Unverified Commit 1837040a authored by zjing14's avatar zjing14 Committed by GitHub
Browse files

Navi3 rel (#1176)



* wmma_op + unit test

* add arch limitation to wmma test

* change arch limitation

* Refactor + Add all type unit test(int4 compile failed)

* Add f32_16x16x16_bf16 unit test

* tempsave

* tempsave

* tempsave

* runtime bug, cannot find symbol

* workaround for incorrect HIP warpSize return value

* debugging

* tempsave

* Correctness OK, waiting for optimization

* Tidy up + format

* temp save

* temp save, reproduce the v_bfi_b32 issue

* add inline asm for wmmaop test

* tidy up

* clean some debug purpose code

* discard some codes

* clang format

* clang format

* compiler issue fixed + increase tile size

* navi3x_multipleD+example

* temp save

* workable

* batchedgemm[OK], groupconv[debug]

* groupconv: Sanity check[OK], Performance[Bad]

* navi3x_groupconv_need_optimization

* create necessary files

* save progress

* Add Inter-Row thread transfer

* save progress

* save debugging progress

* sanity check pass

* fix a host tensor bug and clean up flash-attn code

* format

* cancel unnecessary change

* cancel unnecessary change

* cancel unnecessary change

* temp save, add asm backend flag to amd_wmma

* Mat-A LDS Bypass sanity pass

* temp save

* gemm sanity fix

* Porting new blockwise gemm to flash attention

* Example branch provide to compiler team

* tempsave

* Fix a bug

* batched gemm ported

* conv A-skip lds ported

* Skip B-Lds real gemm

* Skip B Lds Gemm + MulD

* batched gemm, conv, skip b lds

* format

* Attn, skip b lds

* Change GridwiseOp nam

* fix a typo caused bug

* Skip A_Lds sanity pass, Skip B_Lds scratch occured

* Bug found, intra-row permute off caused

* bug found

* a fix

* disable buffer load due to incorrect 3rd dword

* update fmha config, no scratch generated

* update 3rd dword

* fmha config update

* FMHA, add support to gfx1101/gfx1102

* Merge origin dev (#2)

* [Navi3x] Fix Gridwise_multiple_d operation (#649)

* Add CMake Option "USE_OPT_NAVI3X"

* fix bug

* standardize docs (#655)

* Separate bibtex requirement from rocm-docs-core (#656)

* separate bibtex requirement from rocm-docs-core

* point requirements to source rocm-docs-core repo

* Add CMake Option "USE_OPT_NAVI3X" (#647)

* Add CMake Option "USE_OPT_NAVI3X"

* remove navi3x opt compile option from cmake script

* Conv + quantization + tanh  (#645)

* Rename file. Prepare to support another activation

* Add comment for quantization

* Extract out_elementop

* Add tanh example

* Add conv + bias + tanh quantization instance

* Add missing parameter

* Refine cmake

* Add external api and client example

* Extract variable in example

* Fix the comment

---------
Co-authored-by: default avatarzjing14 <zhangjing14@gmail.com>

* Add a denorm test fix (#603)

* Add type_convert implementations for bf16

* Add the fix for conv_fwd

* Add the fix for conv_bwd_data

* Add the fix for conv_bwd_weight

* Format

* Format

* Another format

* Add a macro to use workaround on MI200 only

* Format

---------
Co-authored-by: default avatarRosty Geyyer <rosty.geyyer@amd.com>
Co-authored-by: default avatarzjing14 <zhangjing14@gmail.com>

* simplify karg in device/grid of split-k op (#644)

* simplify karg in device/grid split-k op

* fix mk_kn_mn instances

* add more instances

* use name from tensor layout

* fix 3rd dword of buffer source descriptor (#659)

* add fp64 instances (#658)
Co-authored-by: default avatarroot <root@ctr-ubbsmc15.amd.com>

* Issue #666: Revert "simplify karg in device/grid of split-k op (#644)" (#665)

This reverts commit bb5530af

.

* Groupnorm + swish external api (#668)

* Rename to proper naming

* Add example of groupnorm + swish

* Extract duplicate code in example

* Add groupnorm + swish instances

* Ractor instance generation, split into multiple cpp file

* Add external api and client example

* Refine profiler message

* Use ck math version of exp

* Refine problem size in example

* Add host version of exp

* add a marco to turn on/off denorm fix (off by default) (#673)

* add a marco to turn off denorm fix by default

* expose the marco

---------
Co-authored-by: default avatarroot <root@ctr-ubbsmc15.amd.com>

* fixed quant example (#672)
Co-authored-by: default avatarroot <root@ctr-ubbsmc15.amd.com>

* Add dependabot config and pin rocm-docs-core (#663)

* [gtest] suppress unsafe buffer warn (#670)

ref: https://github.com/ROCmSoftwarePlatform/MIOpen/pull/1912



* Add memory index guard in wmma device ops (#667)

* Add more macros to turn on/off denorm fix (#678)
Co-authored-by: default avatarRosty Geyyer <rosty.geyyer@amd.com>

* Fix a typo (#676)

* Add (#677)

* Allow using ROCm release candidate compilers. (#679)

* enable use of rocm5.5 release candidate 4

* upgrade to ROCM5.5 RC5

* try fix the PUB_KEY error, remove the cmake-data package

* upgrade to latest cmake version

* use private dockerhub repo for rocm5.5 rc5

* add missing bracket

* add vector load check

* solve conflicts

---------
Co-authored-by: default avatarSam Wu <sjwu@ualberta.ca>
Co-authored-by: default avatarSam Wu <sam.wu2@amd.com>
Co-authored-by: default avatarrocking5566 <ChunYu.Lai@amd.com>
Co-authored-by: default avatarzjing14 <zhangjing14@gmail.com>
Co-authored-by: default avatarRostyslav Geyyer <46627076+geyyer@users.noreply.github.com>
Co-authored-by: default avatarRosty Geyyer <rosty.geyyer@amd.com>
Co-authored-by: default avatarcarlushuang <carlus.huang@amd.com>
Co-authored-by: default avatarroot <root@ctr-ubbsmc15.amd.com>
Co-authored-by: default avatarJun Liu <Liu.Jun@amd.com>
Co-authored-by: default avatarIllia Silin <98187287+illsilin@users.noreply.github.com>

* Disable SkipLDS & Align AIT api (#3)

* fix layernorm, reduction Ops (#4)

* [Navi3x] Fix Gridwise_multiple_d operation (#649)

* Add CMake Option "USE_OPT_NAVI3X"

* fix bug

* standardize docs (#655)

* Separate bibtex requirement from rocm-docs-core (#656)

* separate bibtex requirement from rocm-docs-core

* point requirements to source rocm-docs-core repo

* Add CMake Option "USE_OPT_NAVI3X" (#647)

* Add CMake Option "USE_OPT_NAVI3X"

* remove navi3x opt compile option from cmake script

* Conv + quantization + tanh  (#645)

* Rename file. Prepare to support another activation

* Add comment for quantization

* Extract out_elementop

* Add tanh example

* Add conv + bias + tanh quantization instance

* Add missing parameter

* Refine cmake

* Add external api and client example

* Extract variable in example

* Fix the comment

---------
Co-authored-by: default avatarzjing14 <zhangjing14@gmail.com>

* Add a denorm test fix (#603)

* Add type_convert implementations for bf16

* Add the fix for conv_fwd

* Add the fix for conv_bwd_data

* Add the fix for conv_bwd_weight

* Format

* Format

* Another format

* Add a macro to use workaround on MI200 only

* Format

---------
Co-authored-by: default avatarRosty Geyyer <rosty.geyyer@amd.com>
Co-authored-by: default avatarzjing14 <zhangjing14@gmail.com>

* simplify karg in device/grid of split-k op (#644)

* simplify karg in device/grid split-k op

* fix mk_kn_mn instances

* add more instances

* use name from tensor layout

* fix 3rd dword of buffer source descriptor (#659)

* add fp64 instances (#658)
Co-authored-by: default avatarroot <root@ctr-ubbsmc15.amd.com>

* Issue #666: Revert "simplify karg in device/grid of split-k op (#644)" (#665)

This reverts commit bb5530af

.

* Groupnorm + swish external api (#668)

* Rename to proper naming

* Add example of groupnorm + swish

* Extract duplicate code in example

* Add groupnorm + swish instances

* Ractor instance generation, split into multiple cpp file

* Add external api and client example

* Refine profiler message

* Use ck math version of exp

* Refine problem size in example

* Add host version of exp

* add a marco to turn on/off denorm fix (off by default) (#673)

* add a marco to turn off denorm fix by default

* expose the marco

---------
Co-authored-by: default avatarroot <root@ctr-ubbsmc15.amd.com>

* fixed quant example (#672)
Co-authored-by: default avatarroot <root@ctr-ubbsmc15.amd.com>

* Add dependabot config and pin rocm-docs-core (#663)

* [gtest] suppress unsafe buffer warn (#670)

ref: https://github.com/ROCmSoftwarePlatform/MIOpen/pull/1912



* Add memory index guard in wmma device ops (#667)

* Add more macros to turn on/off denorm fix (#678)
Co-authored-by: default avatarRosty Geyyer <rosty.geyyer@amd.com>

* Fix a typo (#676)

* Add (#677)

* Allow using ROCm release candidate compilers. (#679)

* enable use of rocm5.5 release candidate 4

* upgrade to ROCM5.5 RC5

* try fix the PUB_KEY error, remove the cmake-data package

* upgrade to latest cmake version

* use private dockerhub repo for rocm5.5 rc5

* add missing bracket

* Disable SkipLDS & Align AIT api

* Update dependabot config (#682)
Co-authored-by: default avatarsamjwu <samjwu@users.noreply.github.com>

* update attn api

* solve type_convert bug + enable

---------
Co-authored-by: default avatarSam Wu <sjwu@ualberta.ca>
Co-authored-by: default avatarSam Wu <sam.wu2@amd.com>
Co-authored-by: default avatarrocking5566 <ChunYu.Lai@amd.com>
Co-authored-by: default avatarzjing14 <zhangjing14@gmail.com>
Co-authored-by: default avatarRostyslav Geyyer <46627076+geyyer@users.noreply.github.com>
Co-authored-by: default avatarRosty Geyyer <rosty.geyyer@amd.com>
Co-authored-by: default avatarcarlushuang <carlus.huang@amd.com>
Co-authored-by: default avatarroot <root@ctr-ubbsmc15.amd.com>
Co-authored-by: default avatarJun Liu <Liu.Jun@amd.com>
Co-authored-by: default avatarIllia Silin <98187287+illsilin@users.noreply.github.com>
Co-authored-by: default avatarsamjwu <samjwu@users.noreply.github.com>
Co-authored-by: default avatarhaocwang <Haocong.WANG@amd.com>

* fix typo

* Fix attention with causal mask

* multiple fix, try ait compile

* Add A/B not use LDS pipeline

* Clang format, Add gfx1101, gfx1102 support of FMHA example

* cancel change of format script

* 1. Enable 2-stage global Prefetch ( May cause VGPR spilling)
2. Enable FP16 accumulator blockwise_gemm

* clang-format

* 1. change blockwise gemm loopover direction from kmn to mnk ( ~1% improvement)
2. change kernel timing mode to 50 warmup + 50 timed repeat

* Update low level abstration of blockwise gemm wmma

* (2/5) bilinear gemm pass, perf bug: skip a lds has lower performance than skip b lds

* (3/5) batched gemm pass, perf bug: skip a lds has lower performance than skip b lds

* (4/5) grouped conv pass

* (5/5) attention pass, todo: debug lds perf bug

* AIT Attention API refactor (#8)

* sanity pass

* sanity pass 2

* confirm significant performance regression.

* turn on all instances

* turn off instance format

* Fix bug & tunning & format

* DML meta, self_attn+cross_attn

* sanity pass

* remove useless flag

* update tile and problem size used in AIT attention

* bug fix in grouped conv supporting check

* deprecate inline asm wmma

* Bug fix: double lds skip

* clang-format

* Fix errors in
1. example, fmha
2. gridwise pipeline
3. deviceop, fmha, change some containers from vector to array

* part2 of previous commit

* clang format

* API fix of gridwisegemmpipeline

* separate array base and vector base attention tensor transformation

* fix gemm

* clang format

* add gemm fp16 instances

* Temp save

* fpAintB kernel compile pass

* Sanity pass.

* Temp save

* debug code enabled

* Fp16AInt8B_GEMM sanity

* MQA implementation

* GQA-4 example

* tempsave

* Compile pass

* New implementation of fp16Aint8B Gemm, Acheieve similar math throughput with native fp16 Gemm

* format

* Todo: fix gemm_bilinear_wmma instances compilation bug

* Solve a bug when K1=16

* remove unnecessary changes

* Remove tensor layout limitation to LDS usage in tesnor contraction

* update self-attention and cross-attention

* fix a typo of name

* Add arch limiter for fp8 gemm

* enable fp8 gemm_xdl for all gfx9 targets

* temporarily disable gemm_xdl_fp16_fp8 on MI100/200

* fix the cmake logic for gemm_xdl_fp16_fp8

* re-enable the gemm_xdl_fp16_fp8 on MI100/200

---------
Co-authored-by: default avataraska-0096 <haocwang@amd.com>
Co-authored-by: default avatarSam Wu <sjwu@ualberta.ca>
Co-authored-by: default avatarSam Wu <sam.wu2@amd.com>
Co-authored-by: default avatarrocking5566 <ChunYu.Lai@amd.com>
Co-authored-by: default avatarRostyslav Geyyer <46627076+geyyer@users.noreply.github.com>
Co-authored-by: default avatarRosty Geyyer <rosty.geyyer@amd.com>
Co-authored-by: default avatarcarlushuang <carlus.huang@amd.com>
Co-authored-by: default avatarroot <root@ctr-ubbsmc15.amd.com>
Co-authored-by: default avatarJun Liu <Liu.Jun@amd.com>
Co-authored-by: default avatarIllia Silin <98187287+illsilin@users.noreply.github.com>
Co-authored-by: default avatarsamjwu <samjwu@users.noreply.github.com>
Co-authored-by: default avatarhaocwang <Haocong.WANG@amd.com>
Co-authored-by: default avatarillsilin <Illia.Silin@amd.com>
parent 363feb48
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// Compilation parameters for a[k, m] * b[k, n] = c[m, n]
using device_gemm_wmma_f16_f16_f16_km_kn_mn_instances = std::tuple<
// clang-format off
//######################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumPrefetch| Block| MPer| NPer| KPer| K1| MPer| NPer| M| N| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CShuffleBlockTransfer| CShuffleBlockTransfer|
//######################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise|Specialization| | Size| Block| Block| Block| | WMMA| WMMA| Repeat| Repeat| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MRepeat| MRepeat| ClusterLengths| ScalarPerVector|
//######################| | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerStore| PerStore| MBlock_MPerBlock| |
//######################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
/* Prefetch 2, consume enormous vgpr resource*/
// 8 Waves
DeviceGemmWmma_CShuffle< Col, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 256, 128, 128, 32, 8, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
// 4 Waves
DeviceGemmWmma_CShuffle< Col, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 128, 128, 64, 64, 8, 16, 16, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
// 2 Waves
DeviceGemmWmma_CShuffle< Col, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 64, 64, 32, 32, 8, 16, 16, 4, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
// 1 Wave
DeviceGemmWmma_CShuffle< Col, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 32, 16, 16, 32, 8, 16, 16, 1, 1, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 2>, 8>,
/* Prefetch 1, prefer larger KPerBlock value for better latency hiding*/
// 8 Waves
DeviceGemmWmma_CShuffle< Col, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 256, 64, 8, 16, 16, 4, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmWmma_CShuffle< Col, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmWmma_CShuffle< Col, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 160, 64, 8, 16, 16, 2, 5, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 64, 1, 4>, 8>,
// 4 Waves
DeviceGemmWmma_CShuffle< Col, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 16, 16, 4, 4, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Col, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 256, 64, 64, 8, 16, 16, 8, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Col, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 256, 64, 8, 16, 16, 2, 8, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Col, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 80, 64, 8, 16, 16, 1, 5, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 64, 1, 2>, 8>,
// 2 Waves
DeviceGemmWmma_CShuffle< Col, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 16, 64, 64, 8, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Col, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 64, 8, 16, 16, 4, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Col, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 64, 8, 16, 16, 2, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
// 1 Wave
DeviceGemmWmma_CShuffle< Col, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 32, 16, 32, 64, 8, 16, 16, 1, 2, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmWmma_CShuffle< Col, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 32, 16, 16, 64, 8, 16, 16, 1, 1, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 2>, 8>
// clang-format on
>;
void add_device_gemm_wmma_f16_f16_f16_km_kn_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Col, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(instances, device_gemm_wmma_f16_f16_f16_km_kn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// Compilation parameters for a[k, m] * b[n, k] = c[m, n]
using device_gemm_wmma_f16_f16_f16_km_nk_mn_instances = std::tuple<
// clang-format off
//######################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumPrefetch| Block| MPer| NPer| KPer| K1| MPer| NPer| M| N| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CShuffleBlockTransfer| CShuffleBlockTransfer|
//######################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise|Specialization| | Size| Block| Block| Block| | WMMA| WMMA| Repeat| Repeat| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MRepeat| MRepeat| ClusterLengths| ScalarPerVector|
//######################| | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerStore| PerStore| MBlock_MPerBlock| |
//######################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
/* Prefetch 2, consume enormous vgpr resource*/
// 8 Waves
DeviceGemmWmma_CShuffle< Col, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 256, 128, 128, 32, 8, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
// 4 Waves
DeviceGemmWmma_CShuffle< Col, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 128, 128, 64, 64, 8, 16, 16, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
// 2 Waves
DeviceGemmWmma_CShuffle< Col, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 64, 64, 32, 32, 8, 16, 16, 4, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
// 1 Wave
DeviceGemmWmma_CShuffle< Col, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 32, 16, 16, 32, 8, 16, 16, 1, 1, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 2>, 8>,
/* Prefetch 1, prefer larger KPerBlock value for better latency hiding*/
// 8 Waves
DeviceGemmWmma_CShuffle< Col, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 256, 64, 8, 16, 16, 4, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmWmma_CShuffle< Col, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmWmma_CShuffle< Col, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 160, 64, 8, 16, 16, 2, 5, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 64, 1, 4>, 8>,
// 4 Waves
DeviceGemmWmma_CShuffle< Col, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 16, 16, 4, 4, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Col, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 256, 64, 64, 8, 16, 16, 8, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Col, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 256, 64, 8, 16, 16, 2, 8, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Col, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 80, 64, 8, 16, 16, 1, 5, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 64, 1, 2>, 8>,
// 2 Waves
DeviceGemmWmma_CShuffle< Col, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 16, 64, 64, 8, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Col, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 64, 8, 16, 16, 4, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Col, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 64, 8, 16, 16, 2, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
// 1 Wave
DeviceGemmWmma_CShuffle< Col, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 32, 16, 32, 64, 8, 16, 16, 1, 2, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmWmma_CShuffle< Col, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 32, 16, 16, 64, 8, 16, 16, 1, 1, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 2>, 8>
// clang-format on
>;
void add_device_gemm_wmma_f16_f16_f16_km_nk_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Col, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(instances, device_gemm_wmma_f16_f16_f16_km_nk_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using device_gemm_wmma_f16_f16_f16_mk_kn_mn_instances = std::tuple<
// clang-format off
//######################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumPrefetch| Block| MPer| NPer| KPer| K1| MPer| NPer| M| N| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CShuffleBlockTransfer| CShuffleBlockTransfer|
//######################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise|Specialization| | Size| Block| Block| Block| | WMMA| WMMA| Repeat| Repeat| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MRepeat| MRepeat| ClusterLengths| ScalarPerVector|
//######################| | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerStore| PerStore| MBlock_MPerBlock| |
//######################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
/* Prefetch 2, consume enormous vgpr resource*/
// 8 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 256, 128, 128, 32, 8, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
// 4 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 128, 128, 64, 64, 8, 16, 16, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
// 2 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 64, 64, 32, 32, 8, 16, 16, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
// 1 Wave
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 32, 16, 16, 32, 8, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 2>, 8>,
/* Prefetch 1, prefer larger KPerBlock value for better latency hiding*/
// 8 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 256, 64, 8, 16, 16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 160, 64, 8, 16, 16, 2, 5, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 64, 1, 4>, 8>,
// 4 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 16, 16, 4, 4, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 256, 64, 64, 8, 16, 16, 8, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 256, 64, 8, 16, 16, 2, 8, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 80, 64, 8, 16, 16, 1, 5, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 64, 1, 2>, 8>,
// 2 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 16, 64, 64, 8, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 64, 8, 16, 16, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 64, 8, 16, 16, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
// 1 Wave
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 32, 16, 32, 64, 8, 16, 16, 1, 2, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 32, 16, 16, 64, 8, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 2>, 8>
#if 0
/* Prefetch 2, consume enormous vgpr resource*/
// 8 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 256, 128, 128, 32, 8, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
// 4 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 128, 128, 64, 64, 8, 16, 16, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
// 2 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 64, 64, 32, 32, 8, 16, 16, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
// 1 Wave
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 32, 16, 16, 32, 8, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 16, 1, 2>, 8>,
/* Prefetch 1, prefer larger KPerBlock value for better latency hiding*/
// 8 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 256, 64, 8, 16, 16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 160, 64, 8, 16, 16, 2, 5, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 64, 1, 4>, 8>,
// 4 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 16, 16, 4, 4, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 256, 64, 64, 8, 16, 16, 8, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 256, 64, 8, 16, 16, 2, 8, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 80, 64, 8, 16, 16, 1, 5, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 64, 1, 2>, 8>,
// 2 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 16, 64, 64, 8, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 64, 8, 16, 16, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 64, 8, 16, 16, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
// 1 Wave
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 32, 16, 32, 64, 8, 16, 16, 1, 2, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 32, 16, 16, 64, 8, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 16, 1, 2>, 8>,
/* Prefetch 2, consume enormous vgpr resource*/
// 8 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 256, 128, 128, 32, 8, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
// 4 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 128, 128, 64, 64, 8, 16, 16, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
// 2 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 64, 64, 32, 32, 8, 16, 16, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
// 1 Wave
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 32, 16, 16, 32, 8, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 16, 1, 2>, 8>,
/* Prefetch 1, prefer larger KPerBlock value for better latency hiding*/
// 8 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 256, 64, 8, 16, 16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 160, 64, 8, 16, 16, 2, 5, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 64, 1, 4>, 8>,
// 4 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 16, 16, 4, 4, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 256, 64, 64, 8, 16, 16, 8, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 256, 64, 8, 16, 16, 2, 8, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 80, 64, 8, 16, 16, 1, 5, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 64, 1, 2>, 8>,
// 2 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 16, 64, 64, 8, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 64, 8, 16, 16, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 64, 8, 16, 16, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
// 1 Wave
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 32, 16, 32, 64, 8, 16, 16, 1, 2, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 32, 16, 16, 64, 8, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 16, 1, 2>, 8>,
/* Prefetch 2, consume enormous vgpr resource*/
// 8 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 256, 128, 128, 32, 8, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
// 4 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 128, 128, 64, 64, 8, 16, 16, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
// 2 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 64, 64, 32, 32, 8, 16, 16, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
// 1 Wave
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 32, 16, 16, 32, 8, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, true, 1, 1, S<1, 16, 1, 2>, 8>,
/* Prefetch 1, prefer larger KPerBlock value for better latency hiding*/
// 8 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 256, 64, 8, 16, 16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 160, 64, 8, 16, 16, 2, 5, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, true, 1, 1, S<1, 64, 1, 4>, 8>,
// 4 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 16, 16, 4, 4, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 256, 64, 64, 8, 16, 16, 8, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 256, 64, 8, 16, 16, 2, 8, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 80, 64, 8, 16, 16, 1, 5, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, true, 1, 1, S<1, 64, 1, 2>, 8>,
// 2 Waves
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 16, 64, 64, 8, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 64, 8, 16, 16, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 64, 8, 16, 16, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
// 1 Wave
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 32, 16, 32, 64, 8, 16, 16, 1, 2, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, true, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmWmma_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 32, 16, 16, 64, 8, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, true, 1, 1, S<1, 16, 1, 2>, 8>
#endif
// clang-format on
>;
void add_device_gemm_wmma_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(instances, device_gemm_wmma_f16_f16_f16_mk_kn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// Compilation parameters for a[m, k] * b[n, k] = c[m, n]
using device_gemm_wmma_f16_f16_f16_mk_nk_mn_instances = std::tuple<
// clang-format off
//######################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumPrefetch| Block| MPer| NPer| KPer| K1| MPer| NPer| M| N| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CShuffleBlockTransfer| CShuffleBlockTransfer|
//######################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| | Size| Block| Block| Block| | WMMA| WMMA| Repeat| Repeat| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MRepeat| MRepeat| ClusterLengths| ScalarPerVector|
//######################| | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerStore| PerStore| MBlock_MPerBlock| |
//######################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
/* Prefetch 2, consume enormous vgpr resource*/
// 8 Waves
DeviceGemmWmma_CShuffle< Row, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 256, 128, 128, 32, 8, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
// 4 Waves
DeviceGemmWmma_CShuffle< Row, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 128, 128, 64, 64, 8, 16, 16, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
// 2 Waves
DeviceGemmWmma_CShuffle< Row, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 64, 64, 32, 32, 8, 16, 16, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
// 1 Wave
DeviceGemmWmma_CShuffle< Row, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 32, 16, 16, 32, 8, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 2>, 8>,
/* Prefetch 1, prefer larger KPerBlock value for better latency hiding*/
// 8 Waves
DeviceGemmWmma_CShuffle< Row, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 256, 64, 8, 16, 16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmWmma_CShuffle< Row, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmWmma_CShuffle< Row, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 160, 64, 8, 16, 16, 2, 5, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 64, 1, 4>, 8>,
// 4 Waves
DeviceGemmWmma_CShuffle< Row, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 16, 16, 4, 4, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 256, 64, 64, 8, 16, 16, 8, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 256, 64, 8, 16, 16, 2, 8, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 80, 64, 8, 16, 16, 1, 5, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 64, 1, 2>, 8>,
// 2 Waves
DeviceGemmWmma_CShuffle< Row, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 16, 64, 64, 8, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 64, 8, 16, 16, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Row, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 64, 8, 16, 16, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
// 1 Wave
DeviceGemmWmma_CShuffle< Row, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 32, 16, 32, 64, 8, 16, 16, 1, 2, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmWmma_CShuffle< Row, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 32, 16, 16, 64, 8, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 2>, 8>
// clang-format on
>;
void add_device_gemm_wmma_f16_f16_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(instances, device_gemm_wmma_f16_f16_f16_mk_nk_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -36,32 +36,32 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial
// e[m, n] = bilinear(a[m, k] * b[k, n], d[m, n])
using device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_km_kn_mn_mn_instances = std::tuple<
// clang-format off
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 256, 128, 128, 4, 16, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 128, 64, 64, 4, 16, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 64, 32, 32, 4, 16, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 32, 16, 16, 4, 16, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
//################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| Prefetch| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Stage| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmDefault, 1, 256, 128, 128, 64, 16, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmDefault, 1, 128, 64, 64, 64, 16, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmDefault, 1, 64, 32, 32, 64, 16, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmDefault, 1, 32, 16, 16, 64, 16, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
// M/N/K padding
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 4, 16, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 4, 16, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 4, 16, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 4, 16, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 8, 8, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 8, 8, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 2, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 2, S<1, 32, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 8, 8, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 8, 4, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 2, S<1, 32, 1, 8>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 8, 4, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 2, S<1, 32, 1, 4>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 8, 4, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 2, S<1, 32, 1, 2>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 8, 4, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 2>, 4>
//################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| Prefetch| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Stage| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 256, 128, 128, 64, 16, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 128, 64, 64, 64, 16, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 64, 32, 32, 64, 16, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 32, 16, 16, 64, 16, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 128, 64, 64, 64, 8, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 2, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 64, 32, 32, 64, 8, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 2, S<1, 32, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 32, 16, 16, 64, 8, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 256, 128, 128, 32, 4, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 2, S<1, 32, 1, 8>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 128, 64, 64, 32, 4, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 2, S<1, 32, 1, 4>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 64, 32, 32, 32, 4, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 2, S<1, 32, 1, 2>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 32, 16, 16, 32, 4, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 2>, 4>
// clang-format on
>;
......
......@@ -36,32 +36,32 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial
// e[m, n] = bilinear(a[m, k] * b[k, n], d[m, n])
using device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_km_nk_mn_mn_instances = std::tuple<
// clang-format off
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 256, 128, 128, 4, 16, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 128, 64, 64, 4, 16, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 64, 32, 32, 4, 16, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 32, 16, 16, 4, 16, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
//################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| Prefetch| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Stage| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmDefault, 1, 256, 128, 128, 64, 16, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmDefault, 1, 128, 64, 64, 64, 16, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmDefault, 1, 64, 32, 32, 64, 16, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmDefault, 1, 32, 16, 16, 64, 16, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
// M/N/K padding
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 4, 16, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 4, 16, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 4, 16, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 4, 16, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 8, 8, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 8, 8, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 8, 8, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 8, 4, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 2, S<1, 32, 1, 8>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 8, 4, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 2, S<1, 32, 1, 4>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 8, 4, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 2, S<1, 32, 1, 2>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 8, 4, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 2>, 4>
//################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| Prefetch| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Stage| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 256, 128, 128, 64, 16, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 128, 64, 64, 64, 16, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 64, 32, 32, 64, 16, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 32, 16, 16, 64, 16, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 128, 64, 64, 64, 8, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 64, 32, 32, 64, 8, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 32, 16, 16, 64, 8, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 256, 128, 128, 32, 4, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 2, S<1, 32, 1, 8>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 128, 64, 64, 32, 4, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 2, S<1, 32, 1, 4>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 64, 32, 32, 32, 4, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 2, S<1, 32, 1, 2>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 32, 16, 16, 32, 4, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 2>, 4>
// clang-format on
>;
......
......@@ -36,32 +36,32 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial
// e[m, n] = bilinear(a[m, k] * b[k, n], d[m, n])
using device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_mk_kn_mn_mn_instances = std::tuple<
// clang-format off
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 256, 128, 128, 4, 16, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 128, 64, 64, 4, 16, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 64, 32, 32, 4, 16, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 32, 16, 16, 4, 16, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
//################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| Prefetch| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Stage| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmDefault, 1, 256, 128, 128, 64, 16, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmDefault, 1, 128, 64, 64, 64, 16, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmDefault, 1, 64, 32, 32, 64, 16, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmDefault, 1, 32, 16, 16, 64, 16, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
// M/N/K padding
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 4, 16, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 4, 16, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 4, 16, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 4, 16, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 8, 8, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 8, 8, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 2, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 2, S<1, 32, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 8, 8, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 8, 4, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 2, S<1, 32, 1, 8>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 8, 4, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 2, S<1, 32, 1, 4>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 8, 4, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 2, S<1, 32, 1, 2>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 8, 4, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 2>, 4>
//################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| Prefetch| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Stage| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 256, 128, 128, 64, 16, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 128, 64, 64, 64, 16, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 64, 32, 32, 64, 16, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 32, 16, 16, 64, 16, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 128, 64, 64, 64, 8, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 2, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 64, 32, 32, 64, 8, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 2, S<1, 32, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 32, 16, 16, 64, 8, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 256, 128, 128, 32, 4, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 2, S<1, 32, 1, 8>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 128, 64, 64, 32, 4, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 2, S<1, 32, 1, 4>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 64, 32, 32, 32, 4, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 2, S<1, 32, 1, 2>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 32, 16, 16, 32, 4, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 2>, 4>
// clang-format on
>;
......
......@@ -38,56 +38,56 @@ using device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_mk_nk_mn_mn_instances = st
// clang-format off
// no padding
// N % 16 == 0 && K % 16 == 0
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 256, 128, 128, 4, 16, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 128, 64, 64, 4, 16, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 64, 32, 32, 4, 16, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 32, 16, 16, 4, 16, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
//################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| Prefetch| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Stage| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmDefault, 1, 256, 128, 128, 64, 16, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmDefault, 1, 128, 64, 64, 64, 16, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmDefault, 1, 64, 32, 32, 64, 16, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmDefault, 1, 32, 16, 16, 64, 16, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
// M/N/K padding
// N % 16 == 0 && K % 16 == 0
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 4, 16, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 4, 16, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 4, 16, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 4, 16, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
//################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| Prefetch| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Stage| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 256, 128, 128, 64, 16, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 128, 64, 64, 64, 16, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 64, 32, 32, 64, 16, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 32, 16, 16, 64, 16, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
// M/N/K padding
// N % 8 == 0 && K % 8 == 0
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 8, 8, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 8, 8, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 8, 8, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>,
//################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| Prefetch| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Stage| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 128, 64, 64, 64, 8, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 64, 32, 32, 64, 8, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 32, 16, 16, 64, 8, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>,
// M/N/K padding
// N % 8 == 0 && K % 8 == 0
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 8, 4, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 2, S<1, 32, 1, 8>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 8, 4, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 2, S<1, 32, 1, 4>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 8, 4, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 2, S<1, 32, 1, 2>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 8, 4, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 2>, 4>,
//################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| Prefetch| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Stage| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 256, 128, 128, 32, 4, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 2, S<1, 32, 1, 8>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 128, 64, 64, 32, 4, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 2, S<1, 32, 1, 4>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 64, 32, 32, 32, 4, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 2, S<1, 32, 1, 2>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 32, 16, 16, 32, 4, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 2>, 4>,
// M/N/K padding
// N % 1 == 0 && K % 8 == 0
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 8, 8, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 8>, 1>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 8, 8, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 4>, 1>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 2>, 1>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 8, 8, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 2>, 1>
//################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| Prefetch| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Stage| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 8>, 1>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 128, 64, 64, 64, 8, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 4>, 1>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 64, 32, 32, 64, 8, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 2>, 1>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I32, I32, I8_Tuple, I8, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 1, 32, 16, 16, 64, 8, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 2>, 1>
// clang-format on
>;
......
add_instance_library(device_grouped_conv2d_bwd_data_instance
xdl/device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
xdl/device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instance.cpp
xdl/device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f32_instance.cpp
xdl/device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f16_instance.cpp
xdl/device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instance.cpp
xdl/device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instance.cpp
add_instance_library(
device_grouped_conv2d_bwd_data_instance
xdl/device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
xdl/device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instance.cpp
xdl/device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f32_instance.cpp
xdl/device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f16_instance.cpp
xdl/device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instance.cpp
xdl/device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instance.cpp
wmma/device_grouped_conv2d_bwd_data_wmma_gnhwc_gkyxc_gnhwk_f16_1x1s1p0_instance.cpp
wmma/device_grouped_conv2d_bwd_data_wmma_nhwgc_gkyxc_nhwgk_f16_1x1s1p0_instance.cpp
wmma/device_grouped_conv2d_bwd_data_wmma_gnhwc_gkyxc_gnhwk_i8_1x1s1p0_instance.cpp
wmma/device_grouped_conv2d_bwd_data_wmma_nhwgc_gkyxc_nhwgk_i8_1x1s1p0_instance.cpp
wmma/device_grouped_conv2d_bwd_data_wmma_gnhwc_gkyxc_gnhwk_f16_instance.cpp
wmma/device_grouped_conv2d_bwd_data_wmma_nhwgc_gkyxc_nhwgk_f16_instance.cpp
wmma/device_grouped_conv2d_bwd_data_wmma_gnhwc_gkyxc_gnhwk_i8_instance.cpp
wmma/device_grouped_conv2d_bwd_data_wmma_nhwgc_gkyxc_nhwgk_i8_instance.cpp)
wmma/device_grouped_conv2d_bwd_data_wmma_gnhwc_gkyxc_gnhwk_f16_1x1s1p0_instance.cpp
wmma/device_grouped_conv2d_bwd_data_wmma_nhwgc_gkyxc_nhwgk_f16_1x1s1p0_instance.cpp
wmma/device_grouped_conv2d_bwd_data_wmma_gnhwc_gkyxc_gnhwk_i8_1x1s1p0_instance.cpp
wmma/device_grouped_conv2d_bwd_data_wmma_nhwgc_gkyxc_nhwgk_i8_1x1s1p0_instance.cpp
wmma/device_grouped_conv2d_bwd_data_wmma_gnhwc_gkyxc_gnhwk_f16_instance.cpp
wmma/device_grouped_conv2d_bwd_data_wmma_nhwgc_gkyxc_nhwgk_f16_instance.cpp
wmma/device_grouped_conv2d_bwd_data_wmma_gnhwc_gkyxc_gnhwk_i8_instance.cpp
wmma/device_grouped_conv2d_bwd_data_wmma_nhwgc_gkyxc_nhwgk_i8_instance.cpp
)
......@@ -17,21 +17,21 @@ add_instance_library(device_grouped_conv2d_fwd_instance
dl/device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f32_instance.cpp
# WMMA
# GNHWC, GKYXC, GNHWK
wmma/device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_1x1p0_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_1x1p0_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_1x1s1p0_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_1x1s1p0_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_oddc_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_oddc_instance.cpp
# NHWGC, GKYXC, NHWGK
wmma/device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_1x1p0_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_1x1p0_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_1x1s1p0_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_1x1s1p0_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_oddc_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_oddc_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_1x1p0_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_1x1p0_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_1x1s1p0_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_1x1s1p0_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_oddc_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_oddc_instance.cpp
## NHWGC, GKYXC, NHWGK
wmma/device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_1x1p0_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_1x1p0_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_1x1s1p0_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_1x1s1p0_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_oddc_instance.cpp
wmma/device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_oddc_instance.cpp
)
......@@ -22,7 +22,8 @@ set(GROUPED_CONV3D_FWD
wmma/device_grouped_conv3d_fwd_wmma_gndhwc_gkzyxc_gndhwk_f16_oddc_instance.cpp
wmma/device_grouped_conv3d_fwd_wmma_gndhwc_gkzyxc_gndhwk_i8_oddc_instance.cpp
wmma/device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_oddc_instance.cpp
wmma/device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_i8_oddc_instance.cpp)
wmma/device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_i8_oddc_instance.cpp
)
if((DTYPES MATCHES "fp8" AND DTYPES MATCHES "fp16") OR NOT DEFINED DTYPES)
list(APPEND GROUPED_CONV3D_FWD
......
list(APPEND gpu_list_xdl gfx908 gfx90a gfx940)
list(APPEND gpu_list_wmma gfx1100 gfx1101 gfx1102)
list(APPEND gpu_list_wmma gfx1100 gfx1101 gfx1102 gfx1103)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list_xdl AND target EQUAL 0)
......
list(APPEND gpu_list_xdl gfx908 gfx90a gfx940 gfx941 gfx942)
list(APPEND gpu_list_wmma gfx1100 gfx1101 gfx1102)
list(APPEND gpu_list_wmma gfx1100 gfx1101 gfx1102 gfx1103)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment