Commit 1b616990 authored by aska-0096's avatar aska-0096
Browse files

Merge branch 'develop' of https://github.com/ROCm/composable_kernel into update_cka8w8_uc

parents af30d6b6 800cf897
......@@ -9,11 +9,33 @@
namespace ck_tile {
// This pipeline is qkv all located in LDS
using BlockFmhaPipelineQSKSVSDefaultPolicy =
BlockFmhaPipelineQXKSVSCustomPolicy</* QLoadOnce = */ false,
/* AsyncCopyK = */ false,
/* AsyncCopyV = */ false,
/* NumPrefetchK = */ 1,
/* NumPrefetchV = */ 1>;
struct BlockFmhaPipelineQSKSVSDefaultPolicy
: BlockFmhaPipelineQXKSVSCustomPolicy</* QLoadOnce = */ false,
/* AsyncCopyK = */ false,
/* AsyncCopyV = */ false,
/* NumPrefetchK = */ 1,
/* NumPrefetchV = */ 1>
{
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeK()
{
return MakeKLdsBlockDescriptor<Problem>().get_element_space_size() *
sizeof(typename Problem::KDataType);
} // namespace ck_tile
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeV()
{
return MakeVLdsBlockDescriptor<Problem>().get_element_space_size() *
sizeof(typename Problem::VDataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
return max(GetSmemSizeQ<Problem>() + GetSmemSizeK<Problem>(), GetSmemSizeV<Problem>()) +
GetSmemSizeDropout<Problem>();
}
};
} // namespace ck_tile
......@@ -125,9 +125,8 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true>
}
};
/// NOTICE: we no-longer use this policy.
template <>
struct [[deprecated]] BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ false>
struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ false>
{
static constexpr bool QLoadOnce = false;
......@@ -147,8 +146,16 @@ struct [[deprecated]] BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ false>
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentQ()
{
using QDataType = remove_cvref_t<typename Problem::QDataType>;
return 16 / sizeof(QDataType);
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK0;
constexpr index_t MaxVectorSize = 16 / sizeof(typename Problem::QDataType);
// this should align with MakeQDramTileDistribution()
constexpr index_t ElemPerThread = (kMPerBlock * kKPerBlock) / kBlockSize;
static_assert(0 < ElemPerThread);
return min(ElemPerThread, MaxVectorSize);
}
template <typename Problem>
......@@ -157,19 +164,25 @@ struct [[deprecated]] BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ false>
using QDataType = remove_cvref_t<typename Problem::QDataType>;
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK0;
constexpr index_t K1 = 16 / sizeof(QDataType); // use dwordx4. TODO: change this
constexpr index_t K0 = kKPerBlock / K1;
constexpr index_t M2 = get_warp_size() / K0;
constexpr index_t M1 = kBlockSize / get_warp_size();
constexpr index_t M0 = kMPerBlock / (M2 * M1);
constexpr index_t MaxVectorSize = 16 / sizeof(QDataType);
constexpr index_t ElemPerThread = (kMPerBlock * kKPerBlock) / kBlockSize;
static_assert(0 < ElemPerThread);
constexpr index_t kMaxVecLoad = min(ElemPerThread, MaxVectorSize);
constexpr index_t KPerThread = kMaxVecLoad;
constexpr index_t KThreads = kKPerBlock / KPerThread;
constexpr index_t MThreadPerWarp = get_warp_size() / KThreads;
constexpr index_t NumWarps = kBlockSize / get_warp_size();
constexpr index_t MPerThread = kMPerBlock / (MThreadPerWarp * NumWarps);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1>>,
tuple<sequence<MPerThread, NumWarps, MThreadPerWarp>,
sequence<KThreads, KPerThread>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
......@@ -216,18 +229,31 @@ struct [[deprecated]] BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ false>
typename Problem::BlockFmhaShape::Gemm0BlockWarps,
typename Problem::BlockFmhaShape::Gemm0WarpTile>>;
constexpr index_t WarpGemmM = Problem::BlockFmhaShape::Gemm0WarpTile::at(number<0>{});
static_assert(WarpGemmM == 4 || WarpGemmM == 16 || WarpGemmM == 32);
constexpr auto warp_gemm = []() {
if constexpr(std::is_same_v<typename Problem::QDataType, half_t> &&
std::is_same_v<typename Problem::KDataType, half_t> &&
std::is_same_v<typename Problem::SaccDataType, float>)
{
return WarpGemmMfmaF16F16F32M32N32K16SwizzleBTransposedCDistribution{};
if constexpr(WarpGemmM == 32)
return WarpGemmMfmaF16F16F32M32N32K16SwizzleBTransposedCDistribution{};
else if constexpr(WarpGemmM == 16)
return WarpGemmMfmaF16F16F32M16N16K16TransposedCDistribution{};
else // WarpGemmM == 4
return WarpGemmMfmaF16F16F32M4N64K16{};
}
else if constexpr(std::is_same_v<typename Problem::QDataType, bf16_t> &&
std::is_same_v<typename Problem::KDataType, bf16_t> &&
std::is_same_v<typename Problem::SaccDataType, float>)
{
return WarpGemmMfmaBf16Bf16F32M32N32K16SwizzleBTransposedCDistribution{};
if constexpr(WarpGemmM == 32)
return WarpGemmMfmaBf16Bf16F32M32N32K16SwizzleBTransposedCDistribution{};
else if constexpr(WarpGemmM == 16)
return WarpGemmMfmaBf16Bf16F32M16N16K16TransposedCDistribution{};
else // WarpGemmM == 4
return WarpGemmMfmaBf16Bf16F32M4N64K16{};
}
else if constexpr(std::is_same_v<typename Problem::QDataType, fp8_t> &&
std::is_same_v<typename Problem::KDataType, fp8_t> &&
......
......@@ -43,7 +43,8 @@ template <bool kPadSeqLenQ_ /* padding for seqlen_q */,
bool kDoFp8StaticQuant_,
bool kIsPagedKV_,
bool kHasUnevenSplits_,
index_t kBlockPerCu_ = -1 /* overwrite occupancy if not -1 */>
bool kMergeNumHeadGroupsSeqLenQ_ = false,
index_t kBlockPerCu_ = -1 /* overwrite occupancy if not -1 */>
struct TileFmhaFwdSplitKVTraits
{
static constexpr bool kPadSeqLenQ = kPadSeqLenQ_;
......@@ -56,8 +57,9 @@ struct TileFmhaFwdSplitKVTraits
static constexpr bool kDoFp8StaticQuant = kDoFp8StaticQuant_;
static constexpr bool kIsPagedKV = kIsPagedKV_;
// determine if some split (length) is not divisible by tile size
static constexpr bool kHasUnevenSplits = kHasUnevenSplits_;
static constexpr index_t kBlockPerCu = kBlockPerCu_;
static constexpr bool kHasUnevenSplits = kHasUnevenSplits_;
static constexpr bool kMergeNumHeadGroupsSeqLenQ = kMergeNumHeadGroupsSeqLenQ_;
static constexpr index_t kBlockPerCu = kBlockPerCu_;
};
template <bool kPadSeqLenQ_ /* padding for seqlen_q */,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
......@@ -111,7 +111,7 @@ struct FusedMoeGemmHostArgs
const void* num_sorted_tiles_ptr; // [1]
index_t hidden_size; // k
index_t intermediate_size; // n / TP, for Gate. if Gate+Up, Down need divide by 2
index_t intermediate_size; // n / TP, for Gate/UP/Down
index_t num_tokens; // input number of tokens for current iteration
index_t num_experts; // number of groups
index_t topk; // need this?
......@@ -178,7 +178,7 @@ struct FusedMoeGemmKernel
return base_str;
}();
return _SS_("fused_moe_") + _SS_(prec_str) + "_" +
return _SS_("fused_moe_") + _SS_(prec_str) + "_" + (IsGateOnly ? "g1u0_":"g1u1_") +
_TS_(S_::Block_M0) + "x" + _TS_(S_::Block_N0) + "x" + _TS_(S_::Block_K0) + "x" + _TS_(S_::Block_N1) + "_" +
_TS_(S_::WarpPerBlock_M0) + "x" + _TS_(S_::WarpPerBlock_N0) + "x" + _TS_(S_::WarpPerBlock_K0) + "_" +
_TS_(S_::Warp_M0) + "x" + _TS_(S_::Warp_N0) + "x" + _TS_(S_::Warp_K0) + "_" + _SS_(Pipeline::name);
......@@ -204,7 +204,7 @@ struct FusedMoeGemmKernel
const void* num_sorted_tiles_ptr;
index_t hidden_size; // k
index_t intermediate_size; // n / TP, for Gate. if Gate+Up, Down need divide by 2
index_t intermediate_size; // n / TP, for Gate/Up/Down
index_t num_tokens; // input number of tokens for current iteration
index_t num_experts; // number of groups
index_t topk; // need this?
......@@ -239,7 +239,7 @@ struct FusedMoeGemmKernel
{
if constexpr(UseUK)
{
__shared__ CK_TILE_LDS_ADDR ADataType smem[GetSmemSize()];
__shared__ CK_TILE_LDS_ADDR char smem[GetSmemSize()];
IndexDataType num_sorted_tiles = __builtin_amdgcn_readfirstlane(
*reinterpret_cast<const IndexDataType*>(kargs.num_sorted_tiles_ptr));
......@@ -298,6 +298,9 @@ struct FusedMoeGemmKernel
index_t token_id =
reinterpret_cast<const index_t*>(kargs.sorted_token_ids_ptr)[sorted_token_id];
#if CK_TILE_REFERENCE_MOE_SORTING_MOCK_ID
token_id &= 0xffffff;
#endif
auto topk_weight = reinterpret_cast<const TopkWeightDataType*>(
kargs.sorted_weight_ptr)[sorted_token_id];
......
......@@ -70,11 +70,16 @@ struct FusedMoeGemmPipeline_FlatmmUk
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
#if 1
constexpr index_t smem_0 = Policy::template GetUK_0<Problem>().GetSmemSize();
constexpr index_t smem_1 = Policy::template GetUK_1<Problem>().GetSmemSize();
constexpr index_t smem_bridge =
BlockShape::Block_M0 * BlockShape::Block_N0 * sizeof(YDataType);
return max(smem_0, max(smem_1, smem_bridge));
return max(smem_0 + smem_1, smem_bridge);
#else
// keep it here purposely in case we have regression
return 65536;
#endif
}
// this is the thread-offset along row/col
......@@ -125,6 +130,9 @@ struct FusedMoeGemmPipeline_FlatmmUk
array<index_t, n_size> row_ids;
static_for<0, n_size, 1>{}([&](auto i) {
row_ids.at(i) = sorted_token_ids_ptr[coords[i]]; // base_coord + i * MLans;
#if CK_TILE_REFERENCE_MOE_SORTING_MOCK_ID
row_ids.at(i) &= 0xffffff;
#endif
});
return row_ids;
......@@ -164,9 +172,12 @@ struct FusedMoeGemmPipeline_FlatmmUk
index_t sorted_tile_id,
index_t intermediate_tile_id)
{
constexpr index_t hidden_radio_0 = IsGateOnly ? 1 : 2;
ck_tile::index_t shared_intermediate_size_0 = kargs.intermediate_size;
ck_tile::index_t shared_intermediate_size_1 = kargs.intermediate_size / hidden_radio_0;
constexpr index_t hidden_radio_0 = IsGateOnly ? 1 : 2;
ck_tile::index_t shared_intermediate_size_0 =
kargs.intermediate_size * hidden_radio_0; // total gate+up
ck_tile::index_t shared_intermediate_size_1 = kargs.intermediate_size;
// after weight shuffling, gate-only: [nr0, kr0, w0], gate+up: [nr0_gate + nr0_up, kr0, w0]
index_t nr_0 = shared_intermediate_size_0 / BlockShape::Warp_N0; // divide N in W
index_t kr_0 = kargs.hidden_size / BlockShape::Warp_K0; // divide K in W
......@@ -200,29 +211,35 @@ struct FusedMoeGemmPipeline_FlatmmUk
make_wave_buffer_resource(reinterpret_cast<const ADataType*>(kargs.a_ptr),
kargs.num_tokens * kargs.stride_token * sizeof(ADataType));
auto g_win = [&]() {
const GDataType* g_ptr = reinterpret_cast<const GDataType*>(kargs.g_ptr) +
static_cast<long_index_t>(expert_id) * expert_stride_0 +
interm_idx_nr0 * kr_0 * BlockShape::Block_W0;
auto g_view_ = make_naive_tensor_view<address_space_enum::global>(
g_ptr,
auto make_gu_win = [&](const auto* ptr_) {
auto view_ = make_naive_tensor_view<address_space_enum::global>(
ptr_,
make_tuple(nr_0, kr_0, number<BlockShape::Block_W0>{}),
make_tuple(kr_0 * BlockShape::Block_W0, number<BlockShape::Block_W0>{}, 1),
number<kAlignmentG>{},
number<1>{});
auto g_window_ = make_tile_window_linear_raw(
g_view_,
auto win_ = make_tile_window_linear_raw(
view_,
make_tuple(number<BlockShape::Block_Nr0>{},
number<BlockShape::Block_Kr0>{},
number<BlockShape::Block_W0>{}),
{0, 0, 0},
Policy::template MakeGlobalTileDistribution_G<Problem>(),
sequence<0, 1, 1>{});
return g_window_;
}();
return win_;
};
const GDataType* gu_ptr = reinterpret_cast<const GDataType*>(kargs.g_ptr) +
static_cast<long_index_t>(expert_id) * expert_stride_0 +
interm_idx_nr0 * kr_0 * BlockShape::Block_W0;
auto g_win = make_gu_win(gu_ptr);
// Note: gu swizzled, [nr_u+nr_g, kr, w], hence base offset to up is just interm*hidden
auto u_win = make_gu_win(gu_ptr + kargs.intermediate_size * kargs.hidden_size);
auto g_res = g_win.get_bottom_tensor_view().get_buffer_view().cached_buf_res_;
auto u_res = u_win.get_bottom_tensor_view().get_buffer_view().cached_buf_res_;
auto g_coords = generate_tuple([&](auto i) { return g_win.cached_coords_[i].get_offset(); },
number<decltype(g_win)::NumAccess_NonLinear>{});
......@@ -309,28 +326,73 @@ struct FusedMoeGemmPipeline_FlatmmUk
auto w_scale = GetWeightScale(
row_coords_o, reinterpret_cast<const TopkWeightDataType*>(kargs.sorted_weight_ptr));
auto uk_0 = Policy::template GetUK_0<Problem>();
auto acc_0 = uk_0(a_res,
a_coords,
g_res,
g_coords,
smem,
kargs.hidden_size,
BlockShape::Block_K0, // tile offset for B matrix each unroll
BlockShape::Block_Kr0 *
BlockShape::Block_W0); // tile offset for B matrix each unroll
sweep_tile(
acc_0,
[&](auto idx0, auto idx1) {
fp32x2_t v_{acc_0(idx0), acc_0(idx1)};
typename Problem::GateActivation{}(v_, v_);
acc_0(idx0) = v_.x;
acc_0(idx1) = v_.y;
},
sequence<1, 2>{});
auto y_pre = cast_tile<YDataType>(acc_0);
auto uk_0 = Policy::template GetUK_0<Problem>();
auto y_pre = [&]() {
if constexpr(IsGateOnly)
{
auto acc_0 = uk_0(a_res,
a_coords,
g_res,
g_coords,
smem,
kargs.hidden_size,
BlockShape::Block_K0, // tile offset for B matrix each unroll
BlockShape::Block_Kr0 *
BlockShape::Block_W0); // tile offset for B matrix each unroll
sweep_tile(
acc_0,
[&](auto idx0, auto idx1) {
fp32x2_t v_{acc_0(idx0), acc_0(idx1)};
typename Problem::GateActivation{}(v_, v_);
acc_0(idx0) = v_.x;
acc_0(idx1) = v_.y;
},
sequence<1, 2>{});
return cast_tile<YDataType>(acc_0);
}
else
{
uint32x8_t gu_res;
gu_res[0] = g_res[0];
gu_res[1] = g_res[1];
gu_res[2] = g_res[2];
gu_res[3] = g_res[3];
gu_res[4] = u_res[0];
gu_res[5] = u_res[1];
gu_res[6] = u_res[2];
gu_res[7] = u_res[3];
auto acc_0 = uk_0(a_res,
a_coords,
gu_res,
g_coords,
smem,
kargs.hidden_size,
BlockShape::Block_K0, // tile offset for B matrix each unroll
BlockShape::Block_Kr0 * BlockShape::Block_W0,
bool_constant<true>{}); // tile offset for B matrix each unroll
sweep_tile(
acc_0.at(number<0>{}),
[&](auto idx0, auto idx1) {
fp32x2_t v_{acc_0.at(number<0>{})(idx0), acc_0.at(number<0>{})(idx1)};
typename Problem::GateActivation{}(v_, v_);
acc_0.at(number<0>{})(idx0) = v_.x;
acc_0.at(number<0>{})(idx1) = v_.y;
},
sequence<1, 2>{});
auto reduced_acc_0 =
tile_elementwise_in([&](const auto& a_, const auto& b_) { return a_ * b_; },
acc_0.at(number<0>{}),
acc_0.at(number<1>{}));
return cast_tile<YDataType>(reduced_acc_0);
}
}();
block_sync_lds();
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
......@@ -21,35 +21,20 @@ struct BlockGemmARegBRegCRegV1
using CDataType = remove_cvref_t<typename Problem::CDataType>;
using BlockGemmShape = remove_cvref_t<typename Problem::BlockGemmShape>;
static constexpr index_t kBlockSize = Problem::kBlockSize;
// C += A * B
template <typename CBlockTensor, typename ABlockTensor, typename BBlockTensor>
CK_TILE_DEVICE void operator()(CBlockTensor& c_block_tensor,
const ABlockTensor& a_block_tensor,
const BBlockTensor& b_block_tensor) const
static constexpr index_t kBlockSize = Problem::kBlockSize;
static constexpr index_t MPerBlock = BlockGemmShape::kM;
static constexpr index_t NPerBlock = BlockGemmShape::kN;
static constexpr index_t KPerBlock = BlockGemmShape::kK;
static constexpr auto config = Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
static constexpr index_t MWarp = config.template at<1>();
static constexpr index_t NWarp = config.template at<2>();
static constexpr index_t MIterPerWarp = MPerBlock / (MWarp * WG::kM);
static constexpr index_t NIterPerWarp = NPerBlock / (NWarp * WG::kN);
static constexpr index_t KIterPerWarp = KPerBlock / WG::kK;
CK_TILE_DEVICE static constexpr auto MakeABlockDistributionEncode()
{
static_assert(std::is_same_v<ADataType, remove_cv_t<typename ABlockTensor::DataType>> &&
std::is_same_v<BDataType, remove_cv_t<typename BBlockTensor::DataType>> &&
std::is_same_v<CDataType, remove_cv_t<typename CBlockTensor::DataType>>,
"wrong!");
constexpr index_t MPerBlock = BlockGemmShape::kM;
constexpr index_t NPerBlock = BlockGemmShape::kN;
constexpr index_t KPerBlock = BlockGemmShape::kK;
constexpr auto config = Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t NWarp = config.template at<2>();
constexpr index_t MIterPerWarp = MPerBlock / (MWarp * WG::kM);
constexpr index_t NIterPerWarp = NPerBlock / (NWarp * WG::kN);
constexpr index_t KIterPerWarp = KPerBlock / WG::kK;
// M->N Warp
constexpr auto a_block_outer_dstr_encoding =
tile_distribution_encoding<sequence<NWarp>,
tuple<sequence<MIterPerWarp, MWarp>, sequence<KIterPerWarp>>,
......@@ -57,7 +42,14 @@ struct BlockGemmARegBRegCRegV1
tuple<sequence<1, 0>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto a_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
a_block_outer_dstr_encoding, typename WG::AWarpDstrEncoding{});
return a_block_dstr_encode;
}
CK_TILE_DEVICE static constexpr auto MakeBBlockDistributionEncode()
{
constexpr auto b_block_outer_dstr_encoding =
tile_distribution_encoding<sequence<MWarp>,
tuple<sequence<NIterPerWarp, NWarp>, sequence<KIterPerWarp>>,
......@@ -65,7 +57,14 @@ struct BlockGemmARegBRegCRegV1
tuple<sequence<0, 1>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto b_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
b_block_outer_dstr_encoding, typename WG::BWarpDstrEncoding{});
return b_block_dstr_encode;
}
CK_TILE_DEVICE static constexpr auto MakeCBlockDistributionEncode()
{
constexpr auto c_block_outer_dstr_encoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<MIterPerWarp, MWarp>, sequence<NIterPerWarp, NWarp>>,
......@@ -73,15 +72,28 @@ struct BlockGemmARegBRegCRegV1
tuple<sequence<1, 1>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto c_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
c_block_outer_dstr_encoding, typename WG::CWarpDstrEncoding{});
constexpr auto a_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
a_block_outer_dstr_encoding, typename WG::AWarpDstrEncoding{});
return c_block_dstr_encode;
}
constexpr auto b_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
b_block_outer_dstr_encoding, typename WG::BWarpDstrEncoding{});
// C += A * B
template <typename CBlockTensor, typename ABlockTensor, typename BBlockTensor>
CK_TILE_DEVICE void operator()(CBlockTensor& c_block_tensor,
const ABlockTensor& a_block_tensor,
const BBlockTensor& b_block_tensor) const
{
static_assert(std::is_same_v<ADataType, remove_cv_t<typename ABlockTensor::DataType>> &&
std::is_same_v<BDataType, remove_cv_t<typename BBlockTensor::DataType>> &&
std::is_same_v<CDataType, remove_cv_t<typename CBlockTensor::DataType>>,
"wrong!");
constexpr auto c_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
c_block_outer_dstr_encoding, typename WG::CWarpDstrEncoding{});
constexpr auto a_block_dstr_encode = MakeABlockDistributionEncode();
constexpr auto b_block_dstr_encode = MakeBBlockDistributionEncode();
constexpr auto c_block_dstr_encode = MakeCBlockDistributionEncode();
// check ABC-block-distribution
static_assert(
......@@ -159,20 +171,6 @@ struct BlockGemmARegBRegCRegV1
CK_TILE_DEVICE static constexpr auto MakeCBlockTile()
{
constexpr index_t MPerBlock = BlockGemmShape::kM;
constexpr index_t NPerBlock = BlockGemmShape::kN;
constexpr auto config = Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t NWarp = config.template at<2>();
constexpr index_t MIterPerWarp = MPerBlock / (MWarp * WG::kM);
constexpr index_t NIterPerWarp = NPerBlock / (NWarp * WG::kN);
// constexpr index_t KIterPerWarp = KPerBlock / WG::kK;
constexpr auto c_block_outer_dstr_encoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<MIterPerWarp, MWarp>, sequence<NIterPerWarp, NWarp>>,
......
......@@ -80,7 +80,7 @@ struct BlockUniversalGemmAsBsCr
static constexpr index_t InterWaveSchedulingMacClusters = 1;
static constexpr index_t KPack = WarpGemm::kKPerThread;
static constexpr index_t KPerThread = KPerBlock / WarpGemm::kK * KPack;
static constexpr index_t KPerThread = KIterPerWarp * KPack;
static constexpr index_t KRepeat = KPerThread / KPack;
};
......
......@@ -67,9 +67,10 @@ struct BatchedGemmKernel : public GemmKernel<TilePartitioner_, GemmPipeline_, Ep
using KernelArgs = BatchedGemmKernelArgs;
__host__ static constexpr auto GridSize(index_t M, index_t N, index_t batch_count)
__host__ static constexpr auto
GridSize(index_t M, index_t N, index_t KBatch, index_t batch_count)
{
return TilePartitioner::GridSize(M, N, batch_count);
return dim3(TilePartitioner::GridSize(M, N), batch_count, KBatch);
}
__host__ static constexpr auto BlockSize() { return dim3(Base::KernelBlockSize); }
......@@ -85,7 +86,8 @@ struct BatchedGemmKernel : public GemmKernel<TilePartitioner_, GemmPipeline_, Ep
hostArgs.K,
hostArgs.stride_A,
hostArgs.stride_B,
hostArgs.stride_C},
hostArgs.stride_C,
hostArgs.k_batch},
hostArgs.batch_stride_A,
hostArgs.batch_stride_B,
hostArgs.batch_stride_C,
......@@ -99,23 +101,42 @@ struct BatchedGemmKernel : public GemmKernel<TilePartitioner_, GemmPipeline_, Ep
CK_TILE_DEVICE void operator()(BatchedGemmKernelArgs kargs) const
{
const auto [i_m, i_n] = TilePartitioner{}();
const auto i_batch = __builtin_amdgcn_readfirstlane(blockIdx.z);
const auto [iM, iN] = TilePartitioner{kargs.M, kargs.N}.GetOutputTileIndex(blockIdx.x);
const index_t i_m = __builtin_amdgcn_readfirstlane(iM * TilePartitioner::MPerBlock);
const index_t i_n = __builtin_amdgcn_readfirstlane(iN * TilePartitioner::NPerBlock);
const auto i_batch = __builtin_amdgcn_readfirstlane(blockIdx.y);
const auto i_splitk = __builtin_amdgcn_readfirstlane(blockIdx.z);
const typename Base::SplitKBatchOffset splitk_batch_offset(kargs, i_splitk);
// options
const auto batch_stride_A = __builtin_amdgcn_readfirstlane(kargs.batch_stride_A);
const auto batch_offset_A = __builtin_amdgcn_readfirstlane(i_batch * batch_stride_A);
const ADataType* a_ptr = static_cast<const ADataType*>(kargs.a_ptr) + batch_offset_A;
const ADataType* a_ptr = static_cast<const ADataType*>(kargs.a_ptr) + batch_offset_A +
splitk_batch_offset.a_k_split_offset;
const auto batch_stride_B = __builtin_amdgcn_readfirstlane(kargs.batch_stride_B);
const auto batch_offset_B = __builtin_amdgcn_readfirstlane(i_batch * batch_stride_B);
const BDataType* b_ptr = static_cast<const BDataType*>(kargs.b_ptr) + batch_offset_B;
const BDataType* b_ptr = static_cast<const BDataType*>(kargs.b_ptr) + batch_offset_B +
splitk_batch_offset.b_k_split_offset;
const auto batch_stride_C = __builtin_amdgcn_readfirstlane(kargs.batch_stride_C);
const auto batch_offset_C = __builtin_amdgcn_readfirstlane(i_batch * batch_stride_C);
CDataType* c_ptr = static_cast<CDataType*>(kargs.c_ptr) + batch_offset_C;
this->RunGemm(a_ptr, b_ptr, c_ptr, kargs, i_m, i_n);
// allocate LDS
__shared__ char smem_ptr[GetSmemSize()];
if(kargs.k_batch == 1)
{
this->RunGemm(a_ptr, b_ptr, c_ptr, smem_ptr, kargs, splitk_batch_offset, i_m, i_n);
}
else
{
this->template RunGemm<memory_operation_enum::atomic_add>(
a_ptr, b_ptr, c_ptr, smem_ptr, kargs, splitk_batch_offset, i_m, i_n);
}
}
};
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -8,7 +8,6 @@
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_scheduler.hpp"
namespace ck_tile {
......@@ -69,18 +68,19 @@ struct GemmKernel
using ADataType = remove_cvref_t<typename GemmPipeline::ADataType>;
using BDataType = remove_cvref_t<typename GemmPipeline::BDataType>;
// Below type is actually accumulation data type - the output of block GEMM.
using CDataType = remove_cvref_t<typename EpiloguePipeline::ODataType>;
static constexpr auto I0 = number<0>();
static constexpr auto I1 = number<1>();
static constexpr auto I2 = number<2>();
__host__ static constexpr auto GridSize(index_t M, index_t N, index_t KBatch)
CK_TILE_HOST static constexpr auto GridSize(index_t M, index_t N, index_t KBatch)
{
return TilePartitioner::GridSize(M, N, KBatch);
return dim3(TilePartitioner::GridSize(M, N), 1, KBatch);
}
__host__ static constexpr auto BlockSize() { return dim3(KernelBlockSize); }
CK_TILE_HOST static constexpr auto BlockSize() { return dim3(KernelBlockSize); }
struct GemmKernelArgs
{
......@@ -93,6 +93,7 @@ struct GemmKernel
index_t stride_A;
index_t stride_B;
index_t stride_C;
index_t k_batch;
};
CK_TILE_HOST static constexpr GemmKernelArgs MakeKernelArgs(const GemmHostArgs& hostArgs)
......@@ -105,121 +106,188 @@ struct GemmKernel
hostArgs.K,
hostArgs.stride_A,
hostArgs.stride_B,
hostArgs.stride_C};
hostArgs.stride_C,
hostArgs.k_batch};
}
// CK_TILE_HOST static constexpr GemmKernelArgs MakeKernelArgs(const void* a_ptr,
// const void* b_ptr,
// void* c_ptr,
// index_t M,
// index_t N,
// index_t K,
// index_t stride_A,
// index_t stride_B,
// index_t stride_C)
// {
// return GemmKernelArgs{a_ptr, b_ptr, c_ptr, M, N, K, stride_A, stride_B, stride_C};
// }
CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSize()
{
return max(GemmPipeline::GetSmemSize(), EpiloguePipeline::GetSmemSize());
}
struct SplitKBatchOffset
{
__device__ SplitKBatchOffset(const GemmKernelArgs& kargs,
const std::size_t k_id = blockIdx.z)
{
constexpr auto K1 = TilePartitioner::BlockGemmShape::WarpTile::at(number<2>{});
const index_t K_t = kargs.k_batch * K1;
const index_t KRead = (kargs.K + K_t - 1) / K_t * K1;
if constexpr(std::is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{
a_k_split_offset = k_id * KRead;
}
else if constexpr(std::is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
a_k_split_offset = k_id * KRead * kargs.stride_A;
}
if constexpr(std::is_same_v<tensor_layout::gemm::RowMajor, BLayout>)
{
b_k_split_offset = k_id * KRead * kargs.stride_B;
}
else if constexpr(std::is_same_v<tensor_layout::gemm::ColumnMajor, BLayout>)
{
b_k_split_offset = k_id * KRead;
}
if(k_id < static_cast<uint32_t>(kargs.k_batch - 1))
{
splitted_k = KRead;
}
else
{
splitted_k = kargs.K - KRead * (kargs.k_batch - 1);
}
}
index_t a_k_split_offset;
index_t b_k_split_offset;
index_t splitted_k;
};
CK_TILE_HOST static bool IsSupportedArgument(const GemmKernelArgs& kargs)
{
if constexpr(EpiloguePipeline::GetVectorSizeC() % 2 != 0 &&
is_any_of<CDataType, fp16_t, bf16_t>::value)
{
if(kargs.k_batch != 1)
{
std::cerr << "Conditions not met for Kbatch >1 !" << std::endl;
return false;
}
}
if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>)
{
if(kargs.K % TilePartitioner::kK != 0 && GemmPipeline::kPadK == false)
if(kargs.K % TilePartitioner::KPerBlock != 0 && GemmPipeline::kPadK == false)
{
std::cerr << "Can't support K that is not a multiple of KPerBlock"
" without padding!"
<< std::endl;
return false;
}
if(kargs.K % GemmPipeline::VectorSizeA != 0)
if(kargs.K % GemmPipeline::GetVectorSizeA() != 0)
{
std::cerr << "K is not a multiple of vector load size for A tensor!" << std::endl;
return false;
}
}
else
{
if(kargs.M % TilePartitioner::kM != 0 && GemmPipeline::kPadM == false)
if(kargs.M % TilePartitioner::MPerBlock != 0 && GemmPipeline::kPadM == false)
{
std::cerr << "Can't support M that is not a multiple of MPerBlock"
" without padding!"
<< std::endl;
return false;
}
if(kargs.M % GemmPipeline::VectorSizeA != 0)
if(kargs.M % GemmPipeline::GetVectorSizeA() != 0)
{
std::cerr << "M is not a multiple of vector load size for A tensor!" << std::endl;
return false;
}
}
if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::RowMajor>)
{
if(kargs.N % TilePartitioner::kN != 0 && GemmPipeline::kPadN == false)
if(kargs.N % TilePartitioner::NPerBlock != 0 && GemmPipeline::kPadN == false)
{
std::cerr << "Can't support N that is not a multiple of NPerBlock"
" without padding!"
<< std::endl;
return false;
}
if(kargs.N % GemmPipeline::VectorSizeB != 0)
if(kargs.N % GemmPipeline::GetVectorSizeB() != 0)
{
std::cerr << "N is not a multiple of vector load size for B tensor!" << std::endl;
return false;
}
}
else
{
if(kargs.K % TilePartitioner::kK != 0 && GemmPipeline::kPadK == false)
if(kargs.K % TilePartitioner::KPerBlock != 0 && GemmPipeline::kPadK == false)
{
std::cerr << "Can't support K that is not a multiple of KPerBlock"
" without padding!"
<< std::endl;
return false;
}
if(kargs.K % GemmPipeline::VectorSizeB != 0)
if(kargs.K % GemmPipeline::GetVectorSizeB() != 0)
{
std::cerr << "K is not a multiple of vector load size for B tensor!" << std::endl;
return false;
}
}
if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
{
if(kargs.N % TilePartitioner::kN != 0 && GemmPipeline::kPadN == false)
if(kargs.N % TilePartitioner::NPerBlock != 0 && GemmPipeline::kPadN == false)
{
std::cerr << "Can't support N that is not a multiple of NPerBlock"
" without padding!"
<< std::endl;
return false;
}
if(kargs.N % GemmPipeline::VectorSizeC != 0)
if(kargs.N % EpiloguePipeline::GetVectorSizeC() != 0)
{
std::cerr << "N is not a multiple of vector load size for C tensor!" << std::endl;
return false;
}
}
else
{
if(kargs.M % TilePartitioner::kM != 0 && GemmPipeline::kPadM == false)
if(kargs.M % TilePartitioner::MPerBlock != 0 && GemmPipeline::kPadM == false)
{
std::cerr << "Can't support M that is not a multiple of MPerBlock"
" without padding!"
<< std::endl;
return false;
}
if(kargs.M % GemmPipeline::VectorSizeC != 0)
if(kargs.M % EpiloguePipeline::GetVectorSizeC() != 0)
{
std::cerr << "M is not a multiple of vector load size for C tensor!" << std::endl;
return false;
}
}
return true;
}
CK_TILE_DEVICE auto MakeGemmTensorViews(const ADataType* a_ptr,
const BDataType* b_ptr,
CDataType* c_ptr,
const GemmKernelArgs& kargs) const
template <memory_operation_enum DstInMemOp = memory_operation_enum::set>
CK_TILE_DEVICE static auto MakeGemmTensorViews(const ADataType* a_ptr,
const BDataType* b_ptr,
CDataType* c_ptr,
const GemmKernelArgs& kargs,
const SplitKBatchOffset& splitk_batch_offset)
{
const auto& a_tensor_view = [&]() {
if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>)
{
return make_naive_tensor_view<address_space_enum::global>(
a_ptr,
make_tuple(kargs.M, kargs.K),
make_tuple(kargs.M, splitk_batch_offset.splitted_k),
make_tuple(kargs.stride_A, 1),
number<GemmPipeline::VectorSizeA>{},
number<GemmPipeline::GetVectorSizeA()>{},
number<1>{});
}
else
{
return make_naive_tensor_view<address_space_enum::global>(
a_ptr,
make_tuple(kargs.M, kargs.K),
make_tuple(1, kargs.stride_A),
number<1>{},
make_tuple(splitk_batch_offset.splitted_k, kargs.M),
make_tuple(kargs.stride_A, 1),
number<GemmPipeline::GetVectorSizeA()>{},
number<1>{});
}
}();
......@@ -229,35 +297,36 @@ struct GemmKernel
{
return make_naive_tensor_view<address_space_enum::global>(
b_ptr,
make_tuple(kargs.N, kargs.K),
make_tuple(1, kargs.stride_B),
number<1>{},
make_tuple(splitk_batch_offset.splitted_k, kargs.N),
make_tuple(kargs.stride_B, 1),
number<GemmPipeline::GetVectorSizeB()>{},
number<1>{});
}
else
{
return make_naive_tensor_view<address_space_enum::global>(
b_ptr,
make_tuple(kargs.N, kargs.K),
make_tuple(kargs.N, splitk_batch_offset.splitted_k),
make_tuple(kargs.stride_B, 1),
number<GemmPipeline::VectorSizeB>{},
number<GemmPipeline::GetVectorSizeB()>{},
number<1>{});
}
}();
// TODO: enable vector write for C in ColMajor
const auto& c_tensor_view = [&]() {
if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
{
return make_naive_tensor_view<address_space_enum::global>(
return make_naive_tensor_view<address_space_enum::global, DstInMemOp>(
c_ptr,
make_tuple(kargs.M, kargs.N),
make_tuple(kargs.stride_C, 1),
number<GemmPipeline::VectorSizeC>{},
number<EpiloguePipeline::GetVectorSizeC()>{},
number<1>{});
}
else
{
return make_naive_tensor_view<address_space_enum::global>(
return make_naive_tensor_view<address_space_enum::global, DstInMemOp>(
c_ptr,
make_tuple(kargs.M, kargs.N),
make_tuple(1, kargs.stride_C),
......@@ -270,23 +339,23 @@ struct GemmKernel
}
template <typename TensorView>
CK_TILE_DEVICE auto MakeGemmPadViews(const TensorView& views) const
CK_TILE_DEVICE static auto MakeGemmPadViews(const TensorView& views)
{
const auto& a_pad_view = [&]() {
const auto& a_tensor_view = views.at(I0);
if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>)
{
return pad_tensor_view(
a_tensor_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kK>{}),
sequence<false, GemmPipeline::kPadK>{});
return pad_tensor_view(a_tensor_view,
make_tuple(number<TilePartitioner::MPerBlock>{},
number<TilePartitioner::KPerBlock>{}),
sequence<false, GemmPipeline::kPadK>{});
}
else
{
return pad_tensor_view(
a_tensor_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kK>{}),
sequence<GemmPipeline::kPadM, false>{});
return pad_tensor_view(a_tensor_view,
make_tuple(number<TilePartitioner::KPerBlock>{},
number<TilePartitioner::MPerBlock>{}),
sequence<false, GemmPipeline::kPadM>{});
}
}();
......@@ -294,35 +363,36 @@ struct GemmKernel
const auto& b_tensor_view = views.at(I1);
if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::ColumnMajor>)
{
return pad_tensor_view(
b_tensor_view,
make_tuple(number<TilePartitioner::kN>{}, number<TilePartitioner::kK>{}),
sequence<false, GemmPipeline::kPadK>{});
return pad_tensor_view(b_tensor_view,
make_tuple(number<TilePartitioner::NPerBlock>{},
number<TilePartitioner::KPerBlock>{}),
sequence<false, GemmPipeline::kPadK>{});
}
else
{
return pad_tensor_view(
b_tensor_view,
make_tuple(number<TilePartitioner::kN>{}, number<TilePartitioner::kK>{}),
sequence<GemmPipeline::kPadN, false>{});
return pad_tensor_view(b_tensor_view,
make_tuple(number<TilePartitioner::KPerBlock>{},
number<TilePartitioner::NPerBlock>{}),
sequence<false, GemmPipeline::kPadN>{});
}
}();
// TODO vector write in for C in ColMajor
const auto& c_pad_view = [&]() {
const auto& c_tensor_view = views.at(I2);
if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
{
return pad_tensor_view(
c_tensor_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kN>{}),
sequence<false, GemmPipeline::kPadN>{});
return pad_tensor_view(c_tensor_view,
make_tuple(number<TilePartitioner::MPerBlock>{},
number<TilePartitioner::NPerBlock>{}),
sequence<false, GemmPipeline::kPadN>{});
}
else
{
return pad_tensor_view(
c_tensor_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kN>{}),
sequence<GemmPipeline::kPadM, false>{});
return pad_tensor_view(c_tensor_view,
make_tuple(number<TilePartitioner::MPerBlock>{},
number<TilePartitioner::NPerBlock>{}),
sequence<GemmPipeline::kPadM, false>{});
}
}();
......@@ -330,25 +400,50 @@ struct GemmKernel
}
template <typename PadView>
CK_TILE_DEVICE auto
MakeGemmTileWindows(const PadView& views, const index_t i_m, const index_t i_n) const
CK_TILE_DEVICE static auto
MakeGemmTileWindows(const PadView& views, const index_t i_m, const index_t i_n)
{
const auto& a_pad_view = views.at(I0);
const auto& a_block_window = make_tile_window(
a_pad_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kK>{}),
{i_m, 0});
const auto& b_pad_view = views.at(I1);
const auto& b_block_window = make_tile_window(
b_pad_view,
make_tuple(number<TilePartitioner::kN>{}, number<TilePartitioner::kK>{}),
{i_n, 0});
const auto& a_pad_view = views.at(I0);
const auto& b_pad_view = views.at(I1);
const auto& c_pad_view = views.at(I2);
auto c_block_window = make_tile_window(
const auto& a_block_window = [&]() {
if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>)
{
return make_tile_window(a_pad_view,
make_tuple(number<TilePartitioner::MPerBlock>{},
number<TilePartitioner::KPerBlock>{}),
{i_m, 0});
}
else
{
return make_tile_window(a_pad_view,
make_tuple(number<TilePartitioner::KPerBlock>{},
number<TilePartitioner::MPerBlock>{}),
{0, i_m});
}
}();
const auto& b_block_window = [&]() {
if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::ColumnMajor>)
{
return make_tile_window(b_pad_view,
make_tuple(number<TilePartitioner::NPerBlock>{},
number<TilePartitioner::KPerBlock>{}),
{i_n, 0});
}
else
{
return make_tile_window(b_pad_view,
make_tuple(number<TilePartitioner::KPerBlock>{},
number<TilePartitioner::NPerBlock>{}),
{0, i_n});
}
}();
auto c_block_window = make_tile_window(
c_pad_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kN>{}),
make_tuple(number<TilePartitioner::MPerBlock>{}, number<TilePartitioner::NPerBlock>{}),
{i_m, i_n});
return make_tuple(a_block_window, b_block_window, c_block_window);
......@@ -363,23 +458,27 @@ struct GemmKernel
* @param kargs GEMM kernel arguments
* @param block_idx_m The GEMM's output M dimension tile index processed by this workgroup.
* @param block_idx_n The GEMM's output N dimension tile index processed by this workgroup.
*
* @tparam DstInMemOp Destination memory operation (default: set).
*/
CK_TILE_DEVICE void RunGemm(const ADataType* a_ptr,
const BDataType* b_ptr,
CDataType* c_ptr,
const GemmKernelArgs& kargs,
const index_t block_idx_m,
const index_t block_idx_n) const
template <memory_operation_enum DstInMemOp = memory_operation_enum::set>
CK_TILE_DEVICE static void RunGemm(const ADataType* a_ptr,
const BDataType* b_ptr,
CDataType* c_ptr,
void* smem_ptr,
const GemmKernelArgs& kargs,
const SplitKBatchOffset& splitk_batch_offset,
const index_t block_idx_m,
const index_t block_idx_n)
{
// Create Gemm tensor views, pad views and tile windows
const auto& gemm_tensor_views_tuple = MakeGemmTensorViews(a_ptr, b_ptr, c_ptr, kargs);
const auto& gemm_pad_views = MakeGemmPadViews(gemm_tensor_views_tuple);
auto gemm_tile_windows = MakeGemmTileWindows(gemm_pad_views, block_idx_m, block_idx_n);
const auto& gemm_tensor_views_tuple =
MakeGemmTensorViews<DstInMemOp>(a_ptr, b_ptr, c_ptr, kargs, splitk_batch_offset);
// allocate LDS
__shared__ char smem_ptr[GetSmemSize()];
const auto& gemm_pad_views = MakeGemmPadViews(gemm_tensor_views_tuple);
auto gemm_tile_windows = MakeGemmTileWindows(gemm_pad_views, block_idx_m, block_idx_n);
const index_t num_loop = TilePartitioner::GetLoopNum(kargs.K);
const index_t num_loop = TilePartitioner::GetLoopNum(splitk_batch_offset.splitted_k);
// Run GEMM cooperatively by whole workgroup.
const auto& a_block_window = gemm_tile_windows.at(I0);
......@@ -389,18 +488,44 @@ struct GemmKernel
// Run Epilogue Pipeline
auto& c_block_window = gemm_tile_windows.at(I2);
EpiloguePipeline{}(c_block_window, c_block_tile);
EpiloguePipeline{}
.template operator()<decltype(c_block_window), decltype(c_block_tile), DstInMemOp>(
c_block_window, c_block_tile, smem_ptr);
}
CK_TILE_DEVICE void operator()(GemmKernelArgs kargs) const
{
const auto [i_m, i_n] = TilePartitioner{}();
const auto [iM, iN] = TilePartitioner{kargs.M, kargs.N}.GetOutputTileIndex(blockIdx.x);
const index_t i_m = __builtin_amdgcn_readfirstlane(iM * TilePartitioner::MPerBlock);
const index_t i_n = __builtin_amdgcn_readfirstlane(iN * TilePartitioner::NPerBlock);
const SplitKBatchOffset splitk_batch_offset(kargs);
// options
const ADataType* a_ptr = static_cast<const ADataType*>(kargs.a_ptr);
const BDataType* b_ptr = static_cast<const BDataType*>(kargs.b_ptr);
CDataType* c_ptr = static_cast<CDataType*>(kargs.c_ptr);
const ADataType* a_ptr =
static_cast<const ADataType*>(kargs.a_ptr) + splitk_batch_offset.a_k_split_offset;
const BDataType* b_ptr =
static_cast<const BDataType*>(kargs.b_ptr) + splitk_batch_offset.b_k_split_offset;
CDataType* c_ptr = static_cast<CDataType*>(kargs.c_ptr);
// allocate LDS
__shared__ char smem_ptr[GetSmemSize()];
RunGemm(a_ptr, b_ptr, c_ptr, kargs, i_m, i_n);
if(kargs.k_batch == 1)
{
RunGemm(a_ptr, b_ptr, c_ptr, smem_ptr, kargs, splitk_batch_offset, i_m, i_n);
}
else
{
// Do not compile in case where we have unsupported
// VectorSizeC & data type configuration.
if constexpr(!(EpiloguePipeline::GetVectorSizeC() % 2 != 0 &&
is_any_of<CDataType, fp16_t, bf16_t>::value))
{
RunGemm<memory_operation_enum::atomic_add>(
a_ptr, b_ptr, c_ptr, smem_ptr, kargs, splitk_batch_offset, i_m, i_n);
}
}
}
};
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
/**
* @file
* GemmTilePartitioner allows customized mapping between a workgroup and the C-tile it computes.
*/
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
template <typename BlockGemmShape_>
struct GemmTilePartitioner
/**
* @brief Class providing 2D workgroup index mapping into 2D output GEMM C-tile space.
*
*/
template <typename BlockGemmShapeType>
struct GemmTile2DPartitioner
{
using BlockGemmShape = remove_cvref_t<BlockGemmShape_>;
using BlockGemmShape = remove_cvref_t<BlockGemmShapeType>;
static constexpr index_t MPerBlock = BlockGemmShape::kM;
static constexpr index_t NPerBlock = BlockGemmShape::kN;
static constexpr index_t KPerBlock = BlockGemmShape::kK;
static constexpr index_t kM = BlockGemmShape::kM;
static constexpr index_t kN = BlockGemmShape::kN;
static constexpr index_t kK = BlockGemmShape::kK;
CK_TILE_HOST_DEVICE GemmTile2DPartitioner() noexcept = delete;
CK_TILE_HOST_DEVICE GemmTile2DPartitioner([[maybe_unused]] index_t M,
[[maybe_unused]] index_t N) noexcept;
CK_TILE_HOST static constexpr auto GridSize(index_t M, index_t N, index_t batch_size)
/**
* @brief Calculates GEMM kernel grid size.
*
* @param M GEMM's M dimension.
* @param N GEMM's N dimension.
* @return dim3 Structure holding grid's X,Y and Z dimensions.
*/
CK_TILE_HOST static auto
GridSize(index_t M, index_t N) noexcept(noexcept(MPerBlock != 0 && NPerBlock != 0)) -> dim3
{
index_t GridDimX = (M + kM - 1) / kM;
index_t GridDimY = (N + kN - 1) / kN;
index_t GridDimZ = batch_size;
return dim3(GridDimX, GridDimY, GridDimZ);
const index_t GridDimX = (M + MPerBlock - 1) / MPerBlock;
const index_t GridDimY = (N + NPerBlock - 1) / NPerBlock;
return dim3(GridDimX, GridDimY, 1);
}
CK_TILE_HOST_DEVICE static constexpr auto GetLoopNum(index_t K)
/**
* @brief Calculate number of loop iterations over GEMM's K dimension.
*
* @param K GEMM's K dimension.
* @return index_t The number of loop iterations over K dimension.
*/
CK_TILE_HOST_DEVICE static auto GetLoopNum(index_t K) noexcept -> index_t
{
return integer_divide_ceil(K, kK);
return integer_divide_ceil(K, KPerBlock);
}
CK_TILE_DEVICE auto operator()()
/**
* @brief The function returns 2D output tile space.
* @param [in] blockIdx is blockIdx.x
* @param [in] blockIdy is blockIdx.y
* @return Returns the output tile indexes.
*/
/**
* @brief Calculate workgroup 2D index mapping into 2D output C-tile space.
*
* @param blockIdx WGP's X index.
* @param blockIdy WGP's Y index.
* @return const tuple<index_t, index_t> Tuple containing 2D output C-tile index.
*/
CK_TILE_DEVICE static auto GetOutputTileIndex(index_t blockIdx, index_t blockIdy) noexcept
-> const tuple<index_t, index_t>
{
const index_t iM = __builtin_amdgcn_readfirstlane(blockIdx.x * kM);
const index_t iN = __builtin_amdgcn_readfirstlane(blockIdx.y * kN);
const index_t iM = __builtin_amdgcn_readfirstlane(blockIdx);
const index_t iN = __builtin_amdgcn_readfirstlane(blockIdy);
return make_tuple(iM, iN);
}
};
/**
* @brief Class providing 1D WGP index mapping into 2D output C-tile space.
*
* @tparam BlockGemmShape_ A class providing basic GEMM parameters. \link TileGemmShape
*/
template <typename BlockGemmShape_>
struct GemmTile1DPartitioner
{
......@@ -45,30 +92,261 @@ struct GemmTile1DPartitioner
static constexpr index_t NPerBlock = BlockGemmShape::kN;
static constexpr index_t KPerBlock = BlockGemmShape::kK;
CK_TILE_HOST static constexpr auto GridSize(index_t M, index_t N)
CK_TILE_HOST_DEVICE GemmTile1DPartitioner() noexcept = delete;
/**
* @brief Construct a new GemmTile1DPartitioner object.
*
* @param M GEMM's M dimension.
* @param N GEMM's N dimension.
*/
CK_TILE_HOST_DEVICE GemmTile1DPartitioner([[maybe_unused]] index_t M, index_t N) noexcept
{
index_t GridDimX = (M + MPerBlock - 1) / MPerBlock;
index_t GridDimY = (N + NPerBlock - 1) / NPerBlock;
return dim3(GridDimX * GridDimY, 1, 1);
N_ = N;
}
CK_TILE_HOST_DEVICE static constexpr auto GetNBlock(index_t N)
/**
* @brief Calculates GEMM kernel grid size.
*
* @param M GEMM's M dimension.
* @param N GEMM's N dimension.
* @return dim3 Structure holding grid's X,Y and Z dimensions.
*/
CK_TILE_HOST static auto
GridSize(index_t M, index_t N) noexcept(noexcept(MPerBlock != 0 && NPerBlock != 0)) -> index_t
{
return integer_divide_ceil(N, NPerBlock);
const index_t GridDimX = (M + MPerBlock - 1) / MPerBlock;
const index_t GridDimY = (N + NPerBlock - 1) / NPerBlock;
return GridDimX * GridDimY;
}
CK_TILE_HOST_DEVICE static constexpr auto GetLoopNum(index_t K)
/**
* @brief Calculate number of loop iterations over GEMM's K dimension.
*
* @param K GEMM's K dimension.
* @return index_t The number of loop iterations over K dimension.
*/
CK_TILE_HOST_DEVICE static auto GetLoopNum(index_t K) noexcept -> index_t
{
return integer_divide_ceil(K, KPerBlock);
}
CK_TILE_DEVICE auto operator()(index_t blockOffset, index_t NBlockSize)
/**
* @brief Calculate workgroup 1D index mapping into 2D output C-tile space.
*
* @param blockIdx WGP's index.
* @return const tuple<index_t, index_t> Tuple containing 2D output C-tile index.
*/
CK_TILE_DEVICE static auto GetOutputTileIndex(index_t blockIdx) noexcept
-> const tuple<index_t, index_t>
{
const index_t NBlocks = integer_divide_ceil(N_, NPerBlock);
const index_t iM = __builtin_amdgcn_readfirstlane(blockIdx / NBlocks);
const index_t iN = __builtin_amdgcn_readfirstlane(blockIdx - iM * NBlocks);
return make_tuple(iM, iN);
}
private:
CK_TILE_DEVICE static index_t N_;
};
/**
* @brief `GemmTile1DPartitioner::GetOutputTileIndex`'s std::false specialization,
* checking expression validity in-place for ill-formed.
*/
template <typename, typename = void>
struct HasFnOneArgImpl : std::false_type
{
};
/**
* @brief `GemmTile1DPartitioner::GetOutputTileIndex`'s std::true specialization,
* checking expression validity in-place for well-formed.
* @note: `1` - a constant value indicating the number of parameters in the function.
*/
template <typename T>
struct HasFnOneArgImpl<T, std::void_t<decltype(std::declval<T>().GetOutputTileIndex(1))>>
: std::true_type
{
};
/**
* @brief Struct used to calculate offseted tile indexes.
* @note: The struct supports the 1D-Partitioner mechanism,
* enable-if `GetOutputTileIndex`-fn is std::true_type when `GetOutputTileIndex`-fn is well-formed,
* otherwise std::false_type.
*/
template <typename TilePartitioner,
typename = typename std::enable_if_t<HasFnOneArgImpl<TilePartitioner>{}>>
struct OffsettedTile1DPartitioner
{
/**
* @brief The function subtracts the block's start (offset) from 1D raw-indexes.
* @param [in] block_start Workgroup offset.
* @param [in] M Gemm's M dimension.
* @param [in] N Gemm's N dimension.
* @return Returns a `tuple` [Im, In] with shifted index.
*/
[[nodiscard]] CK_TILE_DEVICE static auto
GetOffsetedTileIndex(index_t block_start, index_t M, index_t N) noexcept
-> const tuple<index_t, index_t>
{
index_t iM = __builtin_amdgcn_readfirstlane((blockIdx.x - blockOffset) /
GetNBlock(NBlockSize) * MPerBlock);
index_t iN = __builtin_amdgcn_readfirstlane((blockIdx.x - blockOffset) %
GetNBlock(NBlockSize) * NPerBlock);
const auto [iM, iN] = TilePartitioner{M, N}.GetOutputTileIndex(blockIdx.x - block_start);
return make_tuple(iM, iN);
}
};
/**
* @brief Class mapping 1D block index into 2D output tile space.
*
* @note It groups spatially workgroups in order to better utilize caches.
* It is using grouped Rows of column-vectors WGP pattern. It's optimized
* for gfx94x-like multiple-die chip.
*
* @tparam GroupNum - The number of big groups.
* @tparam M01 - The number of groups in M dim within spatially local WGPs,
*
*/
template <typename BlockGemmShapeType, index_t GroupNum, index_t M01>
struct GemmSpatiallyLocalTilePartitioner
{
using BlockGemmShape = remove_cvref_t<BlockGemmShapeType>;
static constexpr index_t MPerBlock = BlockGemmShape::kM;
static constexpr index_t NPerBlock = BlockGemmShape::kN;
static constexpr index_t KPerBlock = BlockGemmShape::kK;
CK_TILE_HOST_DEVICE GemmSpatiallyLocalTilePartitioner() noexcept = delete;
CK_TILE_HOST_DEVICE GemmSpatiallyLocalTilePartitioner(index_t M_, index_t N_) noexcept
: M(M_), N(N_)
{
}
/**
* @brief Calculates GEMM kernel grid size.
*
* @param M GEMM's M dimension.
* @param N GEMM's N dimension.
* @return index_t A total number of workgroups.
*/
CK_TILE_HOST static auto
GridSize(index_t M, index_t N) noexcept(noexcept(MPerBlock != 0 && NPerBlock != 0)) -> index_t
{
const index_t GridDimX = integer_divide_ceil(M, MPerBlock);
const index_t GridDimY = integer_divide_ceil(N, NPerBlock);
return GridDimX * GridDimY;
}
/**
* @brief Calculate number of loop iterations over GEMM's K dimension.
*
* @param K GEMM's K dimension.
* @return index_t The number of loop iterations over K dimension.
*/
CK_TILE_HOST_DEVICE static auto GetLoopNum(index_t K) noexcept -> index_t
{
return integer_divide_ceil(K, KPerBlock);
}
/**
* @brief Calculate workgroup 1D index mapping into 2D output C-tile space.
*
* @param [in] block_1d_id WGP's index.
* @return const tuple<index_t, index_t> Tuple containing 2D output C-tile index.
*/
CK_TILE_DEVICE auto GetOutputTileIndex(index_t block_1d_id) noexcept
-> const tuple<index_t, index_t>
{
const auto M0 = integer_divide_ceil(M, MPerBlock);
const auto N0 = integer_divide_ceil(N, NPerBlock);
if(M0 == 1)
{
return make_tuple(0, block_1d_id);
}
else if(N0 == 1)
{
return make_tuple(block_1d_id, 0);
}
// block_1d_id = block_1d_id % (M0 * N0); // swallow batch index
else
{
const auto group_size = integer_divide_ceil(M0 * N0, GroupNum);
const auto big_group_num = GroupNum - (group_size * GroupNum - M0 * N0);
const auto group_id_y = block_1d_id / GroupNum;
const auto group_id_x = block_1d_id - group_id_y * GroupNum;
const auto remap_block_1d_id =
group_id_x <= big_group_num
? group_id_x * group_size + group_id_y
: group_id_x * group_size + big_group_num - group_id_x + group_id_y;
const index_t idx_M0 = remap_block_1d_id / N0;
const index_t idx_N0 = remap_block_1d_id - idx_M0 * N0;
const index_t M0_tmp = M0 / M01;
const index_t M0_mod_M01 = M0 - M0_tmp * M01;
const auto M01_adapt = (idx_M0 < M0 - M0_mod_M01) ? M01 : M0_mod_M01;
const index_t idx_M00 = idx_M0 / M01;
const index_t idx_M01 = idx_M0 - idx_M00 * M01;
const index_t idx_N0_M01_local = idx_N0 + idx_M01 * N0;
/**
* idxN0
*
* |< mtx N >|
*
* NPerBlock NPerBlock NPerBlock NPerBlock
* N_0 N_1 N_2 N_3
* - |-----------|-----------|-----------|-----|-----|-
* ^ | - - 0 |/----> 2 | | | |
* | | | / | | | | | M_0 MPerBlock
* | M | /| | | | | |
* |-0---|---/-|-----|-----|-----------|-----|-----|-
* | 1 | / | | | blockid | | |
* idxM0 | | | / | V | 5 | | | M_1 MPerBlock
* | - V 1 | - 3 | | | |
* |-----------|-----------|-----------|-----|-----|-
* mtx M | | | | | |
* | | | | | | M_2 MPerBlock
* | | | | | |
* |-----------|-----------|-----------|-----|-----|-
* | | | | | |
* | | | | | | M_3 MPerBlock
* | | | | | |
* |-----------|-----------|-----------|-----|-----|-
* V | | | | | |
* - |-----------|-----------|-----------|-----|-----|- M_4 MPerBlock
* | | | | | |
* |-----------|-----------|-----------|-----|-----|-
* Example:
* assume:
* M0 = 5
* N0 = 4
* block_1d_id = 5
* M01 = 2
*
* idx_N0 = 1
* idx_M0 = 1
* M01_adapt = 2
* idx_M00 = 0
* idx_M01 = 1
* idx_N0_M01_local = 5
* output {1, 2}
*/
const index_t N_out = idx_N0_M01_local / M01_adapt;
const index_t idx_loc_mod_M01 = idx_N0_M01_local - N_out * M01_adapt;
return make_tuple(idx_loc_mod_M01 + idx_M00 * M01, N_out);
}
}
private:
index_t M;
index_t N;
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <string>
#include "ck_tile/core/numeric/math.hpp"
#include "ck_tile/core/utility/literals.hpp"
#include "ck_tile/core/utility/amd_address_space.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_scheduler.hpp"
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
#include "ck_tile/ops/gemm/kernel/gemm_kernel.hpp"
#include "ck_tile/host.hpp"
namespace ck_tile {
struct GroupedGemmHostArgs
struct GroupedGemmHostArgs : public ck_tile::GemmHostArgs
{
const void* a_ptr;
const void* b_ptr;
void* c_ptr;
index_t M;
index_t N;
index_t K;
index_t stride_A;
index_t stride_B;
index_t stride_C;
CK_TILE_HOST GroupedGemmHostArgs() noexcept = default;
CK_TILE_HOST GroupedGemmHostArgs(const void* a_ptr_,
const void* b_ptr_,
void* c_ptr_,
ck_tile::index_t M_,
ck_tile::index_t N_,
ck_tile::index_t K_,
ck_tile::index_t stride_A_,
ck_tile::index_t stride_B_,
ck_tile::index_t stride_C_)
: GemmHostArgs(a_ptr_, b_ptr_, c_ptr_, KBatch, M_, N_, K_, stride_A_, stride_B_, stride_C_)
{
}
private:
static constexpr index_t KBatch = 1;
};
template <typename TilePartitioner_, typename GemmPipeline_, typename EpiloguePipeline_>
struct GroupedGemmKernel
struct GroupedGemmKernel : public GemmKernel<TilePartitioner_, GemmPipeline_, EpiloguePipeline_>
{
using TilePartitioner = remove_cvref_t<TilePartitioner_>;
using GemmPipeline = remove_cvref_t<GemmPipeline_>;
using EpiloguePipeline = remove_cvref_t<EpiloguePipeline_>;
using ALayout = remove_cvref_t<typename GemmPipeline::ALayout>;
using BLayout = remove_cvref_t<typename GemmPipeline::BLayout>;
using CLayout = remove_cvref_t<typename GemmPipeline::CLayout>;
static constexpr index_t KernelBlockSize = GemmPipeline::BlockSize;
using TilePartitioner = remove_cvref_t<TilePartitioner_>;
using GemmPipeline = remove_cvref_t<GemmPipeline_>;
using EpiloguePipeline = remove_cvref_t<EpiloguePipeline_>;
using ALayout = remove_cvref_t<typename GemmPipeline::ALayout>;
using BLayout = remove_cvref_t<typename GemmPipeline::BLayout>;
using CLayout = remove_cvref_t<typename GemmPipeline::CLayout>;
using ADataType = remove_cvref_t<typename GemmPipeline::ADataType>;
using BDataType = remove_cvref_t<typename GemmPipeline::BDataType>;
using CDataType = remove_cvref_t<typename EpiloguePipeline::ODataType>;
using OffsetTile1DPartitioner = OffsettedTile1DPartitioner<TilePartitioner>;
using Base = GemmKernel<TilePartitioner_, GemmPipeline_, EpiloguePipeline_>;
using GemmKernelArgs = typename Base::GemmKernelArgs;
static constexpr index_t KernelBlockSize = GemmPipeline::BlockSize;
struct GemmTransKernelArg
{
GroupedGemmHostArgs group_karg;
GemmKernelArgs group_karg;
ck_tile::index_t block_start;
ck_tile::index_t block_end;
GemmTransKernelArg() = default;
GemmTransKernelArg(GroupedGemmHostArgs&& karg, index_t bl_start, index_t bl_end)
GemmTransKernelArg(GemmKernelArgs&& karg, index_t bl_start, index_t bl_end)
: group_karg{karg}, block_start{bl_start}, block_end{bl_end}
{
}
};
__host__ static size_t GetWorkSpaceSize(const std::vector<GroupedGemmHostArgs>& gemm_descs)
__host__ static auto GetWorkSpaceSize(const std::vector<GroupedGemmHostArgs>& gemm_descs)
-> std::size_t
{
return gemm_descs.size() * sizeof(GemmTransKernelArg);
}
__host__ static constexpr auto BlockSize() { return dim3(KernelBlockSize); }
using Hargs = GroupedGemmHostArgs;
__host__ static constexpr auto BlockSize() -> dim3 { return dim3(KernelBlockSize); }
__host__ static constexpr auto GridSize(const std::vector<Hargs>& gemm_descs)
__host__ static constexpr auto GridSize(const std::vector<GroupedGemmHostArgs>& gemm_descs)
{
index_t grid_size = 0;
for(const auto& it_desc : gemm_descs)
{
const auto dim3 = TilePartitioner::GridSize(it_desc.M, it_desc.N);
grid_size += dim3.x * dim3.y * 1;
const auto local_grid_size = TilePartitioner::GridSize(it_desc.M, it_desc.N);
grid_size += local_grid_size * it_desc.k_batch;
}
return dim3(grid_size, 1, 1);
}
CK_TILE_HOST static auto MakeKargs(const std::vector<Hargs>& gemm_descs)
CK_TILE_HOST static auto MakeKargs(const std::vector<GroupedGemmHostArgs>& gemm_descs)
-> std::vector<GemmTransKernelArg>
{
std::vector<GemmTransKernelArg> gemm_kernel_args_;
index_t group_count = ck_tile::type_convert<ck_tile::index_t>(gemm_descs.size());
......@@ -99,23 +106,23 @@ struct GroupedGemmKernel
const index_t stride_b = gemm_descs[i].stride_B;
const index_t stride_c = gemm_descs[i].stride_C;
const auto dim3 = TilePartitioner::GridSize(M, N);
const index_t grid_size_grp = dim3.x * 1 * 1;
const index_t grid_size_grp = TilePartitioner::GridSize(M, N) * gemm_descs[i].k_batch;
const index_t block_start = grid_size;
const index_t block_end = grid_size + grid_size_grp;
grid_size += grid_size_grp;
auto karg = GroupedGemmHostArgs{type_convert<const ADataType*>(gemm_descs[i].a_ptr),
type_convert<const BDataType*>(gemm_descs[i].b_ptr),
type_convert<CDataType*>(gemm_descs[i].c_ptr),
M,
N,
K,
stride_a,
stride_b,
stride_c};
auto karg = GemmKernelArgs{type_convert<const ADataType*>(gemm_descs[i].a_ptr),
type_convert<const BDataType*>(gemm_descs[i].b_ptr),
type_convert<CDataType*>(gemm_descs[i].c_ptr),
M,
N,
K,
stride_a,
stride_b,
stride_c,
gemm_descs[i].k_batch};
gemm_kernel_args_.emplace_back(std::move(karg), block_start, block_end);
}
......@@ -123,162 +130,34 @@ struct GroupedGemmKernel
return gemm_kernel_args_;
}
CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSize()
CK_TILE_HOST_DEVICE static constexpr auto GetSmemSize() -> index_t
{
return max(GemmPipeline::GetSmemSize(), EpiloguePipeline::GetSmemSize());
}
CK_TILE_DEVICE void Run(const Hargs& kargs, const index_t block_start) const
CK_TILE_DEVICE void Run(const GemmTransKernelArg& kargs) const
{
const auto [i_m, i_n] = TilePartitioner{}(block_start, kargs.N);
// options
const ADataType* a_start = static_cast<const ADataType*>(kargs.a_ptr);
const BDataType* b_start = static_cast<const BDataType*>(kargs.b_ptr);
// Convert pointers to tensor views
auto a_tensor_view = [&]() {
if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>)
{
return make_naive_tensor_view<address_space_enum::global>(
a_start,
make_tuple(kargs.M, kargs.K),
make_tuple(kargs.stride_A, 1),
number<GemmPipeline::VectorSizeA>{},
number<1>{});
}
else
{
return make_naive_tensor_view<address_space_enum::global>(
a_start,
make_tuple(kargs.M, kargs.K),
make_tuple(1, kargs.stride_A),
number<1>{},
number<1>{});
}
}();
const auto [iM, iN] = OffsetTile1DPartitioner::GetOffsetedTileIndex(
kargs.block_start, kargs.group_karg.M, kargs.group_karg.N);
auto b_tensor_view = [&]() {
if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::RowMajor>)
{
return make_naive_tensor_view<address_space_enum::global>(
b_start,
make_tuple(kargs.N, kargs.K),
make_tuple(1, kargs.stride_B),
number<1>{},
number<1>{});
}
else
{
return make_naive_tensor_view<address_space_enum::global>(
b_start,
make_tuple(kargs.N, kargs.K),
make_tuple(kargs.stride_B, 1),
number<GemmPipeline::VectorSizeB>{},
number<1>{});
}
}();
const index_t i_m = __builtin_amdgcn_readfirstlane(iM * TilePartitioner::MPerBlock);
const index_t i_n = __builtin_amdgcn_readfirstlane(iN * TilePartitioner::NPerBlock);
auto a_pad_view = [&]() {
if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>)
{
return pad_tensor_view(a_tensor_view,
make_tuple(number<TilePartitioner::MPerBlock>{},
number<TilePartitioner::KPerBlock>{}),
sequence<false, GemmPipeline::kPadK>{});
}
else
{
return pad_tensor_view(a_tensor_view,
make_tuple(number<TilePartitioner::MPerBlock>{},
number<TilePartitioner::KPerBlock>{}),
sequence<GemmPipeline::kPadM, false>{});
}
}();
// clang-format on
const typename Base::SplitKBatchOffset splitk_batch_offset(kargs.group_karg, blockIdx.z);
auto a_block_window = make_tile_window(
a_pad_view,
make_tuple(number<TilePartitioner::MPerBlock>{}, number<TilePartitioner::KPerBlock>{}),
{i_m, 0});
auto b_pad_view = [&]() {
if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::ColumnMajor>)
{
return pad_tensor_view(b_tensor_view,
make_tuple(number<TilePartitioner::NPerBlock>{},
number<TilePartitioner::KPerBlock>{}),
sequence<false, GemmPipeline::kPadK>{});
}
else
{
return pad_tensor_view(b_tensor_view,
make_tuple(number<TilePartitioner::NPerBlock>{},
number<TilePartitioner::KPerBlock>{}),
sequence<GemmPipeline::kPadN, false>{});
}
}();
auto b_block_window = make_tile_window(
b_pad_view,
make_tuple(number<TilePartitioner::NPerBlock>{}, number<TilePartitioner::KPerBlock>{}),
{i_n, 0});
const ADataType* a_ptr = static_cast<const ADataType*>(kargs.group_karg.a_ptr);
const BDataType* b_ptr = static_cast<const BDataType*>(kargs.group_karg.b_ptr);
CDataType* c_ptr = static_cast<CDataType*>(kargs.group_karg.c_ptr);
// allocate LDS
__shared__ char smem_ptr[GetSmemSize()];
const index_t num_loop = TilePartitioner::GetLoopNum(kargs.K);
// Run GEMM cooperatively by whole wokrgroup.
auto c_block_tile =
GemmPipeline{}.template operator()(a_block_window, b_block_window, num_loop, smem_ptr);
CDataType* c_start = static_cast<CDataType*>(kargs.c_ptr);
auto c_tensor_view = [&]() {
if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
{
return make_naive_tensor_view<address_space_enum::global>(
c_start,
make_tuple(kargs.M, kargs.N),
make_tuple(kargs.stride_C, 1),
number<GemmPipeline::VectorSizeC>{},
number<1>{});
}
else
{
return make_naive_tensor_view<address_space_enum::global>(
c_start,
make_tuple(kargs.M, kargs.N),
make_tuple(1, kargs.stride_C),
number<1>{},
number<1>{});
}
}();
auto c_pad_view = [&]() {
if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
{
return pad_tensor_view(c_tensor_view,
make_tuple(number<TilePartitioner::MPerBlock>{},
number<TilePartitioner::NPerBlock>{}),
sequence<false, GemmPipeline::kPadN>{});
}
else
{
return pad_tensor_view(c_tensor_view,
make_tuple(number<TilePartitioner::MPerBlock>{},
number<TilePartitioner::NPerBlock>{}),
sequence<GemmPipeline::kPadM, false>{});
}
}();
auto CBlockWindow_pad = make_tile_window(
c_pad_view,
make_tuple(number<TilePartitioner::MPerBlock>{}, number<TilePartitioner::NPerBlock>{}),
{i_m, i_n});
EpiloguePipeline{}(CBlockWindow_pad, c_block_tile);
this->RunGemm(
a_ptr, b_ptr, c_ptr, smem_ptr, kargs.group_karg, splitk_batch_offset, i_m, i_n);
}
CK_TILE_DEVICE void operator()(const void CK_CONSTANT_ADDRESS_SPACE* gemm_descs_const,
int group_count) const
index_t group_count) const
{
const index_t block_id = ck_tile::get_block_1d_id();
const auto gemm_desc_ptr = reinterpret_cast<const GemmTransKernelArg*>(
......@@ -286,7 +165,7 @@ struct GroupedGemmKernel
index_t left = 0;
index_t right = group_count;
index_t group_id = index_t((left + right) / 2);
index_t group_id = index_t((left + right) >> 1);
while((!(block_id >= gemm_desc_ptr[group_id].block_start &&
block_id < gemm_desc_ptr[group_id].block_end)) &&
......@@ -300,10 +179,10 @@ struct GroupedGemmKernel
{
left = group_id;
}
group_id = index_t((left + right) / 2);
group_id = index_t((left + right) >> 1);
}
Run(gemm_desc_ptr[group_id].group_karg, gemm_desc_ptr[group_id].block_start);
Run(gemm_desc_ptr[group_id]);
}
};
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
namespace ck_tile {
......@@ -12,18 +13,23 @@ struct GemmPipelineAgBgCrImplBase
{
using ADataType = remove_cvref_t<typename Problem::ADataType>;
using BDataType = remove_cvref_t<typename Problem::BDataType>;
using ALayout = remove_cvref_t<typename Problem::ALayout>;
using BLayout = remove_cvref_t<typename Problem::BLayout>;
using BlockGemmShape = remove_cvref_t<typename Problem::BlockGemmShape>;
static constexpr index_t MPerBlock = BlockGemmShape::kM;
static constexpr index_t NPerBlock = BlockGemmShape::kN;
static constexpr index_t KPerBlock = BlockGemmShape::kK;
template <typename DstBlockTile, typename SrcTileWindow>
CK_TILE_HOST_DEVICE static constexpr auto TransposeC() { return Problem::TransposeC; }
template <typename DstBlockTile, typename SrcTileWindow, typename DramTileWindowStep>
CK_TILE_DEVICE void GlobalPrefetch(DstBlockTile& dst_block_tile,
SrcTileWindow& dram_tile_window) const
SrcTileWindow& dram_tile_window,
const DramTileWindowStep& dram_tile_window_step) const
{
load_tile(dst_block_tile, dram_tile_window);
move_tile_window(dram_tile_window, {0, KPerBlock});
move_tile_window(dram_tile_window, dram_tile_window_step);
}
template <typename DstTileWindow, typename SrcBlockTile, typename ElementFunction>
......@@ -60,19 +66,21 @@ struct GemmPipelineAgBgCrImplBase
CK_TILE_DEVICE auto GetAWindows(const ADramBlockWindowTmp& a_dram_block_window_tmp,
const ALdsTensorView& a_lds_block_view) const
{
constexpr bool is_col_major = std::is_same_v<ALayout, tensor_layout::gemm::ColumnMajor>;
using YPerTile = std::conditional_t<is_col_major, number<KPerBlock>, number<MPerBlock>>;
using XPerTile = std::conditional_t<is_col_major, number<MPerBlock>, number<KPerBlock>>;
// A DRAM tile window for load
auto a_copy_dram_window =
make_tile_window(a_dram_block_window_tmp.get_bottom_tensor_view(),
make_tuple(number<MPerBlock>{}, number<KPerBlock>{}),
make_tuple(YPerTile{}, XPerTile{}),
a_dram_block_window_tmp.get_window_origin(),
Policy::template MakeADramTileDistribution<Problem>());
// A LDS tile window for store
auto a_copy_lds_window =
make_tile_window(a_lds_block_view,
make_tuple(number<MPerBlock>{}, number<KPerBlock>{}),
{0, 0},
a_copy_dram_window.get_tile_distribution());
auto a_copy_lds_window = make_tile_window(
a_lds_block_view, make_tuple(number<MPerBlock>{}, number<KPerBlock>{}), {0, 0});
auto a_lds_gemm_window = make_tile_window(
a_lds_block_view, make_tuple(number<MPerBlock>{}, number<KPerBlock>{}), {0, 0});
......@@ -86,18 +94,22 @@ struct GemmPipelineAgBgCrImplBase
CK_TILE_DEVICE auto GetBWindows(const BDramBlockWindowTmp& b_dram_block_window_tmp,
const BLdsTensorView& b_lds_block_view) const
{
constexpr bool is_row_major = std::is_same_v<BLayout, tensor_layout::gemm::RowMajor>;
using YPerTile = std::conditional_t<is_row_major, number<KPerBlock>, number<NPerBlock>>;
using XPerTile = std::conditional_t<is_row_major, number<NPerBlock>, number<KPerBlock>>;
auto b_copy_dram_window =
make_tile_window(b_dram_block_window_tmp.get_bottom_tensor_view(),
make_tuple(number<NPerBlock>{}, number<KPerBlock>{}),
make_tuple(YPerTile{}, XPerTile{}),
b_dram_block_window_tmp.get_window_origin(),
Policy::template MakeBDramTileDistribution<Problem>());
// TODO: Do we really need those two tile windows???
// They're exactly same...
// B LDS tile window for store
auto b_copy_lds_window =
make_tile_window(b_lds_block_view,
make_tuple(number<NPerBlock>{}, number<KPerBlock>{}),
{0, 0},
b_copy_dram_window.get_tile_distribution());
auto b_copy_lds_window = make_tile_window(
b_lds_block_view, make_tuple(number<NPerBlock>{}, number<KPerBlock>{}), {0, 0});
auto b_lds_gemm_window = make_tile_window(
b_lds_block_view, make_tuple(number<NPerBlock>{}, number<KPerBlock>{}), {0, 0});
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_agmem_bgmem_creg_v1_default_policy.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_universal_pipeline_ag_bg_cr_policy.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_scheduler.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_base.hpp"
......@@ -20,6 +20,8 @@ struct BaseGemmPipelineAgBgCrCompV3
static constexpr index_t PrefillStages = 1;
static constexpr index_t GlobalBufferNum = 1;
CK_TILE_HOST_DEVICE static constexpr auto TransposeC() { return Problem::TransposeC; }
CK_TILE_HOST static constexpr bool BlockHasHotloop(index_t num_loop)
{
return num_loop > PrefetchStages;
......@@ -37,7 +39,7 @@ struct BaseGemmPipelineAgBgCrCompV3
// LocalPreFillStages: 1
// LocalPreFetchStages: 1
// LocalSharedMemoryBuffer: 1
template <typename Problem, typename Policy = GemmPipelineAGmemBGmemCRegV1DefaultPolicy>
template <typename Problem, typename Policy = UniversalGemmPipelineAgBgCrPolicy>
struct GemmPipelineAgBgCrCompV3 : public BaseGemmPipelineAgBgCrCompV3<Problem>
{
using Base = BaseGemmPipelineAgBgCrCompV3<Problem>;
......@@ -62,15 +64,14 @@ struct GemmPipelineAgBgCrCompV3 : public BaseGemmPipelineAgBgCrCompV3<Problem>
static constexpr index_t NPerBlock = BlockGemmShape::kN;
static constexpr index_t KPerBlock = BlockGemmShape::kK;
static constexpr index_t VectorSizeA = Problem::VectorSizeA;
static constexpr index_t VectorSizeB = Problem::VectorSizeB;
static constexpr index_t VectorSizeC = Problem::VectorSizeC;
static constexpr index_t GetVectorSizeA() { return Policy::template GetVectorSizeA<Problem>(); }
static constexpr index_t GetVectorSizeB() { return Policy::template GetVectorSizeB<Problem>(); }
static constexpr index_t GetVectorSizeC() { return Policy::template GetVectorSizeC<Problem>(); }
static constexpr bool kPadM = Problem::kPadM;
static constexpr bool kPadN = Problem::kPadN;
static constexpr bool kPadK = Problem::kPadK;
// Where is the right place for HasHotLoop and TailNum ???
static constexpr bool HasHotLoop = Problem::HasHotLoop;
static constexpr auto TailNum = Problem::TailNum;
static constexpr auto Scheduler = Problem::Scheduler;
......@@ -106,9 +107,9 @@ struct GemmPipelineAgBgCrCompV3 : public BaseGemmPipelineAgBgCrCompV3<Problem>
constexpr index_t B_LDS_Read_Width = KPerXDL;
constexpr index_t A_Buffer_Load_Inst_Num =
MPerBlock * KPerBlock / (BlockSize * VectorSizeA);
MPerBlock * KPerBlock / (BlockSize * GetVectorSizeA());
constexpr index_t B_Buffer_Load_Inst_Num =
NPerBlock * KPerBlock / (BlockSize * VectorSizeB);
NPerBlock * KPerBlock / (BlockSize * GetVectorSizeB());
constexpr index_t A_LDS_Write_Inst_Num = MPerBlock * KPerBlock / (BlockSize * KPerXDL);
constexpr index_t B_LDS_Write_Inst_Num = NPerBlock * KPerBlock / (BlockSize * KPerXDL);
......@@ -246,11 +247,22 @@ struct GemmPipelineAgBgCrCompV3 : public BaseGemmPipelineAgBgCrCompV3<Problem>
"A/B Dram block window should have the same data type as appropriate "
"([A|B]DataType) defined in Problem definition!");
static_assert(MPerBlock == ADramBlockWindowTmp{}.get_window_lengths()[I0{}] &&
NPerBlock == BDramBlockWindowTmp{}.get_window_lengths()[I0{}] &&
KPerBlock == ADramBlockWindowTmp{}.get_window_lengths()[I1{}],
"A/B block window appropriate sizes must be equal to MPerBlock/NPerblock"
" or KPerBlock!");
constexpr bool is_a_col_major =
std::is_same_v<ALayout, tensor_layout::gemm::ColumnMajor>;
constexpr bool is_b_row_major = std::is_same_v<BLayout, tensor_layout::gemm::RowMajor>;
static_assert(is_a_col_major
? (KPerBlock == ADramBlockWindowTmp{}.get_window_lengths()[I0{}] &&
MPerBlock == ADramBlockWindowTmp{}.get_window_lengths()[I1{}])
: (MPerBlock == ADramBlockWindowTmp{}.get_window_lengths()[I0{}] &&
KPerBlock == ADramBlockWindowTmp{}.get_window_lengths()[I1{}]),
"A block window has incorrect lengths for defined ALayout!");
static_assert(is_b_row_major
? (KPerBlock == BDramBlockWindowTmp{}.get_window_lengths()[I0{}] &&
NPerBlock == BDramBlockWindowTmp{}.get_window_lengths()[I1{}])
: (NPerBlock == BDramBlockWindowTmp{}.get_window_lengths()[I0{}] &&
KPerBlock == BDramBlockWindowTmp{}.get_window_lengths()[I1{}]),
"B block window has incorrect lengths for defined BLayout!");
// ------------------------------------------------------------------------------------
// Definitions of all needed tiles
......@@ -285,23 +297,51 @@ struct GemmPipelineAgBgCrCompV3 : public BaseGemmPipelineAgBgCrCompV3<Problem>
ABlockTile a_block_tile;
BBlockTile b_block_tile;
using ADramTileWindowStep = typename ADramBlockWindowTmp::BottomTensorIndex;
using BDramTileWindowStep = typename BDramBlockWindowTmp::BottomTensorIndex;
constexpr ADramTileWindowStep a_dram_tile_window_step =
is_a_col_major ? make_array(KPerBlock, 0) : make_array(0, KPerBlock);
constexpr BDramTileWindowStep b_dram_tile_window_step =
is_b_row_major ? make_array(KPerBlock, 0) : make_array(0, KPerBlock);
// -----------------------------------------------------------------------------------------
// Gemm pipeline start
// prefetch
// global read 0
Base::GlobalPrefetch(a_block_tile, a_copy_dram_window);
Base::GlobalPrefetch(b_block_tile, b_copy_dram_window);
Base::GlobalPrefetch(a_block_tile, a_copy_dram_window, a_dram_tile_window_step);
Base::GlobalPrefetch(b_block_tile, b_copy_dram_window, b_dram_tile_window_step);
// initialize C
tile_elementwise_inout([](auto& c) { c = 0; }, c_block_tile);
// LDS write 0
Base::LocalPrefill(a_copy_lds_window, a_block_tile, a_element_func);
Base::LocalPrefill(b_copy_lds_window, b_block_tile, b_element_func);
if constexpr(is_a_col_major)
{
auto a_shuffle_tmp = make_static_distributed_tensor<ADataType>(
Policy::template MakeShuffledARegTileDistribution<Problem>());
transpose_tile2d(a_shuffle_tmp, a_block_tile);
Base::LocalPrefill(a_copy_lds_window, a_shuffle_tmp, a_element_func);
}
else
{
Base::LocalPrefill(a_copy_lds_window, a_block_tile, a_element_func);
}
if constexpr(is_b_row_major)
{
auto b_shuffle_tmp = make_static_distributed_tensor<BDataType>(
Policy::template MakeShuffledBRegTileDistribution<Problem>());
transpose_tile2d(b_shuffle_tmp, b_block_tile);
Base::LocalPrefill(b_copy_lds_window, b_shuffle_tmp, b_element_func);
}
else
{
Base::LocalPrefill(b_copy_lds_window, b_block_tile, b_element_func);
}
Base::GlobalPrefetch(a_block_tile, a_copy_dram_window);
Base::GlobalPrefetch(b_block_tile, b_copy_dram_window);
Base::GlobalPrefetch(a_block_tile, a_copy_dram_window, a_dram_tile_window_step);
Base::GlobalPrefetch(b_block_tile, b_copy_dram_window, b_dram_tile_window_step);
block_sync_lds();
block_gemm.LocalPrefetch(a_lds_gemm_window, b_lds_gemm_window);
......@@ -316,11 +356,31 @@ struct GemmPipelineAgBgCrCompV3 : public BaseGemmPipelineAgBgCrCompV3<Problem>
{
block_sync_lds();
Base::LocalPrefill(a_copy_lds_window, a_block_tile, a_element_func);
Base::LocalPrefill(b_copy_lds_window, b_block_tile, b_element_func);
Base::GlobalPrefetch(a_block_tile, a_copy_dram_window);
Base::GlobalPrefetch(b_block_tile, b_copy_dram_window);
if constexpr(is_a_col_major)
{
auto a_shuffle_tmp = make_static_distributed_tensor<ADataType>(
Policy::template MakeShuffledARegTileDistribution<Problem>());
transpose_tile2d(a_shuffle_tmp, a_block_tile);
Base::LocalPrefill(a_copy_lds_window, a_shuffle_tmp, a_element_func);
}
else
{
Base::LocalPrefill(a_copy_lds_window, a_block_tile, a_element_func);
}
if constexpr(is_b_row_major)
{
auto b_shuffle_tmp = make_static_distributed_tensor<BDataType>(
Policy::template MakeShuffledBRegTileDistribution<Problem>());
transpose_tile2d(b_shuffle_tmp, b_block_tile);
Base::LocalPrefill(b_copy_lds_window, b_shuffle_tmp, b_element_func);
}
else
{
Base::LocalPrefill(b_copy_lds_window, b_block_tile, b_element_func);
}
Base::GlobalPrefetch(a_block_tile, a_copy_dram_window, a_dram_tile_window_step);
Base::GlobalPrefetch(b_block_tile, b_copy_dram_window, b_dram_tile_window_step);
block_gemm(c_block_tile, a_lds_gemm_window, b_lds_gemm_window);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -20,6 +20,8 @@ struct BaseGemmPipelineAgBgCrMem
using BDataType = remove_cvref_t<typename Problem::BDataType>;
using BlockGemmShape = remove_cvref_t<typename Problem::BlockGemmShape>;
CK_TILE_HOST_DEVICE static constexpr auto TransposeC() { return Problem::TransposeC; }
static constexpr index_t BlockSize = Problem::kBlockSize;
static constexpr index_t MPerBlock = BlockGemmShape::kM;
static constexpr index_t NPerBlock = BlockGemmShape::kN;
......@@ -104,17 +106,18 @@ struct GemmPipelineAgBgCrMem : public BaseGemmPipelineAgBgCrMem<Problem>
using CLayout = remove_cvref_t<typename Problem::CLayout>;
using BlockGemm = remove_cvref_t<decltype(Policy::template GetBlockGemm<Problem>())>;
using I0 = number<0>;
using I1 = number<1>;
using I2 = number<2>;
using I0 = number<0>;
using I1 = number<1>;
using I2 = number<2>;
static constexpr index_t MPerBlock = BlockGemmShape::kM;
static constexpr index_t NPerBlock = BlockGemmShape::kN;
static constexpr index_t KPerBlock = BlockGemmShape::kK;
static constexpr index_t VectorSizeA = Problem::VectorSizeA;
static constexpr index_t VectorSizeB = Problem::VectorSizeB;
static constexpr index_t VectorSizeC = Problem::VectorSizeC;
static constexpr index_t GetVectorSizeA() { return Policy::template GetVectorSizeA<Problem>(); }
static constexpr index_t GetVectorSizeB() { return Policy::template GetVectorSizeB<Problem>(); }
static constexpr index_t GetVectorSizeC() { return Policy::template GetVectorSizeC<Problem>(); }
static constexpr bool kPadM = Problem::kPadM;
static constexpr bool kPadN = Problem::kPadN;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -23,30 +23,23 @@ struct GemmPipelineAGmemBGmemCRegV1
using BLayout = remove_cvref_t<typename Problem::BLayout>;
using CLayout = remove_cvref_t<typename Problem::CLayout>;
using BlockGemm = remove_cvref_t<decltype(Policy::template GetBlockGemm<Problem>())>;
static constexpr index_t BlockSize = Problem::kBlockSize;
static constexpr index_t kMPerBlock = BlockGemmShape::kM;
static constexpr index_t kNPerBlock = BlockGemmShape::kN;
static constexpr index_t kKPerBlock = BlockGemmShape::kK;
static constexpr index_t VectorSizeA = Problem::VectorSizeA;
static constexpr index_t VectorSizeB = Problem::VectorSizeB;
static constexpr index_t VectorSizeC = Problem::VectorSizeC;
static constexpr index_t GetVectorSizeA() { return Problem::VectorSizeA; }
static constexpr index_t GetVectorSizeB() { return Problem::VectorSizeB; }
static constexpr index_t GetVectorSizeC() { return Problem::VectorSizeC; }
static constexpr bool kPadM = Problem::kPadM;
static constexpr bool kPadN = Problem::kPadN;
static constexpr bool kPadK = Problem::kPadK;
CK_TILE_HOST_DEVICE static constexpr index_t GetStaticLdsSize()
{
return integer_divide_ceil(
sizeof(ADataType) *
Policy::template MakeALdsBlockDescriptor<Problem>().get_element_space_size(),
16) *
16 +
sizeof(BDataType) *
Policy::template MakeBLdsBlockDescriptor<Problem>().get_element_space_size();
}
CK_TILE_HOST_DEVICE static constexpr auto TransposeC() { return Problem::TransposeC; }
CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSize()
{
......@@ -124,7 +117,7 @@ struct GemmPipelineAGmemBGmemCRegV1
b_lds_block, make_tuple(number<kNPerBlock>{}, number<kKPerBlock>{}), {0, 0});
// Block GEMM
auto block_gemm = Policy::template GetBlockGemm<Problem>();
auto block_gemm = BlockGemm();
// Acc register tile
auto c_block_tile = decltype(block_gemm(a_lds_gemm_window, b_lds_gemm_window)){};
......@@ -146,7 +139,7 @@ struct GemmPipelineAGmemBGmemCRegV1
if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::ColumnMajor>)
{
auto a_shuffle_tmp = make_static_distributed_tensor<ADataType>(
Policy::template MakeShuffledARegBlockDescriptor<Problem>());
Policy::template MakeShuffledARegBlockDistribution<Problem>());
shuffle_tile(a_shuffle_tmp, a_block_tile);
const auto a_block_tile_tmp = tile_elementwise_in(a_element_func, a_shuffle_tmp);
store_tile(a_copy_lds_window, a_block_tile_tmp);
......@@ -160,7 +153,7 @@ struct GemmPipelineAGmemBGmemCRegV1
if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::RowMajor>)
{
auto b_shuffle_tmp = make_static_distributed_tensor<BDataType>(
Policy::template MakeShuffledBRegBlockDescriptor<Problem>());
Policy::template MakeShuffledBRegBlockDistribution<Problem>());
shuffle_tile(b_shuffle_tmp, b_block_tile);
const auto b_block_tile_tmp = tile_elementwise_in(b_element_func, b_shuffle_tmp);
store_tile(b_copy_lds_window, b_block_tile_tmp);
......@@ -197,7 +190,7 @@ struct GemmPipelineAGmemBGmemCRegV1
if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::RowMajor>)
{
auto b_shuffle_tmp_loop = make_static_distributed_tensor<BDataType>(
Policy::template MakeShuffledBRegBlockDescriptor<Problem>());
Policy::template MakeShuffledBRegBlockDistribution<Problem>());
shuffle_tile(b_shuffle_tmp_loop, b_block_tile);
store_tile(b_copy_lds_window,
tile_elementwise_in(b_element_func, b_shuffle_tmp_loop));
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -12,38 +12,10 @@ namespace ck_tile {
// Default policy class should not be templated, put template on member functions instead
struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
{
static constexpr auto I0 = number<0>{};
static constexpr auto I1 = number<1>{};
static constexpr auto I2 = number<2>{};
#if 0
// 2d
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeALdsBlockDescriptor()
{
using namespace ck_tile;
constexpr index_t kMPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
constexpr auto a_lds_block_desc =
make_naive_tensor_descriptor_packed(make_tuple(kMPerBlock, kKPerBlock), number<32>{});
return a_lds_block_desc;
}
// 2d
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeBLdsBlockDescriptor()
{
using namespace ck_tile;
constexpr index_t kNPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
constexpr auto b_lds_block_desc =
make_naive_tensor_descriptor_packed(make_tuple(kNPerBlock, kKPerBlock), number<32>{});
return b_lds_block_desc;
}
#elif 1
// 3d + padding
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeALdsBlockDescriptor()
......@@ -53,7 +25,6 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
constexpr index_t kMPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
// TODO: this 8 is AK1! should be a policy parameter!
constexpr auto a_lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<kKPerBlock / 8>{}, number<kMPerBlock>{}, number<8>{}),
make_tuple(number<(kMPerBlock + 1) * 8>{}, number<8>{}, number<1>{}),
......@@ -114,8 +85,7 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
{
constexpr index_t smem_size_a = GetSmemSizeA<Problem>();
constexpr index_t smem_size_b = GetSmemSizeB<Problem>();
index_t smem_size = 0;
smem_size += smem_size_a + smem_size_b;
constexpr index_t smem_size = smem_size_a + smem_size_b;
return smem_size;
}
......@@ -123,88 +93,15 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemPackA()
{
using ADataType = remove_cvref_t<typename Problem::ADataType>;
return Problem::VectorLoadSize / sizeof(ADataType);
return Problem::VectorLoadSize;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemPackB()
{
using BDataType = remove_cvref_t<typename Problem::BDataType>;
return Problem::VectorLoadSize / sizeof(BDataType);
}
#elif 1
// fake XOR
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeALdsBlockDescriptor()
{
using namespace ck_tile;
using ADataType = remove_cvref_t<typename Problem::ADataType>;
constexpr index_t kMPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
constexpr auto a_lds_block_desc_d1_d2_d3 = make_naive_tensor_descriptor_packed(
make_tuple(number<kMPerBlock / 2>{}, number<2>{}, number<kKPerBlock>{}),
number<kKPerBlock>{});
constexpr index_t kK1 = 16 / sizeof(ADataType);
constexpr auto a_lds_block_desc_d4_d5_d6 = transform_tensor_descriptor(
a_lds_block_desc_d1_d2_d3,
make_tuple(
make_xor_transform(make_tuple(number<kMPerBlock / 2>{}, number<kKPerBlock>{}), kK1),
make_pass_through_transform(2)),
make_tuple(sequence<0, 2>{}, sequence<1>{}),
make_tuple(sequence<0, 2>{}, sequence<1>{}));
constexpr auto a_lds_block_desc_m_k = transform_tensor_descriptor(
a_lds_block_desc_d4_d5_d6,
make_tuple(make_merge_transform(make_tuple(number<kMPerBlock / 2>{}, number<2>{})),
make_pass_through_transform(kKPerBlock)),
make_tuple(sequence<0, 1>{}, sequence<2>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return a_lds_block_desc_m_k;
return Problem::VectorLoadSize;
}
// fake XOR
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeBLdsBlockDescriptor()
{
using namespace ck_tile;
using BDataType = remove_cvref_t<typename Problem::BDataType>;
constexpr index_t kNPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
constexpr auto b_lds_block_desc_d1_d2_d3 = make_naive_tensor_descriptor_packed(
make_tuple(number<kNPerBlock / 2>{}, number<2>{}, number<kKPerBlock>{}),
number<kKPerBlock>{});
constexpr index_t kK1 = 16 / sizeof(BDataType);
constexpr auto b_lds_block_desc_d4_d5_d6 = transform_tensor_descriptor(
b_lds_block_desc_d1_d2_d3,
make_tuple(
make_xor_transform(make_tuple(number<kNPerBlock / 2>{}, number<kKPerBlock>{}), kK1),
make_pass_through_transform(2)),
make_tuple(sequence<0, 2>{}, sequence<1>{}),
make_tuple(sequence<0, 2>{}, sequence<1>{}));
constexpr auto b_lds_block_desc_n_k = transform_tensor_descriptor(
b_lds_block_desc_d4_d5_d6,
make_tuple(make_merge_transform(make_tuple(number<kNPerBlock / 2>{}, number<2>{})),
make_pass_through_transform(kKPerBlock)),
make_tuple(sequence<0, 1>{}, sequence<2>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return b_lds_block_desc_n_k;
}
#endif
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeADramTileDistribution()
{
......@@ -269,7 +166,6 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
static_assert(M0 * M1 * M2 == MPerBlock,
"Incorrect M0, M2, M1 configuration! "
"M0, M1, M2 must cover whole MPerBlock!");
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1>>,
......@@ -390,7 +286,7 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffledBRegBlockDescriptor()
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffledBRegBlockDistribution()
{
using BLayout = remove_cvref_t<typename Problem::BLayout>;
using BDataType = remove_cvref_t<typename Problem::BDataType>;
......@@ -438,7 +334,7 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffledARegBlockDescriptor()
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffledARegBlockDistribution()
{
using ALayout = remove_cvref_t<typename Problem::ALayout>;
using ADataType = remove_cvref_t<typename Problem::ADataType>;
......@@ -488,11 +384,6 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetBlockGemm()
{
constexpr bool TransposeC = false;
constexpr auto I0 = number<0>{};
constexpr auto I1 = number<1>{};
constexpr auto I2 = number<2>{};
using AccDataType = float;
using BlockWarps = typename Problem::BlockGemmShape::BlockWarps;
using WarpTile = typename Problem::BlockGemmShape::WarpTile;
......@@ -502,7 +393,7 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
WarpTile::at(I0),
WarpTile::at(I1),
WarpTile::at(I2),
TransposeC>;
Problem::TransposeC>;
using BlockGemmPolicy = BlockGemmASmemBSmemCRegV1CustomPolicy<typename Problem::ADataType,
typename Problem::BDataType,
typename Problem::CDataType,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -25,6 +25,8 @@ struct GemmPipelineAGmemBGmemCRegV2
static constexpr index_t kNPerBlock = BlockGemmShape::kN;
static constexpr index_t kKPerBlock = BlockGemmShape::kK;
CK_TILE_HOST_DEVICE static constexpr auto TransposeC() { return Problem::TransposeC; }
CK_TILE_HOST_DEVICE static constexpr index_t GetStaticLdsSize()
{
return integer_divide_ceil(
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_scheduler.hpp"
namespace ck_tile {
......@@ -11,10 +12,10 @@ template <typename ADataType_,
typename BDataType_,
typename CDataType_,
typename BlockGemmShape_,
typename TileGemmTraits_>
typename Traits_>
struct GemmPipelineProblemBase
{
using GemmTraits = remove_cvref_t<TileGemmTraits_>;
using Traits = remove_cvref_t<Traits_>;
using ADataType = remove_cvref_t<ADataType_>;
using BDataType = remove_cvref_t<BDataType_>;
......@@ -22,19 +23,21 @@ struct GemmPipelineProblemBase
using BlockGemmShape = remove_cvref_t<BlockGemmShape_>;
using ALayout = remove_cvref_t<typename GemmTraits::ALayout>;
using BLayout = remove_cvref_t<typename GemmTraits::BLayout>;
using CLayout = remove_cvref_t<typename GemmTraits::CLayout>;
using ALayout = remove_cvref_t<typename Traits::ALayout>;
using BLayout = remove_cvref_t<typename Traits::BLayout>;
using CLayout = remove_cvref_t<typename Traits::CLayout>;
static constexpr index_t VectorLoadSize = GemmTraits::_VectorSize;
static constexpr index_t kBlockSize = BlockGemmShape::NumWarps * get_warp_size();
static constexpr bool TransposeC = Traits::TransposeC;
static constexpr bool kPadM = GemmTraits::kPadM;
static constexpr bool kPadN = GemmTraits::kPadN;
static constexpr bool kPadK = GemmTraits::kPadK;
static constexpr index_t kBlockSize = BlockGemmShape::NumWarps * get_warp_size();
static constexpr bool kPadM = Traits::kPadM;
static constexpr bool kPadN = Traits::kPadN;
static constexpr bool kPadK = Traits::kPadK;
static constexpr auto Scheduler = GemmPipelineScheduler::Default;
static constexpr index_t VectorLoadSize = Traits::_VectorSize;
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentA()
{
if constexpr(std::is_same_v<ALayout, ck_tile::tensor_layout::gemm::ColumnMajor>)
......@@ -110,7 +113,6 @@ struct GemmPipelineProblemBase
return kPadK ? 1 : GetAlignmentB();
}
}();
static constexpr index_t VectorSizeC = []() {
if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
{
......@@ -128,27 +130,43 @@ template <typename ADataType_,
typename BDataType_,
typename CDataType_,
typename BlockGemmShape_,
typename TileGemmTraits_>
typename Traits_>
using GemmPipelineProblem =
GemmPipelineProblemBase<ADataType_, BDataType_, CDataType_, BlockGemmShape_, TileGemmTraits_>;
GemmPipelineProblemBase<ADataType_, BDataType_, CDataType_, BlockGemmShape_, Traits_>;
template <typename ADataType_,
typename BDataType_,
typename CDataType_,
typename BlockGemmShape_,
typename TileGemmTraits_,
typename Traits_,
GemmPipelineScheduler Scheduler_ = GemmPipelineScheduler::Intrawave,
bool HasHotLoop_ = true,
TailNumber TailNum_ = TailNumber::Full>
struct UniversalGemmPipelineProblem : public GemmPipelineProblemBase<ADataType_,
BDataType_,
CDataType_,
BlockGemmShape_,
TileGemmTraits_>
struct UniversalGemmPipelineProblem
{
using Traits = remove_cvref_t<Traits_>;
using ADataType = remove_cvref_t<ADataType_>;
using BDataType = remove_cvref_t<BDataType_>;
using CDataType = remove_cvref_t<CDataType_>;
using BlockGemmShape = remove_cvref_t<BlockGemmShape_>;
using ALayout = remove_cvref_t<typename Traits::ALayout>;
using BLayout = remove_cvref_t<typename Traits::BLayout>;
using CLayout = remove_cvref_t<typename Traits::CLayout>;
static constexpr index_t kBlockSize = BlockGemmShape::NumWarps * get_warp_size();
static constexpr bool kPadM = Traits::kPadM;
static constexpr bool kPadN = Traits::kPadN;
static constexpr bool kPadK = Traits::kPadK;
static constexpr auto Scheduler = Scheduler_;
static constexpr auto HasHotLoop = HasHotLoop_;
static constexpr auto TailNum = TailNum_;
static constexpr bool TransposeC = Traits::TransposeC;
};
} // namespace ck_tile
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment