Commit 1857761a authored by ozturkosu's avatar ozturkosu
Browse files

:Merge branch 'muozturk_sk_padding' of...

:Merge branch 'muozturk_sk_padding' of https://github.com/ROCm/composable_kernel into muozturk_sk_padding
parents 4c64fa6d 715ffa67
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v3_b_scale.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/flush_cache.hpp"
namespace ck {
// Currently we do not have a elegant way to put single lds buffer & double lds buffer pipe in same
// kernel function Blockers:
// 1. Two separted declaration of __shared__ pointer is the key to make sure data access operate on
// two lds chunks.
// 2. Occupied __shared__ won't release until whole shader end, a.k.a AB and C may not use same lds
// buffer when we declare __shared__ inside blkgemmpipe
template <typename GridwiseGemm,
typename BatchedGemmArg,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
index_t MinimumOccupancy = 1,
TailNumber TailNum = TailNumber::Full>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, MinimumOccupancy)
#endif
kernel_batched_gemm_b_scale_xdl_cshuffle_v3(BatchedGemmArg karg)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
const index_t g_idx = blockIdx.z % karg.Batch;
const index_t k_idx = blockIdx.z / karg.Batch;
const auto a_batch_offset = karg.compute_ptr_offset_of_batch.GetAPtrOffset(g_idx);
const auto b_batch_offset = karg.compute_ptr_offset_of_batch.GetBPtrOffset(g_idx);
const auto c_batch_offset = karg.compute_ptr_offset_of_batch.GetCPtrOffset(g_idx);
const auto b_scale_batch_offset = karg.compute_ptr_offset_of_batch.GetSacleBPtrOffset(g_idx);
auto splitk_batch_offset = typename GridwiseGemm::SplitKBatchOffset(karg, k_idx);
GridwiseGemm::template Run<HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
karg.p_a_grid + a_batch_offset + splitk_batch_offset.a_k_split_offset,
karg.p_b_grid + b_batch_offset + splitk_batch_offset.b_k_split_offset,
karg.p_c_grid + c_batch_offset + splitk_batch_offset.c_reduce_offset,
karg.p_b_scale_grid + b_scale_batch_offset + splitk_batch_offset.scale_k_split_offset,
p_shared,
karg);
#else
ignore = karg;
#endif // end of if (defined(__gfx9__))
}
template <typename GridwiseGemm,
typename BatchedGemmArg,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
index_t MinimumOccupancy = 1,
TailNumber TailNum = TailNumber::Full>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, MinimumOccupancy)
#endif
kernel_batched_gemm_b_scale_xdl_cshuffle_v3_2lds(BatchedGemmArg karg)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
// Pass two lds pointer is the key to tell compiler that ds_read/write
// operate on different lds chunk at same time without order dependecy
__shared__ char p_shared_0[GridwiseGemm::GetSharedMemoryNumberOfByte()];
__shared__ char p_shared_1[GridwiseGemm::GetSharedMemoryNumberOfByte()];
const index_t g_idx = blockIdx.z % karg.Batch;
const index_t k_idx = blockIdx.z / karg.Batch;
const auto a_batch_offset = karg.compute_ptr_offset_of_batch.GetAPtrOffset(g_idx);
const auto b_batch_offset = karg.compute_ptr_offset_of_batch.GetBPtrOffset(g_idx);
const auto c_batch_offset = karg.compute_ptr_offset_of_batch.GetCPtrOffset(g_idx);
const auto b_scale_batch_offset = karg.compute_ptr_offset_of_batch.GetSacleBPtrOffset(g_idx);
auto splitk_batch_offset = typename GridwiseGemm::SplitKBatchOffset(karg, k_idx);
GridwiseGemm::template Run_2Lds<HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
karg.p_a_grid + a_batch_offset + splitk_batch_offset.a_k_split_offset,
karg.p_b_grid + b_batch_offset + splitk_batch_offset.b_k_split_offset,
karg.p_c_grid + c_batch_offset + splitk_batch_offset.c_reduce_offset,
karg.p_b_scale_grid + b_scale_batch_offset + splitk_batch_offset.scale_k_split_offset,
p_shared_0,
p_shared_1,
karg);
#else
ignore = karg;
#endif // end of if (defined(__gfx9__))
}
namespace tensor_operation {
namespace device {
template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename BScaleDataType,
typename CDataType,
typename GemmAccDataType,
typename CShuffleDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
GemmSpecialization GemmSpec,
index_t BlockSize,
index_t ScaleBlockN, // scale block for N
index_t ScaleBlockK, // scale block for K
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1,
index_t BK1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
BlockGemmPipelineScheduler BlkGemmPipeSched = BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion BlkGemmPipelineVer = BlockGemmPipelineVersion::v1,
typename ComputeTypeA = CDataType,
typename ComputeTypeB = ComputeTypeA,
bool PermuteA = false,
bool PermuteB = false>
struct DeviceBatchedGemm_Xdl_CShuffleV3_BScale
: public DeviceBatchedGemmV2BScale<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
BScaleDataType,
CDataType,
ScaleBlockN,
ScaleBlockK,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>
{
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_xdl_cshuffle_v3<
ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
GemmAccDataType,
CShuffleDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
GemmSpec,
BlockSize,
ScaleBlockN,
ScaleBlockK,
MPerBlock,
NPerBlock,
KPerBlock,
AK1,
BK1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
false,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
false,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock,
BlkGemmPipeSched,
BlkGemmPipelineVer,
ComputeTypeA,
ComputeTypeB,
PermuteA,
PermuteB>;
static constexpr index_t BPackedSize = []() {
if constexpr(is_same_v<remove_cvref_t<BDataType>, pk_i4_t>)
return 2;
else
return 1;
}();
struct ComputePtrOffsetOfStridedBatch
{
ComputePtrOffsetOfStridedBatch(index_t BatchStrideA,
index_t BatchStrideB,
index_t BatchStrideC,
index_t BatchStrideScaleB)
: BatchStrideA_(BatchStrideA),
BatchStrideB_(BatchStrideB),
BatchStrideC_(BatchStrideC),
BatchStrideScaleB_(BatchStrideScaleB)
{
}
__host__ __device__ constexpr long_index_t GetAPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideA_);
}
__host__ __device__ constexpr long_index_t GetBPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideB_) / BPackedSize;
}
__host__ __device__ constexpr long_index_t GetCPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideC_);
}
__host__ __device__ constexpr long_index_t GetSacleBPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideScaleB_);
}
private:
index_t BatchStrideA_;
index_t BatchStrideB_;
index_t BatchStrideC_;
index_t BatchStrideScaleB_;
};
struct Argument : public GridwiseGemm::Argument
{
index_t Batch;
ComputePtrOffsetOfStridedBatch compute_ptr_offset_of_batch;
Argument(const ADataType* p_a_grid_,
const BDataType* p_b_grid_,
CDataType* p_c_grid_,
index_t M_,
index_t N_,
index_t K_,
index_t StrideA_,
index_t StrideB_,
index_t StrideC_,
index_t StrideScaleB_,
index_t BatchStrideA_,
index_t BatchStrideB_,
index_t BatchStrideC_,
index_t BatchStrideScaleB_,
const BScaleDataType* p_b_scale_grid_,
index_t Batch_,
index_t KBatch_,
AElementwiseOperation a_element_op_,
BElementwiseOperation b_element_op_,
CElementwiseOperation c_element_op_)
: GridwiseGemm::Argument(p_a_grid_,
p_b_grid_,
p_c_grid_,
M_,
N_,
K_,
StrideA_,
StrideB_,
StrideC_,
StrideScaleB_,
p_b_scale_grid_,
KBatch_, // KBatch
a_element_op_,
b_element_op_,
c_element_op_),
Batch(Batch_),
compute_ptr_offset_of_batch(
BatchStrideA_, BatchStrideB_, BatchStrideC_, BatchStrideScaleB_)
{
}
};
// Invoker
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(stream_config.log_level_ > 0)
{
arg.Print();
}
if(!GridwiseGemm::CheckValidity(arg))
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
index_t gdx, gdy, gdz;
std::tie(gdx, gdy, gdz) =
GridwiseGemm::CalculateGridSize(arg.M, arg.N, arg.Batch * arg.KBatch);
float ave_time = 0;
index_t k_grain = arg.KBatch * KPerBlock;
index_t K_split = (arg.K + k_grain - 1) / k_grain * KPerBlock;
const bool has_main_k_block_loop = GridwiseGemm::CalculateHasMainKBlockLoop(K_split);
const auto Run = [&](const auto& kernel) {
if(stream_config.flush_cache)
{
Argument arg_ = arg;
const auto a_grid_desc_ak0_m_ak1 = GridwiseGemm::MakeAGridDescriptor_AK0_M_AK1(
arg_.M, arg_.MPadded, arg_.K, arg_.KPadded, arg_.StrideA, arg_.AK0);
const auto b_grid_desc_bk0_n_bk1 = GridwiseGemm::MakeBGridDescriptor_BK0_N_BK1(
arg_.K, arg_.KPadded, arg_.N, arg_.NPadded, arg_.StrideB, arg_.BK0);
auto size_a_buffer =
a_grid_desc_ak0_m_ak1.GetElementSpaceSize() * sizeof(ADataType);
auto size_b_buffer =
b_grid_desc_bk0_n_bk1.GetElementSpaceSize() * sizeof(BDataType);
ck::utility::RotatingMemWrapper<Argument> rotating_mem(
arg_, stream_config.rotating_count, size_a_buffer, size_b_buffer);
rotating_mem.Print();
auto run_flush_cache = [&]() {
// flush icache
ck::utility::flush_icache();
// rotating mem
rotating_mem.Next();
// clear c mem
if(arg_.KBatch > 1)
hipGetErrorString(hipMemsetAsync(arg_.p_c_grid,
0,
arg_.M * arg_.N * sizeof(CDataType),
stream_config.stream_id_));
};
ave_time = ck::utility::launch_and_time_kernel_with_preprocess<false>(
stream_config,
run_flush_cache,
kernel,
dim3(gdx, gdy, gdz),
dim3(BlockSize),
0,
arg_);
}
else
{
if(arg.KBatch > 1)
hipGetErrorString(hipMemsetAsync(arg.p_c_grid,
0,
arg.M * arg.N * sizeof(CDataType),
stream_config.stream_id_));
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(gdx, gdy, gdz), dim3(BlockSize), 0, arg);
}
};
constexpr index_t minimum_occupancy =
BlkGemmPipeSched == BlockGemmPipelineScheduler::Intrawave
? (BlkGemmPipelineVer == BlockGemmPipelineVersion::v3 &&
MPerBlock * NPerBlock * KPerBlock * sizeof(ADataType) <= 128 * 128 * 64 * 2)
? 2
: 1
: 2;
if(has_main_k_block_loop)
{
// Tail number always full
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1 ||
BlkGemmPipelineVer == BlockGemmPipelineVersion::v3)
{
if(arg.KBatch > 1)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
}
else
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
}
// Tail number could be One to Seven
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2)
{
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::One)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::One>;
Run(kernel);
}
else if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Full)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Full>;
Run(kernel);
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Two)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Two>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 3)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Three)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Three>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Four)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Four>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 5)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Five)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Five>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 6)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Six)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Six>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 7)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Seven)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Seven>;
Run(kernel);
}
}
}
else
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::One)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::One>;
Run(kernel);
}
else if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Full)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Full>;
Run(kernel);
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Two)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Two>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 3)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Three)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Three>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Four)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Four>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 5)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Five)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Five>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 6)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Six)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Six>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 7)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Seven)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Seven>;
Run(kernel);
}
}
}
}
// Tail number could be Odd or Even
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v4)
{
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3_2lds<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3_2lds<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
else
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3_2lds<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3_2lds<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
else
{
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
else
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
}
else
{
// Tail number always 1
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1)
{
if(arg.KBatch > 1)
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
false,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
}
else
{
const auto kernel = kernel_batched_gemm_b_scale_xdl_cshuffle_v3<
GridwiseGemm,
Argument,
false,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
}
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
if(!ck::is_xdl_supported())
{
return false;
}
if(!is_bf16_atomic_supported() && std::is_same_v<CDataType, ck::bhalf_t> && arg.KBatch > 1)
{
return false;
}
if((arg.K % AK1 != 0 || arg.K % BK1 != 0) && !(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding ||
GemmSpec == GemmSpecialization::KPadding))
{
return false;
}
return GridwiseGemm::CheckValidity(arg);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
index_t GetKPerBlock() override { return KPerBlock; }
bool GetPermuteB() override { return PermuteB; }
static auto MakeArgument(const ADataType* p_a,
const BDataType* p_b,
CDataType* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t StrideScaleB,
index_t BatchStrideA,
index_t BatchStrideB,
index_t BatchStrideC,
index_t BatchStrideScaleB,
const BScaleDataType* p_b_scale,
index_t Batch,
index_t KBatch,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
return Argument{p_a,
p_b,
p_c,
M,
N,
K,
StrideA,
StrideB,
StrideC,
StrideScaleB,
BatchStrideA,
BatchStrideB,
BatchStrideC,
BatchStrideScaleB,
p_b_scale,
Batch,
KBatch,
a_element_op,
b_element_op,
c_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t StrideScaleB,
index_t BatchStrideA,
index_t BatchStrideB,
index_t BatchStrideC,
index_t BatchStrideScaleB,
const void* p_b_scale,
index_t Batch,
index_t KBatch,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c),
M,
N,
K,
StrideA,
StrideB,
StrideC,
StrideScaleB,
BatchStrideA,
BatchStrideB,
BatchStrideC,
BatchStrideScaleB,
static_cast<const BScaleDataType*>(p_b_scale),
Batch,
KBatch,
a_element_op,
b_element_op,
c_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
std::map<BlockGemmPipelineScheduler, std::string> BlkGemmPipelineSchedulerToString{
{BlockGemmPipelineScheduler::Intrawave, "Intrawave"},
{BlockGemmPipelineScheduler::Interwave, "Interwave"}};
std::map<BlockGemmPipelineVersion, std::string> BlkGemmPipelineVersionToString{
{BlockGemmPipelineVersion::v1, "v1"},
{BlockGemmPipelineVersion::v2, "v2"},
{BlockGemmPipelineVersion::v3, "v3"},
{BlockGemmPipelineVersion::v4, "v4"},
{BlockGemmPipelineVersion::v5, "v5"}};
// clang-format off
str << "DeviceGemmXdlUniversal"
<< "<"
<< getGemmSpecializationString(GemmSpec) << ", "
<< std::string(ALayout::name)[0]
<< std::string(BLayout::name)[0]
<< std::string(CLayout::name)[0]
<< ">"
<< " BlkSize: "
<< BlockSize << ", "
<< "BlkTile: "
<< MPerBlock<<"x"<<NPerBlock<<"x"<<KPerBlock << ", "
<< "WaveTile: "
<< MPerXDL<<"x"<<NPerXDL << ", "
<< "WaveMap: "
<< MXdlPerWave<<"x" << NXdlPerWave<<", "
<< "VmemReadVec: "
<< ABlockTransferSrcScalarPerVector<<"x"<<BBlockTransferSrcScalarPerVector<<", "
<< "BlkGemmPipelineScheduler: "
<< BlkGemmPipelineSchedulerToString[BlkGemmPipeSched] << ", "
<< "BlkGemmPipelineVersion: "
<< BlkGemmPipelineVersionToString[BlkGemmPipelineVer] << ", "
<< "BlkGemmPipelinePrefetchStages: "
<< GridwiseGemm::BlockwiseGemmPipe::PrefetchStages;
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -138,6 +138,7 @@ struct DeviceGemm_Xdl_CShuffleV3 : public DeviceGemmV2<ALayout,
if(stream_config.log_level_ > 0)
{
arg.Print();
GridwiseGemm::BlockwiseGemmPipe::HotLoopInstList::Print();
}
if(!GridwiseGemm::CheckValidity(arg))
......@@ -733,7 +734,9 @@ struct DeviceGemm_Xdl_CShuffleV3 : public DeviceGemmV2<ALayout,
<< "BlkGemmPipelineVersion: "
<< BlkGemmPipelineVersionToString[BlkGemmPipelineVer] << ", "
<< "BlkGemmPipelinePrefetchStages: "
<< GridwiseGemm::BlockwiseGemmPipe::PrefetchStages;
<< GridwiseGemm::BlockwiseGemmPipe::PrefetchStages << ", "
<< "Kpack: "
<< GridwiseGemm::BlockwiseGemmPipe::AMmaKStride;
// clang-format on
return str.str();
......
......@@ -224,12 +224,12 @@ struct GridwiseGemm_xdl_cshuffle_streamk_v3
}();
// Pad both M and K to be multiples of the block sizes
const auto a_grid_desc_m_k = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_right_pad_transform(M, MPad - M),
make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_m_k =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_right_pad_transform(M, MPad - M),
make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 = transform_tensor_descriptor(
a_grid_desc_m_k,
......@@ -322,14 +322,14 @@ struct GridwiseGemm_xdl_cshuffle_streamk_v3
return make_naive_tensor_descriptor(make_tuple(N, K), make_tuple(StrideB, I1));
}
}();
// Pad both N and K to be multiples of the block sizes
const auto b_grid_desc_n_k = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_right_pad_transform(N, NPad - N),
make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_n_k =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_right_pad_transform(N, NPad - N),
make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 = transform_tensor_descriptor(
b_grid_desc_n_k,
......@@ -990,7 +990,7 @@ struct GridwiseGemm_xdl_cshuffle_streamk_v3
if constexpr(!(GemmSpec == tensor_operation::device::GemmSpecialization::MPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding) &&
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding) &&
!(is_same<tensor_layout::gemm::RowMajor, ALayout>::value))
{
if(!(karg.M % MPerBlock == 0))
......@@ -1008,7 +1008,7 @@ struct GridwiseGemm_xdl_cshuffle_streamk_v3
if constexpr(!(GemmSpec == tensor_operation::device::GemmSpecialization::NPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::NKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding) &&
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding) &&
(is_same<tensor_layout::gemm::RowMajor, BLayout>::value))
{
if(!(karg.N % NPerBlock == 0))
......@@ -1075,7 +1075,6 @@ struct GridwiseGemm_xdl_cshuffle_streamk_v3
<< ABlockTransferSrcScalarPerVector << " )! " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__ << std::endl;
}
return false;
}
......@@ -1093,9 +1092,9 @@ struct GridwiseGemm_xdl_cshuffle_streamk_v3
<< __LINE__ << ", in function: " << __func__ << std::endl;
}
std::cout << "Arg N (" << karg.N
<< ") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<< BBlockTransferSrcScalarPerVector << " )! " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__ << std::endl;
<< ") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<< BBlockTransferSrcScalarPerVector << " )! " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__ << std::endl;
return false;
}
}
......@@ -1110,7 +1109,7 @@ struct GridwiseGemm_xdl_cshuffle_streamk_v3
<< BBlockTransferSrcScalarPerVector << " )! " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__ << std::endl;
}
return false;
}
}
......@@ -1128,7 +1127,7 @@ struct GridwiseGemm_xdl_cshuffle_streamk_v3
<< __FILE__ << ":" << __LINE__ << ", in function: " << __func__
<< std::endl;
}
return false;
}
}
......@@ -1145,7 +1144,7 @@ struct GridwiseGemm_xdl_cshuffle_streamk_v3
<< __FILE__ << ":" << __LINE__ << ", in function: " << __func__
<< std::endl;
}
return false;
}
}
......
......@@ -37,7 +37,7 @@ __global__ void
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
auto splitk_batch_offset = typename GridwiseGemm::SplitKBatchOffset(karg);
auto splitk_batch_offset = typename GridwiseGemm::SplitKBatchOffset(karg, blockIdx.z);
GridwiseGemm::template Run<HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
karg.p_a_grid + splitk_batch_offset.a_k_split_offset,
......@@ -70,7 +70,7 @@ __global__ void
__shared__ char p_shared_0[GridwiseGemm::GetSharedMemoryNumberOfByte()];
__shared__ char p_shared_1[GridwiseGemm::GetSharedMemoryNumberOfByte()];
auto splitk_batch_offset = typename GridwiseGemm::SplitKBatchOffset(karg);
auto splitk_batch_offset = typename GridwiseGemm::SplitKBatchOffset(karg, blockIdx.z);
GridwiseGemm::template Run_2Lds<HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
karg.p_a_grid + splitk_batch_offset.a_k_split_offset,
......@@ -638,45 +638,45 @@ struct GridwiseGemm_xdl_cshuffle_v3
struct SplitKBatchOffset
{
__device__ SplitKBatchOffset(Argument& karg)
__device__ SplitKBatchOffset(Argument& karg, index_t k_id)
{
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{
a_k_split_offset = blockIdx.z * karg.KRead / APackedSize;
a_k_split_offset = k_id * karg.KRead / APackedSize;
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
a_k_split_offset = blockIdx.z * karg.KRead * karg.StrideA;
a_k_split_offset = k_id * karg.KRead * karg.StrideA;
}
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, BLayout>)
{
b_k_split_offset = blockIdx.z * karg.KRead * karg.StrideB;
b_k_split_offset = k_id * karg.KRead * karg.StrideB;
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, BLayout>)
{
if constexpr(!PermuteB)
{
b_k_split_offset = blockIdx.z * karg.KRead / BPackedSize;
b_k_split_offset = k_id * karg.KRead / BPackedSize;
}
else
{
const int k0_offset = karg.KRead * karg.N;
b_k_split_offset = blockIdx.z * k0_offset / BPackedSize;
b_k_split_offset = k_id * k0_offset / BPackedSize;
}
}
// Calculate B scale offset
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, BLayout>)
{
scale_k_split_offset = blockIdx.z * (karg.KRead / ScaleBlockK) * karg.StrideB;
scale_k_split_offset = k_id * (karg.KRead / ScaleBlockK) * karg.StrideB;
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, BLayout>)
{
scale_k_split_offset = blockIdx.z * (karg.KRead / ScaleBlockK);
scale_k_split_offset = k_id * (karg.KRead / ScaleBlockK);
}
if(blockIdx.z < static_cast<uint32_t>(karg.KBatch - 1))
if(k_id < (karg.KBatch - 1))
{
karg.K = karg.KRead;
}
......@@ -687,7 +687,7 @@ struct GridwiseGemm_xdl_cshuffle_v3
if(karg.IsReduceAdd())
{
c_reduce_offset = blockIdx.z * karg.M * karg.N;
c_reduce_offset = k_id * karg.M * karg.N;
}
else
{
......
......@@ -90,14 +90,22 @@ struct BlockwiseGemmXdlops_pipeline_hotloop_inst
KPerXDL);
printf(" A/B buffer load inst: %d, %d\n A/B LDS write inst: %d, %d\n A/B LDS read inst: "
"%d, %d\n C MFMA inst: %d\n",
"%d, %d\n C MFMA inst: %d\n"
"A/B LDS read width: %d, %d, A/B LDS write width: %d, %d, A/B buffer load width: "
"%d/ %d\n",
A_Buffer_Load_Inst_Num,
B_Buffer_Load_Inst_Num,
A_LDS_Write_Inst_Num,
B_LDS_Write_Inst_Num,
A_LDS_Read_Inst_Num,
B_LDS_Read_Inst_Num,
C_MFMA_Inst_Num);
C_MFMA_Inst_Num,
A_LDS_Read_Width,
B_LDS_Read_Width,
ALDSWriteWidth,
BLDSWriteWidth,
ABufferLoadWidth,
BBufferLoadWidth);
}
};
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core/numeric/vector_type.hpp"
......@@ -8,16 +8,75 @@
namespace ck_tile {
CK_TILE_HOST_DEVICE bf16_t add_bf16_t(const bf16_t& a, const bf16_t& b)
template <typename T, typename ComputeType>
CK_TILE_HOST_DEVICE T add(const T& a, const T& b)
{
return type_convert<bf16_t>(type_convert<float>(a) + type_convert<float>(b));
return type_convert<T>(type_convert<ComputeType>(a) + type_convert<ComputeType>(b));
}
CK_TILE_HOST_DEVICE bf16x2_t add_bf16x2_t(const bf16x2_t& a, const bf16x2_t& b)
{
bf16x2_t rtn;
rtn[0] = add_bf16_t(a[0], b[0]);
rtn[1] = add_bf16_t(a[1], b[1]);
rtn[0] = add<bf16_t, float>(a[0], b[0]);
rtn[1] = add<bf16_t, float>(a[1], b[1]);
return rtn;
}
CK_TILE_HOST_DEVICE bf16x4_t add_bf16x4_t(const bf16x4_t& a, const bf16x4_t& b)
{
bf16x4_t rtn;
rtn[0] = add<bf16_t, float>(a[0], b[0]);
rtn[1] = add<bf16_t, float>(a[1], b[1]);
rtn[2] = add<bf16_t, float>(a[2], b[2]);
rtn[3] = add<bf16_t, float>(a[3], b[3]);
return rtn;
}
CK_TILE_HOST_DEVICE fp8x4_t add_fp8x4_t(const fp8x4_t& a, const fp8x4_t& b)
{
fp8x4_t rtn;
rtn[0] = add<fp8_t, float>(a[0], b[0]);
rtn[1] = add<fp8_t, float>(a[1], b[1]);
rtn[2] = add<fp8_t, float>(a[2], b[2]);
rtn[3] = add<fp8_t, float>(a[3], b[3]);
return rtn;
}
CK_TILE_HOST_DEVICE fp8x8_t add_fp8x8_t(const fp8x8_t& a, const fp8x8_t& b)
{
fp8x8_t rtn;
rtn[0] = add<fp8_t, float>(a[0], b[0]);
rtn[1] = add<fp8_t, float>(a[1], b[1]);
rtn[2] = add<fp8_t, float>(a[2], b[2]);
rtn[3] = add<fp8_t, float>(a[3], b[3]);
rtn[4] = add<fp8_t, float>(a[4], b[4]);
rtn[5] = add<fp8_t, float>(a[5], b[5]);
rtn[6] = add<fp8_t, float>(a[6], b[6]);
rtn[7] = add<fp8_t, float>(a[7], b[7]);
return rtn;
}
CK_TILE_HOST_DEVICE bf8x4_t add_bf8x4_t(const bf8x4_t& a, const bf8x4_t& b)
{
bf8x4_t rtn;
rtn[0] = add<bf8_t, float>(a[0], b[0]);
rtn[1] = add<bf8_t, float>(a[1], b[1]);
rtn[2] = add<bf8_t, float>(a[2], b[2]);
rtn[3] = add<bf8_t, float>(a[3], b[3]);
return rtn;
}
CK_TILE_HOST_DEVICE bf8x8_t add_bf8x8_t(const bf8x8_t& a, const bf8x8_t& b)
{
bf8x8_t rtn;
rtn[0] = add<bf8_t, float>(a[0], b[0]);
rtn[1] = add<bf8_t, float>(a[1], b[1]);
rtn[2] = add<bf8_t, float>(a[2], b[2]);
rtn[3] = add<bf8_t, float>(a[3], b[3]);
rtn[4] = add<bf8_t, float>(a[4], b[4]);
rtn[5] = add<bf8_t, float>(a[5], b[5]);
rtn[6] = add<bf8_t, float>(a[6], b[6]);
rtn[7] = add<bf8_t, float>(a[7], b[7]);
return rtn;
}
......@@ -59,6 +118,192 @@ CK_TILE_DEVICE void atomic_add<bf16x2_t>(bf16x2_t* p_dst, const bf16x2_t& x)
} while(cur_v.u32 != old_v);
}
template <>
CK_TILE_DEVICE void atomic_add<bf16x4_t>(bf16x4_t* p_dst, bf16x4_t const& x)
{
// Union to treat the pointer as either bf16x4_t* or uint64_t*:
union U64BF164_ADDR
{
uint64_t* u64_a;
bf16x4_t* bf164_a;
};
// Union to treat the data as either bf16x4_t or 64-bit integer
union U64BF164
{
uint64_t u64;
bf16x4_t bf164;
};
U64BF164_ADDR addr;
addr.bf164_a = p_dst; // interpret p_dst as a 64-bit location
// First read (non-atomic) of the old value
U64BF164 cur_v;
cur_v.u64 = *addr.u64_a;
U64BF164 new_v_union;
uint64_t old_v, new_v;
do
{
// old 64 bits
old_v = cur_v.u64;
// Add elementwise in bf16
new_v_union.bf164 = add_bf16x4_t(cur_v.bf164, x);
new_v = new_v_union.u64;
// Attempt the 64-bit CAS
cur_v.u64 = atomicCAS(addr.u64_a, old_v, new_v);
} while(cur_v.u64 != old_v);
}
template <>
CK_TILE_DEVICE void atomic_add<fp8x4_t>(fp8x4_t* p_dst, const fp8x4_t& x)
{
union U32FP84_ADDR
{
uint32_t* u32_a;
fp8x4_t* fp84_a;
};
union U32FP84
{
uint32_t u32;
fp8x4_t fp84;
};
U32FP84_ADDR dword_addr;
U32FP84 cur_v;
U32FP84 new_;
uint32_t old_v, new_v;
dword_addr.fp84_a = p_dst;
cur_v.u32 = *dword_addr.u32_a;
do
{
old_v = cur_v.u32;
new_.fp84 = add_fp8x4_t(cur_v.fp84, x);
new_v = new_.u32;
cur_v.u32 = atomicCAS(dword_addr.u32_a, old_v, new_v);
} while(cur_v.u32 != old_v);
}
template <>
CK_TILE_DEVICE void atomic_add<bf8x4_t>(bf8x4_t* p_dst, const bf8x4_t& x)
{
union U32BF84_ADDR
{
uint32_t* u32_a;
bf8x4_t* bf84_a;
};
union U32BF84
{
uint32_t u32;
bf8x4_t bf84;
};
U32BF84_ADDR dword_addr;
U32BF84 cur_v;
U32BF84 new_;
uint32_t old_v, new_v;
dword_addr.bf84_a = p_dst;
cur_v.u32 = *dword_addr.u32_a;
do
{
old_v = cur_v.u32;
new_.bf84 = add_bf8x4_t(cur_v.bf84, x);
new_v = new_.u32;
cur_v.u32 = atomicCAS(dword_addr.u32_a, old_v, new_v);
} while(cur_v.u32 != old_v);
}
//
// Atomic add for fp8x8_t
//
template <>
CK_TILE_DEVICE void atomic_add<fp8x8_t>(fp8x8_t* p_dst, fp8x8_t const& x)
{
// Union for addressing 64 bits as either "fp8x8_t" or a 64-bit integer.
union U64FP88_ADDR
{
uint64_t* u64_a; // pointer to 64-bit integer
fp8x8_t* fp88_a; // pointer to fp8x8_t
};
union U64FP88
{
uint64_t u64;
fp8x8_t fp88;
};
U64FP88_ADDR dword_addr;
U64FP88 cur_v;
U64FP88 new_v_union;
uint64_t old_v, new_v;
// Point to the destination as both fp8x8_t* and uint64_t*.
dword_addr.fp88_a = p_dst;
// Initial read of 64 bits from memory
cur_v.u64 = *dword_addr.u64_a;
do
{
old_v = cur_v.u64;
// Add each fp8 element using your add_fp8x8_t(...) routine
new_v_union.fp88 = add_fp8x8_t(cur_v.fp88, x);
new_v = new_v_union.u64;
// Attempt 64-bit CAS
cur_v.u64 = atomicCAS(dword_addr.u64_a, old_v, new_v);
} while(cur_v.u64 != old_v);
}
//
// Atomic add for bf8x8_t
//
template <>
CK_TILE_DEVICE void atomic_add<bf8x8_t>(bf8x8_t* p_dst, bf8x8_t const& x)
{
union U64BF88_ADDR
{
uint64_t* u64_a;
bf8x8_t* bf88_a;
};
union U64BF88
{
uint64_t u64;
bf8x8_t bf88;
};
U64BF88_ADDR dword_addr;
U64BF88 cur_v;
U64BF88 new_v_union;
uint64_t old_v, new_v;
dword_addr.bf88_a = p_dst;
// Read the original 64 bits
cur_v.u64 = *dword_addr.u64_a;
do
{
old_v = cur_v.u64;
// Add each bf8 element using your add_bf8x8_t(...) routine
new_v_union.bf88 = add_bf8x8_t(cur_v.bf88, x);
new_v = new_v_union.u64;
// 64-bit CAS loop
cur_v.u64 = atomicCAS(dword_addr.u64_a, old_v, new_v);
} while(cur_v.u64 != old_v);
}
template <typename T, index_t N>
CK_TILE_DEVICE void atomic_add_g(T* p_dst, const thread_buffer<T, N>& x)
{
......@@ -66,8 +311,10 @@ CK_TILE_DEVICE void atomic_add_g(T* p_dst, const thread_buffer<T, N>& x)
(std::is_same<T, uint32_t>::value && (N == 1)) ||
(std::is_same<T, float>::value && (N == 1 || N == 2)) ||
(std::is_same<T, double>::value && (N == 1 || N == 2)) ||
(std::is_same<T, bf16_t>::value && (N == 2 || N == 4)),
"wrong! not implemented");
(std::is_same<T, bf16_t>::value && (N == 2 || N == 4 || N == 8)) ||
(std::is_same<T, fp8_t>::value && (N == 4 || N == 8 || N == 16)) ||
(std::is_same<T, bf8_t>::value && (N == 4 || N == 8 || N == 16)),
"The granularity of the thread buffer is unsupported on the hardware!");
constexpr auto I0 = number<0>{};
constexpr auto I1 = number<1>{};
......@@ -118,9 +365,45 @@ CK_TILE_DEVICE void atomic_add_g(T* p_dst, const thread_buffer<T, N>& x)
}
else if constexpr(N == 4)
{
atomic_add(c_style_pointer_cast<bf16x2_t*>(p_dst), x.template get_as<bf16x2_t>()[I0]);
atomic_add(c_style_pointer_cast<bf16x2_t*>(p_dst) + 1,
x.template get_as<bf16x2_t>()[I1]);
atomic_add(c_style_pointer_cast<bf16x4_t*>(p_dst), x.template get_as<bf16x4_t>()[I0]);
}
else if constexpr(N == 8)
{
atomic_add(c_style_pointer_cast<bf16x4_t*>(p_dst), x.template get_as<bf16x4_t>()[I0]);
atomic_add(c_style_pointer_cast<bf16x4_t*>(p_dst) + 1,
x.template get_as<bf16x4_t>()[I1]);
}
}
else if constexpr(std::is_same<T, fp8_t>::value)
{
if constexpr(N == 4)
{
atomic_add(c_style_pointer_cast<fp8x4_t*>(p_dst), x.template get_as<fp8x4_t>()[I0]);
}
if constexpr(N == 8)
{
atomic_add(c_style_pointer_cast<fp8x8_t*>(p_dst), x.template get_as<fp8x8_t>()[I0]);
}
if constexpr(N == 16)
{
atomic_add(c_style_pointer_cast<fp8x8_t*>(p_dst), x.template get_as<fp8x8_t>()[I0]);
atomic_add(c_style_pointer_cast<fp8x8_t*>(p_dst) + 1, x.template get_as<fp8x8_t>()[I1]);
}
}
else if constexpr(std::is_same<T, bf8_t>::value)
{
if constexpr(N == 4)
{
atomic_add(c_style_pointer_cast<bf8x4_t*>(p_dst), x.template get_as<bf8x4_t>()[I0]);
}
if constexpr(N == 8)
{
atomic_add(c_style_pointer_cast<bf8x8_t*>(p_dst), x.template get_as<bf8x8_t>()[I0]);
}
if constexpr(N == 16)
{
atomic_add(c_style_pointer_cast<bf8x8_t*>(p_dst), x.template get_as<bf8x8_t>()[I0]);
atomic_add(c_style_pointer_cast<bf8x8_t*>(p_dst) + 1, x.template get_as<bf8x8_t>()[I1]);
}
}
}
......
......@@ -20,6 +20,7 @@
#include "ck_tile/host/reference/reference_batched_masking.hpp"
#include "ck_tile/host/reference/reference_batched_rotary_position_embedding.hpp"
#include "ck_tile/host/reference/reference_batched_softmax.hpp"
#include "ck_tile/host/reference/reference_batched_transpose.hpp"
#include "ck_tile/host/reference/reference_elementwise.hpp"
#include "ck_tile/host/reference/reference_fused_moe.hpp"
#include "ck_tile/host/reference/reference_gemm.hpp"
......@@ -34,4 +35,3 @@
#include "ck_tile/host/reference/reference_topk.hpp"
#include "ck_tile/host/stream_config.hpp"
#include "ck_tile/host/timer.hpp"
#include "ck_tile/host/reference/reference_batched_transpose.hpp"
......@@ -22,13 +22,14 @@ template <typename ComputeDataType, typename OutDataType, typename AccDataType =
double get_relative_threshold(const int number_of_accumulations = 1)
{
using F8 = ck_tile::fp8_t;
using BF8 = ck_tile::bf8_t;
using F16 = ck_tile::half_t;
using BF16 = ck_tile::bf16_t;
using F32 = float;
using I8 = int8_t;
using I32 = int32_t;
static_assert(is_any_of<ComputeDataType, F8, F16, BF16, F32, I8, I32, int>::value,
static_assert(is_any_of<ComputeDataType, F8, BF8, F16, BF16, F32, I8, I32, int>::value,
"Warning: Unhandled ComputeDataType for setting up the relative threshold!");
double compute_error = 0;
......@@ -41,7 +42,7 @@ double get_relative_threshold(const int number_of_accumulations = 1)
compute_error = std::pow(2, -numeric_traits<ComputeDataType>::mant) * 0.5;
}
static_assert(is_any_of<OutDataType, F8, F16, BF16, F32, I8, I32, int>::value,
static_assert(is_any_of<OutDataType, F8, BF8, F16, BF16, F32, I8, I32, int>::value,
"Warning: Unhandled OutDataType for setting up the relative threshold!");
double output_error = 0;
......@@ -55,7 +56,7 @@ double get_relative_threshold(const int number_of_accumulations = 1)
}
double midway_error = std::max(compute_error, output_error);
static_assert(is_any_of<AccDataType, F8, F16, BF16, F32, I8, I32, int>::value,
static_assert(is_any_of<AccDataType, F8, BF8, F16, BF16, F32, I8, I32, int>::value,
"Warning: Unhandled AccDataType for setting up the relative threshold!");
double acc_error = 0;
......@@ -74,13 +75,14 @@ template <typename ComputeDataType, typename OutDataType, typename AccDataType =
double get_absolute_threshold(const double max_possible_num, const int number_of_accumulations = 1)
{
using F8 = ck_tile::fp8_t;
using BF8 = ck_tile::bf8_t;
using F16 = ck_tile::half_t;
using BF16 = ck_tile::bf16_t;
using F32 = float;
using I8 = int8_t;
using I32 = int32_t;
static_assert(is_any_of<ComputeDataType, F8, F16, BF16, F32, I8, I32, int>::value,
static_assert(is_any_of<ComputeDataType, F8, BF8, F16, BF16, F32, I8, I32, int>::value,
"Warning: Unhandled ComputeDataType for setting up the absolute threshold!");
auto expo = std::log2(std::abs(max_possible_num));
......@@ -94,7 +96,7 @@ double get_absolute_threshold(const double max_possible_num, const int number_of
compute_error = std::pow(2, expo - numeric_traits<ComputeDataType>::mant) * 0.5;
}
static_assert(is_any_of<OutDataType, F8, F16, BF16, F32, I8, I32, int>::value,
static_assert(is_any_of<OutDataType, F8, BF8, F16, BF16, F32, I8, I32, int>::value,
"Warning: Unhandled OutDataType for setting up the absolute threshold!");
double output_error = 0;
......@@ -108,7 +110,7 @@ double get_absolute_threshold(const double max_possible_num, const int number_of
}
double midway_error = std::max(compute_error, output_error);
static_assert(is_any_of<AccDataType, F8, F16, BF16, F32, I8, I32, int>::value,
static_assert(is_any_of<AccDataType, F8, BF8, F16, BF16, F32, I8, I32, int>::value,
"Warning: Unhandled AccDataType for setting up the absolute threshold!");
double acc_error = 0;
......@@ -501,7 +503,11 @@ std::enable_if_t<(std::is_same_v<ranges::range_value_t<Range>, ranges::range_val
}
if(!res)
{
std::cerr << std::setw(12) << std::setprecision(7) << "max err: " << max_err << std::endl;
const float error_percent =
static_cast<float>(err_count) / static_cast<float>(out.size()) * 100.f;
std::cerr << "max err: " << max_err;
std::cerr << ", number of errors: " << err_count;
std::cerr << ", " << error_percent << "% wrong values" << std::endl;
}
return res;
}
......
......@@ -80,13 +80,14 @@ __global__ void naive_gemm_kernel(ADataType* A,
int b_index = (std::is_same_v<LayoutB, tensor_layout::gemm::ColumnMajor>)
? col * strideB + k
: k * strideB + col;
acc += static_cast<AccDataType>(A[a_index]) * static_cast<AccDataType>(B[b_index]);
acc += ck_tile::type_convert<AccDataType>(A[a_index]) *
ck_tile::type_convert<AccDataType>(B[b_index]);
}
int c_index = (std::is_same_v<LayoutC, tensor_layout::gemm::RowMajor>)
? row * strideC + col
: col * strideC + row;
C[c_index] = acc;
C[c_index] = ck_tile::type_convert<CDataType>(acc);
}
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
......@@ -77,6 +77,7 @@ struct CShuffleEpilogue
*
* @return The vector store size for C tensor.
*/
template <typename ODataType>
CK_TILE_HOST_DEVICE static constexpr auto GetVectorSizeC()
{
constexpr index_t MaxVectorStoreSize = 16;
......@@ -142,7 +143,7 @@ struct CShuffleEpilogue
TileDistributionEncodingPattern2D<kBlockSize,
kMPerIteration,
kNPerIteration,
GetVectorSizeC(),
GetVectorSizeC<ODataType>(),
tile_distribution_pattern::thread_raked>;
constexpr auto dram_tile_distribution = TileEncodingPattern::Make2DStaticTileDistribution();
......
......@@ -79,7 +79,10 @@ struct BlockUniversalGemmAsBsCr
// TODO: Should we have two policies? Interwave & Intrawave ??
static constexpr index_t InterWaveSchedulingMacClusters = 1;
static constexpr index_t KPack = WarpGemm::kKPerThread;
// should be at least equal to: WarpGemm::Impl::kABKPerLane
// and the question is how to assess upper limit or exact value?
// TODO: Should we introduce AK1/BK1 parameters ?
static constexpr index_t KPack = 8;
static constexpr index_t KPerThread = KIterPerWarp * KPack;
static constexpr index_t KRepeat = KPerThread / KPack;
};
......
......@@ -159,7 +159,7 @@ struct GemmKernel
CK_TILE_HOST static bool IsSupportedArgument(const GemmKernelArgs& kargs)
{
if constexpr(EpiloguePipeline::GetVectorSizeC() % 2 != 0 &&
if constexpr(EpiloguePipeline::template GetVectorSizeC<CDataType>() % 2 != 0 &&
is_any_of<CDataType, fp16_t, bf16_t>::value)
{
if(kargs.k_batch != 1)
......@@ -240,7 +240,7 @@ struct GemmKernel
<< std::endl;
return false;
}
if(kargs.N % EpiloguePipeline::GetVectorSizeC() != 0)
if(kargs.N % EpiloguePipeline::template GetVectorSizeC<CDataType>() != 0)
{
std::cerr << "N is not a multiple of vector load size for C tensor!" << std::endl;
return false;
......@@ -255,7 +255,7 @@ struct GemmKernel
<< std::endl;
return false;
}
if(kargs.M % EpiloguePipeline::GetVectorSizeC() != 0)
if(kargs.M % EpiloguePipeline::template GetVectorSizeC<CDataType>() != 0)
{
std::cerr << "M is not a multiple of vector load size for C tensor!" << std::endl;
return false;
......@@ -321,7 +321,7 @@ struct GemmKernel
c_ptr,
make_tuple(kargs.M, kargs.N),
make_tuple(kargs.stride_C, 1),
number<EpiloguePipeline::GetVectorSizeC()>{},
number<EpiloguePipeline::template GetVectorSizeC<CDataType>()>{},
number<1>{});
}
else
......@@ -519,7 +519,7 @@ struct GemmKernel
{
// Do not compile in case where we have unsupported
// VectorSizeC & data type configuration.
if constexpr(!(EpiloguePipeline::GetVectorSizeC() % 2 != 0 &&
if constexpr(!(EpiloguePipeline::template GetVectorSizeC<CDataType>() % 2 != 0 &&
is_any_of<CDataType, fp16_t, bf16_t>::value))
{
RunGemm<memory_operation_enum::atomic_add>(
......
......@@ -3,6 +3,9 @@
#pragma once
#include <string>
#include <sstream>
#include "ck_tile/core.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_universal_pipeline_ag_bg_cr_policy.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_scheduler.hpp"
......@@ -83,6 +86,56 @@ struct GemmPipelineAgBgCrCompV3 : public BaseGemmPipelineAgBgCrCompV3<Problem>
return Policy::template GetSmemSize<Problem>();
}
CK_TILE_HOST static std::string Print()
{
constexpr index_t MPerXDL = BlockGemm::WarpGemm::kM;
constexpr index_t NPerXDL = BlockGemm::WarpGemm::kN;
constexpr index_t KPerXDL = BlockGemm::WarpGemm::WarpGemmAttribute::Impl::kK;
constexpr index_t WaveSize = 64;
constexpr index_t WaveNumM = BlockGemmShape::BlockWarps::at(I0{});
constexpr index_t WaveNumN = BlockGemmShape::BlockWarps::at(I1{});
// Below should be equal to AK1|BK1
constexpr index_t A_LDS_Read_Width = Policy::template GetSmemPackA<Problem>();
constexpr index_t B_LDS_Read_Width = Policy::template GetSmemPackB<Problem>();
constexpr index_t A_LDS_Write_Width = Policy::template GetSmemPackA<Problem>();
constexpr index_t B_LDS_Write_Width = Policy::template GetSmemPackB<Problem>();
constexpr index_t A_Buffer_Load_Inst_Num =
MPerBlock * KPerBlock / (BlockSize * GetVectorSizeA());
constexpr index_t B_Buffer_Load_Inst_Num =
NPerBlock * KPerBlock / (BlockSize * GetVectorSizeB());
constexpr index_t A_LDS_Write_Inst_Num =
MPerBlock * KPerBlock / (BlockSize * A_LDS_Write_Width);
constexpr index_t B_LDS_Write_Inst_Num =
NPerBlock * KPerBlock / (BlockSize * B_LDS_Write_Width);
constexpr index_t A_LDS_Read_Inst_Num =
WaveNumN * MPerBlock * KPerBlock / (BlockSize * A_LDS_Read_Width);
constexpr index_t B_LDS_Read_Inst_Num =
WaveNumM * MPerBlock * KPerBlock / (BlockSize * B_LDS_Read_Width);
constexpr index_t C_MFMA_Inst_Num = MPerBlock * NPerBlock * KPerBlock /
(BlockSize / WaveSize) / (MPerXDL * NPerXDL * KPerXDL);
auto str = std::stringstream{};
str << "A/B vector size: " << GetVectorSizeA() << ", " << GetVectorSizeB() << "\n"
<< "A/B LDS read/write width: " << A_LDS_Read_Width << ", " << B_LDS_Read_Width << "\n"
<< "A/B buffer load inst: " << A_Buffer_Load_Inst_Num << ", " << B_Buffer_Load_Inst_Num
<< "\n"
<< "A/B LDS write inst: " << A_LDS_Write_Inst_Num << ", " << B_LDS_Write_Inst_Num
<< "\n"
<< "A/B LDS read inst: " << A_LDS_Read_Inst_Num << ", " << B_LDS_Read_Inst_Num << "\n"
<< "C MFMA inst: " << C_MFMA_Inst_Num << "\n"
<< "KPack: " << BlockGemm::Traits::KPack << "\n"
<< "PrefetchStages: " << PrefetchStages << "\n";
return str.str();
}
template <GemmPipelineScheduler Scheduler>
struct PipelineImpl : public PipelineImplBase
{
......@@ -95,29 +148,35 @@ struct GemmPipelineAgBgCrCompV3 : public BaseGemmPipelineAgBgCrCompV3<Problem>
CK_TILE_DEVICE static constexpr auto HotLoopScheduler()
{
constexpr index_t MPerXDL = BlockGemmShape::WarpTile::at(I0{});
constexpr index_t NPerXDL = BlockGemmShape::WarpTile::at(I1{});
constexpr index_t KPerXDL = BlockGemmShape::WarpTile::at(I2{});
constexpr index_t MPerXDL = BlockGemm::WarpGemm::kM;
constexpr index_t NPerXDL = BlockGemm::WarpGemm::kN;
constexpr index_t KPerXDL = BlockGemm::WarpGemm::WarpGemmAttribute::Impl::kK;
constexpr index_t WaveSize = 64;
constexpr index_t WaveNumM = BlockGemmShape::BlockWarps::at(I0{});
constexpr index_t WaveNumN = BlockGemmShape::BlockWarps::at(I1{});
constexpr index_t A_LDS_Read_Width = KPerXDL;
constexpr index_t B_LDS_Read_Width = KPerXDL;
// Below should be equal to AK1|BK1
constexpr index_t A_LDS_Read_Width = Policy::template GetSmemPackA<Problem>();
constexpr index_t B_LDS_Read_Width = Policy::template GetSmemPackB<Problem>();
constexpr index_t A_LDS_Write_Width = Policy::template GetSmemPackA<Problem>();
constexpr index_t B_LDS_Write_Width = Policy::template GetSmemPackB<Problem>();
constexpr index_t A_Buffer_Load_Inst_Num =
MPerBlock * KPerBlock / (BlockSize * GetVectorSizeA());
constexpr index_t B_Buffer_Load_Inst_Num =
NPerBlock * KPerBlock / (BlockSize * GetVectorSizeB());
constexpr index_t A_LDS_Write_Inst_Num = MPerBlock * KPerBlock / (BlockSize * KPerXDL);
constexpr index_t B_LDS_Write_Inst_Num = NPerBlock * KPerBlock / (BlockSize * KPerXDL);
constexpr index_t A_LDS_Write_Inst_Num =
MPerBlock * KPerBlock / (BlockSize * A_LDS_Write_Width);
constexpr index_t B_LDS_Write_Inst_Num =
NPerBlock * KPerBlock / (BlockSize * B_LDS_Write_Width);
constexpr index_t A_LDS_Read_Inst_Num =
WaveNumN * MPerBlock * KPerBlock / (BlockSize * KPerXDL);
WaveNumN * MPerBlock * KPerBlock / (BlockSize * A_LDS_Read_Width);
constexpr index_t B_LDS_Read_Inst_Num =
WaveNumM * MPerBlock * KPerBlock / (BlockSize * KPerXDL);
WaveNumM * MPerBlock * KPerBlock / (BlockSize * B_LDS_Read_Width);
constexpr index_t C_MFMA_Inst_Num = MPerBlock * NPerBlock * KPerBlock /
(BlockSize / WaveSize) /
......
......@@ -185,7 +185,6 @@ struct UniversalGemmPipelineAgBgCrPolicy
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeALdsBlockDescriptor()
{
using ADataType = remove_cvref_t<typename Problem::ADataType>;
constexpr index_t MPerBlock = Problem::BlockGemmShape::kM;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace tensor_operation {
namespace host {
template <typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename ScaleDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename ComputeTypeA = CDataType,
typename ComputeTypeB = ComputeTypeA>
struct ReferenceMXGemm : public device::BaseOperator
{
// Argument
struct Argument : public device::BaseArgument
{
Argument(const Tensor<ADataType>& a_m_k,
const Tensor<ScaleDataType>& a_m_kblock_scales,
const Tensor<BDataType>& b_k_n,
const Tensor<ScaleDataType>& b_kblock_n_scales,
Tensor<CDataType>& c_m_n,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
: a_m_k_{a_m_k},
a_m_kblock_scales_{a_m_kblock_scales},
b_k_n_{b_k_n},
b_kblock_n_scales_{b_kblock_n_scales},
c_m_n_{c_m_n},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
c_element_op_{c_element_op}
{
}
const Tensor<ADataType>& a_m_k_;
const Tensor<ScaleDataType>& a_m_kblock_scales_;
const Tensor<BDataType>& b_k_n_;
const Tensor<ScaleDataType>& b_kblock_n_scales_;
Tensor<CDataType>& c_m_n_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
};
// Invoker
struct Invoker : public device::BaseInvoker
{
using Argument = ReferenceMXGemm::Argument;
float Run(const Argument& arg)
{
using GemmInstance = ck::tensor_operation::host::ReferenceGemm<ComputeTypeA,
ComputeTypeB,
CDataType,
AccDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
ComputeTypeA,
ComputeTypeB>;
Tensor<ComputeTypeA> a_m_k_scaled(arg.a_m_k_.mDesc);
Tensor<ComputeTypeB> b_k_n_scaled(arg.b_k_n_.mDesc);
const auto M = arg.a_m_k_.mDesc.GetLengths()[0];
const auto N = arg.b_k_n_.mDesc.GetLengths()[1];
const auto K = arg.a_m_k_.mDesc.GetLengths()[1];
const auto SCALE_BLOCK = K / arg.a_m_kblock_scales_.mDesc.GetLengths()[1];
for(size_t m = 0; m < M; m++)
{
for(size_t k = 0; k < K; k++)
{
a_m_k_scaled(m, k) =
type_convert<ComputeTypeA>(arg.a_m_k_(m, k)) *
type_convert<ComputeTypeA>(arg.a_m_kblock_scales_(m, k / SCALE_BLOCK));
}
}
for(size_t n = 0; n < N; n++)
{
for(size_t k = 0; k < K; k++)
{
b_k_n_scaled(k, n) =
type_convert<ComputeTypeB>(arg.b_k_n_(k, n)) *
type_convert<ComputeTypeB>(arg.b_kblock_n_scales_(k / SCALE_BLOCK, n));
}
}
auto ref_gemm = GemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_m_k_scaled,
b_k_n_scaled,
arg.c_m_n_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_);
ref_invoker.Run(ref_argument);
return 0;
}
float Run(const device::BaseArgument* p_arg,
const StreamConfig& /* stream_config */ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
bool IsSupportedArgument(const device::BaseArgument*) override { return true; }
static auto MakeArgument(const Tensor<ADataType>& a_m_k,
const Tensor<ScaleDataType>& a_m_kblock_scales,
const Tensor<BDataType>& b_k_n,
const Tensor<ScaleDataType>& b_kblock_n_scales,
Tensor<CDataType>& c_m_n,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
return Argument{a_m_k,
a_m_kblock_scales,
b_k_n,
b_kblock_n_scales,
c_m_n,
a_element_op,
b_element_op,
c_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceMXGemm"
<< std::endl;
// clang-format on
return str.str();
}
};
} // namespace host
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_xdl_fpAintB_b_scale.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include <memory>
#include <vector>
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
#if(defined(CK_ENABLE_FP16) || defined(CK_ENABLE_FP8))
void add_device_batched_gemm_b_scale_xdl_f16_i4_f16_mk_nk_mn_mem_v2_default_instances(
std::vector<std::unique_ptr<DeviceBatchedGemmV2BScale<Row,
Col,
Row,
F16,
I4,
F16,
F16,
1,
128,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
template <typename ADataType,
typename BDataType,
typename BScaleDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout,
index_t ScaleBlockK>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceBatchedGemmV2BScale<
ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
BScaleDataType,
CDataType,
1,
ScaleBlockK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceBatchedGemmV2BScale<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
BScaleDataType,
CDataType,
1,
ScaleBlockK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, pk_i4_t> &&
is_same_v<CDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_batched_gemm_b_scale_xdl_f16_i4_f16_mk_nk_mn_mem_v2_default_instances(
op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
# ONLY XDL_KERNELS
set(BATCHED_GEMM_B_SCALE_INSTANCES)
list(APPEND BATCHED_GEMM_B_SCALE_INSTANCES
device_batched_gemm_b_scale_xdl_f16_i4_f16/device_batched_gemm_b_scale_xdl_f16_i4_f16_mk_nk_mn_mem_v2_default_instance.cpp
)
set_source_files_properties(device_batched_gemm_b_scale_xdl_f16_i4_f16/device_batched_gemm_b_scale_xdl_f16_i4_f16_mk_nk_mn_mem_v2_default_instance.cpp PROPERTIES COMPILE_OPTIONS ";-mllvm;-greedy-reverse-local-assignment=1")
add_instance_library(device_batched_gemm_b_scale_instance ${BATCHED_GEMM_B_SCALE_INSTANCES})
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_xdl_fpAintB_b_scale.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using I4 = pk_i4_t;
using F16 = half_t;
using F32 = float;
using Row = tensor_layout::gemm::RowMajor;
using Col = tensor_layout::gemm::ColumnMajor;
template <index_t... Is>
using S = Sequence<Is...>;
using PassThrough = element_wise::PassThrough;
static constexpr auto GemmDefault = GemmSpecialization::Default;
static constexpr auto GemmKPadding = GemmSpecialization::KPadding;
static constexpr auto GemmMNPadding = GemmSpecialization::MNPadding;
static constexpr auto GemmMNKPadding = GemmSpecialization::MNKPadding;
static constexpr auto Intrawave = BlockGemmPipelineScheduler::Intrawave;
static constexpr auto Interwave = BlockGemmPipelineScheduler::Interwave;
template <BlockGemmPipelineScheduler BlkGemmPipeSched, GemmSpecialization GemmSpec>
using device_batched_gemm_b_scale_xdl_f16_i4_f16_mk_nk_mn_mem_instances = std::tuple<
// clang-format off
//#########################| ALayout| BLayout| CLayout|AData| BData| BScale| CData| AccData| Cshuffle| A| B| C| GEMM| Block| Scale| Scale| MPer| NPer| KPer| AK1| BK1|MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Block-wiseGemm| Block-wiseGemm|
//#########################| | | | Type| Type| Data| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//#########################| | | | | | Type| | | | Operation| Operation| Operation| | | N| K| | | | | |Wave| Wave| | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//Compute friendly
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 1, 128, 128, 128, 128, 8, 32, 32, 32, 2, 2, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 32, 1, 8>, 8, BlkGemmPipeSched, BlockGemmPipelineVersion::v3, half_t, half_t, false, false>, //0
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 1, 128, 128, 128, 64, 8, 32, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<2, 128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 32, 1, 8>, 8, BlkGemmPipeSched, BlockGemmPipelineVersion::v4, half_t, half_t, false, false>, //1
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 1, 128, 128, 128, 64, 8, 32, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<2, 128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, 8, BlkGemmPipeSched, BlockGemmPipelineVersion::v4, half_t, half_t, false, false>, //3
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 1, 128, 128, 128, 64, 8, 32, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<2, 128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, 8, BlkGemmPipeSched, BlockGemmPipelineVersion::v3, half_t, half_t, false, false>, //4
//Latency friendly
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 1, 128, 32, 16, 128, 8, 16, 16, 16, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v3, half_t, half_t, false, false>, //5
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 1, 128, 16, 16, 128, 8, 16, 16, 16, 1, 1, S<16, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 4>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v3, half_t, half_t, false, false>, //6
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 1, 128, 16, 16, 128, 8, 16, 16, 16, 1, 1, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 4>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v3, half_t, half_t, false, false>, //7
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 1, 128, 16, 32, 128, 8, 32, 16, 16, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v3, half_t, half_t, false, false>, //8
// Memory friendly v3
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 1, 128, 128, 32, 128, 8, 32, 32, 32, 2, 1, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v3, half_t, half_t, false, false>, //9
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 1, 128, 128, 16, 128, 8, 16, 16, 16, 4, 1, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v3, half_t, half_t, false, false>, //10
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 1, 128, 64, 32, 128, 8, 32, 32, 32, 1, 1, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v3, half_t, half_t, false, false>, //11
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 1, 128, 64, 16, 128, 8, 16, 16, 16, 2, 1, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v3, half_t, half_t, false, false>, //12
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 1, 128, 32, 16, 128, 8, 16, 16, 16, 1, 1, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v3, half_t, half_t, false, false>, //13
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 1, 128, 16, 32, 128, 8, 32, 16, 16, 1, 1, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v3, half_t, half_t, false, false>, //16
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 1, 128, 16, 64, 128, 8, 32, 16, 16, 1, 2, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v3, half_t, half_t, false, false>, //17
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 1, 128, 32, 64, 128, 8, 32, 32, 32, 1, 1, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 16, 1, 8>, 8, BlkGemmPipeSched, BlockGemmPipelineVersion::v3, half_t, half_t, false, false>, //18
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 1, 128, 16, 128, 128, 8, 32, 16, 16, 1, 4, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v3, half_t, half_t, false, false>, //19
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 1, 128, 32, 128, 128, 8, 32, 32, 32, 1, 2, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 16, 1, 8>, 8, BlkGemmPipeSched, BlockGemmPipelineVersion::v3, half_t, half_t, false, false>, //20
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 1, 128, 16, 256, 128, 8, 32, 16, 16, 1, 4, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 16, 1, 16>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v3, half_t, half_t, false, false>, //21
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 1, 128, 32, 256, 128, 8, 32, 32, 32, 1, 2, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 16, 1, 16>, 8, BlkGemmPipeSched, BlockGemmPipelineVersion::v3, half_t, half_t, false, false>, //22
// Memory friendly v4
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 1, 128, 64, 32, 128, 8, 32, 32, 32, 1, 1, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v4, half_t, half_t, false, false>, //23
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 1, 128, 64, 16, 128, 8, 16, 16, 16, 2, 1, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v4, half_t, half_t, false, false>, //24
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 1, 128, 32, 16, 128, 8, 16, 16, 16, 1, 1, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v4, half_t, half_t, false, false>, //25
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 1, 128, 16, 16, 128, 8, 16, 16, 16, 1, 1, S<16, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 4>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v4, half_t, half_t, false, false>, //26
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 1, 128, 16, 32, 128, 8, 32, 16, 16, 1, 1, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v4, half_t, half_t, false, false>, //28
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 1, 128, 16, 64, 128, 8, 32, 16, 16, 1, 2, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v4, half_t, half_t, false, false>, //29
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 1, 128, 32, 64, 128, 8, 32, 32, 32, 1, 1, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 16, 1, 8>, 8, BlkGemmPipeSched, BlockGemmPipelineVersion::v4, half_t, half_t, false, false>, //30
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 1, 128, 16, 128, 128, 8, 32, 16, 16, 1, 4, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v4, half_t, half_t, false, false>, //31
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 1, 128, 32, 128, 128, 8, 32, 32, 32, 1, 2, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 16, 1, 8>, 8, BlkGemmPipeSched, BlockGemmPipelineVersion::v4, half_t, half_t, false, false>, //32
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 1, 128, 16, 256, 128, 8, 32, 16, 16, 1, 4, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 16, 1, 16>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v4, half_t, half_t, false, false>, //33
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 1, 128, 32, 256, 128, 8, 32, 32, 32, 1, 2, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 16, 1, 16>, 8, BlkGemmPipeSched, BlockGemmPipelineVersion::v4, half_t, half_t, false, false>, //34
//new Compute friendly kernel
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 1, 128, 128, 128, 64, 8, 32, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<2, 128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 32, 1, 8>, 8, BlkGemmPipeSched, BlockGemmPipelineVersion::v3, half_t, half_t, false, false>, //35
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 1, 128, 128, 128, 64, 8, 32, 32, 32, 4, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<2, 128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 32, 1, 8>, 8, BlkGemmPipeSched, BlockGemmPipelineVersion::v3, half_t, half_t, false, false>, //36
//new Memory friendly kernel
DeviceBatchedGemm_Xdl_CShuffleV3_BScale< Row, Col, Row, F16, I4, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 1, 128, 16, 64, 256, 8, 32, 16, 16, 1, 1, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 32, 32, 0, 1, 1, S<1, 16, 1, 8>, 8, BlkGemmPipeSched, BlockGemmPipelineVersion::v3, half_t, half_t, false, false> //37
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#include "device_batched_gemm_b_scale_xdl_f16_i4_f16_mk_nk_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_batched_gemm_b_scale_xdl_f16_i4_f16_mk_nk_mn_mem_v2_default_instances(
std::vector<std::unique_ptr<DeviceBatchedGemmV2BScale<Row,
Col,
Row,
F16,
I4,
F16,
F16,
1,
128,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_batched_gemm_b_scale_xdl_f16_i4_f16_mk_nk_mn_mem_instances<Intrawave,
GemmDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment