Commit 175a17f8 authored by Rostyslav Geyyer's avatar Rostyslav Geyyer
Browse files

Merge branch 'gfx950' of https://github.com/ROCm/composable_kernel-internal into lwpck-2390

parents 3e520bbd 1504c3e8
......@@ -9,7 +9,8 @@
// TODO: Add arch limitation
namespace ck {
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__)
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || \
defined(__gfx1103__) || defined(__gfx11_generic__)
#define __gfx11__
#endif
/********************************WAVE32 MODE***********************************************/
......@@ -260,7 +261,7 @@ struct intrin_wmma_i32_16x16x16_iu8_w64<16, 16, neg_a, neg_b, clamp>
// gfx12
/********************************WAVE32 MODE***********************************************/
#if defined(__gfx1200__) || defined(__gfx1201__)
#if defined(__gfx1200__) || defined(__gfx1201__) || defined(__gfx12_generic__)
#define __gfx12__
#endif
......
......@@ -3,6 +3,7 @@
#pragma once
#include "ck/utility/amd_ck_fp8.hpp"
#include "ck/utility/statically_indexed_array.hpp"
namespace ck {
......@@ -11,8 +12,6 @@ using bhalf_t = ushort;
using half_t = _Float16;
using int4_t = _BitInt(4);
using f4_t = unsigned _BitInt(4);
using f8_t = _BitInt(8);
using bf8_t = unsigned _BitInt(8);
struct e8m0_bexp_t
{
......@@ -53,14 +52,20 @@ inline constexpr auto next_pow2(uint32_t x)
return x > 1u ? (1u << (32u - __builtin_clz(x - 1u))) : x;
}
// native types: double, float, _Float16, ushort, int32_t, int8_t, uint8_t, f8_t, bf8_t, bool
// native types: double, float, _Float16, ushort, int32_t, int8_t, uint8_t, f8_fnuz_t, bf8_fnuz_t,
// native types: bool
template <typename T>
inline constexpr bool is_native_type()
{
return is_same<T, double>::value || is_same<T, float>::value || is_same<T, half_t>::value ||
is_same<T, bhalf_t>::value || is_same<T, int32_t>::value || is_same<T, int8_t>::value ||
<<<<<<< HEAD
is_same<T, uint8_t>::value || is_same<T, f8_t>::value || is_same<T, bf8_t>::value ||
is_same<T, bool>::value || is_same<T, f4_t>::value;
=======
is_same<T, uint8_t>::value || is_same<T, f8_fnuz_t>::value ||
is_same<T, bf8_fnuz_t>::value || is_same<T, bool>::value;
>>>>>>> 1504c3e8f552f519e963f3bc1880946c00a7fbc5
}
// vector_type
......@@ -200,16 +205,30 @@ struct scalar_type<int4_t>
#endif
template <>
struct scalar_type<f8_t>
struct scalar_type<f8_fnuz_t>
{
using type = f8_t;
using type = f8_fnuz_t;
static constexpr index_t vector_size = 1;
};
template <>
struct scalar_type<bf8_t>
struct scalar_type<bf8_fnuz_t>
{
using type = bf8_t;
using type = bf8_fnuz_t;
static constexpr index_t vector_size = 1;
};
template <>
struct scalar_type<f8_ocp_t>
{
using type = f8_ocp_t::data_type;
static constexpr index_t vector_size = 1;
};
template <>
struct scalar_type<bf8_ocp_t>
{
using type = bf8_ocp_t::data_type;
static constexpr index_t vector_size = 1;
};
......@@ -1057,47 +1076,83 @@ struct non_native_vector_base
T d[N];
};
template <typename T, index_t N>
struct scalar_type<non_native_vector_base<T, N>>;
template <index_t N>
struct scalar_type<non_native_vector_base<f8_ocp_t, N>>
{
using type = typename non_native_vector_base<f8_ocp_t, N>::data_t;
static constexpr index_t vector_size = N;
};
template <index_t N>
struct scalar_type<non_native_vector_base<bf8_ocp_t, N>>
{
using type = typename non_native_vector_base<bf8_ocp_t, N>::data_t;
static constexpr index_t vector_size = N;
};
// non-native vector_type implementation
template <typename T>
struct vector_type<T, 1, typename std::enable_if_t<!is_native_type<T>()>>
{
using d1_t = T;
using type = d1_t;
using d1_t = T;
using d1_nnv_t = non_native_vector_base<T, 1>;
using type = d1_nnv_t;
union alignas(next_pow2(1 * sizeof(T)))
{
d1_t d1_;
StaticallyIndexedArray<d1_t, 1> d1x1_;
d1_nnv_t d1_nnv_;
} data_;
__host__ __device__ constexpr vector_type() : data_{type{}} {}
__host__ __device__ constexpr vector_type() : data_{d1_t{}} {}
__host__ __device__ constexpr vector_type(type v) : data_{v} {}
__host__ __device__ constexpr vector_type(type v) : data_{{v}} {}
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value,
static_assert(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value,
"Something went wrong, please check src and dst types.");
return data_.d1x1_;
if constexpr(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value)
{
return data_.d1x1_;
}
else
{
return err;
}
}
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value,
static_assert(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value,
"Something went wrong, please check src and dst types.");
return data_.d1x1_;
if constexpr(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value)
{
return data_.d1x1_;
}
else
{
return err;
}
}
};
template <typename T>
struct vector_type<T, 2, typename std::enable_if_t<!is_native_type<T>()>>
{
using d1_t = T;
using d2_t = non_native_vector_base<T, 2>;
using d1_t = T;
using d1_nnv_t = non_native_vector_base<T, 1>;
using d2_t = non_native_vector_base<T, 2>;
using type = d2_t;
......@@ -1115,10 +1170,11 @@ struct vector_type<T, 2, typename std::enable_if_t<!is_native_type<T>()>>
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value,
static_assert(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value ||
is_same<X, d2_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
if constexpr(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value)
{
return data_.d1x2_;
}
......@@ -1135,10 +1191,11 @@ struct vector_type<T, 2, typename std::enable_if_t<!is_native_type<T>()>>
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value,
static_assert(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value ||
is_same<X, d2_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
if constexpr(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value)
{
return data_.d1x2_;
}
......@@ -1156,9 +1213,10 @@ struct vector_type<T, 2, typename std::enable_if_t<!is_native_type<T>()>>
template <typename T>
struct vector_type<T, 4, typename std::enable_if_t<!is_native_type<T>()>>
{
using d1_t = T;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
using d1_t = T;
using d1_nnv_t = non_native_vector_base<T, 1>;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
using type = d4_t;
......@@ -1177,10 +1235,11 @@ struct vector_type<T, 4, typename std::enable_if_t<!is_native_type<T>()>>
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value || is_same<X, d4_t>::value,
static_assert(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value ||
is_same<X, d2_t>::value || is_same<X, d4_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
if constexpr(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value)
{
return data_.d1x4_;
}
......@@ -1201,10 +1260,11 @@ struct vector_type<T, 4, typename std::enable_if_t<!is_native_type<T>()>>
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value || is_same<X, d4_t>::value,
static_assert(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value ||
is_same<X, d2_t>::value || is_same<X, d4_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
if constexpr(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value)
{
return data_.d1x4_;
}
......@@ -1226,10 +1286,11 @@ struct vector_type<T, 4, typename std::enable_if_t<!is_native_type<T>()>>
template <typename T>
struct vector_type<T, 8, typename std::enable_if_t<!is_native_type<T>()>>
{
using d1_t = T;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
using d8_t = non_native_vector_base<T, 8>;
using d1_t = T;
using d1_nnv_t = non_native_vector_base<T, 1>;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
using d8_t = non_native_vector_base<T, 8>;
using type = d8_t;
......@@ -1249,11 +1310,12 @@ struct vector_type<T, 8, typename std::enable_if_t<!is_native_type<T>()>>
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value,
static_assert(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value ||
is_same<X, d2_t>::value || is_same<X, d4_t>::value ||
is_same<X, d8_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
if constexpr(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value)
{
return data_.d1x8_;
}
......@@ -1278,11 +1340,12 @@ struct vector_type<T, 8, typename std::enable_if_t<!is_native_type<T>()>>
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value,
static_assert(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value ||
is_same<X, d2_t>::value || is_same<X, d4_t>::value ||
is_same<X, d8_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
if constexpr(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value)
{
return data_.d1x8_;
}
......@@ -1308,11 +1371,12 @@ struct vector_type<T, 8, typename std::enable_if_t<!is_native_type<T>()>>
template <typename T>
struct vector_type<T, 16, typename std::enable_if_t<!is_native_type<T>()>>
{
using d1_t = T;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
using d8_t = non_native_vector_base<T, 8>;
using d16_t = non_native_vector_base<T, 16>;
using d1_t = T;
using d1_nnv_t = non_native_vector_base<T, 1>;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
using d8_t = non_native_vector_base<T, 8>;
using d16_t = non_native_vector_base<T, 16>;
using type = d16_t;
......@@ -1333,12 +1397,12 @@ struct vector_type<T, 16, typename std::enable_if_t<!is_native_type<T>()>>
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value,
static_assert(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value ||
is_same<X, d2_t>::value || is_same<X, d4_t>::value ||
is_same<X, d8_t>::value || is_same<X, d16_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
if constexpr(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value)
{
return data_.d1x16_;
}
......@@ -1367,12 +1431,12 @@ struct vector_type<T, 16, typename std::enable_if_t<!is_native_type<T>()>>
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value,
static_assert(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value ||
is_same<X, d2_t>::value || is_same<X, d4_t>::value ||
is_same<X, d8_t>::value || is_same<X, d16_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
if constexpr(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value)
{
return data_.d1x16_;
}
......@@ -1666,20 +1730,70 @@ using int8x32_t = typename vector_type<int8_t, 32>::type;
using int8x64_t = typename vector_type<int8_t, 64>::type;
// f8
using f8x2_t = typename vector_type<f8_t, 2>::type;
using f8x4_t = typename vector_type<f8_t, 4>::type;
using f8x8_t = typename vector_type<f8_t, 8>::type;
using f8x16_t = typename vector_type<f8_t, 16>::type;
using f8x32_t = typename vector_type<f8_t, 32>::type;
using f8x64_t = typename vector_type<f8_t, 64>::type;
using f8x2_fnuz_t = typename vector_type<f8_fnuz_t, 2>::type;
using f8x4_fnuz_t = typename vector_type<f8_fnuz_t, 4>::type;
using f8x8_fnuz_t = typename vector_type<f8_fnuz_t, 8>::type;
using f8x16_fnuz_t = typename vector_type<f8_fnuz_t, 16>::type;
using f8x32_fnuz_t = typename vector_type<f8_fnuz_t, 32>::type;
using f8x64_fnuz_t = typename vector_type<f8_fnuz_t, 64>::type;
// bf8
using bf8x2_fnuz_t = typename vector_type<bf8_fnuz_t, 2>::type;
using bf8x4_fnuz_t = typename vector_type<bf8_fnuz_t, 4>::type;
using bf8x8_fnuz_t = typename vector_type<bf8_fnuz_t, 8>::type;
using bf8x16_fnuz_t = typename vector_type<bf8_fnuz_t, 16>::type;
using bf8x32_fnuz_t = typename vector_type<bf8_fnuz_t, 32>::type;
using bf8x64_fnuz_t = typename vector_type<bf8_fnuz_t, 64>::type;
// f8
using f8x2_ocp_t = typename vector_type<f8_ocp_t, 2>::type;
using f8x4_ocp_t = typename vector_type<f8_ocp_t, 4>::type;
using f8x8_ocp_t = typename vector_type<f8_ocp_t, 8>::type;
using f8x16_ocp_t = typename vector_type<f8_ocp_t, 16>::type;
using f8x32_ocp_t = typename vector_type<f8_ocp_t, 32>::type;
using f8x64_ocp_t = typename vector_type<f8_ocp_t, 64>::type;
// bf8
using bf8x2_ocp_t = typename vector_type<bf8_ocp_t, 2>::type;
using bf8x4_ocp_t = typename vector_type<bf8_ocp_t, 4>::type;
using bf8x8_ocp_t = typename vector_type<bf8_ocp_t, 8>::type;
using bf8x16_ocp_t = typename vector_type<bf8_ocp_t, 16>::type;
using bf8x32_ocp_t = typename vector_type<bf8_ocp_t, 32>::type;
using bf8x64_ocp_t = typename vector_type<bf8_ocp_t, 64>::type;
#if CK_FP8_TYPE_OCP
// f8
using f8x2_t = f8x2_ocp_t;
using f8x4_t = f8x4_ocp_t;
using f8x8_t = f8x8_ocp_t;
using f8x16_t = f8x16_ocp_t;
using f8x32_t = f8x32_ocp_t;
using f8x64_t = f8x64_ocp_t;
// bf8
using bf8x2_t = typename vector_type<bf8_t, 2>::type;
using bf8x4_t = typename vector_type<bf8_t, 4>::type;
using bf8x8_t = typename vector_type<bf8_t, 8>::type;
using bf8x16_t = typename vector_type<bf8_t, 16>::type;
using bf8x32_t = typename vector_type<bf8_t, 32>::type;
using bf8x64_t = typename vector_type<bf8_t, 64>::type;
using bf8x2_t = bf8x2_ocp_t;
using bf8x4_t = bf8x4_ocp_t;
using bf8x8_t = bf8x8_ocp_t;
using bf8x16_t = bf8x16_ocp_t;
using bf8x32_t = bf8x32_ocp_t;
using bf8x64_t = bf8x64_ocp_t;
#elif CK_FP8_TYPE_FNUZ
// f8
using f8x2_t = f8x2_fnuz_t;
using f8x4_t = f8x4_fnuz_t;
using f8x8_t = f8x8_fnuz_t;
using f8x16_t = f8x16_fnuz_t;
using f8x32_t = f8x32_fnuz_t;
using f8x64_t = f8x64_fnuz_t;
// bf8
using bf8x2_t = bf8x2_fnuz_t;
using bf8x4_t = bf8x4_fnuz_t;
using bf8x8_t = bf8x8_fnuz_t;
using bf8x16_t = bf8x16_fnuz_t;
using bf8x32_t = bf8x32_fnuz_t;
using bf8x64_t = bf8x64_fnuz_t;
#endif
// u8
using uint8x2_t = typename vector_type<uint8_t, 2>::type;
......@@ -1744,7 +1858,7 @@ struct NumericLimits<int4_t>
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
template <>
struct NumericLimits<f8_t>
struct NumericLimits<f8_fnuz_t>
{
// negative zero nan mode with exp bias = 8
static constexpr uint8_t binary_min = 0x08; // 0b00001000
......@@ -1757,17 +1871,17 @@ struct NumericLimits<f8_t>
// static constexpr uint8_t binary_lowest = 0xF7; // 0b11110111
// static constexpr uint8_t binary_qnan = 0x79; // any sign, exp=1111, mant!=0
__host__ __device__ static constexpr f8_t Min() { return f8_t(binary_min); }
__host__ __device__ static constexpr f8_fnuz_t Min() { return f8_fnuz_t(binary_min); }
__host__ __device__ static constexpr f8_t Max() { return f8_t(binary_max); }
__host__ __device__ static constexpr f8_fnuz_t Max() { return f8_fnuz_t(binary_max); }
__host__ __device__ static constexpr f8_t Lowest() { return f8_t(binary_lowest); }
__host__ __device__ static constexpr f8_fnuz_t Lowest() { return f8_fnuz_t(binary_lowest); }
__host__ __device__ static constexpr f8_t QuietNaN() { return f8_t(binary_qnan); }
__host__ __device__ static constexpr f8_fnuz_t QuietNaN() { return f8_fnuz_t(binary_qnan); }
};
template <>
struct NumericLimits<bf8_t>
struct NumericLimits<bf8_fnuz_t>
{
// negative zero nan mode with exp bias = 16
static constexpr uint8_t binary_min = 0x04; // 0b00000100
......@@ -1780,13 +1894,59 @@ struct NumericLimits<bf8_t>
// static constexpr uint8_t binary_lowest = 0xFB; // 0b11111011
// static constexpr uint8_t binary_qnan = 0x79; // any sign, exp=1111, mant!=
__host__ __device__ static constexpr bf8_t Min() { return bf8_t(binary_min); }
__host__ __device__ static constexpr bf8_fnuz_t Min() { return bf8_fnuz_t(binary_min); }
__host__ __device__ static constexpr bf8_t Max() { return bf8_t(binary_max); }
__host__ __device__ static constexpr bf8_fnuz_t Max() { return bf8_fnuz_t(binary_max); }
__host__ __device__ static constexpr bf8_t Lowest() { return bf8_t(binary_lowest); }
__host__ __device__ static constexpr bf8_fnuz_t Lowest() { return bf8_fnuz_t(binary_lowest); }
__host__ __device__ static constexpr bf8_t QuietNaN() { return bf8_t(binary_qnan); }
__host__ __device__ static constexpr bf8_fnuz_t QuietNaN() { return bf8_fnuz_t(binary_qnan); }
};
template <>
struct NumericLimits<f8_ocp_t>
{
static constexpr uint8_t binary_min = 0x08; // 0b00001000 = 2^-6
static constexpr uint8_t binary_max = 0x7E; // 0b01111110 = 448
static constexpr uint8_t binary_lowest = 0xFE; // 0b11111110 = -448
static constexpr uint8_t binary_qnan = 0x7F; // 0b01111111
__host__ __device__ static constexpr f8_ocp_t Min() { return bit_cast<f8_ocp_t>(binary_min); }
__host__ __device__ static constexpr f8_ocp_t Max() { return bit_cast<f8_ocp_t>(binary_max); }
__host__ __device__ static constexpr f8_ocp_t Lowest()
{
return bit_cast<f8_ocp_t>(binary_lowest);
}
__host__ __device__ static constexpr f8_ocp_t QuietNaN()
{
return bit_cast<f8_ocp_t>(binary_qnan);
}
};
template <>
struct NumericLimits<bf8_ocp_t>
{
static constexpr uint8_t binary_min = 0x04; // 0b00000100 = 2^-14
static constexpr uint8_t binary_max = 0x7B; // 0b01111011 = 57344
static constexpr uint8_t binary_lowest = 0xFB; // 0b11111011 = -57344
static constexpr uint8_t binary_qnan = 0x7D; // 0b01111101
__host__ __device__ static constexpr bf8_ocp_t Min() { return bit_cast<bf8_ocp_t>(binary_min); }
__host__ __device__ static constexpr bf8_ocp_t Max() { return bit_cast<bf8_ocp_t>(binary_max); }
__host__ __device__ static constexpr bf8_ocp_t Lowest()
{
return bit_cast<bf8_ocp_t>(binary_lowest);
}
__host__ __device__ static constexpr bf8_ocp_t QuietNaN()
{
return bit_cast<bf8_ocp_t>(binary_qnan);
}
};
template <>
......@@ -1884,6 +2044,7 @@ struct NumericUtils<half_t>
};
template <>
<<<<<<< HEAD
struct NumericUtils<bhalf_t>
{
static constexpr int exp = 8;
......@@ -1894,6 +2055,9 @@ struct NumericUtils<bhalf_t>
template <>
struct NumericUtils<f8_t>
=======
struct NumericUtils<f8_fnuz_t>
>>>>>>> 1504c3e8f552f519e963f3bc1880946c00a7fbc5
{
static constexpr int exp = 4;
static constexpr int mant = 3;
......@@ -1903,7 +2067,7 @@ struct NumericUtils<f8_t>
};
template <>
struct NumericUtils<bf8_t>
struct NumericUtils<bf8_fnuz_t>
{
static constexpr int exp = 5;
static constexpr int mant = 2;
......@@ -1911,6 +2075,21 @@ struct NumericUtils<bf8_t>
// static constexpr int bias = 15; // ieee mode
static constexpr bool has_inf = false;
};
template <>
struct NumericUtils<f8_ocp_t>
{
static constexpr int exp = 4;
static constexpr int mant = 3;
static constexpr int bias = 7;
};
template <>
struct NumericUtils<bf8_ocp_t>
{
static constexpr int exp = 5;
static constexpr int mant = 2;
static constexpr int bias = 15;
};
template <>
struct NumericUtils<f4_t>
......
......@@ -80,7 +80,7 @@ static inline __host__ bool isnan(half_t x)
return (xx & 0x7FFF) > 0x7C00;
};
static inline __host__ bool isnan(f8_t x) { return (x & 0x80); };
static inline __host__ bool isnan(f8_t x) { return ck::fp8_is_nan(x); };
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
static inline __host__ bool isnan(int4_t x)
......@@ -531,7 +531,7 @@ static inline __device__ bool isnan(half_t x)
return (xx & 0x7FFF) > 0x7C00;
};
static inline __device__ bool isnan(f8_t x) { return (x & 0x80); };
static inline __device__ bool isnan(f8_t x) { return ck::fp8_is_nan(x); };
static inline __device__ half_t sqrt(half_t x)
{
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
namespace ck {
// Pseudo random number generator
......@@ -23,7 +25,7 @@ __host__ __device__ uint32_t prand_generator(index_t id, T val, uint32_t seed =
}
// version for fp16
template <typename T, uint32_t seed_t, std::enable_if_t<std::is_same<half_t, T>{}, bool> = false>
template <typename T, uint32_t seed_t, std::enable_if_t<std::is_same<_Float16, T>{}, bool> = false>
__host__ __device__ uint32_t prand_generator(index_t id, T val, uint32_t seed = seed_t)
{
uint16_t x = *(reinterpret_cast<uint16_t*>(&val));
......@@ -38,9 +40,10 @@ __host__ __device__ uint32_t prand_generator(index_t id, T val, uint32_t seed =
}
// return 0 if data is not fp16 or fp32
template <typename T,
uint32_t seed_t,
std::enable_if_t<!(std::is_same<float, T>{} || std::is_same<half_t, T>{}), bool> = false>
template <
typename T,
uint32_t seed_t,
std::enable_if_t<!(std::is_same<float, T>{} || std::is_same<_Float16, T>{}), bool> = false>
__host__ __device__ uint32_t prand_generator(int id, T val, uint32_t seed = seed_t)
{
std::ignore = id;
......
......@@ -102,6 +102,18 @@ inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, int8_t>(int8_
return type_convert<bhalf_t>(x_fp32);
}
template <>
inline __host__ __device__ constexpr f8_ocp_t type_convert<f8_ocp_t, int>(int x)
{
return f8_ocp_t{type_convert<f8_ocp_t::data_type>(x)};
}
template <>
inline __host__ __device__ constexpr bf8_ocp_t type_convert<bf8_ocp_t, int>(int x)
{
return bf8_ocp_t{type_convert<bf8_ocp_t::data_type>(x)};
}
// Convert X to Y
template <typename Y, typename X>
__host__ __device__ constexpr Y type_convert_sp(X x)
......@@ -165,7 +177,7 @@ __host__ __device__ constexpr Y f8_convert_sr(X x);
// convert fp32 to fp8 with stochastic rounding
template <>
inline __host__ __device__ f8_t f8_convert_sr<f8_t, float>(float x)
inline __host__ __device__ f8_fnuz_t f8_convert_sr<f8_fnuz_t, float>(float x)
{
constexpr int seed = 1254739;
uint32_t rng = prand_generator<float, seed>(reinterpret_cast<uintptr_t>(&x), x);
......@@ -191,33 +203,35 @@ inline __host__ __device__ f8_t f8_convert_sr<f8_t, float>(float x)
constexpr bool clip = true;
constexpr f8_rounding_mode rm = f8_rounding_mode::stochastic;
return utils::
cast_to_f8<float, f8_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(x,
rng);
cast_to_f8<float, f8_fnuz_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(
x, rng);
#endif
}
// convert fp16 to fp8 with stochastic rounding
template <>
inline __host__ __device__ f8_t f8_convert_sr<f8_t, half_t>(half_t x)
inline __host__ __device__ f8_fnuz_t f8_convert_sr<f8_fnuz_t, half_t>(half_t x)
{
#if defined(__gfx94__)
// convert to float and use native converion
return f8_convert_sr<f8_t>(type_convert<float>(x));
return f8_convert_sr<f8_fnuz_t>(type_convert<float>(x));
#else
constexpr bool negative_zero_nan = true;
constexpr bool clip = true;
constexpr f8_rounding_mode rm = f8_rounding_mode::stochastic;
constexpr int seed = 1254739;
uint32_t rng = prand_generator<half_t, seed>(reinterpret_cast<uintptr_t>(&x), x);
return utils::
cast_to_f8<half_t, f8_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(
x, rng);
return utils::cast_to_f8<half_t,
f8_fnuz_t,
negative_zero_nan,
clip,
(rm == f8_rounding_mode::stochastic)>(x, rng);
#endif
}
// convert fp32 to bf8 with stochastic rounding
template <>
inline __host__ __device__ bf8_t f8_convert_sr<bf8_t, float>(float x)
inline __host__ __device__ bf8_fnuz_t f8_convert_sr<bf8_fnuz_t, float>(float x)
{
constexpr int seed = 1254739;
uint32_t rng = prand_generator<float, seed>(reinterpret_cast<uintptr_t>(&x), x);
......@@ -242,28 +256,32 @@ inline __host__ __device__ bf8_t f8_convert_sr<bf8_t, float>(float x)
constexpr bool negative_zero_nan = true;
constexpr bool clip = true;
constexpr f8_rounding_mode rm = f8_rounding_mode::stochastic;
return utils::
cast_to_f8<float, bf8_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(
x, rng);
return utils::cast_to_f8<float,
bf8_fnuz_t,
negative_zero_nan,
clip,
(rm == f8_rounding_mode::stochastic)>(x, rng);
#endif
}
// convert fp16 to bf8 with stochastic rounding
template <>
inline __host__ __device__ bf8_t f8_convert_sr<bf8_t, half_t>(half_t x)
inline __host__ __device__ bf8_fnuz_t f8_convert_sr<bf8_fnuz_t, half_t>(half_t x)
{
#if defined(__gfx94__)
// convert to float and use native converion
return f8_convert_sr<bf8_t>(type_convert<float>(x));
return f8_convert_sr<bf8_fnuz_t>(type_convert<float>(x));
#else
constexpr bool negative_zero_nan = true;
constexpr bool clip = true;
constexpr f8_rounding_mode rm = f8_rounding_mode::stochastic;
constexpr int seed = 1254739;
uint32_t rng = prand_generator<half_t, seed>(reinterpret_cast<uintptr_t>(&x), x);
return utils::
cast_to_f8<half_t, bf8_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(
x, rng);
return utils::cast_to_f8<half_t,
bf8_fnuz_t,
negative_zero_nan,
clip,
(rm == f8_rounding_mode::stochastic)>(x, rng);
#endif
}
......@@ -273,7 +291,7 @@ __host__ __device__ constexpr Y f8_convert_rne(X x);
// convert fp32 to fp8 with rounding to nearest even
template <>
inline __host__ __device__ f8_t f8_convert_rne<f8_t, float>(float x)
inline __host__ __device__ f8_fnuz_t f8_convert_rne<f8_fnuz_t, float>(float x)
{
#if defined(__gfx94__)
union
......@@ -298,32 +316,34 @@ inline __host__ __device__ f8_t f8_convert_rne<f8_t, float>(float x)
constexpr f8_rounding_mode rm = f8_rounding_mode::standard;
constexpr uint32_t rng = 0;
return utils::
cast_to_f8<float, f8_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(x,
rng);
cast_to_f8<float, f8_fnuz_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(
x, rng);
#endif
}
// convert fp16 to fp8 with rounding to nearest even
template <>
inline __host__ __device__ f8_t f8_convert_rne<f8_t, half_t>(half_t x)
inline __host__ __device__ f8_fnuz_t f8_convert_rne<f8_fnuz_t, half_t>(half_t x)
{
#if defined(__gfx94__)
// convert to float and use native converion
return f8_convert_rne<f8_t>(type_convert<float>(x));
return f8_convert_rne<f8_fnuz_t>(type_convert<float>(x));
#else
constexpr bool negative_zero_nan = true;
constexpr bool clip = true;
constexpr f8_rounding_mode rm = f8_rounding_mode::standard;
constexpr uint32_t rng = 0;
return utils::
cast_to_f8<half_t, f8_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(
x, rng);
return utils::cast_to_f8<half_t,
f8_fnuz_t,
negative_zero_nan,
clip,
(rm == f8_rounding_mode::stochastic)>(x, rng);
#endif
}
// convert fp32 to bf8 with rounding to nearest even
template <>
inline __host__ __device__ bf8_t f8_convert_rne<bf8_t, float>(float x)
inline __host__ __device__ bf8_fnuz_t f8_convert_rne<bf8_fnuz_t, float>(float x)
{
#if defined(__gfx94__)
union
......@@ -347,44 +367,59 @@ inline __host__ __device__ bf8_t f8_convert_rne<bf8_t, float>(float x)
constexpr bool clip = true;
constexpr f8_rounding_mode rm = f8_rounding_mode::standard;
constexpr uint32_t rng = 0;
return utils::
cast_to_f8<float, bf8_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(
x, rng);
return utils::cast_to_f8<float,
bf8_fnuz_t,
negative_zero_nan,
clip,
(rm == f8_rounding_mode::stochastic)>(x, rng);
#endif
}
// convert fp16 to bf8 with rounding to nearest even
template <>
inline __host__ __device__ bf8_t f8_convert_rne<bf8_t, half_t>(half_t x)
inline __host__ __device__ bf8_fnuz_t f8_convert_rne<bf8_fnuz_t, half_t>(half_t x)
{
#if defined(__gfx94__)
// convert to float and use native converion
return f8_convert_rne<bf8_t>(type_convert<float>(x));
return f8_convert_rne<bf8_fnuz_t>(type_convert<float>(x));
#else
constexpr bool negative_zero_nan = true;
constexpr bool clip = true;
constexpr f8_rounding_mode rm = f8_rounding_mode::standard;
constexpr uint32_t rng = 0;
return utils::
cast_to_f8<half_t, bf8_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(
x, rng);
return utils::cast_to_f8<half_t,
bf8_fnuz_t,
negative_zero_nan,
clip,
(rm == f8_rounding_mode::stochastic)>(x, rng);
#endif
}
// convert fp32 to fp8
template <>
inline __host__ __device__ f8_fnuz_t type_convert<f8_fnuz_t, float>(float x)
{
#if CK_USE_SR_F8_CONVERSION
return f8_convert_sr<f8_fnuz_t>(x);
#else
return f8_convert_rne<f8_fnuz_t>(x);
#endif
}
// convert fp32 to fp8
template <>
inline __host__ __device__ f8_t type_convert<f8_t, float>(float x)
inline __host__ __device__ f8_ocp_t type_convert<f8_ocp_t, float>(float x)
{
#if CK_USE_SR_F8_CONVERSION
return f8_convert_sr<f8_t>(x);
return f8_convert_sr<f8_ocp_t>(x);
#else
return f8_convert_rne<f8_t>(x);
return f8_convert_rne<f8_ocp_t>(x);
#endif
}
// convert fp8 to fp32
template <>
inline __host__ __device__ float type_convert<float, f8_t>(f8_t x)
inline __host__ __device__ float type_convert<float, f8_fnuz_t>(f8_fnuz_t x)
{
#if defined(__gfx94__)
float fval;
......@@ -394,26 +429,26 @@ inline __host__ __device__ float type_convert<float, f8_t>(f8_t x)
return fval;
#else
constexpr bool negative_zero_nan = true;
return utils::cast_from_f8<f8_t, float, negative_zero_nan>(x);
return utils::cast_from_f8<f8_fnuz_t, float, negative_zero_nan>(x);
#endif
}
template <>
inline __host__ __device__ float2_t type_convert<float2_t, f8x2_t>(f8x2_t x)
inline __host__ __device__ float2_t type_convert<float2_t, f8x2_fnuz_t>(f8x2_fnuz_t x)
{
#if defined(__gfx94__)
const auto i16val = bit_cast<uint16_t>(x);
return __builtin_amdgcn_cvt_pk_f32_fp8(i16val, 0);
#else
constexpr bool negative_zero_nan = true;
const auto f8x2_v = vector_type<f8_t, 2>(x);
const auto f8x2_v = vector_type<f8_fnuz_t, 2>(x);
vector_type<float, 2> f32x2_v;
f32x2_v.template AsType<float>()(Number<0>{}) =
utils::cast_from_f8<f8_t, float, negative_zero_nan>(
f8x2_v.template AsType<f8_t>()[Number<0>{}]);
utils::cast_from_f8<f8_fnuz_t, float, negative_zero_nan>(
f8x2_v.template AsType<f8_fnuz_t>()[Number<0>{}]);
f32x2_v.template AsType<float>()(Number<1>{}) =
utils::cast_from_f8<f8_t, float, negative_zero_nan>(
f8x2_v.template AsType<f8_t>()[Number<1>{}]);
utils::cast_from_f8<f8_fnuz_t, float, negative_zero_nan>(
f8x2_v.template AsType<f8_fnuz_t>()[Number<1>{}]);
return f32x2_v.template AsType<float2_t>()[Number<0>{}];
#endif
}
......@@ -430,42 +465,64 @@ inline __host__ __device__ half2_t type_convert<half2_t, float2_t>(float2_t x)
// convert fp16 to fp8
template <>
inline __host__ __device__ f8_t type_convert<f8_t, half_t>(half_t x)
inline __host__ __device__ f8_fnuz_t type_convert<f8_fnuz_t, half_t>(half_t x)
{
#if CK_USE_SR_F8_CONVERSION
return f8_convert_sr<f8_fnuz_t>(x);
#else
return f8_convert_rne<f8_fnuz_t>(x);
#endif
}
// convert fp16 to fp8
template <>
inline __host__ __device__ f8_ocp_t type_convert<f8_ocp_t, half_t>(half_t x)
{
#if CK_USE_SR_F8_CONVERSION
return f8_convert_sr<f8_t>(x);
return f8_convert_sr<f8_ocp_t>(x);
#else
return f8_convert_rne<f8_t>(x);
return f8_convert_rne<f8_ocp_t>(x);
#endif
}
// convert fp8 to fp16
template <>
inline __host__ __device__ half_t type_convert<half_t, f8_t>(f8_t x)
inline __host__ __device__ half_t type_convert<half_t, f8_fnuz_t>(f8_fnuz_t x)
{
#if defined(__gfx94__)
// use native conversion to float and convert to fp16
return type_convert<half_t>(type_convert<float>(x));
#else
constexpr bool negative_zero_nan = true;
return utils::cast_from_f8<f8_t, half_t, negative_zero_nan>(x);
return utils::cast_from_f8<f8_fnuz_t, half_t, negative_zero_nan>(x);
#endif
}
// convert fp32 to bf8
template <>
inline __host__ __device__ bf8_t type_convert<bf8_t, float>(float x)
inline __host__ __device__ bf8_fnuz_t type_convert<bf8_fnuz_t, float>(float x)
{
#if CK_USE_SR_F8_CONVERSION
return f8_convert_sr<bf8_t>(x);
return f8_convert_sr<bf8_fnuz_t>(x);
#else
return f8_convert_rne<bf8_t>(x);
return f8_convert_rne<bf8_fnuz_t>(x);
#endif
}
// convert fp32 to bf8
template <>
inline __host__ __device__ bf8_ocp_t type_convert<bf8_ocp_t, float>(float x)
{
#if CK_USE_SR_F8_CONVERSION
return f8_convert_sr<bf8_ocp_t>(x);
#else
return f8_convert_rne<bf8_ocp_t>(x);
#endif
}
// convert bf8 to fp32
template <>
inline __host__ __device__ float type_convert<float, bf8_t>(bf8_t x)
inline __host__ __device__ float type_convert<float, bf8_fnuz_t>(bf8_fnuz_t x)
{
#if defined(__gfx94__)
float fval;
......@@ -475,31 +532,42 @@ inline __host__ __device__ float type_convert<float, bf8_t>(bf8_t x)
return fval;
#else
constexpr bool negative_zero_nan = true;
return utils::cast_from_f8<bf8_t, float, negative_zero_nan>(x);
return utils::cast_from_f8<bf8_fnuz_t, float, negative_zero_nan>(x);
#endif
}
// convert fp16 to bf8
template <>
inline __host__ __device__ bf8_fnuz_t type_convert<bf8_fnuz_t, half_t>(half_t x)
{
#if CK_USE_SR_F8_CONVERSION
return f8_convert_sr<bf8_fnuz_t>(x);
#else
return f8_convert_rne<bf8_fnuz_t>(x);
#endif
}
// convert fp16 to bf8
template <>
inline __host__ __device__ bf8_t type_convert<bf8_t, half_t>(half_t x)
inline __host__ __device__ bf8_ocp_t type_convert<bf8_ocp_t, half_t>(half_t x)
{
#if CK_USE_SR_F8_CONVERSION
return f8_convert_sr<bf8_t>(x);
return f8_convert_sr<bf8_ocp_t>(x);
#else
return f8_convert_rne<bf8_t>(x);
return f8_convert_rne<bf8_ocp_t>(x);
#endif
}
// convert bf8 to fp16
template <>
inline __host__ __device__ half_t type_convert<half_t, bf8_t>(bf8_t x)
inline __host__ __device__ half_t type_convert<half_t, bf8_fnuz_t>(bf8_fnuz_t x)
{
#if defined(__gfx94__)
// use native conversion to float and convert to fp16
return type_convert<half_t>(type_convert<float>(x));
#else
constexpr bool negative_zero_nan = true;
return utils::cast_from_f8<bf8_t, half_t, negative_zero_nan>(x);
return utils::cast_from_f8<bf8_fnuz_t, half_t, negative_zero_nan>(x);
#endif
}
......
......@@ -11,13 +11,15 @@
#define __gfx94__
#endif
#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || \
defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__)
defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || \
defined(__gfx10_3_generic__)
#define __gfx103__
#endif
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__)
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || \
defined(__gfx1103__) || defined(__gfx11_generic__)
#define __gfx11__
#endif
#if defined(__gfx1200__) || defined(__gfx1201__)
#if defined(__gfx1200__) || defined(__gfx1201__) || defined(__gfx12_generic__)
#define __gfx12__
#endif
......
......@@ -170,7 +170,7 @@ CK_TILE_DEVICE void shuffle_tile(OutTensor& out, const InTensor& in)
}
else
{
// NOT implemented
static_assert(false, "The shuffle should always happen!");
}
}
......
......@@ -23,6 +23,7 @@
#include "ck_tile/host/reference/reference_gemm.hpp"
#include "ck_tile/host/reference/reference_im2col.hpp"
#include "ck_tile/host/reference/reference_layernorm2d_fwd.hpp"
#include "ck_tile/host/reference/reference_moe_sorting.hpp"
#include "ck_tile/host/reference/reference_permute.hpp"
#include "ck_tile/host/reference/reference_reduce.hpp"
#include "ck_tile/host/reference/reference_rmsnorm2d_fwd.hpp"
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host/host_tensor.hpp"
namespace ck_tile {
template <typename WeightType, typename IndexType = index_t>
CK_TILE_HOST void reference_moe_sorting(const HostTensor<IndexType>& topk_ids,
const HostTensor<WeightType>& weights,
HostTensor<IndexType>& p_sorted_token_ids,
HostTensor<WeightType>& sorted_weight,
HostTensor<IndexType>& sorted_expert_ids,
index_t& unit_cnt,
const index_t experts,
const index_t unit_size)
{
const index_t num_token = topk_ids.mDesc.get_lengths()[0];
const index_t topk = topk_ids.mDesc.get_lengths()[1];
std::vector<std::vector<IndexType>> expert_tokens(experts,
std::vector<IndexType>(unit_size, num_token));
std::vector<std::vector<WeightType>> expert_token_weights(
experts, std::vector<WeightType>(unit_size, 0));
std::vector<IndexType> expert_slices(experts, 1);
std::vector<IndexType> expert_slice_idxs(experts, 0);
for(index_t t = 0; t < num_token; t++)
{
for(index_t k = 0; k < topk; k++)
{
IndexType e = topk_ids(t, k);
WeightType w = weights(t, k);
index_t idx = expert_slice_idxs[e];
if(idx > expert_slices[e] * unit_size - 1)
{
expert_slices[e]++;
index_t new_size = expert_slices[e] * unit_size;
expert_tokens[e].resize(new_size);
expert_token_weights[e].resize(new_size);
for(index_t i = (expert_slices[e] - 1) * unit_size; i < new_size; i++)
{
expert_tokens[e][i] = num_token;
expert_token_weights[e][i] = 0;
}
}
expert_tokens[e][idx] = t;
expert_token_weights[e][idx] = w;
expert_slice_idxs[e]++;
}
}
IndexType* out_tokens = p_sorted_token_ids.data();
WeightType* out_weights = sorted_weight.data();
IndexType* out_expert_id = sorted_expert_ids.data();
for(index_t e = 0; e < experts; e++)
{
memcpy(out_tokens, expert_tokens[e].data(), sizeof(index_t) * expert_slices[e] * unit_size);
out_tokens += expert_slices[e] * unit_size;
memcpy(out_weights,
expert_token_weights[e].data(),
sizeof(WeightType) * expert_slices[e] * unit_size);
out_weights += expert_slices[e] * unit_size;
for(index_t s = 0; s < expert_slices[e]; s++)
{
out_expert_id[s] = e;
unit_cnt++;
}
out_expert_id += expert_slices[e];
}
unit_cnt *= unit_size;
return;
}
} // namespace ck_tile
......@@ -38,9 +38,7 @@ namespace ck_tile {
template <typename BlockTile_, // block size, seq<M, N>
typename WarpPerBlock_, // num warps along seq<M, N>
typename WarpTile_, // warp size, seq<M, N>
typename Vector_, // contiguous pixels(vector size) along seq<M, N>
index_t BlockSize_ =
warpSize* reduce_on_sequence(WarpPerBlock_{}, multiplies{}, number<1>{})>
typename Vector_> // contiguous pixels(vector size) along seq<M, N>)>
struct Generic2dBlockShape
{
// block size
......@@ -68,10 +66,12 @@ struct Generic2dBlockShape
static_assert(Warp_M % Vector_M == 0);
static_assert(Warp_N % Vector_N == 0);
// num of threads along seq<M, N>, within each warp
static constexpr index_t ThreadPerWarp_M = Warp_M / Vector_M;
static constexpr index_t ThreadPerWarp_N = Warp_N / Vector_N;
static constexpr index_t ThreadPerWarp_M = Warp_M / Vector_M;
static constexpr index_t ThreadPerWarp_N = Warp_N / Vector_N;
static constexpr index_t ThreadPerBlock_M = Block_M / Repeat_M / Vector_M;
static constexpr index_t ThreadPerBlock_N = Block_N / Repeat_N / Vector_N;
static constexpr index_t BlockSize = BlockSize_;
static constexpr index_t BlockSize = ThreadPerBlock_M * ThreadPerBlock_N;
};
} // namespace ck_tile
......@@ -230,7 +230,15 @@ struct PageBlockNavigator
CK_TILE_HOST_DEVICE
DataType* get_block_ptr(index_t block_index) const
{
return physical_blocks + physical_block_indices[block_index] * block_stride + fixed_offset;
if(block_index < num_blocks)
{
return physical_blocks + physical_block_indices[block_index] * block_stride +
fixed_offset;
}
else
{
return nullptr;
}
}
CK_TILE_HOST_DEVICE int32_t get_block_index(const WindowOrigin& global_window_origin) const
......
......@@ -863,6 +863,8 @@ struct BlockFmhaPipelineQXKSVSCustomPolicy : BlockFmhaPipelineQXCustomPolicy<QLo
constexpr index_t K0 = kKPerBlock / K1;
constexpr index_t N2 = get_warp_size() / K0;
constexpr index_t N1 = kBlockSize / get_warp_size();
static_assert(N2 != 0, "N2 is zero, which will lead to a division by zero error.");
static_assert(N1 != 0, "N1 is zero, which will lead to a division by zero error.");
constexpr index_t N0 = kNPerBlock / (N2 * N1);
static_assert(N0 != 0);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
#include "ck_tile/ops/elementwise.hpp"
#include "ck_tile/host/hip_check_error.hpp"
#include <string>
#include <type_traits>
namespace ck_tile {
struct MoeSortingHostArgs
{
const void* p_topk_ids;
const void* p_weights;
void* p_sorted_token_ids;
void* p_sorted_weights;
void* p_sorted_expert_ids;
void* p_total_tokens_post_pad;
void* p_moe_buf;
index_t tokens;
index_t unit_size;
index_t num_experts;
index_t topk;
index_t moe_buf_bytes;
};
template <typename Problem_>
struct MoeSortingKernel
{
using Problem = remove_cvref_t<Problem_>;
using IndexType = typename Problem::IndexType;
using WeightType = typename Problem::WeightType;
typedef MoeSortingHostArgs MoeSortingKargs;
using Hargs = MoeSortingHostArgs;
struct Kargs
{
const void* p_topk_ids;
const void* p_weights;
void* p_sorted_token_ids;
void* p_sorted_weights;
void* p_sorted_expert_ids;
void* p_total_tokens_post_pad;
void* p_moe_buf;
index_t tokens;
index_t num_experts;
index_t moe_buf_bytes;
index_t tokens_per_thread;
mdiv unit_size_mdiv;
mdiv topk_mdiv;
};
CK_TILE_HOST static constexpr auto GridSize(const Hargs& h)
{
// TODO: assume num-experts not too much
return dim3(1 + ck_tile::integer_divide_ceil(h.moe_buf_bytes, BlockSize(h).x * 16));
}
CK_TILE_HOST static constexpr auto BlockSize(const Hargs& h)
{
return dim3(ck_tile::integer_least_multiple(h.num_experts, ck_tile::get_warp_size()));
}
// in byte
CK_TILE_HOST static constexpr auto GetSmemSize(const Hargs& h)
{
const auto blocks = BlockSize(h);
return ((blocks.x + 1) * h.num_experts + (h.num_experts + 1)) * sizeof(index_t);
}
CK_TILE_HOST static constexpr auto MakeKargs(const Hargs& h)
{
Kargs k;
k.p_topk_ids = h.p_topk_ids;
k.p_weights = h.p_weights;
k.p_sorted_token_ids = h.p_sorted_token_ids;
k.p_sorted_weights = h.p_sorted_weights;
k.p_sorted_expert_ids = h.p_sorted_expert_ids;
k.p_moe_buf = h.p_moe_buf;
k.p_total_tokens_post_pad = h.p_total_tokens_post_pad;
k.tokens = h.tokens;
k.num_experts = h.num_experts;
k.moe_buf_bytes = h.moe_buf_bytes;
const auto blocks = BlockSize(h);
k.tokens_per_thread = integer_divide_ceil(h.tokens * h.topk, blocks.x);
k.unit_size_mdiv = mdiv{static_cast<uint32_t>(h.unit_size)};
k.topk_mdiv = mdiv{static_cast<uint32_t>(h.topk)};
return k;
}
CK_TILE_DEVICE index_t calc_index(index_t total_col, index_t row, index_t col) const
{
return row * total_col + col;
}
CK_TILE_DEVICE void moe_buf_set_zero_kernel(uint8x16_t* buf, index_t buf_bytes) const
{
const index_t offset = (blockIdx.x - 1) * blockDim.x + threadIdx.x;
if(offset < buf_bytes / 16)
{
buf[offset] = uint8x16_t{0};
}
}
CK_TILE_DEVICE void moe_align_block_size_kernel(const IndexType* __restrict__ topk_id,
const WeightType* __restrict__ weights,
index_t* p_sorted_token_ids,
WeightType* p_sorted_weights,
index_t* p_sorted_expert_ids,
index_t* p_total_tokens_post_pad,
const index_t num_experts,
const index_t tokens_per_thread,
const index_t numel,
const mdiv unit_size_mdiv,
const mdiv topk_mdiv,
void* smem) const
{
const index_t tid = static_cast<index_t>(threadIdx.x);
const index_t start_idx = tid * tokens_per_thread;
index_t* shared_mem = reinterpret_cast<index_t*>(smem);
index_t* tokens_cnts = shared_mem; // 2d: (blockDim.x + 1, num_experts)
index_t* cumsum = shared_mem + (blockDim.x + 1) * num_experts; // 1: (num_experts + 1)
for(int i = 0; i < num_experts; ++i)
{
tokens_cnts[calc_index(num_experts, tid + 1, i)] = 0;
}
#pragma unroll Problem_::InternalLoadUnroll
for(int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i)
{
++tokens_cnts[calc_index(num_experts, tid + 1, topk_id[i])];
}
__syncthreads();
if(tid < num_experts)
{
tokens_cnts[calc_index(num_experts, 0, tid)] = 0;
for(int i = 1; i <= static_cast<index_t>(blockDim.x); ++i)
{
tokens_cnts[calc_index(num_experts, i, tid)] +=
tokens_cnts[calc_index(num_experts, i - 1, tid)];
}
}
// __syncthreads();
if(tid == 0)
{
cumsum[0] = 0;
for(int i = 1; i <= num_experts; ++i)
{
auto current_units = [&]() {
index_t x_ = tokens_cnts[calc_index(num_experts, blockDim.x, i - 1)] +
unit_size_mdiv.divisor - 1;
index_t y_ = unit_size_mdiv.div(x_);
return max(y_, 1) * unit_size_mdiv.divisor;
}();
cumsum[i] = cumsum[i - 1] + current_units;
}
*p_total_tokens_post_pad = cumsum[num_experts];
}
__syncthreads();
if(tid < num_experts)
{
for(int i = cumsum[tid]; i < cumsum[tid + 1]; i += unit_size_mdiv.divisor)
{
p_sorted_expert_ids[unit_size_mdiv.div(i)] = tid;
}
}
#pragma unroll Problem_::InternalLoadUnroll
for(int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i)
{
index_t expert_id = topk_id[i];
index_t rank_post_pad =
tokens_cnts[calc_index(num_experts, tid, expert_id)] + cumsum[expert_id];
p_sorted_token_ids[rank_post_pad] = topk_mdiv.div(i);
p_sorted_weights[rank_post_pad] = weights[i];
++tokens_cnts[calc_index(num_experts, tid, expert_id)];
}
const index_t prefill_token = topk_mdiv.div(numel);
if(tid < num_experts)
{
index_t expert_offset =
cumsum[tid] + tokens_cnts[calc_index(num_experts, blockDim.x, tid)];
while(expert_offset < cumsum[tid + 1])
{
p_sorted_token_ids[expert_offset] = prefill_token;
p_sorted_weights[expert_offset] = static_cast<WeightType>(0.0);
expert_offset++;
}
}
}
CK_TILE_DEVICE void operator()(Kargs kargs) const
{
if(blockIdx.x > 0)
{
if(kargs.p_moe_buf)
{
moe_buf_set_zero_kernel(reinterpret_cast<uint8x16_t*>(kargs.p_moe_buf),
kargs.moe_buf_bytes);
}
return;
}
const size_t numel = kargs.tokens * kargs.topk_mdiv.divisor;
extern __shared__ char smem[];
return moe_align_block_size_kernel(static_cast<const IndexType*>(kargs.p_topk_ids),
static_cast<const WeightType*>(kargs.p_weights),
static_cast<IndexType*>(kargs.p_sorted_token_ids),
static_cast<WeightType*>(kargs.p_sorted_weights),
static_cast<IndexType*>(kargs.p_sorted_expert_ids),
static_cast<IndexType*>(kargs.p_total_tokens_post_pad),
kargs.num_experts,
kargs.tokens_per_thread,
numel,
kargs.unit_size_mdiv,
kargs.topk_mdiv,
smem);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/fused_moe/pipeline/moe_sorting_policy.hpp"
#include <string>
#include <type_traits>
#ifndef TOPK_SOFTMAX_USE_RAW_TILE_WINDOW
#define TOPK_SOFTMAX_USE_RAW_TILE_WINDOW 0
#endif
namespace ck_tile {
// template <typename Problem_, typename Policy_ = MoeSortingPolicy>
// struct MoeSortingPipeline
// {
// // TODO: this kernel only support warp per row
// using Problem = remove_cvref_t<Problem_>;
// using Policy = remove_cvref_t<Policy_>;
// using WeightType = typename Problem::WeightType;
// template <typename TopkIdWindow, typename WeightWindow>
// CK_TILE_DEVICE auto operator()(const TopkIdWindow& topk_id_window,
// const WeightWindow& weight_window,
// index_t* p_sorted_token_ids,
// WeightType* p_sorted_weights,
// index_t* p_sorted_expert_ids,
// index_t* p_total_tokens_post_pad,
// const index_t num_experts,
// const index_t unit_size,
// const size_t numel,
// const index_t topk)
// {
// }
// };
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/softmax.hpp"
#include "ck_tile/ops/topk.hpp"
namespace ck_tile {
struct MoeSortingPolicy
{
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include <string>
#include <type_traits>
namespace ck_tile {
template <typename IndexType_, typename WeightType_, index_t InternalLoadUnroll_>
struct MoeSortingProblem
{
// TODO: this kernel only support warp per row
using WeightType = remove_cvref_t<WeightType_>;
using IndexType = remove_cvref_t<IndexType_>;
static constexpr index_t WarpSize = get_warp_size();
static constexpr index_t WarpsPerBlock = 1;
static constexpr index_t InternalLoadUnroll = InternalLoadUnroll_;
};
} // namespace ck_tile
......@@ -115,12 +115,22 @@ struct GemmKernel
}
}();
auto a_pad_view = pad_tensor_view(
a_tensor_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kK>{}),
// somehow clang-format is splitting below line into multiple.
// clang-format off
sequence<false, GemmPipeline::kPadA>{});
auto a_pad_view = [&]() {
if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>)
{
return pad_tensor_view(
a_tensor_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kK>{}),
sequence<false, GemmPipeline::kPadK>{});
}
else
{
return pad_tensor_view(
a_tensor_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kK>{}),
sequence<GemmPipeline::kPadM, false>{});
}
}();
// clang-format on
auto a_block_window = make_tile_window(
......@@ -128,12 +138,22 @@ struct GemmKernel
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kK>{}),
{i_m, 0});
auto b_pad_view = pad_tensor_view(
b_tensor_view,
make_tuple(number<TilePartitioner::kN>{}, number<TilePartitioner::kK>{}),
// clang-format off
sequence<false, GemmPipeline::kPadB>{});
// clang-format on
auto b_pad_view = [&]() {
if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::ColumnMajor>)
{
return pad_tensor_view(
b_tensor_view,
make_tuple(number<TilePartitioner::kN>{}, number<TilePartitioner::kK>{}),
sequence<false, GemmPipeline::kPadK>{});
}
else
{
return pad_tensor_view(
b_tensor_view,
make_tuple(number<TilePartitioner::kN>{}, number<TilePartitioner::kK>{}),
sequence<GemmPipeline::kPadN, false>{});
}
}();
auto b_block_window = make_tile_window(
b_pad_view,
......@@ -171,18 +191,28 @@ struct GemmKernel
}
}();
auto c_pad_view = pad_tensor_view(
c_tensor_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kN>{}),
// clang-format off
sequence<false, GemmPipeline::kPadC>{});
// clang-format on
auto c_block_window = make_tile_window(
auto c_pad_view = [&]() {
if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
{
return pad_tensor_view(
c_tensor_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kN>{}),
sequence<false, GemmPipeline::kPadN>{});
}
else
{
return pad_tensor_view(
c_tensor_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kN>{}),
sequence<GemmPipeline::kPadM, false>{});
}
}();
auto CBlockWindow_pad = make_tile_window(
c_pad_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kN>{}),
{i_m, i_n});
EpiloguePipeline{}(c_block_window, c_block_tile);
EpiloguePipeline{}(CBlockWindow_pad, c_block_tile);
}
};
......
......@@ -113,9 +113,9 @@ struct GemmPipelineAgBgCrMem : public BaseGemmPipelineAgBgCrMem<Problem>
static constexpr index_t VectorSizeB = Problem::VectorSizeB;
static constexpr index_t VectorSizeC = Problem::VectorSizeC;
static constexpr bool kPadA = Problem::kPadA;
static constexpr bool kPadB = Problem::kPadB;
static constexpr bool kPadC = Problem::kPadC;
static constexpr bool kPadM = Problem::kPadM;
static constexpr bool kPadN = Problem::kPadN;
static constexpr bool kPadK = Problem::kPadK;
// Where is the right place for HasHotLoop and TailNum ???
static constexpr bool HasHotLoop = Problem::HasHotLoop;
......
......@@ -33,9 +33,9 @@ struct GemmPipelineAGmemBGmemCRegV1
static constexpr index_t VectorSizeB = Problem::VectorSizeB;
static constexpr index_t VectorSizeC = Problem::VectorSizeC;
static constexpr bool kPadA = Problem::kPadA;
static constexpr bool kPadB = Problem::kPadB;
static constexpr bool kPadC = Problem::kPadC;
static constexpr bool kPadM = Problem::kPadM;
static constexpr bool kPadN = Problem::kPadN;
static constexpr bool kPadK = Problem::kPadK;
CK_TILE_HOST_DEVICE static constexpr index_t GetStaticLdsSize()
{
......@@ -101,11 +101,8 @@ struct GemmPipelineAGmemBGmemCRegV1
Policy::template MakeADramTileDistribution<Problem>());
// A LDS tile window for store
auto a_copy_lds_window =
make_tile_window(a_lds_block,
make_tuple(number<kMPerBlock>{}, number<kKPerBlock>{}),
{0, 0},
a_copy_dram_window.get_tile_distribution());
auto a_copy_lds_window = make_tile_window(
a_lds_block, make_tuple(number<kMPerBlock>{}, number<kKPerBlock>{}), {0, 0});
// B DRAM tile window for load
auto b_copy_dram_window =
......@@ -115,11 +112,8 @@ struct GemmPipelineAGmemBGmemCRegV1
Policy::template MakeBDramTileDistribution<Problem>());
// B LDS tile window for store
auto b_copy_lds_window =
make_tile_window(b_lds_block,
make_tuple(number<kNPerBlock>{}, number<kKPerBlock>{}),
{0, 0},
b_copy_dram_window.get_tile_distribution());
auto b_copy_lds_window = make_tile_window(
b_lds_block, make_tuple(number<kNPerBlock>{}, number<kKPerBlock>{}), {0, 0});
// A LDS tile for block GEMM
auto a_lds_gemm_window = make_tile_window(
......@@ -149,12 +143,32 @@ struct GemmPipelineAGmemBGmemCRegV1
tile_elementwise_inout([](auto& c) { c = 0; }, c_block_tile);
// LDS write 0
const auto a_block_tile_tmp = tile_elementwise_in(a_element_func, a_block_tile);
store_tile(a_copy_lds_window, a_block_tile_tmp);
if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::ColumnMajor>)
{
auto a_shuffle_tmp = make_static_distributed_tensor<ADataType>(
Policy::template MakeShuffledARegBlockDescriptor<Problem>());
shuffle_tile(a_shuffle_tmp, a_block_tile);
const auto a_block_tile_tmp = tile_elementwise_in(a_element_func, a_shuffle_tmp);
store_tile(a_copy_lds_window, a_block_tile_tmp);
}
else
{
store_tile(a_copy_lds_window, tile_elementwise_in(a_element_func, a_block_tile));
}
// LDS write 0
const auto b_block_tile_tmp = tile_elementwise_in(b_element_func, b_block_tile);
store_tile(b_copy_lds_window, b_block_tile_tmp);
if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::RowMajor>)
{
auto b_shuffle_tmp = make_static_distributed_tensor<BDataType>(
Policy::template MakeShuffledBRegBlockDescriptor<Problem>());
shuffle_tile(b_shuffle_tmp, b_block_tile);
const auto b_block_tile_tmp = tile_elementwise_in(b_element_func, b_shuffle_tmp);
store_tile(b_copy_lds_window, b_block_tile_tmp);
}
else
{
store_tile(b_copy_lds_window, tile_elementwise_in(b_element_func, b_block_tile));
}
}
index_t iCounter = num_loop - 1;
......@@ -180,8 +194,19 @@ struct GemmPipelineAGmemBGmemCRegV1
store_tile(a_copy_lds_window, a_block_tile_tmp);
// LDS write i + 1
const auto b_block_tile_tmp = tile_elementwise_in(b_element_func, b_block_tile);
store_tile(b_copy_lds_window, b_block_tile_tmp);
if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::RowMajor>)
{
auto b_shuffle_tmp_loop = make_static_distributed_tensor<BDataType>(
Policy::template MakeShuffledBRegBlockDescriptor<Problem>());
shuffle_tile(b_shuffle_tmp_loop, b_block_tile);
store_tile(b_copy_lds_window,
tile_elementwise_in(b_element_func, b_shuffle_tmp_loop));
}
else
{
const auto b_block_tile_tmp = tile_elementwise_in(b_element_func, b_block_tile);
store_tile(b_copy_lds_window, b_block_tile_tmp);
}
iCounter--;
}
......
......@@ -11,6 +11,7 @@ namespace ck_tile {
// Default policy class should not be templated, put template on member functions instead
struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
{
#if 0
// 2d
template <typename Problem>
......@@ -116,6 +117,20 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
return smem_size;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemPackA()
{
using ADataType = remove_cvref_t<typename Problem::ADataType>;
return Problem::VectorLoadSize / sizeof(ADataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemPackB()
{
using BDataType = remove_cvref_t<typename Problem::BDataType>;
return Problem::VectorLoadSize / sizeof(BDataType);
}
#elif 1
// fake XOR
template <typename Problem>
......@@ -192,80 +207,269 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
CK_TILE_HOST_DEVICE static constexpr auto MakeADramTileDistribution()
{
using ADataType = remove_cvref_t<typename Problem::ADataType>;
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t K1 = 16 / sizeof(ADataType);
constexpr index_t K0 = kKPerBlock / K1;
constexpr index_t M2 = get_warp_size() / K0;
#if 1 // coalesce reading for each blocks
constexpr index_t M1 = kBlockSize / get_warp_size();
static_assert(M2 != 0, "M2 is zero, which will lead to a division by zero error.");
static_assert(M1 != 0, "M1 is zero, which will lead to a division by zero error.");
constexpr index_t M0 = kMPerBlock / (M2 * M1);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
#else // coalesce reading for each warps
constexpr index_t M0 = kBlockSize / get_warp_size();
constexpr index_t M1 = kMPerBlock / (M2 * M0);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<0>, sequence<2, 0>>,
sequence<1, 2>,
sequence<1, 1>>{});
#endif
using ALayout = remove_cvref_t<typename Problem::ALayout>;
constexpr index_t BlockSize = Problem::kBlockSize;
constexpr index_t MPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
if constexpr(std::is_same_v<ALayout, ck_tile::tensor_layout::gemm::ColumnMajor>)
{
constexpr index_t M1 = Problem::VectorLoadSize / sizeof(ADataType);
constexpr index_t M0 = MPerBlock / M1;
constexpr index_t total_pixels = MPerBlock * KPerBlock / BlockSize;
static_assert(total_pixels % M1 == 0);
constexpr index_t K3 = total_pixels / M1;
constexpr index_t KPack = GetSmemPackA<Problem>();
static_assert(KPack % K3 == 0);
constexpr index_t K2 = KPack / K3;
if constexpr(get_warp_size() % (K2 * M0))
{
constexpr index_t K1 = get_warp_size() / (K2 * M0);
constexpr index_t K0 = BlockSize / get_warp_size();
static_assert(KPerBlock == K0 * K1 * K2 * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1>, sequence<K0, K1, K2, K3>>,
tuple<sequence<2>, sequence<2, 1, 2>>,
tuple<sequence<0>, sequence<1, 0, 2>>,
sequence<2, 1>,
sequence<3, 1>>{});
}
else
{
constexpr index_t K1 = (K2 * M0) / get_warp_size();
constexpr index_t K2_m = K2 / K1;
constexpr index_t K0 = BlockSize / get_warp_size() / K1;
static_assert(KPerBlock == K0 * K1 * K2_m * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1>, sequence<K0, K1, K2_m, K3>>,
tuple<sequence<2, 2>, sequence<1, 2>>,
tuple<sequence<0, 1>, sequence<0, 2>>,
sequence<2, 1>,
sequence<3, 1>>{});
}
}
else
{
constexpr index_t K1 = 16 / sizeof(ADataType);
constexpr index_t K0 = KPerBlock / K1;
constexpr index_t M2 = get_warp_size() / K0;
// coalesce reading for each blocks
if constexpr(get_warp_size() % (M2 * K0) == 0)
{
constexpr index_t M1 = BlockSize / get_warp_size();
static_assert(M2 != 0, "M2 is zero, which will lead to a division by zero error.");
static_assert(M1 != 0, "M1 is zero, which will lead to a division by zero error.");
constexpr index_t M0 = MPerBlock / (M2 * M1);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
else
{
constexpr index_t M0 = BlockSize / get_warp_size();
constexpr index_t M1 = MPerBlock / (M2 * M0);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<0>, sequence<2, 0>>,
sequence<1, 2>,
sequence<1, 1>>{});
}
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeBDramTileDistribution()
{
using BDataType = remove_cvref_t<typename Problem::BDataType>;
using BLayout = remove_cvref_t<typename Problem::BLayout>;
constexpr index_t BlockSize = Problem::kBlockSize;
constexpr index_t NPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
if constexpr(std::is_same_v<BLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
constexpr index_t N1 = Problem::VectorLoadSize / sizeof(BDataType);
constexpr index_t N0 = NPerBlock / N1;
constexpr index_t total_pixels = NPerBlock * KPerBlock / BlockSize;
static_assert(total_pixels % N1 == 0);
constexpr index_t K3 = total_pixels / N1;
constexpr index_t KPack = GetSmemPackB<Problem>();
static_assert(KPack % K3 == 0);
constexpr index_t K2 = KPack / K3;
if constexpr(get_warp_size() % (K2 * N0) == 0)
{
constexpr index_t K1 = get_warp_size() / (K2 * N0);
constexpr index_t K0 = BlockSize / get_warp_size();
static_assert(KPerBlock == K0 * K1 * K2 * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1>, sequence<K0, K1, K2, K3>>,
tuple<sequence<2>, sequence<2, 1, 2>>,
tuple<sequence<0>, sequence<1, 0, 2>>,
sequence<2, 1>,
sequence<3, 1>>{});
}
else
{
constexpr index_t K1 = (K2 * N0) / get_warp_size();
constexpr index_t K2_m = K2 / K1;
constexpr index_t K0 = BlockSize / get_warp_size() / K1;
static_assert(KPerBlock == K0 * K1 * K2_m * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1>, sequence<K0, K1, K2_m, K3>>,
tuple<sequence<2, 2>, sequence<1, 2>>,
tuple<sequence<0, 1>, sequence<0, 2>>,
sequence<2, 1>,
sequence<3, 1>>{});
}
}
else
{
constexpr index_t K1 = Problem::VectorLoadSize / sizeof(BDataType);
constexpr index_t K0 = KPerBlock / K1;
constexpr index_t N2 = get_warp_size() / K0;
// coalesce reading for each blocks
if constexpr(get_warp_size() % (N2 * K0) == 0)
{
constexpr index_t N1 = BlockSize / get_warp_size();
static_assert(N2 != 0, "N2 is zero, which will lead to a division by zero error.");
static_assert(N1 != 0, "N1 is zero, which will lead to a division by zero error.");
constexpr index_t N0 = NPerBlock / (N2 * N1);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1, N2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
// coalesce reading for each warps
else
{
constexpr index_t N0 = BlockSize / get_warp_size();
constexpr index_t N1 = NPerBlock / (N2 * N0);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1, N2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<0>, sequence<2, 0>>,
sequence<1, 2>,
sequence<1, 1>>{});
}
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffledBRegBlockDescriptor()
{
using BLayout = remove_cvref_t<typename Problem::BLayout>;
using BDataType = remove_cvref_t<typename Problem::BDataType>;
static_assert(std::is_same_v<BLayout, ck_tile::tensor_layout::gemm::RowMajor>);
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t K1 = 16 / sizeof(BDataType);
constexpr index_t K0 = kKPerBlock / K1;
constexpr index_t N2 = get_warp_size() / K0;
#if 1 // coalesce reading for each blocks
constexpr index_t N1 = kBlockSize / get_warp_size();
static_assert(N2 != 0, "M2 is zero, which will lead to a division by zero error.");
static_assert(N1 != 0, "M1 is zero, which will lead to a division by zero error.");
constexpr index_t N0 = kNPerBlock / (N2 * N1);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1, N2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
#else // coalesce reading for each warps
constexpr index_t N0 = kBlockSize / get_warp_size();
constexpr index_t N1 = kNPerBlock / (N2 * N0);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1, N2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<0>, sequence<2, 0>>,
sequence<1, 2>,
sequence<1, 1>>{});
#endif
constexpr index_t N1 = Problem::VectorLoadSize / sizeof(BDataType);
constexpr index_t N0 = kNPerBlock / N1;
constexpr index_t total_pixels = kNPerBlock * kKPerBlock / kBlockSize;
static_assert(total_pixels % N1 == 0);
constexpr index_t K3 = total_pixels / N1;
constexpr index_t kKPack = GetSmemPackB<Problem>();
static_assert(kKPack % K3 == 0);
constexpr index_t K2 = kKPack / K3; // TODO: this dimention could be outside single wave
constexpr index_t warp_size = get_warp_size();
if constexpr(warp_size % (K2 * N0) == 0)
{
constexpr index_t K1 = warp_size / (K2 * N0);
constexpr index_t K0 = kBlockSize / warp_size;
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1>, sequence<K0, K1, K2, K3>>,
tuple<sequence<2>, sequence<2, 1, 2>>,
tuple<sequence<0>, sequence<1, 0, 2>>,
sequence<1, 2>,
sequence<1, 3>>{});
}
else
{
constexpr index_t K1 = (K2 * N0) / get_warp_size();
constexpr index_t K2_m = K2 / K1;
constexpr index_t K0 = kBlockSize / get_warp_size() / K1;
static_assert(kKPerBlock == K0 * K1 * K2_m * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1>, sequence<K0, K1, K2_m, K3>>,
tuple<sequence<2, 2>, sequence<1, 2>>,
tuple<sequence<0, 1>, sequence<0, 2>>,
sequence<1, 2>,
sequence<1, 3>>{});
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffledARegBlockDescriptor()
{
using ALayout = remove_cvref_t<typename Problem::ALayout>;
using ADataType = remove_cvref_t<typename Problem::ADataType>;
static_assert(std::is_same_v<ALayout, ck_tile::tensor_layout::gemm::RowMajor>);
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t M1 = Problem::VectorLoadSize / sizeof(ADataType);
constexpr index_t M0 = kMPerBlock / M1;
constexpr index_t total_pixels = kMPerBlock * kKPerBlock / kBlockSize;
static_assert(total_pixels % M1 == 0);
constexpr index_t K3 = total_pixels / M1;
constexpr index_t kKPack = GetSmemPackA<Problem>();
static_assert(kKPack % K3 == 0);
constexpr index_t K2 = kKPack / K3; // TODO: this dimention could be outside single wave
constexpr index_t warp_size = get_warp_size();
if constexpr(warp_size % (K2 * M0) == 0)
{
constexpr index_t K1 = warp_size / (K2 * M0);
constexpr index_t K0 = kBlockSize / warp_size;
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1>, sequence<K0, K1, K2, K3>>,
tuple<sequence<2>, sequence<2, 1, 2>>,
tuple<sequence<0>, sequence<1, 0, 2>>,
sequence<1, 2>,
sequence<1, 3>>{});
}
else
{
constexpr index_t K1 = (K2 * M0) / get_warp_size();
constexpr index_t K2_m = K2 / K1;
constexpr index_t K0 = kBlockSize / get_warp_size() / K1;
static_assert(kKPerBlock == K0 * K1 * K2_m * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1>, sequence<K0, K1, K2_m, K3>>,
tuple<sequence<2, 2>, sequence<1, 2>>,
tuple<sequence<0, 1>, sequence<0, 2>>,
sequence<1, 2>,
sequence<1, 3>>{});
}
}
template <typename Problem>
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment