Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
1b0b7810
Commit
1b0b7810
authored
Feb 14, 2025
by
mtgu0705
Browse files
Initial int4 moe, compile pass, function not check.
parent
e420767e
Changes
6
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
3694 additions
and
8 deletions
+3694
-8
example/01_gemm/gemm_xdl_fp8_pk_i4_bpreshuffle_v3.cpp
example/01_gemm/gemm_xdl_fp8_pk_i4_bpreshuffle_v3.cpp
+1
-1
example/65_gemm_multiply_multiply/CMakeLists.txt
example/65_gemm_multiply_multiply/CMakeLists.txt
+1
-0
example/65_gemm_multiply_multiply/moe_pk_i4_gemm1.cpp
example/65_gemm_multiply_multiply/moe_pk_i4_gemm1.cpp
+431
-0
include/ck/tensor_operation/gpu/grid/gridwise_moe_gemm_gather.hpp
...ck/tensor_operation/gpu/grid/gridwise_moe_gemm_gather.hpp
+1631
-0
include/ck/tensor_operation/gpu/grid/gridwise_moe_gemm_scatter.hpp
...k/tensor_operation/gpu/grid/gridwise_moe_gemm_scatter.hpp
+1592
-0
library/include/ck/library/reference_tensor_operation/cpu/reference_moe_gemm.hpp
...ary/reference_tensor_operation/cpu/reference_moe_gemm.hpp
+38
-7
No files found.
example/01_gemm/gemm_xdl_fp8_pk_i4_bpreshuffle_v3.cpp
View file @
1b0b7810
example/65_gemm_multiply_multiply/CMakeLists.txt
View file @
1b0b7810
...
@@ -5,3 +5,4 @@ add_example_executable(example_gemm_add_add_xdl_fp16 gemm_add_add_xdl_fp16.cpp)
...
@@ -5,3 +5,4 @@ add_example_executable(example_gemm_add_add_xdl_fp16 gemm_add_add_xdl_fp16.cpp)
add_example_executable
(
example_gemm_multiply_multiply_xdl_int8 gemm_multiply_multiply_xdl_int8.cpp
)
add_example_executable
(
example_gemm_multiply_multiply_xdl_int8 gemm_multiply_multiply_xdl_int8.cpp
)
add_example_executable
(
example_moe_gemm1 moe_gemm1.cpp
)
add_example_executable
(
example_moe_gemm1 moe_gemm1.cpp
)
add_example_executable
(
example_moe_gemm2 moe_gemm2.cpp
)
add_example_executable
(
example_moe_gemm2 moe_gemm2.cpp
)
add_example_executable
(
example_moe_pk_i4_gemm1 moe_pk_i4_gemm1.cpp
)
example/65_gemm_multiply_multiply/moe_pk_i4_gemm1.cpp
0 → 100644
View file @
1b0b7810
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_moe_gemm.hpp"
// #include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_moe_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
I4
=
ck
::
pk_i4_t
;
using
F16
=
ck
::
half_t
;
// using BF16 = ck::bhalf_t;
using
F8
=
ck
::
f8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
F8
;
using
B0DataType
=
I4
;
using
EDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
F32
;
using
D1DataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
,
D1DataType
>
;
using
A0Layout
=
Row
;
using
B0Layout
=
Col
;
using
ELayout
=
Row
;
using
D0Layout
=
Row
;
using
D1Layout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
,
D1Layout
>
;
// for gate, a_scale, b_scale
struct
MulABScale
{
template
<
typename
E
,
typename
C
,
typename
D0
,
typename
D1
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D0
&
d0
,
const
D1
&
d1
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
EDataType
,
float
,
float
,
float
>
(
EDataType
&
e
,
const
float
&
c
,
const
float
&
d0
,
const
float
&
d1
)
const
{
e
=
ck
::
type_convert
<
EDataType
>
(
c
*
d1
*
d0
);
}
};
// for gate, a_scale, b_scale, fuse silu,
struct
MulABScaleSilu
{
template
<
typename
E
,
typename
C
,
typename
D0
,
typename
D1
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D0
&
d0
,
const
D1
&
d1
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
EDataType
,
float
,
float
>
(
EDataType
&
e
,
const
float
&
c
,
const
float
&
d0
,
const
float
&
d1
)
const
{
// act
float
x0
=
0
;
ck
::
tensor_operation
::
element_wise
::
Silu
{}(
x0
,
c
*
d1
*
d0
);
e
=
ck
::
type_convert
<
EDataType
>
(
x0
);
}
};
// using DsLayout = DsLayoutGate;
// using DsDataType = DsDataTypeGate;
using
CDEElementOp
=
MulABScale
;
// using CDEElementOp = MulABScaleSiluMulGate;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
ck
::
index_t
MPerBlock
=
128
;
static
constexpr
ck
::
index_t
MNPerXDL
=
32
;
static
constexpr
ck
::
index_t
CShuffleMXDLPerWave
=
MPerBlock
/
32
;
static
constexpr
ck
::
index_t
KPerBlock
=
128
/
sizeof
(
A0DataType
);
static
constexpr
ck
::
index_t
MXDLPerWave
=
MPerBlock
/
32
;
//todo fix this constraint
static
constexpr
ck
::
index_t
AK1
=
16
/
sizeof
(
A0DataType
);
static
constexpr
ck
::
index_t
BK1
=
32
/
sizeof
(
B0DataType
);
static
constexpr
ck
::
index_t
EVec
=
16
/
sizeof
(
EDataType
);
static
constexpr
ck
::
index_t
D0Vec
=
1
;
static
constexpr
ck
::
index_t
D1Vec
=
1
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceMoeGemm
<
Row
,
Col
,
DsLayout
,
ELayout
,
A0DataType
,
B0DataType
,
DsDataType
,
EDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
256
,
MPerBlock
,
128
,
KPerBlock
,
AK1
,
BK1
,
MNPerXDL
,
MNPerXDL
,
MXDLPerWave
,
1
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
AK1
,
AK1
,
0
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
BK1
,
BK1
,
0
,
CShuffleMXDLPerWave
,
1
,
S
<
1
,
32
,
1
,
8
>
,
S
<
EVec
,
D0Vec
,
D1Vec
>
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v1
,
true
,
A0DataType
>
;
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// tokens = 1
// topk = 1
// experts = 8
// per expert:
// GEMM shape
ck
::
index_t
N
=
6144
;
ck
::
index_t
K
=
8192
;
ck
::
index_t
experts
=
8
;
ck
::
index_t
sorted_tile_num
=
8
;
ck
::
index_t
sorted_tile_size
=
MPerBlock
;
ck
::
index_t
SORTED_SIZE
=
sorted_tile_num
*
sorted_tile_size
;
ck
::
index_t
tokens
=
128
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
6
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
N
=
std
::
stoi
(
argv
[
4
]);
K
=
std
::
stoi
(
argv
[
5
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 5: N, K
\n
"
);
exit
(
0
);
}
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
K
;
ck
::
index_t
StrideE
=
N
;
ck
::
index_t
batch_stride_B
=
K
*
N
;
constexpr
ck
::
index_t
NumDTensor
=
DsDataType
::
Size
();
constexpr
auto
StrideDs
=
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
0
,
0
};
ck
::
index_t
KBatch
=
1
;
// const ck::index_t experts = 8;
Tensor
<
ck
::
index_t
>
expert_ids
(
HostTensorDescriptor
({
experts
},
{
1
}));
Tensor
<
ck
::
index_t
>
sorted_token_ids
(
HostTensorDescriptor
({
SORTED_SIZE
},
{
1
}));
for
(
int
i
=
0
;
i
<
sorted_tile_num
;
i
++
)
{
expert_ids
.
mData
[
i
]
=
i
;
}
int
token_per_tile
=
tokens
/
sorted_tile_num
;
int
tokenid
=
0
;
// sorted_token_ids.mData[0] = 0;
for
(
int
i
=
0
;
i
<
SORTED_SIZE
;
i
++
)
{
int
tile_off
=
i
%
sorted_tile_size
;
if
(
tile_off
<
token_per_tile
)
sorted_token_ids
.
mData
[
i
]
=
tokenid
++
;
else
sorted_token_ids
.
mData
[
i
]
=
tokens
;
}
expert_ids
.
savetxt
(
"expert_ids.txt"
,
"int"
);
sorted_token_ids
.
savetxt
(
"sorted_token_ids.txt"
,
"int"
);
Tensor
<
A0DataType
>
a0_t_k
(
HostTensorDescriptor
({
tokens
,
K
},
{
K
,
1
}));
Tensor
<
B0DataType
>
b0_e_n_k
(
HostTensorDescriptor
({
experts
,
N
,
K
},
{
N
*
K
,
K
,
1
}));
Tensor
<
B0DataType
>
b0_preshuffled
(
HostTensorDescriptor
({
experts
,
N
,
K
},
{
N
*
K
,
K
,
1
}));
Tensor
<
D0DataType
>
d0_t_n
(
HostTensorDescriptor
({
tokens
,
N
},
{
StrideDs
[
0
],
0
}));
Tensor
<
D1DataType
>
d1_e_n
(
HostTensorDescriptor
({
experts
,
N
},
{
1
,
StrideDs
[
1
]}));
Tensor
<
EDataType
>
e_m_n_host_result
(
HostTensorDescriptor
({
SORTED_SIZE
,
N
},
{
N
,
1
}));
Tensor
<
EDataType
>
e_m_n_device_result
(
HostTensorDescriptor
({
SORTED_SIZE
,
N
},
{
N
,
1
}));
std
::
cout
<<
"a0_t_k: "
<<
a0_t_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_e_n_k: "
<<
b0_e_n_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_e_n: "
<<
d1_e_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_t_n: "
<<
d0_t_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a0_t_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
2
,
2
});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
0
,
2
});
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
1
,
3
});
d1_e_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D1DataType
>
{
1
,
3
});
break
;
case
2
:
a0_t_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
A0DataType
>
{});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D0DataType
>
{});
d1_e_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D1DataType
>
{});
break
;
default:
a0_t_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
-
0.5
,
0.5
});
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
d1_e_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
0.0
,
1.0
});
}
d0_t_n
.
savetxt
(
"d0_t_n.txt"
,
"int"
);
d1_e_n
.
savetxt
(
"d1_e_n.txt"
,
"int"
);
DeviceMem
sorted_token_ids_dev
(
sizeof
(
ck
::
index_t
)
*
sorted_token_ids
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
expert_ids_dev
(
sizeof
(
ck
::
index_t
)
*
expert_ids
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
a0_t_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
b0_e_n_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
d0_t_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_e_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_t_k
.
savetxt
(
"a.txt"
);
sorted_token_ids_dev
.
ToDevice
(
sorted_token_ids
.
mData
.
data
());
expert_ids_dev
.
ToDevice
(
expert_ids
.
mData
.
data
());
a0_device_buf
.
ToDevice
(
a0_t_k
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_t_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_e_n
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_m_n_device_result
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
// preShuffleBuffer(b0_e_n_k.mData.data(), b0_preshuffled.mData.data(), N * experts, K, NPerXdl);
printf
(
"Start PreShuffle
\n
"
);
// weight pre-shuffle
int
KPack
=
32
;
// int4 -> 32, fp8 -> 16, fp16 -> 8
int
NLane
=
device_op
.
GetPreShuffleParameters
();
int
KLane
=
64
/
NLane
;
int
K0
=
K
/
(
KLane
*
KPack
);
// K -> K0 KLane KPack
// N -> N0 NLane
// N, K -> N0 K0 KLane NLane KPack
int
tempk
;
for
(
int
e
=
0
;
e
<
experts
;
++
e
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
int
n0
=
n
/
NLane
;
int
n1
=
n
%
NLane
;
int
k0
=
k
/
(
KLane
*
KPack
);
tempk
=
k
%
(
KLane
*
KPack
);
int
k1
=
tempk
/
KPack
;
int
k2
=
tempk
%
KPack
;
int
outputIndex
=
n0
*
KPack
*
NLane
*
KLane
*
K0
+
k0
*
KPack
*
NLane
*
KLane
+
k1
*
KPack
*
NLane
+
n1
*
KPack
+
k2
;
b0_preshuffled
(
e
*
batch_stride_B
+
outputIndex
)
=
b0_e_n_k
(
e
*
batch_stride_B
+
n
*
K
+
k
);
}
}
}
printf
(
"End PreShuffle, and Start vector permute
\n
"
);
// vector pk_i4x4 permute
for
(
int
e
=
0
;
e
<
experts
;
e
++
)
{
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
for
(
int
j
=
0
;
j
<
K
;
j
++
)
{
int
input
[
8
];
for
(
int
k
=
0
;
k
<
4
;
k
++
)
{
int
i4x2
=
b0_preshuffled
(
e
,
j
+
k
*
2
,
i
).
data
;
input
[
k
*
2
+
0
]
=
(
i4x2
>>
4
)
&
0xf
;
input
[
k
*
2
+
1
]
=
(
i4x2
>>
0
)
&
0xf
;
}
// permute 01234567->20643175
{
int
hi
=
input
[
2
];
int
lo
=
input
[
0
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b0_preshuffled
(
e
,
j
+
0
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
6
];
int
lo
=
input
[
4
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b0_preshuffled
(
e
,
j
+
2
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
3
];
int
lo
=
input
[
1
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b0_preshuffled
(
e
,
j
+
4
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
7
];
int
lo
=
input
[
5
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b0_preshuffled
(
e
,
j
+
6
,
i
)
=
i4x2
;
}
}
}
}
b0_device_buf
.
ToDevice
(
b0_preshuffled
.
mData
.
data
());
printf
(
"End Permute and Start GEMM
\n
"
);
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
sorted_token_ids_dev
.
GetDeviceBuffer
(),
expert_ids_dev
.
GetDeviceBuffer
(),
a0_device_buf
.
GetDeviceBuffer
(),
b0_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
NumDTensor
>
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
tokens
,
SORTED_SIZE
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideE
,
KBatch
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
if
(
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
SORTED_SIZE
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
SORTED_SIZE
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
*
experts
+
sizeof
(
EDataType
)
*
SORTED_SIZE
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
}
if
(
do_verification
)
{
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
,
0
,
0
,
1
});
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
Tensor
<
CShuffleDataType
>
c_m_n
({
SORTED_SIZE
,
N
});
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceMoeGemm
<
A0DataType
,
B0DataType
,
CShuffleDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
auto
ref_moe_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_moe_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_moe_gemm
.
MakeArgument
(
sorted_token_ids
,
expert_ids
,
sorted_tile_size
,
a0_t_k
,
b0_e_n_k
,
c_m_n
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
SORTED_SIZE
;
++
m
)
{
const
int
t
=
sorted_token_ids
(
m
);
const
int
e
=
expert_ids
(
m
/
sorted_tile_size
);
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d0_t_n
(
t
,
n
),
d1_e_n
(
e
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
e_m_n_device_result
.
savetxt
(
"out.txt"
);
e_m_n_host_result
.
savetxt
(
"ref.txt"
);
return
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
,
"Error: Incorrect results!"
,
1e-3
,
5e-2
)
?
0
:
1
;
}
return
0
;
}
include/ck/tensor_operation/gpu/grid/gridwise_moe_gemm_gather.hpp
0 → 100644
View file @
1b0b7810
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle_selector.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1_mod8.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7r3_scatter.hpp"
#define DEBUG_LOG 0
namespace
ck
{
// Currently we do not have a elegant way to put single lds buffer & double lds buffer pipe in same
// kernel function Blockers:
// 1. Two separted declaration of __shared__ pointer is the key to make sure data access operate on
// two lds chunks.
// 2. Occupied __shared__ won't release until whole shader end, a.k.a AB and C may not use same lds
// buffer when we declare __shared__ inside blkgemmpipe
template
<
typename
GridwiseGemm
,
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
index_t
MinimumOccupancy
=
1
,
TailNumber
TailNum
=
TailNumber
::
Even
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
MinimumOccupancy
)
#endif
// __attribute__((amdgpu_waves_per_eu(1, 1)))
kernel_moe_gemm_gather
(
typename
GridwiseGemm
::
Argument
karg
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
auto
splitk_batch_offset
=
typename
GridwiseGemm
::
SplitKBatchOffset
(
karg
,
blockIdx
.
z
);
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
,
CGlobalMemoryDataOperation
,
TailNum
>(
karg
.
p_sorted_token_ids
,
karg
.
p_sorted_expert_ids
,
karg
.
p_a_grid
+
splitk_batch_offset
.
a_k_split_offset
,
karg
.
p_b_grid
+
splitk_batch_offset
.
b_k_split_offset
,
karg
.
p_ds_grid
,
karg
.
p_c_grid
,
p_shared
,
karg
,
karg
.
a_element_op
,
karg
.
b_element_op
,
karg
.
c_element_op
);
#else
ignore
=
karg
;
#endif // end of if (defined(__gfx9__))
}
// template <typename GridwiseGemm,
// bool HasMainKBlockLoop,
// InMemoryDataOperationEnum CGlobalMemoryDataOperation,
// index_t MinimumOccupancy = 1,
// TailNumber TailNum = TailNumber::Even>
// __global__ void
// #if CK_USE_LAUNCH_BOUNDS
// __launch_bounds__(CK_MAX_THREAD_PER_BLOCK, MinimumOccupancy)
// #endif
// // __attribute__((amdgpu_waves_per_eu(1, 1)))
// kernel_moe_gemm_gather_2lds(typename GridwiseGemm::Argument karg)
// {
// #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
// __shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
// __shared__ char p_shared1[GridwiseGemm::GetSharedMemoryNumberOfByte()];
// auto splitk_batch_offset = typename GridwiseGemm::SplitKBatchOffset(karg, blockIdx.z);
// GridwiseGemm::template Run_2Lds<HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
// karg.p_a_grid + splitk_batch_offset.a_k_split_offset,
// karg.p_b_grid + splitk_batch_offset.b_k_split_offset,
// karg.p_ds_grid,
// karg.p_c_grid,
// p_shared,
// p_shared1,
// karg,
// karg.a_element_op,
// karg.b_element_op,
// karg.c_element_op);
// #else
// ignore = karg;
// #endif // end of if (defined(__gfx9__))
// }
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1Value
,
index_t
BK1Value
,
index_t
MPerXdl
,
index_t
NPerXdl
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
AThreadTransferSrcResetCoordinateAfterRun
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BThreadTransferSrcResetCoordinateAfterRun
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
CDEShuffleBlockTransferScalarPerVectors
,
BlockGemmPipelineScheduler
BlkGemmPipeSched
=
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
BlkGemmPipelineVer
=
BlockGemmPipelineVersion
::
v1
,
typename
ComputeTypeA
=
CDataType
,
typename
ComputeTypeB
=
ComputeTypeA
,
typename
LDSTypeA
=
ADataType
,
typename
LDSTypeB
=
BDataType
>
struct
GridwiseMoeGemmGather
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
static
constexpr
auto
CShuffleBlockTransferScalarPerVector_NPerBlock
=
CDEShuffleBlockTransferScalarPerVectors
{}[
I0
];
// K1 should be Number<...>
static
constexpr
auto
AK0Number
=
Number
<
KPerBlock
/
AK1Value
>
{};
static
constexpr
auto
BK0Number
=
Number
<
KPerBlock
/
BK1Value
>
{};
static
constexpr
auto
AK1Number
=
Number
<
AK1Value
>
{};
static
constexpr
auto
BK1Number
=
Number
<
BK1Value
>
{};
static
constexpr
auto
BlockSizeNumber
=
Number
<
BlockSize
>
{};
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
using
mfma_selector
=
MfmaSelector
<
ComputeTypeA
,
MPerXdl
,
NPerXdl
,
ComputeTypeB
>
;
static
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1Number
,
BK1Number
),
mfma_selector
::
selected_mfma
.
k_per_blk
);
static
constexpr
index_t
KLane
=
mfma_selector
::
GetKPerXdlops
()
/
mfma_selector
::
GetK1PerXdlops
();
static
constexpr
index_t
KRepeat
=
KPerBlock
/
KLane
/
KPack
;
static
constexpr
index_t
NLane
=
NPerXdl
;
static
constexpr
index_t
NWave
=
NPerBlock
/
NPerXdl
/
NXdlPerWave
;
static_assert
(
NWave
*
warpSize
==
BlockSize
);
// static constexpr index_t NumTokens = 1;
static
constexpr
index_t
SortedTileSize
=
MPerBlock
;
static
constexpr
auto
MakeDsGridPointer
()
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
return
static_cast
<
const
DDataType
*>
(
nullptr
);
},
Number
<
NumDTensor
>
{});
}
using
DsGridPointer
=
decltype
(
MakeDsGridPointer
());
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
static
constexpr
index_t
APackedSize
=
[]()
{
if
constexpr
(
is_same_v
<
remove_cvref_t
<
ADataType
>
,
pk_i4_t
>
)
return
2
;
else
return
1
;
}();
static
constexpr
index_t
BPackedSize
=
[]()
{
if
constexpr
(
is_same_v
<
remove_cvref_t
<
BDataType
>
,
pk_i4_t
>
)
return
2
;
else
return
1
;
}();
__host__
static
auto
CalculateGridSize
(
index_t
M
,
index_t
N
)
{
return
std
::
make_tuple
(
math
::
integer_divide_ceil
(
N
,
NPerBlock
),
math
::
integer_divide_ceil
(
M
,
MPerBlock
),
1
);
}
__host__
__device__
static
auto
CalculateMPadded
(
index_t
M
)
{
return
math
::
integer_least_multiple
(
M
,
MPerBlock
);
}
__host__
__device__
static
auto
CalculateNPadded
(
index_t
N
)
{
return
math
::
integer_least_multiple
(
N
,
NPerBlock
);
}
__host__
__device__
static
auto
CalculateBN0Shuffled
(
index_t
N
)
{
return
math
::
integer_divide_ceil
(
N
,
NLane
);
}
__host__
__device__
static
auto
CalculateBK0Shuffled
(
index_t
K
)
{
return
math
::
integer_divide_ceil
(
K
,
KLane
*
KPack
);
}
__host__
__device__
static
auto
CalculateKPadded
(
index_t
K
)
{
return
math
::
integer_divide_ceil
(
K
,
KPerBlock
)
*
KPerBlock
;
}
__host__
__device__
static
auto
CalculateAK0Padded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
(
KPerBlock
/
AK1Value
);
}
__host__
__device__
static
auto
CalculateBK0Padded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
(
KPerBlock
/
BK1Value
);
}
__host__
__device__
static
auto
CalculateKPadded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
KPerBlock
;
}
__host__
__device__
static
auto
CalculateKRead
(
index_t
K
,
index_t
K_Batch
=
1
)
{
constexpr
auto
KReadVec
=
math
::
lcm
(
AK1Number
,
BK1Number
);
auto
K_t
=
K_Batch
*
KReadVec
;
return
(
K
+
K_t
-
1
)
/
K_t
*
KReadVec
;
}
__host__
__device__
static
auto
CalculateMBlock
(
index_t
M
)
{
return
math
::
integer_divide_ceil
(
M
,
MPerBlock
);
}
__host__
__device__
static
auto
CalculateNBlock
(
index_t
N
)
{
return
math
::
integer_divide_ceil
(
N
,
NPerBlock
);
}
template
<
index_t
MNXdlPerWave
,
index_t
MNWaves
,
index_t
MNPerXdl
,
typename
TileDesc_K0_MN_K1
>
__host__
__device__
static
constexpr
auto
MakeGemmMmaTileDescriptor
(
const
TileDesc_K0_MN_K1
&
)
{
constexpr
index_t
K0
=
TileDesc_K0_MN_K1
{}.
GetLength
(
Number
<
0
>
{});
constexpr
index_t
K1
=
TileDesc_K0_MN_K1
{}.
GetLength
(
Number
<
2
>
{});
return
transform_tensor_descriptor
(
TileDesc_K0_MN_K1
{},
make_tuple
(
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
K0
>
{},
Number
<
K1
>
{})),
make_unmerge_transform
(
make_tuple
(
Number
<
MNXdlPerWave
>
{},
Number
<
MNWaves
>
{},
Number
<
MNPerXdl
>
{}))),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
3
>
{},
Sequence
<
0
,
1
,
2
>
{}));
}
__host__
__device__
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
index_t
M
,
index_t
MPad
,
index_t
K
,
index_t
KPad
,
index_t
StrideA
,
index_t
AK0
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
I1
,
StrideA
));
}
}();
using
GemmSpecialization
=
tensor_operation
::
device
::
GemmSpecialization
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both M and K
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
MPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad M, but not K
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_right_pad_transform
(
M
,
MPad
-
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad K, but not M
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_pass_through_transform
(
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
{
// not pad M or K
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
}
__host__
__device__
static
auto
MakeBGridDescriptor_Preshuffled
(
index_t
N0
,
index_t
K0
)
{
constexpr
index_t
NkSwizzleNumber
=
Number
<
warpSize
*
KPack
>
{};
return
make_naive_tensor_descriptor
(
make_tuple
(
N0
/
NWave
,
NWave
,
K0
,
NkSwizzleNumber
),
make_tuple
(
NWave
*
K0
*
NkSwizzleNumber
,
K0
*
NkSwizzleNumber
,
NkSwizzleNumber
,
I1
));
}
__host__
__device__
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
index_t
K
,
index_t
KPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideB
,
index_t
BK0
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
K
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
K
),
make_tuple
(
StrideB
,
I1
));
}
}();
using
GemmSpecialization
=
tensor_operation
::
device
::
GemmSpecialization
;
static_assert
(
!
(
is_same_v
<
remove_cvref_t
<
ADataType
>
,
pk_i4_t
>
&&
GemmSpec
!=
GemmSpecialization
::
Default
),
"pk_i4_t does not support padding"
);
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both N and K
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_right_pad_transform
(
N
,
NPad
-
N
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
NPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad N, but not K
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad K, but not N
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_pass_through_transform
(
N
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
{
// not pad N or K
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
}
template
<
typename
ABlockDesc_AK0_M_AK1
>
__host__
__device__
static
constexpr
auto
MakeAMmaTileDescriptor_M0_M1_M2_K
(
const
ABlockDesc_AK0_M_AK1
&
)
{
constexpr
index_t
MWaves
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
return
MakeGemmMmaTileDescriptor
<
MXdlPerWave
,
MWaves
,
MPerXdl
>
(
ABlockDesc_AK0_M_AK1
{});
}
template
<
typename
BBlockDesc_BK0_N_BK1
>
__host__
__device__
static
constexpr
auto
MakeBMmaTileDescriptor_N0_N1_N2_K
(
const
BBlockDesc_BK0_N_BK1
&
)
{
return
MakeGemmMmaTileDescriptor
<
NXdlPerWave
,
NWave
,
NPerXdl
>
(
BBlockDesc_BK0_N_BK1
{});
}
template
<
typename
ELayout
>
__host__
__device__
static
auto
MakeCGridDescriptor_M_N
(
index_t
M
,
index_t
MPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideC
)
{
const
auto
c_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideC
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I1
,
StrideC
));
}
}();
// pad M and N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
template
<
typename
DLayout
>
__host__
__device__
static
auto
MakeDGridDescriptor_M_N
(
index_t
M
,
index_t
MPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideC
)
{
const
auto
c_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
DLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideC
,
I0
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
DLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I0
,
StrideC
));
}
}();
// pad M and N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
__host__
__device__
static
auto
MakeDsGridDescriptor_M_N
(
index_t
M
,
index_t
MPad
,
index_t
N
,
index_t
NPad
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
MakeDGridDescriptor_M_N
<
DLayout
>
(
M
,
MPad
,
N
,
NPad
,
StrideDs
[
i
]);
},
Number
<
NumDTensor
>
{});
}
template
<
typename
DsGridDesc
>
__device__
static
constexpr
auto
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
DsGridDesc
&
ds_grid_desc_m_n
,
index_t
MBlock
,
index_t
NBlock
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
return
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
[
i
],
MBlock
,
NBlock
);
},
Number
<
NumDTensor
>
{});
}
struct
Problem
{
__host__
__device__
Problem
(
index_t
NumTokens_
,
index_t
M_
,
index_t
N_
,
index_t
K_
,
index_t
StrideA_
,
index_t
StrideB_
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs_
,
index_t
StrideC_
,
index_t
KBatch_
)
:
NumTokens
{
NumTokens_
},
M
{
M_
},
N
{
N_
},
K
{
K_
},
StrideA
{
StrideA_
},
StrideB
{
StrideB_
},
StrideDs
{
StrideDs_
},
StrideC
{
StrideC_
},
KBatch
{
KBatch_
},
MPadded
{
CalculateMPadded
(
M_
)},
NPadded
{
CalculateNPadded
(
N_
)},
KRead
{
CalculateKRead
(
K_
,
KBatch_
)},
KPadded
{
CalculateKPadded
(
K_
,
KBatch_
)},
AK0
{
CalculateAK0Padded
(
K_
,
KBatch_
)},
BK0
{
CalculateBK0Padded
(
K_
,
KBatch_
)},
MBlock
{
CalculateMBlock
(
M_
)},
NBlock
{
CalculateNBlock
(
N_
)},
BN0Shuffled
{
CalculateBN0Shuffled
(
N_
)},
BK0Shuffled
{
CalculateBK0Shuffled
(
K_
)}
{
}
__host__
void
Print
()
const
{
std
::
cout
<<
"problem {"
<<
"NumTokens:"
<<
NumTokens
<<
", "
<<
"M:"
<<
M
<<
", "
<<
"N:"
<<
N
<<
", "
<<
"K:"
<<
K
<<
", "
<<
"SA:"
<<
StrideA
<<
", "
<<
"SB:"
<<
StrideB
<<
", "
<<
"SC:"
<<
StrideC
<<
", "
<<
"MP:"
<<
MPadded
<<
", "
<<
"NP:"
<<
NPadded
<<
", "
<<
"KRead:"
<<
KRead
<<
", "
<<
"KP:"
<<
KPadded
<<
", "
<<
"AK0:"
<<
AK0
<<
", "
<<
"BK0:"
<<
BK0
<<
", "
<<
"MBlock: "
<<
MBlock
<<
", "
<<
"NBlock: "
<<
NBlock
<<
"}"
<<
std
::
endl
;
}
index_t
NumTokens
;
index_t
M
;
index_t
N
;
index_t
K
;
index_t
StrideA
;
index_t
StrideB
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
;
index_t
StrideC
;
index_t
KBatch
;
index_t
MPadded
;
index_t
NPadded
;
index_t
KRead
;
index_t
KPadded
;
index_t
AK0
;
index_t
BK0
;
index_t
MBlock
;
index_t
NBlock
;
// FOR PRESHUFFLE ONLY
index_t
BN0Shuffled
;
index_t
BK0Shuffled
;
};
// Argument
struct
Argument
:
public
tensor_operation
::
device
::
BaseArgument
,
public
Problem
{
__host__
Argument
(
const
index_t
*
p_sorted_token_ids_
,
const
index_t
*
p_sorted_expert_ids_
,
const
ADataType
*
p_a_grid_
,
const
BDataType
*
p_b_grid_
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid_
,
CDataType
*
p_c_grid_
,
index_t
NumTokens_
,
index_t
M_
,
index_t
N_
,
index_t
K_
,
index_t
StrideA_
,
index_t
StrideB_
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs_
,
index_t
StrideC_
,
index_t
k_batch_
,
AElementwiseOperation
a_element_op_
,
BElementwiseOperation
b_element_op_
,
CElementwiseOperation
c_element_op_
)
:
Problem
{
NumTokens_
,
M_
,
N_
,
K_
,
StrideA_
,
StrideB_
,
StrideDs_
,
StrideC_
,
k_batch_
},
p_sorted_token_ids
{
p_sorted_token_ids_
},
p_sorted_expert_ids
{
p_sorted_expert_ids_
},
p_a_grid
{
p_a_grid_
},
p_b_grid
{
p_b_grid_
},
p_ds_grid
{},
p_c_grid
{
p_c_grid_
},
a_element_op
{
a_element_op_
},
b_element_op
{
b_element_op_
},
c_element_op
{
c_element_op_
}
{
// populate pointer, desc for Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DDataType_
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid
(
i
)
=
static_cast
<
const
DDataType_
*>
(
p_ds_grid_
[
i
]);
});
}
const
index_t
*
p_sorted_token_ids
;
const
index_t
*
p_sorted_expert_ids
;
const
ADataType
*
p_a_grid
;
const
BDataType
*
p_b_grid
;
DsGridPointer
p_ds_grid
;
CDataType
*
p_c_grid
;
const
AElementwiseOperation
a_element_op
;
const
BElementwiseOperation
b_element_op
;
const
CElementwiseOperation
c_element_op
;
};
struct
SplitKBatchOffset
{
__device__
SplitKBatchOffset
(
Argument
&
karg
,
index_t
k_id
)
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
a_k_split_offset
=
k_id
*
karg
.
KRead
/
APackedSize
;
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
a_k_split_offset
=
k_id
*
karg
.
KRead
*
karg
.
StrideA
;
}
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>
)
{
b_k_split_offset
=
k_id
*
karg
.
KRead
*
karg
.
StrideB
;
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>
)
{
// KPack * NLane * KLane * K0 * N0
b_k_split_offset
=
k_id
*
karg
.
KRead
*
NLane
/
BPackedSize
;
}
if
(
k_id
<
karg
.
KBatch
-
1
)
{
karg
.
K
=
karg
.
KRead
;
}
else
{
karg
.
K
=
karg
.
K
-
karg
.
KRead
*
(
karg
.
KBatch
-
1
);
}
}
index_t
a_k_split_offset
;
index_t
b_k_split_offset
;
};
__device__
static
constexpr
auto
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()
{
// A matrix in LDS memory, dst of blockwise copy
if
constexpr
(
ABlockLdsExtraM
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
AK0Number
,
Number
<
MPerBlock
>
{},
AK1Number
),
make_tuple
(
AK1Number
,
Number
<
KPerBlock
+
ABlockLdsExtraM
>
{},
I1
));
}
// xor tensor transformation request more unnecessary vgpr usage, would cause register spill
// in some cases.
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
constexpr
auto
MLdsLayer
=
32
*
4
/
KPerBlock
/
sizeof
(
LDSTypeA
)
/
APackedSize
<
1
?
1
:
32
*
4
/
KPerBlock
/
sizeof
(
LDSTypeA
);
constexpr
auto
a_lds_block_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
AK0Number
*
Number
<
MLdsLayer
>
{},
Number
<
MPerBlock
/
MLdsLayer
>
{},
AK1Number
),
make_tuple
(
AK1Number
,
Number
<
KPerBlock
*
MLdsLayer
>
{},
I1
));
constexpr
auto
a_lds_block_desc_permuted
=
transform_tensor_descriptor
(
a_lds_block_desc
,
make_tuple
(
make_xor_with_modulo_transform
(
make_tuple
(
Number
<
MPerBlock
/
MLdsLayer
>
{},
Number
<
AK0Number
*
MLdsLayer
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
1
,
0
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
1
,
0
>
{},
Sequence
<
2
>
{}));
constexpr
auto
a_lds_block_desc_ak0_mldslayer_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_permuted
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0Number
,
Number
<
MLdsLayer
>
{})),
make_pass_through_transform
(
Number
<
MPerBlock
/
MLdsLayer
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{},
Sequence
<
3
>
{}));
constexpr
auto
a_lds_block_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_ak0_mldslayer_m_ak1
,
make_tuple
(
make_pass_through_transform
(
AK0Number
),
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
MPerBlock
/
MLdsLayer
>
{},
Number
<
MLdsLayer
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
a_lds_block_desc_ak0_m_ak1
;
}
else
// ColumnMajor A
{
// kfold and mpair dimension is not always required.
// more dimension in merge_transform increase the difficulty of generating immarg offset
// for compiler.
constexpr
auto
M0
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I1
);
constexpr
auto
M1
=
MPerBlock
/
M0
;
constexpr
auto
KThreadWrite
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I0
);
constexpr
auto
K0PerThreadWrite
=
AK0Number
/
KThreadWrite
;
constexpr
auto
KThreadRead
=
64
/
MPerXdl
;
constexpr
auto
K0PerThreadRead
=
AK0Number
/
KThreadRead
;
constexpr
auto
kfold
=
(
AK1Number
*
M0
*
sizeof
(
LDSTypeA
)
>
128
)
?
1
:
128
/
(
AK1Number
*
M0
*
sizeof
(
LDSTypeA
));
constexpr
auto
KThreadReadPerm
=
(
kfold
*
K0PerThreadWrite
/
K0PerThreadRead
)
>
1
?
KThreadRead
/
(
kfold
*
K0PerThreadWrite
/
K0PerThreadRead
)
:
KThreadRead
;
// 1<=mpair<=n0
constexpr
auto
mpair
=
(
AK1Number
*
MPerXdl
*
sizeof
(
LDSTypeA
)
>
128
)
?
1
:
((
128
/
(
AK1Number
*
MPerXdl
*
sizeof
(
LDSTypeA
)))
>
M0
?
M0
:
128
/
(
AK1Number
*
MPerXdl
*
sizeof
(
LDSTypeA
)));
constexpr
auto
a_lds_block_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{},
Number
<
K0PerThreadWrite
>
{},
Number
<
KThreadReadPerm
*
M1
>
{},
Number
<
kfold
*
M0
/
mpair
>
{},
Number
<
mpair
>
{},
AK1Number
));
constexpr
auto
a_lds_block_desc_permuted
=
transform_tensor_descriptor
(
a_lds_block_desc
,
make_tuple
(
make_pass_through_transform
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{}),
make_pass_through_transform
(
Number
<
K0PerThreadWrite
>
{}),
make_xor_with_modulo_transform
(
make_tuple
(
Number
<
KThreadReadPerm
*
M1
>
{},
Number
<
kfold
*
M0
/
mpair
>
{})),
make_pass_through_transform
(
Number
<
mpair
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}));
constexpr
auto
a_lds_block_desc_unmerged
=
transform_tensor_descriptor
(
a_lds_block_desc_permuted
,
make_tuple
(
make_pass_through_transform
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{}),
make_pass_through_transform
(
Number
<
K0PerThreadWrite
>
{}),
make_unmerge_transform
(
make_tuple
(
Number
<
KThreadReadPerm
>
{},
Number
<
M1
>
{})),
make_unmerge_transform
(
make_tuple
(
Number
<
kfold
>
{},
Number
<
M0
/
mpair
>
{})),
make_pass_through_transform
(
Number
<
mpair
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
0
,
3
>
{},
Sequence
<
4
,
5
>
{},
Sequence
<
6
>
{},
Sequence
<
7
>
{}));
constexpr
auto
a_lds_block_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_unmerged
,
make_tuple
(
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
KThreadReadPerm
>
{},
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{},
Number
<
kfold
>
{},
Number
<
K0PerThreadWrite
>
{})),
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
M0
/
mpair
>
{},
Number
<
mpair
>
{},
Number
<
M1
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
,
1
,
4
,
2
>
{},
Sequence
<
5
,
6
,
3
>
{},
Sequence
<
7
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
a_lds_block_desc_ak0_m_ak1
;
}
}
__device__
static
constexpr
auto
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()
{
// K0 -> N0/NWave -> NWave -> KLane -> NLane -> KPack
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
NXdlPerWave
>
{},
I1
,
Number
<
KRepeat
>
{},
Number
<
BK1Value
>
{}));
}
__device__
static
constexpr
auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
()
{
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
>
{},
I1
,
Number
<
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
{}));
return
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
;
}
using
BlockwiseGemmPipe
=
remove_cvref_t
<
decltype
(
BlockGemmBPreshufflePipeline_Selector
<
BlkGemmPipelineVer
,
BlkGemmPipeSched
,
BlockSize
,
ADataType
,
BDataType
,
ComputeTypeA
,
AccDataType
,
decltype
(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()),
decltype
(
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()),
decltype
(
MakeAMmaTileDescriptor_M0_M1_M2_K
(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
())),
decltype
(
MakeBMmaTileDescriptor_N0_N1_N2_K
(
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
())),
ABlockTransferSrcScalarPerVector
,
BBlockTransferSrcScalarPerVector
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
MPerXdl
,
NPerXdl
,
MXdlPerWave
,
NXdlPerWave
,
KPack
>
())
>
;
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1Number
,
BK1Number
);
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
// LDS allocation for C shuffle in LDS
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
constexpr
auto
c_block_size
=
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
();
return
math
::
max
(
a_block_space_size_aligned
*
sizeof
(
LDSTypeA
)
/
APackedSize
,
c_block_size
*
sizeof
(
CShuffleDataType
));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
__host__
static
constexpr
bool
CheckValidity
(
const
Argument
&
karg
)
{
static_assert
((
MPerBlock
%
(
MPerXdl
*
MXdlPerWave
)
==
0
)
&&
(
NPerBlock
%
(
NXdlPerWave
*
NPerXdl
))
==
0
,
"Invalid tuning param!"
);
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
&&
!
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
))
{
if
(
!
(
karg
.
M
%
MPerBlock
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg M value is not a multiple of MPerBlock! M: "
<<
karg
.
M
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
&&
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
))
{
if
(
!
(
karg
.
N
%
NPerBlock
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg N value is not a multiple of NPerBlock! N: "
<<
karg
.
N
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
KPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
))
{
auto
K_t
=
karg
.
KBatch
*
KPerBlock
;
if
(
!
(
karg
.
K
%
K_t
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K value is not a multiple of K_Batch * K0PerBlock * K1! K: "
<<
karg
.
K
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
constexpr
auto
KReadVec
=
math
::
lcm
(
AK1Number
,
BK1Number
);
auto
K_t
=
karg
.
KBatch
*
KReadVec
;
auto
KReadPadSplited
=
math
::
integer_divide_ceil
(
karg
.
K
,
K_t
)
*
KReadVec
;
if
((
KReadPadSplited
*
(
karg
.
KBatch
-
1
))
>=
karg
.
K
)
{
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
if
(
karg
.
K
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K ("
<<
karg
.
K
<<
") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<<
ABlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
if
(
karg
.
M
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg M ("
<<
karg
.
M
<<
") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<<
ABlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
if
(
karg
.
N
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg N ("
<<
karg
.
N
<<
") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<<
BBlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
if
(
karg
.
K
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K ("
<<
karg
.
K
<<
") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<<
BBlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
if
(
karg
.
N
%
CShuffleBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg N ("
<<
karg
.
N
<<
") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<<
CShuffleBlockTransferScalarPerVector_NPerBlock
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
if
(
karg
.
M
%
CShuffleBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg M ("
<<
karg
.
M
<<
") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<<
CShuffleBlockTransferScalarPerVector_NPerBlock
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
// check gridwise gemm pipeline
#if 1
const
auto
num_k_loop
=
karg
.
AK0
/
(
KPerBlock
/
AK1Value
);
if
(
num_k_loop
<=
BlockwiseGemmPipe
::
PrefetchStages
)
{
return
false
;
}
#endif
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return
true
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainKBlockLoop
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
BlockwiseGemmPipe
::
BlockHasHotloop
(
num_loop
);
}
__host__
__device__
static
constexpr
TailNumber
CalculateKBlockLoopTailNum
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
BlockwiseGemmPipe
::
BlockLoopTailNum
(
num_loop
);
}
template
<
typename
CGridDesc
>
__device__
static
constexpr
auto
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
CGridDesc
&
c_grid_desc_m_n
,
index_t
MBlock
,
index_t
NBlock
)
{
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{})),
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
return
c_grid_desc_mblock_mperblock_nblock_nperblock
;
}
// return block_id to C matrix tile idx (m0, n0) mapping
// if arch = gfx942
// using Block2CTileMapDefault = BlockToCTileMap_Grouped_M00_N0_M01Adapt<8, MPerBlock, NPerBlock>;
template
<
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
TailNumber
TailNum
=
TailNumber
::
Odd
>
__device__
static
void
Run
(
const
index_t
*
p_sorted_token_ids
,
const
index_t
*
p_sorted_expert_ids
,
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
DsGridPointer
&
p_ds_grid
,
CDataType
*
p_c_grid
,
void
*
p_shared
,
const
Problem
&
problem
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
ignore
=
b_element_op
;
const
auto
a_grid_desc_ak0_m_ak1
=
MakeAGridDescriptor_AK0_M_AK1
(
problem
.
NumTokens
,
problem
.
MPadded
,
problem
.
K
,
problem
.
KPadded
,
problem
.
StrideA
,
problem
.
AK0
);
const
auto
b_grid_desc_bpreshuffled
=
MakeBGridDescriptor_Preshuffled
(
problem
.
BN0Shuffled
,
problem
.
BK0Shuffled
);
const
auto
c_grid_desc_m_n
=
MakeCGridDescriptor_M_N
<
CLayout
>
(
problem
.
M
,
problem
.
MPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideC
);
// printf("tido %d size %d %d MNBLOCK %d %d %d %d\n", threadIdx.x, problem.StrideC, c_grid_desc_m_n.GetElementSpaceSize(),
// problem.MBlock, problem.NBlock, MPerBlock, NPerBlock);
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
c_grid_desc_m_n
,
problem
.
MBlock
,
problem
.
NBlock
);
const
index_t
block_n_id
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
x
);
const
index_t
block_m_id
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
y
);
const
index_t
expert_id
=
__builtin_amdgcn_readfirstlane
(
p_sorted_expert_ids
[
block_m_id
]);
// constexpr auto M0 = ABlockTransferThreadClusterLengths_AK0_M_AK1{}.At(I1);
constexpr
auto
AMThreads
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I1
);
constexpr
auto
AK0Threads
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I0
);
constexpr
auto
AK1Threads
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I2
);
constexpr
auto
AKThreads
=
AK0Threads
*
AK1Threads
;
constexpr
auto
AMRepeats
=
MPerBlock
/
AMThreads
;
// static_assert(MLoadRepeats == 1, "only support 1 line per thread now!");
const
index_t
token_pos
=
block_m_id
*
MPerBlock
+
threadIdx
.
x
/
AKThreads
*
AMRepeats
;
const
index_t
t0
=
(
p_sorted_token_ids
[
block_m_id
*
MPerBlock
]
&
0xffffff
);
if
(
t0
>=
problem
.
NumTokens
)
return
;
StaticallyIndexedArray
<
index_t
,
AMRepeats
>
gather_offsets
;
//= p_sorted_token_ids[token_pos];
static_for
<
0
,
AMRepeats
,
1
>
{}([
&
](
auto
m0
)
{
gather_offsets
(
m0
)
=
(
p_sorted_token_ids
[
token_pos
+
m0
]
&
0xffffff
)
*
problem
.
K
;
// printf("init off tid %d m %d off %d\n", threadIdx.x, m0(), gather_offsets(m0));
});
// const index_t m_block_data_idx_on_grid =
// __builtin_amdgcn_readfirstlane(block_m_id * MPerBlock);
const
index_t
expert_stride
=
__builtin_amdgcn_readfirstlane
(
problem
.
N
*
problem
.
K
);
// N0, K0, Blocksize*KPack
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_n_id
*
NXdlPerWave
);
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_ak0_m_ak1
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
+
expert_id
*
expert_stride
,
b_grid_desc_bpreshuffled
.
GetElementSpaceSize
());
// if(threadIdx.x==0)
// printf("tid %d eid %d expert_stride %d bufsize %d\n",
// threadIdx.x, expert_id, expert_stride, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
// dummy
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1_mod8
<
ThisThreadBlock
,
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
AK0Number
,
MPerBlock
,
AK1Number
>
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ADataType
,
LDSTypeA
,
decltype
(
a_grid_desc_ak0_m_ak1
),
decltype
(
a_block_desc_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
0
,
1
,
2
>
,
ABlockTransferSrcVectorDim
,
2
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
1
,
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
,
1
,
BlockwiseGemmPipe
::
GlobalBufferNum
>
(
a_grid_desc_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
),
a_element_op
,
a_block_desc_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
gather_offsets
);
// Thread-wise copy
// K0 -> N0/NWave -> NWave -> KLane -> NLane -> KPack
auto
b_block_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
BDataType
>
(
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
auto
b_blockwise_copy
=
ThreadwiseTensorSliceTransfer_v2
<
BDataType
,
BDataType
,
decltype
(
b_grid_desc_bpreshuffled
),
decltype
(
b_block_desc_bk0_n_bk1
),
Sequence
<
Number
<
NXdlPerWave
>
{},
I1
,
Number
<
KRepeat
>
{},
Number
<
BK1Value
>
{}
>
,
Sequence
<
0
,
1
,
2
,
3
>
,
3
,
BBlockTransferSrcScalarPerVector
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
>
(
b_grid_desc_bpreshuffled
,
make_multi_index
(
n_block_data_idx_on_grid
,
get_warp_local_1d_id
(),
0
,
KPack
*
(
get_thread_local_1d_id
()
%
warpSize
)));
// LDS allocation for A and B: be careful of alignment
// Cast after lds
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
LDSTypeA
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
AK1Number
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
0
,
0
,
KRepeat
,
0
);
// Blockwise GEMM pipeline
static_assert
(
std
::
is_default_constructible_v
<
BlockwiseGemmPipe
>
);
auto
blockwise_gemm_pipeline
=
BlockwiseGemmPipe
{};
auto
c_thread_buf
=
blockwise_gemm_pipeline
.
GetCThreadBuffer
();
const
index_t
num_k_block_main_loop
=
__builtin_amdgcn_readfirstlane
(
(
a_grid_desc_ak0_m_ak1
.
GetLength
(
I0
)
*
a_grid_desc_ak0_m_ak1
.
GetLength
(
I2
))
/
KPerBlock
);
blockwise_gemm_pipeline
.
template
Run
<
HasMainKBlockLoop
,
TailNum
>(
a_grid_desc_ak0_m_ak1
,
a_block_desc_ak0_m_ak1
,
a_blockwise_copy
,
a_grid_buf
,
a_block_buf
,
a_block_slice_copy_step
,
b_grid_desc_bpreshuffled
,
b_blockwise_copy
,
b_grid_buf
,
b_block_buf
,
b_block_slice_copy_step
,
c_thread_buf
,
num_k_block_main_loop
);
// shuffle C and write out
{
static_assert
(
MXdlPerWave
%
CShuffleMXdlPerWavePerShuffle
==
0
&&
NXdlPerWave
%
CShuffleNXdlPerWavePerShuffle
==
0
,
"wrong!"
);
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
// TODO: hacky, fix it!
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
blockwise_gemm_pipeline
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
=
blockwise_gemm_pipeline
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I4
);
constexpr
auto
M3
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I5
);
constexpr
auto
M4
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I6
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I7
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
auto
c_shuffle_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
CShuffleDataType
*>
(
p_shared
),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleMXdlPerWavePerShuffle
>
{},
// M0 (MXdlPerWave) per shuffle
M1
,
// M1 = MWave
M2
,
// M2 * M3 * M4 = MPerXdl
M3
,
M4
)),
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleNXdlPerWavePerShuffle
>
{},
// N0 (NXdlPerWave) per shuffle
N1
,
// N1 = NWave
N2
))),
// N2 = NPerXdl
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
,
2
,
4
,
5
,
6
>
{},
Sequence
<>
{},
Sequence
<
1
,
3
,
7
>
{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm_pipeline
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
,
M3
,
M4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_to_n0_n1_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_n0_n1_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// shuffle: threadwise copy C from VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
CShuffleDataType
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
I1
,
I1
,
M2
,
I1
,
M4
,
I1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_multi_index
(
0
,
0
,
m_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
m_thread_data_on_block_idx
[
I3
],
m_thread_data_on_block_idx
[
I4
],
n_thread_data_on_block_idx
[
I2
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
using
EDataType
=
CDataType
;
const
auto
ds_grid_desc_m_n
=
MakeDsGridDescriptor_M_N
(
problem
.
M
,
problem
.
MPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideDs
);
const
auto
ds_grid_desc_mblock_mperblock_nblock_nperblock
=
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
,
problem
.
MBlock
,
problem
.
NBlock
);
const
auto
ds_grid_buf
=
generate_tuple
(
[
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
const
DDataType
*
ptr_
=
p_ds_grid
[
i
];
// hack logic here to support different kind of strides. todo fix it.
// ascale t, 1; bscale E, N, 1, move ptr to E
if
(
i
.
value
==
1
)
{
ptr_
+=
expert_id
*
(
problem
.
StrideDs
[
1
]
?
problem
.
StrideDs
[
1
]
*
problem
.
N
:
1
);
// if ( threadIdx.x % 16 ==0)
// printf("bid %d eid %d b eoff %d %f\n", blockIdx.y, expert_id, expert_id * (problem.StrideDs[1]? problem.StrideDs[1] * problem.N : 1), ptr_[0]);
}
return
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
ptr_
,
ds_grid_desc_m_n
[
i
].
GetElementSpaceSize
());
},
Number
<
NumDTensor
>
{});
// tuple of reference to C/Ds tensor descriptors
const
auto
c_ds_desc_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_desc_mblock_mperblock_nblock_nperblock
[
i
];
},
Number
<
NumDTensor
>
{}));
// tuple of reference to C/Ds tensor descriptors
const
auto
c_ds_buf_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_buf
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_buf
[
i
];
},
Number
<
NumDTensor
>
{}));
// tuple of starting index of C/Ds blockwise copy
const
auto
idx_c_ds_block_begin
=
container_concat
(
make_tuple
(
make_multi_index
(
0
,
0
,
0
,
0
)),
generate_tuple
(
[
&
](
auto
)
{
return
make_multi_index
(
block_m_id
,
0
,
block_n_id
,
0
);
// return make_multi_index(block_work_idx[I0], 0, block_work_idx[I1], 0);
},
Number
<
NumDTensor
>
{}));
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock
=
c_grid_desc_mblock_mperblock_nblock_nperblock
;
using
CDEBlockTransferCluster
=
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
;
const
auto
EGlobalMemoryDataOperation
=
CGlobalMemoryDataOperation
;
constexpr
auto
EMThreads
=
CDEBlockTransferCluster
{}.
At
(
I0
)
*
CDEBlockTransferCluster
{}.
At
(
I1
);
constexpr
auto
EMRepeats
=
MPerBlock
/
EMThreads
;
constexpr
auto
ENThreads
=
CDEBlockTransferCluster
{}.
At
(
I2
)
*
CDEBlockTransferCluster
{}.
At
(
I3
);
const
index_t
c_token_pos
=
block_m_id
*
MPerBlock
+
threadIdx
.
x
/
ENThreads
*
EMRepeats
;
StaticallyIndexedArray
<
index_t
,
EMRepeats
>
scatter_offsets
;
//= p_sorted_token_ids[c_token_pos];
StaticallyIndexedArray
<
float
,
EMRepeats
>
scatter_weights
;
//= for topk
// too hack here, 2 specific for topk weights, fixme
const
float
*
p_sorted_weights
=
p_ds_grid
[
I0
];
static_for
<
0
,
EMRepeats
,
1
>
{}([
&
](
auto
m0
)
{
scatter_offsets
(
m0
)
=
0
;
scatter_weights
(
m0
)
=
p_sorted_weights
[(
c_token_pos
+
m0
)
*
problem
.
StrideDs
[
0
]];
// if(threadIdx.x % 16 == 0)
// printf("init off bid %d tid %d m %d off %d\n", blockIdx.y, threadIdx.x, m0(), scatter_offsets(m0));
});
auto
cde_block_copy_lds_and_global
=
ThreadGroupTensorSliceTransfer_v7r3_scatter
<
ThisThreadBlock
,
decltype
(
container_concat
(
make_tuple
(
CShuffleDataType
{}),
DsDataType
{})),
Tuple
<
EDataType
>
,
decltype
(
c_ds_desc_refs
),
decltype
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
)),
CElementwiseOperation
,
Sequence
<
static_cast
<
index_t
>
(
EGlobalMemoryDataOperation
)
>
,
// FIXME: make Sequence
// support arbitray type
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
,
// BlockSliceLengths,
CDEBlockTransferCluster
,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename ThreadClusterArrangeOrder,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename SrcDimAccessOrder,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename DstDimAccessOrder,
3
,
// index_t SrcVectorDim,
3
,
// index_t DstVectorDim,
CDEShuffleBlockTransferScalarPerVectors
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
sequence_merge_t
<
Sequence
<
true
>
,
uniform_sequence_gen_t
<
NumDTensor
,
false
>>
,
// ThreadTransferSrcResetCoordinateAfterRunFlags
Sequence
<
false
>
,
// ThreadTransferDstResetCoordinateAfterRunFlags
1
,
//ScatterDim
false
,
//OutputScatter: false, only use scatter weights
1
// ScatterWeightIdx: ascale
>
{
c_ds_desc_refs
,
idx_c_ds_block_begin
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
make_tuple
(
make_multi_index
(
block_m_id
,
0
,
block_n_id
,
0
)),
c_element_op
,
scatter_offsets
,
scatter_weights
};
auto
c_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_grid
,
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
// space filling curve for threadwise C in VGPR
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MXdlPerWave
,
NXdlPerWave
,
1
,
1
,
M2
,
1
,
M4
,
1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
1
,
1
,
M2
,
1
,
M4
,
1
>>
{};
constexpr
index_t
num_access
=
sfc_c_vgpr
.
GetNumOfAccess
();
// space filling curve for shuffled blockwise C/D/E
constexpr
auto
sfc_cde_block
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>>
{};
static_assert
(
num_access
==
sfc_cde_block
.
GetNumOfAccess
(),
"wrong!"
);
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
access_id
)
{
// make sure it's safe to write to LDS
block_sync_lds
();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
sfc_c_vgpr
.
GetIndexTupleOfNumber
(
access_id
),
c_thread_buf
,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
c_shuffle_block_buf
);
// make sure it's safe to read from LDS
block_sync_lds
();
// each block copy its data from LDS to global
cde_block_copy_lds_and_global
.
Run
(
c_ds_desc_refs
,
c_ds_buf_refs
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
tie
(
c_grid_buf
));
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
cde_lds_and_global_step
=
sfc_cde_block
.
GetForwardStep
(
access_id
);
// move on Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
cde_block_copy_lds_and_global
.
MoveSrcSliceWindow
(
c_ds_desc_refs
,
i
+
I1
,
cde_lds_and_global_step
);
});
// move on E
cde_block_copy_lds_and_global
.
MoveDstSliceWindow
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
I0
,
cde_lds_and_global_step
);
}
});
}
}
// template <bool HasMainKBlockLoop,
// InMemoryDataOperationEnum CGlobalMemoryDataOperation,
// TailNumber TailNum = TailNumber::Odd>
// __device__ static void Run_2Lds(const ADataType* p_a_grid,
// const BDataType* p_b_grid,
// DsGridPointer& p_ds_grid,
// CDataType* p_c_grid,
// void* p_shared,
// void* p_shared1,
// const Problem& problem,
// AElementwiseOperation a_element_op,
// BElementwiseOperation b_element_op,
// CElementwiseOperation c_element_op)
// {
// // const auto block_2_ctile_map = Block2CTileMapDefault{problem.M, problem.N, 4};
// // Run_2Lds<Block2CTileMapDefault, HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
// // p_a_grid,
// // p_b_grid,
// // p_ds_grid,
// // p_c_grid,
// // p_shared,
// // p_shared1,
// // problem,
// // a_element_op,
// // b_element_op,
// // c_element_op,
// // block_2_ctile_map);
// }
// template <typename Block2CTileMap,
// bool HasMainKBlockLoop,
// InMemoryDataOperationEnum CGlobalMemoryDataOperation,
// TailNumber TailNum = TailNumber::Odd>
// __device__ static void Run_2Lds(const ADataType* p_a_grid,
// const BDataType* p_b_grid,
// DsGridPointer& p_ds_grid,
// CDataType* p_c_grid,
// void* p_shared,
// void* p_shared1,
// const Problem& problem,
// AElementwiseOperation a_element_op,
// BElementwiseOperation b_element_op,
// CElementwiseOperation c_element_op,
// const Block2CTileMap& block_2_ctile_map)
// {
// }
};
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_moe_gemm_scatter.hpp
0 → 100644
View file @
1b0b7810
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle_selector.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7r3_scatter.hpp"
#define DEBUG_LOG 0
namespace
ck
{
// Currently we do not have a elegant way to put single lds buffer & double lds buffer pipe in same
// kernel function Blockers:
// 1. Two separted declaration of __shared__ pointer is the key to make sure data access operate on
// two lds chunks.
// 2. Occupied __shared__ won't release until whole shader end, a.k.a AB and C may not use same lds
// buffer when we declare __shared__ inside blkgemmpipe
template
<
typename
GridwiseGemm
,
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
index_t
MinimumOccupancy
=
1
,
TailNumber
TailNum
=
TailNumber
::
Even
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
MinimumOccupancy
)
#endif
// __attribute__((amdgpu_waves_per_eu(1, 1)))
kernel_moe_gemm_scatter
(
typename
GridwiseGemm
::
Argument
karg
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
auto
splitk_batch_offset
=
typename
GridwiseGemm
::
SplitKBatchOffset
(
karg
,
blockIdx
.
z
);
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
,
CGlobalMemoryDataOperation
,
TailNum
>(
karg
.
p_sorted_token_ids
,
karg
.
p_sorted_expert_ids
,
karg
.
p_a_grid
+
splitk_batch_offset
.
a_k_split_offset
,
karg
.
p_b_grid
+
splitk_batch_offset
.
b_k_split_offset
,
karg
.
p_ds_grid
,
karg
.
p_c_grid
,
p_shared
,
karg
,
karg
.
a_element_op
,
karg
.
b_element_op
,
karg
.
c_element_op
);
#else
ignore
=
karg
;
#endif // end of if (defined(__gfx9__))
}
// template <typename GridwiseGemm,
// bool HasMainKBlockLoop,
// InMemoryDataOperationEnum CGlobalMemoryDataOperation,
// index_t MinimumOccupancy = 1,
// TailNumber TailNum = TailNumber::Even>
// __global__ void
// #if CK_USE_LAUNCH_BOUNDS
// __launch_bounds__(CK_MAX_THREAD_PER_BLOCK, MinimumOccupancy)
// #endif
// // __attribute__((amdgpu_waves_per_eu(1, 1)))
// kernel_moe_gemm_scatter_2lds(typename GridwiseGemm::Argument karg)
// {
// #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
// __shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
// __shared__ char p_shared1[GridwiseGemm::GetSharedMemoryNumberOfByte()];
// auto splitk_batch_offset = typename GridwiseGemm::SplitKBatchOffset(karg, blockIdx.z);
// GridwiseGemm::template Run_2Lds<HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
// karg.p_a_grid + splitk_batch_offset.a_k_split_offset,
// karg.p_b_grid + splitk_batch_offset.b_k_split_offset,
// karg.p_ds_grid,
// karg.p_c_grid,
// p_shared,
// p_shared1,
// karg,
// karg.a_element_op,
// karg.b_element_op,
// karg.c_element_op);
// #else
// ignore = karg;
// #endif // end of if (defined(__gfx9__))
// }
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1Value
,
index_t
BK1Value
,
index_t
MPerXdl
,
index_t
NPerXdl
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
AThreadTransferSrcResetCoordinateAfterRun
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BThreadTransferSrcResetCoordinateAfterRun
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
CDEShuffleBlockTransferScalarPerVectors
,
BlockGemmPipelineScheduler
BlkGemmPipeSched
=
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
BlkGemmPipelineVer
=
BlockGemmPipelineVersion
::
v1
,
typename
ComputeTypeA
=
CDataType
,
typename
ComputeTypeB
=
ComputeTypeA
,
typename
LDSTypeA
=
ADataType
,
typename
LDSTypeB
=
BDataType
>
struct
GridwiseMoeGemmScatter
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
static
constexpr
auto
CShuffleBlockTransferScalarPerVector_NPerBlock
=
CDEShuffleBlockTransferScalarPerVectors
{}[
I0
];
// K1 should be Number<...>
static
constexpr
auto
AK0Number
=
Number
<
KPerBlock
/
AK1Value
>
{};
static
constexpr
auto
BK0Number
=
Number
<
KPerBlock
/
BK1Value
>
{};
static
constexpr
auto
AK1Number
=
Number
<
AK1Value
>
{};
static
constexpr
auto
BK1Number
=
Number
<
BK1Value
>
{};
static
constexpr
auto
BlockSizeNumber
=
Number
<
BlockSize
>
{};
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
using
mfma_selector
=
MfmaSelector
<
ComputeTypeA
,
MPerXdl
,
NPerXdl
,
ComputeTypeB
>
;
static
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1Number
,
BK1Number
),
mfma_selector
::
selected_mfma
.
k_per_blk
);
static
constexpr
index_t
KLane
=
mfma_selector
::
GetKPerXdlops
()
/
mfma_selector
::
GetK1PerXdlops
();
static
constexpr
index_t
KRepeat
=
KPerBlock
/
KLane
/
KPack
;
static
constexpr
index_t
NLane
=
NPerXdl
;
static
constexpr
index_t
NWave
=
NPerBlock
/
NPerXdl
/
NXdlPerWave
;
static_assert
(
NWave
*
warpSize
==
BlockSize
);
// static constexpr index_t NumTokens = 1;
static
constexpr
index_t
SortedTileSize
=
MPerBlock
;
static
constexpr
auto
MakeDsGridPointer
()
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
return
static_cast
<
const
DDataType
*>
(
nullptr
);
},
Number
<
NumDTensor
>
{});
}
using
DsGridPointer
=
decltype
(
MakeDsGridPointer
());
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
__host__
static
auto
CalculateGridSize
(
index_t
M
,
index_t
N
)
{
return
std
::
make_tuple
(
math
::
integer_divide_ceil
(
N
,
NPerBlock
),
math
::
integer_divide_ceil
(
M
,
MPerBlock
),
1
);
}
__host__
__device__
static
auto
CalculateMPadded
(
index_t
M
)
{
return
math
::
integer_least_multiple
(
M
,
MPerBlock
);
}
__host__
__device__
static
auto
CalculateNPadded
(
index_t
N
)
{
return
math
::
integer_least_multiple
(
N
,
NPerBlock
);
}
__host__
__device__
static
auto
CalculateBN0Shuffled
(
index_t
N
)
{
return
math
::
integer_divide_ceil
(
N
,
NLane
);
}
__host__
__device__
static
auto
CalculateBK0Shuffled
(
index_t
K
)
{
return
math
::
integer_divide_ceil
(
K
,
KLane
*
KPack
);
}
__host__
__device__
static
auto
CalculateKPadded
(
index_t
K
)
{
return
math
::
integer_divide_ceil
(
K
,
KPerBlock
)
*
KPerBlock
;
}
__host__
__device__
static
auto
CalculateAK0Padded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
(
KPerBlock
/
AK1Value
);
}
__host__
__device__
static
auto
CalculateBK0Padded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
(
KPerBlock
/
BK1Value
);
}
__host__
__device__
static
auto
CalculateKPadded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
KPerBlock
;
}
__host__
__device__
static
auto
CalculateKRead
(
index_t
K
,
index_t
K_Batch
=
1
)
{
constexpr
auto
KReadVec
=
math
::
lcm
(
AK1Number
,
BK1Number
);
auto
K_t
=
K_Batch
*
KReadVec
;
return
(
K
+
K_t
-
1
)
/
K_t
*
KReadVec
;
}
__host__
__device__
static
auto
CalculateMBlock
(
index_t
M
)
{
return
math
::
integer_divide_ceil
(
M
,
MPerBlock
);
}
__host__
__device__
static
auto
CalculateNBlock
(
index_t
N
)
{
return
math
::
integer_divide_ceil
(
N
,
NPerBlock
);
}
template
<
index_t
MNXdlPerWave
,
index_t
MNWaves
,
index_t
MNPerXdl
,
typename
TileDesc_K0_MN_K1
>
__host__
__device__
static
constexpr
auto
MakeGemmMmaTileDescriptor
(
const
TileDesc_K0_MN_K1
&
)
{
constexpr
index_t
K0
=
TileDesc_K0_MN_K1
{}.
GetLength
(
Number
<
0
>
{});
constexpr
index_t
K1
=
TileDesc_K0_MN_K1
{}.
GetLength
(
Number
<
2
>
{});
return
transform_tensor_descriptor
(
TileDesc_K0_MN_K1
{},
make_tuple
(
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
K0
>
{},
Number
<
K1
>
{})),
make_unmerge_transform
(
make_tuple
(
Number
<
MNXdlPerWave
>
{},
Number
<
MNWaves
>
{},
Number
<
MNPerXdl
>
{}))),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
3
>
{},
Sequence
<
0
,
1
,
2
>
{}));
}
__host__
__device__
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
index_t
M
,
index_t
MPad
,
index_t
K
,
index_t
KPad
,
index_t
StrideA
,
index_t
AK0
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
I1
,
StrideA
));
}
}();
using
GemmSpecialization
=
tensor_operation
::
device
::
GemmSpecialization
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both M and K
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
MPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad M, but not K
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_right_pad_transform
(
M
,
MPad
-
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad K, but not M
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_pass_through_transform
(
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
{
// not pad M or K
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
}
__host__
__device__
static
auto
MakeBGridDescriptor_Preshuffled
(
index_t
N0
,
index_t
K0
)
{
constexpr
index_t
NkSwizzleNumber
=
Number
<
warpSize
*
KPack
>
{};
return
make_naive_tensor_descriptor
(
make_tuple
(
N0
/
NWave
,
NWave
,
K0
,
NkSwizzleNumber
),
make_tuple
(
NWave
*
K0
*
NkSwizzleNumber
,
K0
*
NkSwizzleNumber
,
NkSwizzleNumber
,
I1
));
}
__host__
__device__
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
index_t
K
,
index_t
KPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideB
,
index_t
BK0
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
K
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
K
),
make_tuple
(
StrideB
,
I1
));
}
}();
using
GemmSpecialization
=
tensor_operation
::
device
::
GemmSpecialization
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both N and K
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_right_pad_transform
(
N
,
NPad
-
N
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
NPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad N, but not K
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad K, but not N
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_pass_through_transform
(
N
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
{
// not pad N or K
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
}
template
<
typename
ABlockDesc_AK0_M_AK1
>
__host__
__device__
static
constexpr
auto
MakeAMmaTileDescriptor_M0_M1_M2_K
(
const
ABlockDesc_AK0_M_AK1
&
)
{
constexpr
index_t
MWaves
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
return
MakeGemmMmaTileDescriptor
<
MXdlPerWave
,
MWaves
,
MPerXdl
>
(
ABlockDesc_AK0_M_AK1
{});
}
template
<
typename
BBlockDesc_BK0_N_BK1
>
__host__
__device__
static
constexpr
auto
MakeBMmaTileDescriptor_N0_N1_N2_K
(
const
BBlockDesc_BK0_N_BK1
&
)
{
return
MakeGemmMmaTileDescriptor
<
NXdlPerWave
,
NWave
,
NPerXdl
>
(
BBlockDesc_BK0_N_BK1
{});
}
template
<
typename
ELayout
>
__host__
__device__
static
auto
MakeCGridDescriptor_M_N
(
index_t
M
,
index_t
MPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideC
)
{
const
auto
c_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideC
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I1
,
StrideC
));
}
}();
// pad M and N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
template
<
typename
DLayout
>
__host__
__device__
static
auto
MakeDGridDescriptor_M_N
(
index_t
M
,
index_t
MPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideC
)
{
const
auto
c_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
DLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideC
,
I0
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
DLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I0
,
StrideC
));
}
}();
// pad M and N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
__host__
__device__
static
auto
MakeDsGridDescriptor_M_N
(
index_t
M
,
index_t
MPad
,
index_t
N
,
index_t
NPad
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
MakeDGridDescriptor_M_N
<
DLayout
>
(
M
,
MPad
,
N
,
NPad
,
StrideDs
[
i
]);
},
Number
<
NumDTensor
>
{});
}
template
<
typename
DsGridDesc
>
__device__
static
constexpr
auto
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
DsGridDesc
&
ds_grid_desc_m_n
,
index_t
MBlock
,
index_t
NBlock
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
return
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
[
i
],
MBlock
,
NBlock
);
},
Number
<
NumDTensor
>
{});
}
struct
Problem
{
__host__
__device__
Problem
(
index_t
NumTokens_
,
index_t
M_
,
index_t
N_
,
index_t
K_
,
index_t
StrideA_
,
index_t
StrideB_
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs_
,
index_t
StrideC_
,
index_t
KBatch_
)
:
NumTokens
{
NumTokens_
},
M
{
M_
},
N
{
N_
},
K
{
K_
},
StrideA
{
StrideA_
},
StrideB
{
StrideB_
},
StrideDs
{
StrideDs_
},
StrideC
{
StrideC_
},
KBatch
{
KBatch_
},
MPadded
{
CalculateMPadded
(
M_
)},
NPadded
{
CalculateNPadded
(
N_
)},
KRead
{
CalculateKRead
(
K_
,
KBatch_
)},
KPadded
{
CalculateKPadded
(
K_
,
KBatch_
)},
AK0
{
CalculateAK0Padded
(
K_
,
KBatch_
)},
BK0
{
CalculateBK0Padded
(
K_
,
KBatch_
)},
MBlock
{
CalculateMBlock
(
M_
)},
NBlock
{
CalculateNBlock
(
N_
)},
BN0Shuffled
{
CalculateBN0Shuffled
(
N_
)},
BK0Shuffled
{
CalculateBK0Shuffled
(
K_
)}
{
}
__host__
void
Print
()
const
{
std
::
cout
<<
"problem {"
<<
"NumTokens:"
<<
NumTokens
<<
", "
<<
"M:"
<<
M
<<
", "
<<
"N:"
<<
N
<<
", "
<<
"K:"
<<
K
<<
", "
<<
"SA:"
<<
StrideA
<<
", "
<<
"SB:"
<<
StrideB
<<
", "
<<
"SC:"
<<
StrideC
<<
", "
<<
"MP:"
<<
MPadded
<<
", "
<<
"NP:"
<<
NPadded
<<
", "
<<
"KRead:"
<<
KRead
<<
", "
<<
"KP:"
<<
KPadded
<<
", "
<<
"AK0:"
<<
AK0
<<
", "
<<
"BK0:"
<<
BK0
<<
", "
<<
"MBlock: "
<<
MBlock
<<
", "
<<
"NBlock: "
<<
NBlock
<<
"}"
<<
std
::
endl
;
}
index_t
NumTokens
;
index_t
M
;
index_t
N
;
index_t
K
;
index_t
StrideA
;
index_t
StrideB
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
;
index_t
StrideC
;
index_t
KBatch
;
index_t
MPadded
;
index_t
NPadded
;
index_t
KRead
;
index_t
KPadded
;
index_t
AK0
;
index_t
BK0
;
index_t
MBlock
;
index_t
NBlock
;
// FOR PRESHUFFLE ONLY
index_t
BN0Shuffled
;
index_t
BK0Shuffled
;
};
// Argument
struct
Argument
:
public
tensor_operation
::
device
::
BaseArgument
,
public
Problem
{
__host__
Argument
(
const
index_t
*
p_sorted_token_ids_
,
const
index_t
*
p_sorted_expert_ids_
,
const
ADataType
*
p_a_grid_
,
const
BDataType
*
p_b_grid_
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid_
,
CDataType
*
p_c_grid_
,
index_t
NumTokens_
,
index_t
M_
,
index_t
N_
,
index_t
K_
,
index_t
StrideA_
,
index_t
StrideB_
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs_
,
index_t
StrideC_
,
index_t
k_batch_
,
AElementwiseOperation
a_element_op_
,
BElementwiseOperation
b_element_op_
,
CElementwiseOperation
c_element_op_
)
:
Problem
{
NumTokens_
,
M_
,
N_
,
K_
,
StrideA_
,
StrideB_
,
StrideDs_
,
StrideC_
,
k_batch_
},
p_sorted_token_ids
{
p_sorted_token_ids_
},
p_sorted_expert_ids
{
p_sorted_expert_ids_
},
p_a_grid
{
p_a_grid_
},
p_b_grid
{
p_b_grid_
},
p_ds_grid
{},
p_c_grid
{
p_c_grid_
},
a_element_op
{
a_element_op_
},
b_element_op
{
b_element_op_
},
c_element_op
{
c_element_op_
}
{
// populate pointer, desc for Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DDataType_
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid
(
i
)
=
static_cast
<
const
DDataType_
*>
(
p_ds_grid_
[
i
]);
});
}
const
index_t
*
p_sorted_token_ids
;
const
index_t
*
p_sorted_expert_ids
;
const
ADataType
*
p_a_grid
;
const
BDataType
*
p_b_grid
;
DsGridPointer
p_ds_grid
;
CDataType
*
p_c_grid
;
const
AElementwiseOperation
a_element_op
;
const
BElementwiseOperation
b_element_op
;
const
CElementwiseOperation
c_element_op
;
};
struct
SplitKBatchOffset
{
__device__
SplitKBatchOffset
(
Argument
&
karg
,
index_t
k_id
)
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
a_k_split_offset
=
k_id
*
karg
.
KRead
;
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
a_k_split_offset
=
k_id
*
karg
.
KRead
*
karg
.
StrideA
;
}
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>
)
{
b_k_split_offset
=
k_id
*
karg
.
KRead
*
karg
.
StrideB
;
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>
)
{
// KPack * NLane * KLane * K0 * N0
b_k_split_offset
=
k_id
*
karg
.
KRead
*
NLane
;
}
if
(
k_id
<
karg
.
KBatch
-
1
)
{
karg
.
K
=
karg
.
KRead
;
}
else
{
karg
.
K
=
karg
.
K
-
karg
.
KRead
*
(
karg
.
KBatch
-
1
);
}
}
index_t
a_k_split_offset
;
index_t
b_k_split_offset
;
};
__device__
static
constexpr
auto
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()
{
// A matrix in LDS memory, dst of blockwise copy
if
constexpr
(
ABlockLdsExtraM
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
AK0Number
,
Number
<
MPerBlock
>
{},
AK1Number
),
make_tuple
(
AK1Number
,
Number
<
KPerBlock
+
ABlockLdsExtraM
>
{},
I1
));
}
// xor tensor transformation request more unnecessary vgpr usage, would cause register spill
// in some cases.
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
constexpr
auto
MLdsLayer
=
32
*
4
/
KPerBlock
/
sizeof
(
LDSTypeA
)
<
1
?
1
:
32
*
4
/
KPerBlock
/
sizeof
(
LDSTypeA
);
constexpr
auto
a_lds_block_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
AK0Number
*
Number
<
MLdsLayer
>
{},
Number
<
MPerBlock
/
MLdsLayer
>
{},
AK1Number
),
make_tuple
(
AK1Number
,
Number
<
KPerBlock
*
MLdsLayer
>
{},
I1
));
constexpr
auto
a_lds_block_desc_permuted
=
transform_tensor_descriptor
(
a_lds_block_desc
,
make_tuple
(
make_xor_with_modulo_transform
(
make_tuple
(
Number
<
MPerBlock
/
MLdsLayer
>
{},
Number
<
AK0Number
*
MLdsLayer
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
1
,
0
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
1
,
0
>
{},
Sequence
<
2
>
{}));
constexpr
auto
a_lds_block_desc_ak0_mldslayer_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_permuted
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0Number
,
Number
<
MLdsLayer
>
{})),
make_pass_through_transform
(
Number
<
MPerBlock
/
MLdsLayer
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{},
Sequence
<
3
>
{}));
constexpr
auto
a_lds_block_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_ak0_mldslayer_m_ak1
,
make_tuple
(
make_pass_through_transform
(
AK0Number
),
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
MPerBlock
/
MLdsLayer
>
{},
Number
<
MLdsLayer
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
a_lds_block_desc_ak0_m_ak1
;
}
else
// ColumnMajor A
{
// kfold and mpair dimension is not always required.
// more dimension in merge_transform increase the difficulty of generating immarg offset
// for compiler.
constexpr
auto
M0
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I1
);
constexpr
auto
M1
=
MPerBlock
/
M0
;
constexpr
auto
KThreadWrite
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I0
);
constexpr
auto
K0PerThreadWrite
=
AK0Number
/
KThreadWrite
;
constexpr
auto
KThreadRead
=
64
/
MPerXdl
;
constexpr
auto
K0PerThreadRead
=
AK0Number
/
KThreadRead
;
constexpr
auto
kfold
=
(
AK1Number
*
M0
*
sizeof
(
LDSTypeA
)
>
128
)
?
1
:
128
/
(
AK1Number
*
M0
*
sizeof
(
LDSTypeA
));
constexpr
auto
KThreadReadPerm
=
(
kfold
*
K0PerThreadWrite
/
K0PerThreadRead
)
>
1
?
KThreadRead
/
(
kfold
*
K0PerThreadWrite
/
K0PerThreadRead
)
:
KThreadRead
;
// 1<=mpair<=n0
constexpr
auto
mpair
=
(
AK1Number
*
MPerXdl
*
sizeof
(
LDSTypeA
)
>
128
)
?
1
:
((
128
/
(
AK1Number
*
MPerXdl
*
sizeof
(
LDSTypeA
)))
>
M0
?
M0
:
128
/
(
AK1Number
*
MPerXdl
*
sizeof
(
LDSTypeA
)));
constexpr
auto
a_lds_block_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{},
Number
<
K0PerThreadWrite
>
{},
Number
<
KThreadReadPerm
*
M1
>
{},
Number
<
kfold
*
M0
/
mpair
>
{},
Number
<
mpair
>
{},
AK1Number
));
constexpr
auto
a_lds_block_desc_permuted
=
transform_tensor_descriptor
(
a_lds_block_desc
,
make_tuple
(
make_pass_through_transform
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{}),
make_pass_through_transform
(
Number
<
K0PerThreadWrite
>
{}),
make_xor_with_modulo_transform
(
make_tuple
(
Number
<
KThreadReadPerm
*
M1
>
{},
Number
<
kfold
*
M0
/
mpair
>
{})),
make_pass_through_transform
(
Number
<
mpair
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}));
constexpr
auto
a_lds_block_desc_unmerged
=
transform_tensor_descriptor
(
a_lds_block_desc_permuted
,
make_tuple
(
make_pass_through_transform
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{}),
make_pass_through_transform
(
Number
<
K0PerThreadWrite
>
{}),
make_unmerge_transform
(
make_tuple
(
Number
<
KThreadReadPerm
>
{},
Number
<
M1
>
{})),
make_unmerge_transform
(
make_tuple
(
Number
<
kfold
>
{},
Number
<
M0
/
mpair
>
{})),
make_pass_through_transform
(
Number
<
mpair
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
0
,
3
>
{},
Sequence
<
4
,
5
>
{},
Sequence
<
6
>
{},
Sequence
<
7
>
{}));
constexpr
auto
a_lds_block_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_unmerged
,
make_tuple
(
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
KThreadReadPerm
>
{},
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{},
Number
<
kfold
>
{},
Number
<
K0PerThreadWrite
>
{})),
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
M0
/
mpair
>
{},
Number
<
mpair
>
{},
Number
<
M1
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
,
1
,
4
,
2
>
{},
Sequence
<
5
,
6
,
3
>
{},
Sequence
<
7
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
a_lds_block_desc_ak0_m_ak1
;
}
}
__device__
static
constexpr
auto
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()
{
// K0 -> N0/NWave -> NWave -> KLane -> NLane -> KPack
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
NXdlPerWave
>
{},
I1
,
Number
<
KRepeat
>
{},
Number
<
BK1Value
>
{}));
}
__device__
static
constexpr
auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
()
{
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
>
{},
I1
,
Number
<
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
{}));
return
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
;
}
using
BlockwiseGemmPipe
=
remove_cvref_t
<
decltype
(
BlockGemmBPreshufflePipeline_Selector
<
BlkGemmPipelineVer
,
BlkGemmPipeSched
,
BlockSize
,
LDSTypeA
,
LDSTypeB
,
ComputeTypeA
,
AccDataType
,
decltype
(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()),
decltype
(
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()),
decltype
(
MakeAMmaTileDescriptor_M0_M1_M2_K
(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
())),
decltype
(
MakeBMmaTileDescriptor_N0_N1_N2_K
(
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
())),
ABlockTransferSrcScalarPerVector
,
BBlockTransferSrcScalarPerVector
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
MPerXdl
,
NPerXdl
,
MXdlPerWave
,
NXdlPerWave
,
KPack
>
())
>
;
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1Number
,
BK1Number
);
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
// LDS allocation for C shuffle in LDS
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
constexpr
auto
c_block_size
=
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
();
return
math
::
max
(
a_block_space_size_aligned
*
sizeof
(
LDSTypeA
),
c_block_size
*
sizeof
(
CShuffleDataType
));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
__host__
static
constexpr
bool
CheckValidity
(
const
Argument
&
karg
)
{
static_assert
((
MPerBlock
%
(
MPerXdl
*
MXdlPerWave
)
==
0
)
&&
(
NPerBlock
%
(
NXdlPerWave
*
NPerXdl
))
==
0
,
"Invalid tuning param!"
);
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
&&
!
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
))
{
if
(
!
(
karg
.
M
%
MPerBlock
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg M value is not a multiple of MPerBlock! M: "
<<
karg
.
M
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
&&
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
))
{
if
(
!
(
karg
.
N
%
NPerBlock
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg N value is not a multiple of NPerBlock! N: "
<<
karg
.
N
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
KPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
))
{
auto
K_t
=
karg
.
KBatch
*
KPerBlock
;
if
(
!
(
karg
.
K
%
K_t
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K value is not a multiple of K_Batch * K0PerBlock * K1! K: "
<<
karg
.
K
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
constexpr
auto
KReadVec
=
math
::
lcm
(
AK1Number
,
BK1Number
);
auto
K_t
=
karg
.
KBatch
*
KReadVec
;
auto
KReadPadSplited
=
math
::
integer_divide_ceil
(
karg
.
K
,
K_t
)
*
KReadVec
;
if
((
KReadPadSplited
*
(
karg
.
KBatch
-
1
))
>=
karg
.
K
)
{
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
if
(
karg
.
K
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K ("
<<
karg
.
K
<<
") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<<
ABlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
if
(
karg
.
M
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg M ("
<<
karg
.
M
<<
") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<<
ABlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
if
(
karg
.
N
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg N ("
<<
karg
.
N
<<
") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<<
BBlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
if
(
karg
.
K
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K ("
<<
karg
.
K
<<
") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<<
BBlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
if
(
karg
.
N
%
CShuffleBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg N ("
<<
karg
.
N
<<
") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<<
CShuffleBlockTransferScalarPerVector_NPerBlock
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
if
(
karg
.
M
%
CShuffleBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg M ("
<<
karg
.
M
<<
") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<<
CShuffleBlockTransferScalarPerVector_NPerBlock
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
// check gridwise gemm pipeline
#if 1
const
auto
num_k_loop
=
karg
.
AK0
/
(
KPerBlock
/
AK1Value
);
if
(
num_k_loop
<=
BlockwiseGemmPipe
::
PrefetchStages
)
{
return
false
;
}
#endif
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return
true
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainKBlockLoop
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
BlockwiseGemmPipe
::
BlockHasHotloop
(
num_loop
);
}
__host__
__device__
static
constexpr
TailNumber
CalculateKBlockLoopTailNum
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
BlockwiseGemmPipe
::
BlockLoopTailNum
(
num_loop
);
}
template
<
typename
CGridDesc
>
__device__
static
constexpr
auto
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
CGridDesc
&
c_grid_desc_m_n
,
index_t
MBlock
,
index_t
NBlock
)
{
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{})),
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
return
c_grid_desc_mblock_mperblock_nblock_nperblock
;
}
// return block_id to C matrix tile idx (m0, n0) mapping
// if arch = gfx942
// using Block2CTileMapDefault = BlockToCTileMap_Grouped_M00_N0_M01Adapt<8, MPerBlock, NPerBlock>;
template
<
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
TailNumber
TailNum
=
TailNumber
::
Odd
>
__device__
static
void
Run
(
const
index_t
*
p_sorted_token_ids
,
const
index_t
*
p_sorted_expert_ids
,
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
DsGridPointer
&
p_ds_grid
,
CDataType
*
p_c_grid
,
void
*
p_shared
,
const
Problem
&
problem
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
ignore
=
b_element_op
;
const
auto
a_grid_desc_ak0_m_ak1
=
MakeAGridDescriptor_AK0_M_AK1
(
problem
.
M
,
problem
.
MPadded
,
problem
.
K
,
problem
.
KPadded
,
problem
.
StrideA
,
problem
.
AK0
);
const
auto
b_grid_desc_bpreshuffled
=
MakeBGridDescriptor_Preshuffled
(
problem
.
BN0Shuffled
,
problem
.
BK0Shuffled
);
const
auto
c_grid_desc_m_n
=
MakeCGridDescriptor_M_N
<
CLayout
>
(
problem
.
NumTokens
,
problem
.
MPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideC
);
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
c_grid_desc_m_n
,
problem
.
MBlock
,
problem
.
NBlock
);
const
index_t
block_n_id
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
x
);
const
index_t
block_m_id
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
y
);
const
index_t
expert_id
=
__builtin_amdgcn_readfirstlane
(
p_sorted_expert_ids
[
block_m_id
]);
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_m_id
*
MPerBlock
);
const
index_t
expert_stride
=
__builtin_amdgcn_readfirstlane
(
problem
.
N
*
problem
.
K
);
const
index_t
t0
=
(
p_sorted_token_ids
[
block_m_id
*
MPerBlock
]
&
0xffffff
);
if
(
t0
>=
problem
.
NumTokens
)
return
;
// N0, K0, Blocksize*KPack
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_n_id
*
NXdlPerWave
);
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_ak0_m_ak1
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
+
expert_id
*
expert_stride
,
b_grid_desc_bpreshuffled
.
GetElementSpaceSize
());
// if(threadIdx.x==0)
// printf("tid %d eid %d expert_stride %d bufsize %d\n",
// threadIdx.x, expert_id, expert_stride, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
// dummy
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
AK0Number
,
MPerBlock
,
AK1Number
>
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ADataType
,
LDSTypeA
,
decltype
(
a_grid_desc_ak0_m_ak1
),
decltype
(
a_block_desc_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
0
,
1
,
2
>
,
ABlockTransferSrcVectorDim
,
2
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
1
,
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
,
BlockwiseGemmPipe
::
GlobalBufferNum
>
(
a_grid_desc_ak0_m_ak1
,
make_multi_index
(
0
,
m_block_data_idx_on_grid
,
0
),
a_element_op
,
a_block_desc_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// Thread-wise copy
// K0 -> N0/NWave -> NWave -> KLane -> NLane -> KPack
auto
b_block_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
BDataType
>
(
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
auto
b_blockwise_copy
=
ThreadwiseTensorSliceTransfer_v2
<
BDataType
,
BDataType
,
decltype
(
b_grid_desc_bpreshuffled
),
decltype
(
b_block_desc_bk0_n_bk1
),
Sequence
<
Number
<
NXdlPerWave
>
{},
I1
,
Number
<
KRepeat
>
{},
Number
<
BK1Value
>
{}
>
,
Sequence
<
0
,
1
,
2
,
3
>
,
3
,
BBlockTransferSrcScalarPerVector
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
>
(
b_grid_desc_bpreshuffled
,
make_multi_index
(
n_block_data_idx_on_grid
,
get_warp_local_1d_id
(),
0
,
KPack
*
(
get_thread_local_1d_id
()
%
warpSize
)));
// LDS allocation for A and B: be careful of alignment
// Cast after lds
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
LDSTypeA
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
AK1Number
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
0
,
0
,
KRepeat
,
0
);
// Blockwise GEMM pipeline
static_assert
(
std
::
is_default_constructible_v
<
BlockwiseGemmPipe
>
);
auto
blockwise_gemm_pipeline
=
BlockwiseGemmPipe
{};
auto
c_thread_buf
=
blockwise_gemm_pipeline
.
GetCThreadBuffer
();
const
index_t
num_k_block_main_loop
=
__builtin_amdgcn_readfirstlane
(
(
a_grid_desc_ak0_m_ak1
.
GetLength
(
I0
)
*
a_grid_desc_ak0_m_ak1
.
GetLength
(
I2
))
/
KPerBlock
);
blockwise_gemm_pipeline
.
template
Run
<
HasMainKBlockLoop
,
TailNum
>(
a_grid_desc_ak0_m_ak1
,
a_block_desc_ak0_m_ak1
,
a_blockwise_copy
,
a_grid_buf
,
a_block_buf
,
a_block_slice_copy_step
,
b_grid_desc_bpreshuffled
,
b_blockwise_copy
,
b_grid_buf
,
b_block_buf
,
b_block_slice_copy_step
,
c_thread_buf
,
num_k_block_main_loop
);
// shuffle C and write out
{
static_assert
(
MXdlPerWave
%
CShuffleMXdlPerWavePerShuffle
==
0
&&
NXdlPerWave
%
CShuffleNXdlPerWavePerShuffle
==
0
,
"wrong!"
);
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
// TODO: hacky, fix it!
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
blockwise_gemm_pipeline
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
=
blockwise_gemm_pipeline
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I4
);
constexpr
auto
M3
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I5
);
constexpr
auto
M4
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I6
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I7
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
auto
c_shuffle_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
CShuffleDataType
*>
(
p_shared
),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleMXdlPerWavePerShuffle
>
{},
// M0 (MXdlPerWave) per shuffle
M1
,
// M1 = MWave
M2
,
// M2 * M3 * M4 = MPerXdl
M3
,
M4
)),
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleNXdlPerWavePerShuffle
>
{},
// N0 (NXdlPerWave) per shuffle
N1
,
// N1 = NWave
N2
))),
// N2 = NPerXdl
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
,
2
,
4
,
5
,
6
>
{},
Sequence
<>
{},
Sequence
<
1
,
3
,
7
>
{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm_pipeline
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
,
M3
,
M4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_to_n0_n1_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_n0_n1_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// shuffle: threadwise copy C from VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
CShuffleDataType
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
I1
,
I1
,
M2
,
I1
,
M4
,
I1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_multi_index
(
0
,
0
,
m_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
m_thread_data_on_block_idx
[
I3
],
m_thread_data_on_block_idx
[
I4
],
n_thread_data_on_block_idx
[
I2
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
using
EDataType
=
CDataType
;
const
auto
ds_grid_desc_m_n
=
MakeDsGridDescriptor_M_N
(
problem
.
M
,
problem
.
MPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideDs
);
const
auto
ds_grid_desc_mblock_mperblock_nblock_nperblock
=
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
,
problem
.
MBlock
,
problem
.
NBlock
);
const
auto
ds_grid_buf
=
generate_tuple
(
[
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
const
DDataType
*
ptr_
=
p_ds_grid
[
i
];
// hack logic here to support different kind of strides. todo fix it.
// ascale M, 1; bscale E, N, 1, move ptr to E
if
(
i
.
value
==
1
)
{
ptr_
+=
expert_id
*
(
problem
.
StrideDs
[
1
]
?
problem
.
StrideDs
[
1
]
*
problem
.
N
:
1
);
// if ( threadIdx.x ==0)
// printf("bid %d eid %d b eoff %d %f\n", blockIdx.y, expert_id, expert_id * (problem.StrideDs[1]? problem.StrideDs[1] * problem.N : 1), ptr_[0]);
}
return
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
ptr_
,
ds_grid_desc_m_n
[
i
].
GetElementSpaceSize
());
},
Number
<
NumDTensor
>
{});
// tuple of reference to C/Ds tensor descriptors
const
auto
c_ds_desc_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_desc_mblock_mperblock_nblock_nperblock
[
i
];
},
Number
<
NumDTensor
>
{}));
// tuple of reference to C/Ds tensor descriptors
const
auto
c_ds_buf_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_buf
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_buf
[
i
];
},
Number
<
NumDTensor
>
{}));
// tuple of starting index of C/Ds blockwise copy
const
auto
idx_c_ds_block_begin
=
container_concat
(
make_tuple
(
make_multi_index
(
0
,
0
,
0
,
0
)),
generate_tuple
(
[
&
](
auto
)
{
return
make_multi_index
(
block_m_id
,
0
,
block_n_id
,
0
);
// return make_multi_index(block_work_idx[I0], 0, block_work_idx[I1], 0);
},
Number
<
NumDTensor
>
{}));
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock
=
c_grid_desc_mblock_mperblock_nblock_nperblock
;
using
CDEBlockTransferCluster
=
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
;
const
auto
EGlobalMemoryDataOperation
=
CGlobalMemoryDataOperation
;
constexpr
auto
EMThreads
=
CDEBlockTransferCluster
{}.
At
(
I0
)
*
CDEBlockTransferCluster
{}.
At
(
I1
);
constexpr
auto
EMRepeats
=
MPerBlock
/
EMThreads
;
constexpr
auto
ENThreads
=
CDEBlockTransferCluster
{}.
At
(
I2
)
*
CDEBlockTransferCluster
{}.
At
(
I3
);
const
index_t
c_token_pos
=
block_m_id
*
MPerBlock
+
threadIdx
.
x
/
ENThreads
*
EMRepeats
;
StaticallyIndexedArray
<
index_t
,
EMRepeats
>
scatter_offsets
;
//= p_sorted_token_ids[c_token_pos];
StaticallyIndexedArray
<
float
,
EMRepeats
>
scatter_weights
;
//= for topk
// too hack here, 2 specific for topk weights, fixme
const
float
*
p_sorted_weights
=
p_ds_grid
[
I2
];
static_for
<
0
,
EMRepeats
,
1
>
{}([
&
](
auto
m0
)
{
scatter_offsets
(
m0
)
=
(
p_sorted_token_ids
[
c_token_pos
+
m0
]
&
0xffffff
)
*
problem
.
N
;
scatter_weights
(
m0
)
=
p_sorted_weights
[
c_token_pos
+
m0
];
// printf("init off bid %d tid %d m %d off %d\n", blockIdx.y, threadIdx.x, m0(), scatter_offsets(m0));
});
// printf("tid %d pos %d offset %d size %d\n", threadIdx.x, token_pos, scatter_offsets(I0), c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
auto
cde_block_copy_lds_and_global
=
ThreadGroupTensorSliceTransfer_v7r3_scatter
<
ThisThreadBlock
,
decltype
(
container_concat
(
make_tuple
(
CShuffleDataType
{}),
DsDataType
{})),
Tuple
<
EDataType
>
,
decltype
(
c_ds_desc_refs
),
decltype
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
)),
CElementwiseOperation
,
Sequence
<
static_cast
<
index_t
>
(
EGlobalMemoryDataOperation
)
>
,
// FIXME: make Sequence
// support arbitray type
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
,
// BlockSliceLengths,
CDEBlockTransferCluster
,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename ThreadClusterArrangeOrder,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename SrcDimAccessOrder,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename DstDimAccessOrder,
3
,
// index_t SrcVectorDim,
3
,
// index_t DstVectorDim,
CDEShuffleBlockTransferScalarPerVectors
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
sequence_merge_t
<
Sequence
<
true
>
,
uniform_sequence_gen_t
<
NumDTensor
,
false
>>
,
// ThreadTransferSrcResetCoordinateAfterRunFlags
Sequence
<
false
>>
// ThreadTransferDstResetCoordinateAfterRunFlags
{
c_ds_desc_refs
,
idx_c_ds_block_begin
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
make_tuple
(
make_multi_index
(
0
,
0
,
block_n_id
,
0
)),
c_element_op
,
scatter_offsets
,
scatter_weights
};
// if(threadIdx.x== 0)
auto
c_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_grid
,
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
// space filling curve for threadwise C in VGPR
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MXdlPerWave
,
NXdlPerWave
,
1
,
1
,
M2
,
1
,
M4
,
1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
1
,
1
,
M2
,
1
,
M4
,
1
>>
{};
constexpr
index_t
num_access
=
sfc_c_vgpr
.
GetNumOfAccess
();
// space filling curve for shuffled blockwise C/D/E
constexpr
auto
sfc_cde_block
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>>
{};
static_assert
(
num_access
==
sfc_cde_block
.
GetNumOfAccess
(),
"wrong!"
);
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
access_id
)
{
// make sure it's safe to write to LDS
block_sync_lds
();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
sfc_c_vgpr
.
GetIndexTupleOfNumber
(
access_id
),
c_thread_buf
,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
c_shuffle_block_buf
);
// make sure it's safe to read from LDS
block_sync_lds
();
// each block copy its data from LDS to global
cde_block_copy_lds_and_global
.
Run
(
c_ds_desc_refs
,
c_ds_buf_refs
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
tie
(
c_grid_buf
));
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
cde_lds_and_global_step
=
sfc_cde_block
.
GetForwardStep
(
access_id
);
// move on Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
cde_block_copy_lds_and_global
.
MoveSrcSliceWindow
(
c_ds_desc_refs
,
i
+
I1
,
cde_lds_and_global_step
);
});
// move on E
cde_block_copy_lds_and_global
.
MoveDstSliceWindow
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
I0
,
cde_lds_and_global_step
);
}
});
}
}
// template <bool HasMainKBlockLoop,
// InMemoryDataOperationEnum CGlobalMemoryDataOperation,
// TailNumber TailNum = TailNumber::Odd>
// __device__ static void Run_2Lds(const ADataType* p_a_grid,
// const BDataType* p_b_grid,
// DsGridPointer& p_ds_grid,
// CDataType* p_c_grid,
// void* p_shared,
// void* p_shared1,
// const Problem& problem,
// AElementwiseOperation a_element_op,
// BElementwiseOperation b_element_op,
// CElementwiseOperation c_element_op)
// {
// // const auto block_2_ctile_map = Block2CTileMapDefault{problem.M, problem.N, 4};
// // Run_2Lds<Block2CTileMapDefault, HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
// // p_a_grid,
// // p_b_grid,
// // p_ds_grid,
// // p_c_grid,
// // p_shared,
// // p_shared1,
// // problem,
// // a_element_op,
// // b_element_op,
// // c_element_op,
// // block_2_ctile_map);
// }
// template <typename Block2CTileMap,
// bool HasMainKBlockLoop,
// InMemoryDataOperationEnum CGlobalMemoryDataOperation,
// TailNumber TailNum = TailNumber::Odd>
// __device__ static void Run_2Lds(const ADataType* p_a_grid,
// const BDataType* p_b_grid,
// DsGridPointer& p_ds_grid,
// CDataType* p_c_grid,
// void* p_shared,
// void* p_shared1,
// const Problem& problem,
// AElementwiseOperation a_element_op,
// BElementwiseOperation b_element_op,
// CElementwiseOperation c_element_op,
// const Block2CTileMap& block_2_ctile_map)
// {
// }
};
}
// namespace ck
library/include/ck/library/reference_tensor_operation/cpu/reference_moe_gemm.hpp
View file @
1b0b7810
...
@@ -83,21 +83,30 @@ struct ReferenceMoeGemm : public device::BaseOperator
...
@@ -83,21 +83,30 @@ struct ReferenceMoeGemm : public device::BaseOperator
if
(
t
<
token_cnt
)
{
if
(
t
<
token_cnt
)
{
for
(
int
k
=
0
;
k
<
K
;
++
k
)
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
{
// use PassThrough instead of ConvertBF16RTN for reference calculation
if
constexpr
(
is_same_v
<
ADataType
,
pk_i4_t
>
)
if
constexpr
(
is_same_v
<
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
ConvertBF16RTN
>
)
{
{
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}(
v_a
,
arg
.
a_t_k_
(
t
,
k
));
uint8_t
i4x2
=
arg
.
a_t_k_
(
t
,
k
).
data
;
uint8_t
i4
=
0
;
if
(
k
%
2
==
1
)
i4
=
(
i4x2
>>
0
)
&
0xf
;
else
i4
=
(
i4x2
>>
4
)
&
0xf
;
v_a
=
i4_to_f32_gfx9
(
i4
);
}
}
else
else
{
{
arg
.
a_element_op_
(
v_a
,
arg
.
a_t_k_
(
t
,
k
));
arg
.
a_element_op_
(
v_a
,
arg
.
a_t_k_
(
t
,
k
));
}
}
// same for B matrix
// same for B matrix
if
constexpr
(
is_same_v
<
BElementwiseOperation
,
if
constexpr
(
is_same_v
<
BDataType
,
pk_i4_t
>
)
ck
::
tensor_operation
::
element_wise
::
ConvertBF16RTN
>
)
{
{
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}(
v_b
,
arg
.
b_e_n_k_
(
e
,
n
,
k
));
uint8_t
i4x2
=
arg
.
b_e_n_k_
(
e
,
k
,
n
).
data
;
uint8_t
i4
=
0
;
if
(
k
%
2
==
1
)
i4
=
(
i4x2
>>
0
)
&
0xf
;
else
i4
=
(
i4x2
>>
4
)
&
0xf
;
v_b
=
i4_to_f32_gfx9
(
i4
);
}
}
else
else
{
{
...
@@ -170,6 +179,28 @@ struct ReferenceMoeGemm : public device::BaseOperator
...
@@ -170,6 +179,28 @@ struct ReferenceMoeGemm : public device::BaseOperator
return
str
.
str
();
return
str
.
str
();
}
}
static
float
i4_to_f32_gfx9
(
uint8_t
i4
)
{
static
std
::
unordered_map
<
uint8_t
,
float
>
u
=
{{
0b1000
,
-
0.5000
f
},
{
0b1001
,
-
0.4375
f
},
{
0b1010
,
-
0.3750
f
},
{
0b1011
,
-
0.3125
f
},
{
0b1100
,
-
0.2500
f
},
{
0b1101
,
-
0.1875
f
},
{
0b1110
,
-
0.1250
f
},
{
0b1111
,
-
0.0625
f
},
{
0b0
,
+
0.0000
f
},
{
0b1
,
+
0.0625
f
},
{
0b10
,
+
0.1250
f
},
{
0b11
,
+
0.1875
f
},
{
0b100
,
+
0.2500
f
},
{
0b101
,
+
0.3125
f
},
{
0b110
,
+
0.3750
f
},
{
0b111
,
+
0.4375
f
}};
return
u
[
i4
];
}
};
};
}
// namespace host
}
// namespace host
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment