Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
171b9030
Unverified
Commit
171b9030
authored
Nov 20, 2024
by
Mirza Halilčević
Committed by
GitHub
Nov 20, 2024
Browse files
Merge branch 'develop' into gemm_elementwise_gemm
parents
417f805f
da0c21f6
Changes
486
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
880 additions
and
27 deletions
+880
-27
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev2_instance.cpp
...o_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev2_instance.cpp
+41
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev5_instance.cpp
...o_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev5_instance.cpp
+41
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev1_instance.cpp
...wo_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev1_instance.cpp
+41
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev2_instance.cpp
...wo_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev2_instance.cpp
+1
-1
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev5_instance.cpp
...wo_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev5_instance.cpp
+1
-1
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev1_instance.cpp
...o_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev1_instance.cpp
+41
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev2_instance.cpp
...o_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev2_instance.cpp
+41
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev5_instance.cpp
...o_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev5_instance.cpp
+41
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_f16_pipev1_instance.cpp
...wo_stage_xdl_ngcdhw_gkzyxc_ngkdhw_f16_pipev1_instance.cpp
+41
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_instance.cpp
...eight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_instance.cpp
+15
-13
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instance.cpp
...eight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instance.cpp
+48
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
...v3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
+3
-3
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_dynamic_op/CMakeLists.txt
...instance/gpu/grouped_conv3d_fwd_dynamic_op/CMakeLists.txt
+8
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_dynamic_op/xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
...fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
+58
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_dynamic_op/xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
..._fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
+58
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_dynamic_op/xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
..._fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
+58
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_dynamic_op/xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_int8_instance.cpp
...fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_int8_instance.cpp
+57
-0
library/src/tensor_operation_instance/gpu/mha/CMakeLists.txt
library/src/tensor_operation_instance/gpu/mha/CMakeLists.txt
+0
-5
profiler/include/profiler/profile_gemm_multiply_multiply_impl.hpp
.../include/profiler/profile_gemm_multiply_multiply_impl.hpp
+6
-4
profiler/include/profiler/profile_gemm_universal_batched_impl.hpp
.../include/profiler/profile_gemm_universal_batched_impl.hpp
+280
-0
No files found.
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev2_instance.cpp
0 → 100644
View file @
171b9030
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev2_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_bf16_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvBwdWeightDefault
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v2
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev5_instance.cpp
0 → 100644
View file @
171b9030
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev5_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_bf16_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvBwdWeightDefault
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v5
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev1_instance.cpp
0 → 100644
View file @
171b9030
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev1_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_f16_generic_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvBwdWeightDefault
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v1
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev2_instance.cpp
View file @
171b9030
...
...
@@ -25,7 +25,7 @@ void add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_xdl_c_shuffle_f16_instances
<
device_grouped_conv_bwd_weight_two_stage_
nhwgc_
xdl_c_shuffle_f16_instances
<
3
,
NDHWGC
,
GKZYXC
,
...
...
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev5_instance.cpp
View file @
171b9030
...
...
@@ -25,7 +25,7 @@ void add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_xdl_c_shuffle_f16_instances
<
device_grouped_conv_bwd_weight_two_stage_
nhwgc_
xdl_c_shuffle_f16_instances
<
3
,
NDHWGC
,
GKZYXC
,
...
...
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev1_instance.cpp
0 → 100644
View file @
171b9030
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev1_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NGCDHW
,
GKZYXC
,
NGKDHW
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_ngchw_xdl_c_shuffle_bf16_generic_instances
<
3
,
NGCDHW
,
GKZYXC
,
NGKDHW
,
ConvBwdWeightDefault
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v1
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev2_instance.cpp
0 → 100644
View file @
171b9030
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev2_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NGCDHW
,
GKZYXC
,
NGKDHW
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_ngchw_xdl_c_shuffle_bf16_instances
<
3
,
NGCDHW
,
GKZYXC
,
NGKDHW
,
ConvBwdWeightDefault
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v2
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev5_instance.cpp
0 → 100644
View file @
171b9030
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev5_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NGCDHW
,
GKZYXC
,
NGKDHW
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_ngchw_xdl_c_shuffle_bf16_instances
<
3
,
NGCDHW
,
GKZYXC
,
NGKDHW
,
ConvBwdWeightDefault
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v5
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_f16_pipev1_instance.cpp
0 → 100644
View file @
171b9030
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_f16_pipev1_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NGCDHW
,
GKZYXC
,
NGKDHW
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_ngchw_xdl_c_shuffle_f16_generic_instances
<
3
,
NGCDHW
,
GKZYXC
,
NGKDHW
,
ConvBwdWeightDefault
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v1
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_instance.cpp
→
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_
f32_bf16_
instance.cpp
View file @
171b9030
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
...
...
@@ -24,19 +24,21 @@ void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_instances
<
3
,
GNDHWC
,
GKZYXC
,
GNDHWK
,
ConvBwdWeightDefault
>
{});
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_f32_bf16_instances
<
3
,
GNDHWC
,
GKZYXC
,
GNDHWK
,
ConvBwdWeightDefault
>
{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_instances
<
3
,
GNDHWC
,
GKZYXC
,
GNDHWK
,
ConvBwdWeightFilter1x1Stride1Pad0
>
{});
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_f32_bf16_instances
<
3
,
GNDHWC
,
GKZYXC
,
GNDHWK
,
ConvBwdWeightFilter1x1Stride1Pad0
>
{});
}
}
// namespace instance
...
...
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instance.cpp
0 → 100644
View file @
171b9030
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_f32_bf16_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvBwdWeightDefault
>
{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_f32_bf16_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvBwdWeightFilter1x1Stride1Pad0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
View file @
171b9030
// SPDX-License-Identifier: MIT
// Copyright (c) 20
18-2023
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 20
24
, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
...
...
@@ -10,13 +10,13 @@ namespace device {
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_
f32_bf16_
instances
(
void
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
BF16
,
F32
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
...
...
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_dynamic_op/CMakeLists.txt
0 → 100644
View file @
171b9030
# ONLY XDL_KERNELS
set
(
GROUPED_CONV3D_FWD_DYNAMIC_OP
xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_int8_instance.cpp
)
add_instance_library
(
device_grouped_conv3d_fwd_dynamic_op_instance
${
GROUPED_CONV3D_FWD_DYNAMIC_OP
}
)
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_dynamic_op/xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
0 → 100644
View file @
171b9030
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_dynamic_op_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
BF16
,
BF16
,
ck
::
Tuple
<>
,
BF16
,
PassThrough
,
PassThrough
,
DynamicUnaryOp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_dynamic_op_bf16_instances
<
3
,
NDHWGC
,
GKZYXC
,
Tuple
<>
,
NDHWGK
,
ConvFwdDefault
>
{});
#if 0 // Enable with dynamic op optimizations (at now generating a lot of virtual functions cause
// long compilation time)
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_bf16_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_bf16_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1S1P0>{});
#endif
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_dynamic_op/xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
0 → 100644
View file @
171b9030
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_dynamic_op_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
F16
,
F16
,
ck
::
Tuple
<>
,
F16
,
PassThrough
,
PassThrough
,
DynamicUnaryOp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_dynamic_op_f16_instances
<
3
,
NDHWGC
,
GKZYXC
,
Tuple
<>
,
NDHWGK
,
ConvFwdDefault
>
{});
#if 0 // Enable with dynamic op optimizations (at now generating a lot of virtual functions cause
// long compilation time)
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_f16_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_f16_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1S1P0>{});
#endif
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_dynamic_op/xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
0 → 100644
View file @
171b9030
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_dynamic_op_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
F32
,
F32
,
ck
::
Tuple
<>
,
F32
,
PassThrough
,
PassThrough
,
DynamicUnaryOp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_dynamic_op_f32_instances
<
3
,
NDHWGC
,
GKZYXC
,
Tuple
<>
,
NDHWGK
,
ConvFwdDefault
>
{});
#if 0 // Enable with dynamic op optimizations (at now generating a lot of virtual functions cause
// long compilation time)
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_f32_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_f32_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1S1P0>{});
#endif
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_dynamic_op/xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_int8_instance.cpp
0 → 100644
View file @
171b9030
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_dynamic_op_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
int8_t
,
int8_t
,
ck
::
Tuple
<>
,
int8_t
,
PassThrough
,
PassThrough
,
DynamicUnaryOp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_dynamic_op_int8_instances
<
3
,
NDHWGC
,
GKZYXC
,
Tuple
<>
,
NDHWGK
,
ConvFwdDefault
>
{});
#if 0 // Enable with dynamic op optimizations (at now generating a lot of virtual functions cause
// long compilation time)
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_int8_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_int8_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1S1P0>{});
#endif
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/mha/CMakeLists.txt
View file @
171b9030
...
...
@@ -27,11 +27,6 @@ rocm_install(FILES ${MHA_HEADERS} DESTINATION include/ck_tile/ops)
# headers for building lib
file
(
COPY
${
MHA_HEADERS
}
DESTINATION
${
FMHA_CPP_FOLDER
}
)
# Delete the blob file if it exists to avoid append of old content.
if
(
EXISTS
${
FMHA_CPP_FOLDER
}
/blob_list.txt
)
file
(
REMOVE
${
FMHA_CPP_FOLDER
}
/blob_list.txt
)
endif
()
set
(
FMHA_KNOWN_APIS
"fwd,fwd_splitkv,fwd_appendkv,bwd"
)
# generate a list of kernels, but not actually emit files at config stage
...
...
profiler/include/profiler/profile_gemm_multiply_multiply_impl.hpp
View file @
171b9030
...
...
@@ -271,10 +271,12 @@ bool profile_gemm_multiply_multiply_impl(int do_verification,
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
", KBatch "
<<
kbatch_curr
<<
std
::
endl
;
#if defined CK_ENABLE_FP8
#if defined CK_ENABLE_FP8
|| defined CK_ENABLE_INT8
// set softer tolerances for fp8
if
constexpr
(
is_same_v
<
ADataType
,
f8_t
>
||
is_same_v
<
BDataType
,
f8_t
>
||
is_same_v
<
EDataType
,
f8_t
>
)
if
constexpr
((
is_same_v
<
ADataType
,
f8_t
>
||
is_same_v
<
BDataType
,
f8_t
>
||
is_same_v
<
EDataType
,
f8_t
>
)
||
(
is_same_v
<
ADataType
,
int8_t
>
||
is_same_v
<
BDataType
,
int8_t
>
||
is_same_v
<
EDataType
,
int8_t
>
))
{
std
::
string
msg
=
"Error: Incorrect results!"
;
double
rtol
=
1e-1
;
...
...
@@ -286,7 +288,7 @@ bool profile_gemm_multiply_multiply_impl(int do_verification,
{
#endif
pass
=
pass
&
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
);
#if defined CK_ENABLE_FP8
#if defined CK_ENABLE_FP8
|| defined CK_ENABLE_INT8
}
#endif
...
...
profiler/include/profiler/profile_gemm_universal_batched_impl.hpp
0 → 100644
View file @
171b9030
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_multi_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm_multi_d.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
AElementOp
,
typename
BElementOp
,
typename
CElementOp
,
typename
DeviceOp
>
bool
profile_gemm_universal_batched_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
BatchStrideA
,
int
BatchStrideB
,
int
BatchStrideC
,
int
StrideA
,
int
StrideB
,
int
StrideC
,
int
BatchCount
,
int
n_warmup
,
int
n_iter
,
uint64_t
rotating
=
0
)
{
bool
pass
=
true
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
batch_count
,
row
,
col
},
{
batch_stride
,
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
batch_count
,
row
,
col
},
{
batch_stride
,
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
K
,
StrideA
,
BatchStrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
BatchCount
,
K
,
N
,
StrideB
,
BatchStrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_g_m_n_host_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
StrideC
,
BatchStrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_g_m_n_device_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
StrideC
,
BatchStrideC
,
CLayout
{}));
int
total_gemm_needed
=
a_g_m_k
.
GetElementSpaceSizeInBytes
()
+
b_g_k_n
.
GetElementSpaceSizeInBytes
();
int
rotating_count
=
std
::
max
(
1
,
std
::
min
(
n_iter
,
static_cast
<
int
>
(
std
::
ceil
(
static_cast
<
double
>
(
rotating
)
/
total_gemm_needed
))));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_g_m_n: "
<<
c_g_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"rotating count: "
<<
rotating_count
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
}
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
if
(
do_verification
)
{
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
BDataType
,
CDataType
,
float
,
AElementOp
,
BElementOp
,
CElementOp
>
;
auto
ref_batched_gemm
=
ReferenceBatchedGemmInstance
{};
auto
ref_invoker
=
ref_batched_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_batched_gemm
.
MakeArgument
(
a_g_m_k
,
b_g_k_n
,
c_g_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_g_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_g_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_g_k_n
.
mData
.
data
());
c_device_buf
.
ToDevice
(
c_g_m_n_device_result
.
mData
.
data
());
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device op instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
std
::
unique_ptr
<
tensor_operation
::
device
::
BaseArgument
>
argument_ptr
;
// false branch for multi d dl kernel
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
{},
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
BatchCount
,
StrideA
,
StrideB
,
{},
StrideC
,
BatchStrideA
,
BatchStrideB
,
{},
BatchStrideC
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init C to zero before profiling next kernel
c_device_buf
.
SetZero
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
0
,
n_warmup
,
n_iter
,
true
,
rotating_count
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
BatchCount
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
)
*
BatchCount
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_g_m_n_device_result
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
c_g_m_n_device_result
,
c_g_m_n_host_result
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_g_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_g_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host: "
,
c_g_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_g_m_n_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
constexpr
(
is_same
<
CDataType
,
float
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f32"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
half_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
bhalf_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = bf16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
int8_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = int8"
;
}
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" ALayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" ALayout = ColumnMajor"
;
}
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" BLayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" BLayout = ColumnMajor"
;
}
std
::
cout
<<
" B = "
<<
BatchCount
<<
" M = "
<<
M
<<
" N = "
<<
N
<<
" K = "
<<
K
<<
" StrideA = "
<<
StrideA
<<
" StrideB = "
<<
StrideB
<<
" StrideC = "
<<
StrideC
<<
": "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
Prev
1
…
19
20
21
22
23
24
25
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment