280,7 +302,7 @@ struct BlockWelfordCrossWarpSync
// load from smem. here we let everythread to do compute :)
index_t local_warp_id = warp_id / num_reduce_warps;
index_t local_smem_os = local_warp_id * num_reduce_warps;
fp32x4_t all_scratch[thread_buf_size * num_reduce_warps];
smem_dtype all_scratch[thread_buf_size * num_reduce_warps];
static_for<0, thread_buf_size, 1>{}([&](auto i_0) {
static_for<0, num_reduce_warps, 1>{}([&](auto i_1) {
all_scratch[i_0 * num_reduce_warps + i_1] =
......@@ -293,32 +315,40 @@ struct BlockWelfordCrossWarpSync
static_for<0, thread_buf_size, 1>{}([&](auto i_0) {
// TODO: use descriptor for this
auto v_local = all_scratch[i_0 * num_reduce_warps];
auto v_local_mean = bit_cast<DataType>(v_local[0]);
auto v_local_var = bit_cast<DataType>(v_local[1]);
auto v_local_count = bit_cast<int>(v_local[2]);
auto v_local = all_scratch[i_0 * num_reduce_warps];
auto v_local_mean = bit_cast<DataType>(v_local[0]);
auto v_local_var = bit_cast<DataType>(v_local[1]);
int v_local_count = kWelford ? bit_cast<int>(v_local[2]) : 0;
// further reduce mean/var
static_for<0, num_reduce_warps - 1, 1>{}([&](auto i_1_n1) {
constexpr auto i_1 = number<i_1_n1 + 1>{};
const fp32x4_t v_remote = all_scratch[i_0 * num_reduce_warps + i_1];
const smem_dtype v_remote = all_scratch[i_0 * num_reduce_warps + i_1];
const auto v_remote_mean = bit_cast<DataType>(v_remote[0]);
const auto v_remote_var = bit_cast<DataType>(v_remote[1]);
const auto v_remote_count = bit_cast<int>(v_remote[2]);
welford_merge(v_local_mean,
v_local_var,
v_local_count,
v_remote_mean,
v_remote_var,
v_remote_count,
constant<kFastFDiv>{});
if(kWelford)
{
const auto v_remote_count = bit_cast<int>(v_remote[2]);
welford_merge(v_local_mean,
v_local_var,
v_local_count,
v_remote_mean,
v_remote_var,
v_remote_count,
constant<kFastFDiv>{});
}
else
{
v_local_mean += v_remote_mean;
v_local_var += v_remote_var;
}
});
mean_tensor.get_thread_buffer()(i_0) = v_local_mean;
var_tensor.get_thread_buffer()(i_0) = v_local_var;
count = v_local_count;
if(kWelford)
count = v_local_count;
});
}
};
......
......@@ -7,13 +7,18 @@
namespace ck_tile {
template <typename XDataType_, typename ComputeDataType_, typename BlockShape_, bool kFastFDiv_>
struct BlockWelfordProblem
template <typename XDataType_,
typename ComputeDataType_,
typename BlockShape_,
bool kFastFDiv_,
bool kWelford_>
struct BlockNormReduceProblem
{
using XDataType = remove_cvref_t<XDataType_>;
using ComputeDataType = remove_cvref_t<ComputeDataType_>;
using BlockShape = remove_cvref_t<BlockShape_>;
static constexpr bool kFastFDiv = kFastFDiv_;
static constexpr bool kWelford = kWelford_;
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -8,5 +8,6 @@
#include "ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_one_pass.hpp"
#include "ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_problem.hpp"
#include "ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_two_pass.hpp"
#include "ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_traits.hpp"
#include "ck_tile/ops/common/generic_2d_block_shape.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
#include "ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_traits.hpp"
namespace ck_tile {
// host side args
struct Rmsnorm2dFwdHostArgs
{
const void* p_x; // [m ,n], input, fp16/bf16
const void* p_gamma; // [1, n], gamma, prec same as input
const void* p_x; // [m ,n], input, fp16/bf16
const void* p_x_residual; // [m ,n], shortcut input, prec same as input, nullptr if not used
const void* p_sm_scale; // [1 ,n], smooth scale input, fp32, nullptr if not used
const void* p_gamma; // [1, n], gamma, prec same as input
void* p_y; // [m, n], output, fp16/bf16
void* p_invRms; // [m, 1], output inv-rms, prec same as input, nullptr if not used
void* p_y; // [m, n], output, fp16/bf16
void* p_y_residual; // [m, n], shortcut output, prec same as input, nullptr if not used
void* p_y_scale; // [m, 1], output a dynamic quant per row, nullptr if not used
void* p_invRms; // [m, 1], output inv-rms, prec same as input, nullptr if not used
float epsilon;
index_t m;
index_t n;
index_t stride; // row_stride
index_t x_stride; // x row_stride
index_t xr_stride; // x residule row stride
index_t y_stride; // y row stride
index_t yr_stride; // y residule row stride
};
// TODO: Extract some type to wrapper class
template <typename Pipeline_>
template <typename Pipeline_, typename Epilogue_>
struct Rmsnorm2dFwd
{
using Pipeline = remove_cvref_t<Pipeline_>;
using Epilogue = remove_cvref_t<Epilogue_>;
using Problem = typename Pipeline::Problem;
using XDataType = remove_cvref_t<typename Problem::XDataType>;
using GammaDataType = remove_cvref_t<typename Problem::GammaDataType>;
using ComputeDataType = remove_cvref_t<typename Problem::ComputeDataType>;
using YDataType = remove_cvref_t<typename Problem::YDataType>;
using InvRmsDataType = remove_cvref_t<typename Problem::InvRmsDataType>;
using XDataType = remove_cvref_t<typename Problem::XDataType>;
using GammaDataType = remove_cvref_t<typename Problem::GammaDataType>;
using ComputeDataType = remove_cvref_t<typename Problem::ComputeDataType>;
using YDataType = remove_cvref_t<typename Problem::YDataType>;
using InvRmsDataType = remove_cvref_t<typename Problem::InvRmsDataType>;
using SmoothScaleDataType = remove_cvref_t<typename Problem::SmoothScaleDataType>;
using YScaleDataType = remove_cvref_t<typename Problem::YScaleDataType>;
// for simplicity, shortcut input/output type is same as X
using XResidualDataType = XDataType;
using YResidualDataType = XDataType;
static constexpr bool kHasGamma = !std::is_same_v<GammaDataType, null_type>;
static constexpr bool kSaveInvRms = Problem::kSaveInvRms;
static constexpr bool kSaveInvRms = Problem::Traits::kSaveInvRms;
static constexpr index_t Block_M = Problem::BlockShape::Block_M;
static constexpr index_t Block_N = Problem::BlockShape::Block_N;
static constexpr bool kPadM = false; // always no need to pad along M
static constexpr bool kPadN = Problem::kPadN;
static constexpr bool kTwoPass = Problem::kTwoPass;
static constexpr index_t Block_M = Problem::BlockShape::Block_M;
static constexpr index_t Block_N = Problem::BlockShape::Block_N;
static constexpr bool kPadM = false; // always no need to pad along M
static constexpr bool kPadN = Problem::Traits::kPadN;
static constexpr bool kTwoPass = Problem::Traits::kTwoPass;
static constexpr auto kFusedAdd = Problem::Traits::kFusedAdd;
static constexpr auto kFusedQuant = Problem::Traits::kFusedQuant;
static constexpr index_t ThreadPerWarp_N = Problem::BlockShape::ThreadPerWarp_N;
static constexpr index_t Vector_N = Problem::BlockShape::Vector_N;
......@@ -56,29 +73,43 @@ struct Rmsnorm2dFwd
struct Kargs
{
const void* p_x;
const void* p_x_residual;
const void* p_sm_scale;
const void* p_gamma;
void* p_y;
void* p_y_residual;
void* p_y_scale;
void* p_invRms;
float epsilon;
index_t m;
index_t n;
index_t stride; // row_stride
index_t x_stride; // x row_stride
index_t xr_stride; // x residule row stride
index_t y_stride; // y row stride
index_t yr_stride; // y residule row stride
};
using Hargs = Rmsnorm2dFwdHostArgs;
CK_TILE_HOST static constexpr Kargs MakeKargs(const Hargs& hargs)
{
return Kargs{hargs.p_x,
hargs.p_x_residual,
hargs.p_sm_scale,
hargs.p_gamma,
hargs.p_y,
hargs.p_y_residual,
hargs.p_y_scale,
hargs.p_invRms,
hargs.epsilon,
hargs.m,
hargs.n,
hargs.stride};
hargs.x_stride,
hargs.xr_stride,
hargs.y_stride,
hargs.yr_stride};
}
CK_TILE_HOST static constexpr auto GridSize(const Hargs& hargs)
......@@ -95,6 +126,7 @@ struct Rmsnorm2dFwd
template <> struct t2s<ck_tile::bf16_t> { static constexpr const char * name = "bf16"; };
template <> struct t2s<ck_tile::fp8_t> { static constexpr const char * name = "fp8"; };
template <> struct t2s<ck_tile::bf8_t> { static constexpr const char * name = "bf8"; };
template <> struct t2s<ck_tile::int8_t> { static constexpr const char * name = "int8"; };
// clang-format on
// in byte
......@@ -102,24 +134,41 @@ struct Rmsnorm2dFwd
CK_TILE_HOST static std::string GetName()
{
#define _SS_ std::string
#define _TS_ std::to_string
// clang-format off
using S_ = typename Problem::BlockShape;
auto surfix = [&] () {
std::string n;
if (kFusedAdd != Rmsnorm2dFusedAddEnum::NO_ADD) n += _SS_("_") + Rmsnorm2dFusedAddEnumName<kFusedAdd>::name;
if (kFusedQuant != Rmsnorm2dFusedQuantEnum::NO_SWEEP) n += _SS_("_") + Rmsnorm2dFusedQuantEnumName<kFusedQuant>::name;
if (kPadN) n += "_pn";
if (kSaveInvRms) n += "_rms";
if (kTwoPass) n += "_2p";
return n; }();
#define _SS_ std::string
#define _TS_ std::to_string
return _SS_("rmsnorm2d_fwd_") + _SS_(t2s<XDataType>::name) + "_" +
auto prec_str = [&] () {
std::string base_str = _SS_(t2s<XDataType>::name);
if (!std::is_same_v<XDataType, YDataType>) {
base_str += _SS_("_") + _SS_(t2s<YDataType>::name);
}
if (kFusedQuant == Rmsnorm2dFusedQuantEnum::SMOOTH_DYNAMIC_QUANT) {
base_str += _SS_("_sx") + _SS_(t2s<SmoothScaleDataType>::name);
base_str += _SS_("_sy") + _SS_(t2s<YScaleDataType>::name);
}
if (kFusedQuant == Rmsnorm2dFusedQuantEnum::DYNAMIC_QUANT) {
base_str += _SS_("_sy") + _SS_(t2s<YScaleDataType>::name);
}
return base_str;
}();
return _SS_("rmsnorm2d_fwd_") + _SS_(prec_str) + "_" +
_TS_(S_::Block_M) + "x" + _TS_(S_::Block_N) + "_" + _TS_(S_::WarpPerBlock_M) + "x" + _TS_(S_::WarpPerBlock_N) + "_" +
_TS_(S_::Warp_M) + "x" + _TS_(S_::Warp_N) + "_" + _TS_(S_::Vector_M) + "x" + _TS_(S_::Vector_N) + "_" +
_SS_(Pipeline::name) + surfix;
#undef _SS_
#undef _TS_
// clang-format on
#undef _SS_
#undef _TS_
}
CK_TILE_DEVICE void operator()(Kargs kargs) const
......@@ -130,7 +179,7 @@ struct Rmsnorm2dFwd
const auto tmp_ = make_naive_tensor_view<address_space_enum::global>(
static_cast<const XDataType*>(kargs.p_x),
make_tuple(kargs.m, kargs.n),
make_tuple(kargs.stride, 1),
make_tuple(kargs.x_stride, 1),
number<Vector_N>{},
number<1>{});
......@@ -140,6 +189,29 @@ struct Rmsnorm2dFwd
tmp2_, make_tuple(number<Block_M>{}, number<Block_N>{}), {iM, 0});
}();
const auto x_residual_window = [&]() {
if constexpr(kFusedAdd == Rmsnorm2dFusedAddEnum::PRE_ADD ||
kFusedAdd == Rmsnorm2dFusedAddEnum::PRE_ADD_STORE)
{
const auto tmp_ = make_naive_tensor_view<address_space_enum::global>(
static_cast<const XResidualDataType*>(kargs.p_x_residual),
make_tuple(kargs.m, kargs.n),
make_tuple(kargs.xr_stride, 1),
number<Vector_N>{},
number<1>{});
const auto tmp2_ = pad_tensor_view(tmp_,
make_tuple(number<Block_M>{}, number<Block_N>{}),
sequence<kPadM, kPadN>{});
return make_tile_window(
tmp2_, make_tuple(number<Block_M>{}, number<Block_N>{}), {iM, 0});
}
else
{
return make_null_tile_window(make_tuple(number<Block_M>{}, number<Block_N>{}));
}
}();
const auto gamma_window = [&]() {
const auto tmp_ = make_naive_tensor_view<address_space_enum::global>(
static_cast<const GammaDataType*>(kargs.p_gamma),
......@@ -158,7 +230,7 @@ struct Rmsnorm2dFwd
auto tmp_ = make_naive_tensor_view<address_space_enum::global>(
static_cast<YDataType*>(kargs.p_y),
make_tuple(kargs.m, kargs.n),
make_tuple(kargs.stride, 1),
make_tuple(kargs.y_stride, 1),
number<Vector_N>{},
number<1>{});
......@@ -168,6 +240,28 @@ struct Rmsnorm2dFwd
tmp2_, make_tuple(number<Block_M>{}, number<Block_N>{}), {iM, 0});
}();
auto y_residual_window = [&]() {
if constexpr(kFusedAdd == Rmsnorm2dFusedAddEnum::PRE_ADD_STORE)
{
auto tmp_ = make_naive_tensor_view<address_space_enum::global>(
static_cast<YResidualDataType*>(kargs.p_y_residual),
make_tuple(kargs.m, kargs.n),
make_tuple(kargs.yr_stride, 1),
number<Vector_N>{},
number<1>{});
auto tmp2_ = pad_tensor_view(tmp_,
make_tuple(number<Block_M>{}, number<Block_N>{}),
sequence<kPadM, kPadN>{});
return make_tile_window(
tmp2_, make_tuple(number<Block_M>{}, number<Block_N>{}), {iM, 0});
}
else
{
return make_null_tile_window(make_tuple(number<Block_M>{}, number<Block_N>{}));
}
}();
auto inv_rms_window = [&]() {
if constexpr(kSaveInvRms)
{
......@@ -187,15 +281,62 @@ struct Rmsnorm2dFwd
return make_null_tile_window(make_tuple(number<Block_M>{}));
}();
auto sm_scale_window = [&]() {
if constexpr(kFusedQuant == Rmsnorm2dFusedQuantEnum::SMOOTH_DYNAMIC_QUANT)
{
const auto win_ = [&]() {
const auto tmp_0_ = make_naive_tensor_view_packed<address_space_enum::global>(
static_cast<const SmoothScaleDataType*>(kargs.p_sm_scale),
make_tuple(kargs.n),
number<Vector_N>{});
return pad_tensor_view(tmp_0_,
make_tuple(number<Block_N>{}),
sequence<false>{}); // sm_scale no need pad
}();
return make_tile_window(win_, make_tuple(number<Block_N>{}), {0});
}
else
{
return make_null_tile_window(make_tuple(number<Block_N>{}));
}
}();
auto y_scale_window = [&]() {
if constexpr(kFusedQuant == Rmsnorm2dFusedQuantEnum::SMOOTH_DYNAMIC_QUANT ||
kFusedQuant == Rmsnorm2dFusedQuantEnum::DYNAMIC_QUANT)
{
const auto win_ = [&]() {
const auto tmp_0_ = make_naive_tensor_view_packed<address_space_enum::global>(
static_cast<YScaleDataType*>(kargs.p_y_scale),
make_tuple(kargs.m),
number<1>{});
return pad_tensor_view(
tmp_0_, make_tuple(number<Block_M>{}), sequence<kPadM>{});
}();
return make_tile_window(win_, make_tuple(number<Block_M>{}), {iM});
}
else
{
return make_null_tile_window(make_tuple(number<Block_M>{}));
}
}();
__shared__ char smem[GetSmemSize()];
Pipeline{}(x_window,
x_residual_window,
gamma_window,
y_window,
y_residual_window,
inv_rms_window,
sm_scale_window,
y_scale_window,
static_cast<const ComputeDataType>(kargs.epsilon),
kargs.n,
smem);
smem,
Epilogue{});
}
};
......
......@@ -45,7 +45,7 @@ struct Rmsnorm2dFwdPipelineDefaultPolicy
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetBlockReduce2d()
{
using P_ = BlockReduce2dProblem<typename Problem::XDataType,
using P_ = BlockReduce2dProblem<typename Problem::ComputeDataType,
typename Problem::ComputeDataType,
typename Problem::BlockShape>;
return BlockReduce2d<P_>{};
......@@ -54,7 +54,7 @@ struct Rmsnorm2dFwdPipelineDefaultPolicy
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetBlockReduce2dSync()
{
using P_ = BlockReduce2dProblem<typename Problem::XDataType,
using P_ = BlockReduce2dProblem<typename Problem::ComputeDataType,
typename Problem::ComputeDataType,
typename Problem::BlockShape>;
return BlockReduce2dSync<P_>{};
......@@ -63,7 +63,7 @@ struct Rmsnorm2dFwdPipelineDefaultPolicy
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetBlockReduce2dCrossWarpSync()
{
using P_ = BlockReduce2dProblem<typename Problem::XDataType,
using P_ = BlockReduce2dProblem<typename Problem::ComputeDataType,
typename Problem::ComputeDataType,
typename Problem::BlockShape>;
return BlockReduce2dCrossWarpSync<P_>{};
......@@ -74,13 +74,13 @@ struct Rmsnorm2dFwdPipelineDefaultPolicy
{
if constexpr(Problem::kNeedCrossWarpSync)
{
using P_ = BlockReduce2dProblem<typename Problem::XDataType,
using P_ = BlockReduce2dProblem<typename Problem::ComputeDataType,
typename Problem::ComputeDataType,
typename Problem::BlockShape>;
using block_reduce2d = BlockReduce2d<P_>;
using x_block_tile =
decltype(make_static_distributed_tensor<typename Problem::XDataType>(
decltype(make_static_distributed_tensor<typename Problem::ComputeDataType>(
MakeXBlockTileDistribution<Problem>()));
using y_block_tile = decltype(block_reduce2d::template MakeYBlockTile<x_block_tile>());
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -22,12 +22,17 @@ struct Rmsnorm2dFwdPipelineOnePass
using YDataType = ck_tile::remove_cvref_t<typename Problem::YDataType>;
using InvRmsDataType = ck_tile::remove_cvref_t<typename Problem::InvRmsDataType>;
using XResidualDataType = XDataType;
using YResidualDataType = XDataType;
static constexpr bool kHasGamma = !std::is_same_v<GammaDataType, ck_tile::null_type>;
static constexpr bool kSaveInvRms = Problem::kSaveInvRms;
static constexpr bool kSaveInvRms = Problem::Traits::kSaveInvRms;
static constexpr bool kNeedCrossWarpSync = Problem::kNeedCrossWarpSync;
static constexpr bool kPadM = false; // TODO - BlockRmsnorm2dFwdProblem::kPadM
static constexpr bool kPadN = Problem::kPadN;
static constexpr bool kPadN = Problem::Traits::kPadN;
static constexpr auto kFusedAdd = Problem::Traits::kFusedAdd;
static constexpr auto kFusedQuant = Problem::Traits::kFusedQuant;
static constexpr const char* name = []() {
if constexpr(kNeedCrossWarpSync)
......@@ -41,19 +46,36 @@ struct Rmsnorm2dFwdPipelineOnePass
return Policy::template GetSmemSize<Problem>();
}
template <typename XWindow, typename GammaWindow, typename YWindow, typename InvRmsWindow>
template <typename XWindow,
typename XResidualWindow,
typename GammaWindow,
typename YWindow,
typename YResidualWindow,
typename InvRmsWindow,
typename SmoothScaleWindow,
typename YScaleWindow,
typename Epilogue>
CK_TILE_DEVICE auto operator()(const XWindow& x_window_,
const XResidualWindow& x_residual_window_,
const GammaWindow& gamma_window_,
YWindow& y_window,
YWindow& y_window_,
const YResidualWindow& y_residual_window_,
InvRmsWindow& inv_rms_window,
const SmoothScaleWindow& sm_scale_window_,
YScaleWindow& y_scale_window_,
ComputeDataType epsilon,
ck_tile::index_t row_size,
void* smem) const
void* smem,
Epilogue) const
{
const auto x_window =
make_tile_window(x_window_, Policy::template MakeXBlockTileDistribution<Problem>());
const auto gamma_window = make_tile_window(
gamma_window_, Policy::template MakeGammaBlockTileDistribution<Problem>());
const auto x_residual_window = make_tile_window(
x_residual_window_, Policy::template MakeXBlockTileDistribution<Problem>());
auto y_residual_window = make_tile_window(
y_residual_window_, Policy::template MakeXBlockTileDistribution<Problem>());
auto reduce_square_sum_func = ReduceOp::SquareAdd{};
auto reduce_sum_func = ReduceOp::Add{};
......@@ -62,13 +84,31 @@ struct Rmsnorm2dFwdPipelineOnePass
auto block_reduce2d_cross_warp_sync =
Policy::template GetBlockReduce2dCrossWarpSync<Problem>();
const auto x = load_tile(x_window);
auto x = load_tile(x_window);
auto x_resi = load_tile(x_residual_window);
// load gamma (TODO: support no gamma?)
const auto gamma = load_tile(gamma_window);
auto acc = cast_tile<ComputeDataType>(x);
if constexpr(kFusedAdd == Rmsnorm2dFusedAddEnum::PRE_ADD ||
kFusedAdd == Rmsnorm2dFusedAddEnum::PRE_ADD_STORE)
{
sweep_tile(x_resi, [&](auto idx) {
// compute x = x_resi + x
acc(idx) = type_convert<ComputeDataType>(x_resi(idx)) + acc(idx);
});
if constexpr(kFusedAdd == Rmsnorm2dFusedAddEnum::PRE_ADD_STORE)
{
store_tile(y_residual_window, cast_tile<YResidualDataType>(acc));
}
}
// compute mean square each-thread->cross-lane->cross-warp
auto square_sum = block_reduce2d(
x, reduce_square_sum_func.GetIdentityValue<ComputeDataType>(), reduce_square_sum_func);
auto square_sum = block_reduce2d(acc,
reduce_square_sum_func.GetIdentityValue<ComputeDataType>(),
reduce_square_sum_func);
block_reduce2d_sync(square_sum, reduce_sum_func);
block_reduce2d_cross_warp_sync(square_sum, smem, reduce_sum_func);
......@@ -83,19 +123,30 @@ struct Rmsnorm2dFwdPipelineOnePass
store_tile(inv_rms_window, cast_tile<InvRmsDataType>(inv_rms));
// rmsnorm computation
auto y = make_static_distributed_tensor<YDataType>(x.get_tile_distribution());
sweep_tile(y, [&, inv_rms_ = inv_rms](auto idx) {
auto rmsn = make_static_distributed_tensor<ComputeDataType>(x.get_tile_distribution());
sweep_tile(rmsn, [&, inv_rms_ = inv_rms](auto idx) {
constexpr auto i_idx = make_tuple(idx[number<0>{}]);
constexpr auto j_idx = make_tuple(idx[number<1>{}]);
const auto gamma_ = type_convert<ComputeDataType>(gamma[j_idx]);
const auto x_ = type_convert<ComputeDataType>(x[idx]);
auto y_ = x_ * inv_rms_[i_idx] * gamma_;
auto rmsn_ = acc[idx] * inv_rms_[i_idx] * gamma_;
y(idx) = type_convert<YDataType>(y_);
rmsn(idx) = rmsn_;
});
store_tile(y_window, y);
if constexpr(kFusedQuant == Rmsnorm2dFusedQuantEnum::SMOOTH_DYNAMIC_QUANT)
{
Epilogue{}(y_window_, sm_scale_window_, y_scale_window_, rmsn, smem);
}
else if constexpr(kFusedQuant == Rmsnorm2dFusedQuantEnum::DYNAMIC_QUANT)
{
Epilogue{}(y_window_, y_scale_window_, rmsn, smem);
}
else
{
Epilogue{}(y_window_, rmsn);
}
}
};
} // namespace ck_tile
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment