Commit 13dd3ab5 authored by Andriy Roshchenko's avatar Andriy Roshchenko
Browse files

Implementation of ConvertFP32Nearest in test_fp8_ocp.

parent e2efb63c
......@@ -11,7 +11,7 @@
"cacheVariables": {
"CMAKE_BUILD_TYPE": "Debug",
"CMAKE_EXPORT_COMPILE_COMMANDS": "ON",
"GPU_TARGETS": "gfx90a",
"GPU_TARGETS": "gfx950",
"BUILD_DEV": "ON",
"CMAKE_CXX_COMPILER": "/opt/rocm/llvm/bin/clang++",
"CMAKE_PREFIX_PATH": "/opt/rocm"
......@@ -33,7 +33,7 @@
},
"cacheVariables": {
"CMAKE_BUILD_TYPE": "Debug",
"CMAKE_CXX_FLAGS": "-O0"
"CMAKE_CXX_FLAGS": "-O0 -ggdb"
}
},
{
......
......@@ -26,33 +26,748 @@ using int4_t = _BitInt(4);
using f8_fnuz_t = _BitInt(8);
using bf8_fnuz_t = unsigned _BitInt(8);
typedef unsigned char __hip_fp8_storage_t;
struct f8_ocp_t
#if(defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) || defined(__gfx1200__) || \
defined(__gfx1201__) || defined(__gfx950__)) && \
__HIP_DEVICE_COMPILE__
#define CK_FP8_CVT_FAST_PATH 1
#else
#define CK_FP8_CVT_FAST_PATH 0
#endif
typedef unsigned char fp8_storage_t;
namespace internal {
/**
* \brief Describes FP8 interpretation
*/
enum ck_fp8_interpretation_t
{
CK_E4M3_OCP = 0, // OCP E4M3
CK_E5M2_OCP = 1, // OCP E5M2
CK_E4M3_FNUZ = 2, // FP8
CK_E5M2_FNUZ = 3, // BF8
};
/**
* \brief Describes saturation behavior
*/
enum ck_saturation_t
{
using type = __hip_fp8_storage_t;
type data;
CK_NOSAT = 0, // No saturation - replace with NaN or Inf
CK_SATFINITE = 1, // Saturate to finite
};
// Assertions to check for supported conversion types
#define __assert_ocp_support(interp) \
{ \
if(interp != CK_E4M3_OCP && interp != CK_E5M2_OCP) \
{ \
__hip_assert(false && "type is unsupported by current target device"); \
} \
}
#define __assert_fnuz_support(interp) \
{ \
if(interp != CK_E4M3_FNUZ && interp != CK_E5M2_FNUZ) \
{ \
__hip_assert(false && "type is unsupported by current target device"); \
} \
}
__host__ __device__ static inline void
__is_interpret_supported([[maybe_unused]] ck_fp8_interpretation_t interp)
{
#if defined(__HIP_DEVICE_COMPILE__) && __HIP_DEVICE_COMPILE__
#if CK_USE_OCP_FP8
__assert_ocp_support(interp);
#endif
#if CK_USE_FNUZ_FP8
__assert_fnuz_support(interp);
#endif
#endif
}
// The conversion function is from rocblas
// https://github.com/ROCm/rocBLAS/blob/9b7f692abe3c54b88d1e77e045a7db7f1f188b69/library/include/internal/rocblas_hip_f8_impl.h#L39
// This has been modified to add double types conversion as well
template <typename T, int wm, int we, bool is_fnuz, bool clip = false, bool stoch = false>
__host__ __device__ static inline fp8_storage_t cast_to_f8(T _x, unsigned int rng = 0)
{
constexpr bool is_half = __hip_internal::is_same<T, _Float16>::value;
constexpr bool is_float = __hip_internal::is_same<T, float>::value;
constexpr bool is_double = __hip_internal::is_same<T, double>::value;
static_assert(is_half || is_float || is_double,
"Only half, float and double can be cast to f8");
constexpr int mfmt = (sizeof(T) == 8) ? 52 : ((sizeof(T) == 4) ? 23 : 10);
using T_bitwise = typename __hip_internal::conditional<
sizeof(T) == 2,
unsigned short int,
typename __hip_internal::conditional<sizeof(T) == 4, unsigned int, unsigned long long>::
type>::type;
T_bitwise x_bitwise = bit_cast<T_bitwise>(_x);
unsigned long long x{x_bitwise};
unsigned long long head, mantissa;
int exponent, bias;
unsigned int sign;
unsigned long long fInf, mask;
if constexpr(sizeof(T) == 8)
{
head = x & 0xFFF0000000000000ull;
mantissa = x & 0xFFFFFFFFFFFFFull;
exponent = (head >> 52) & 0x7FF;
sign = head >> 63;
bias = 1023;
fInf = 0x7FF0000000000000ull;
mask = 0x7FFFFFFFFFFFFFFFull;
}
else if(sizeof(T) == 4)
{
head = x & 0xFF800000;
mantissa = x & 0x7FFFFF;
exponent = (head >> 23) & 0xFF;
sign = head >> 31;
bias = 127;
fInf = 0x7F800000;
mask = 0x7FFFFFFF;
}
else
{
head = x & 0xFC00;
mantissa = x & 0x3FF;
exponent = (head >> 10) & 0x1F;
sign = head >> 15;
bias = 15;
fInf = 0x7C00;
mask = 0x7FFF;
}
unsigned int signed_inf = 0;
unsigned int nan = 0;
if constexpr(is_fnuz)
{
signed_inf = clip ? ((sign << 7) + 0x7f) : 0x80;
nan = 0x80;
}
else
{
if(we == 4)
{ // e4m3
signed_inf = (sign << 7) + (clip ? 0x7e : 0x7f);
}
else
{ // e5m2
signed_inf = (sign << 7) + (clip ? 0x7b : 0x7c);
}
nan = (sign << 7) + 0x7f;
}
// Max values
unsigned long long ifmax = 0;
if constexpr(sizeof(T) == 8)
{
if(we == 5)
{ // 57344
ifmax = 0x40EC000000000000ull;
}
else
{
if(is_fnuz)
{ // 240
ifmax = 0x406E000000000000ull;
}
else
{ // 448
ifmax = 0x407C000000000000ull;
}
}
}
else if(sizeof(T) == 4)
{
if(we == 5)
{
ifmax = 0x47600000;
}
else
{
if(is_fnuz)
{
ifmax = 0x43700000;
}
else
{
ifmax = 0x43E00000;
}
}
}
else
{
if(we == 5)
{
ifmax = 0x7B00;
}
else
{
if(is_fnuz)
{
ifmax = 0x5B80;
}
else
{
ifmax = 0x5F00;
}
}
}
// Deal with inf and NaNs
if((x & fInf) == fInf)
{
if(is_fnuz)
return signed_inf;
return mantissa != 0 ? nan : signed_inf;
}
if((x & mask) > ifmax)
{
return signed_inf;
}
if(x == 0)
{
return 0;
}
// First need to check if it is normal or denorm as there is a difference of
// implict 1 Then need to adjust the exponent to align with the F8 exponent,
// in the meanwhile, shift The mantissa. Then for stochastic rounding, add rng
// to mantissa and truncate. And for RNE, no need to add rng. Then probably
// need to check whether there is carry and adjust exponent and mantissa again
// For IEEE bias mode, the bias is 2^(k-1) -1 where k is the width of exponent
// bits
const int f8_bias = (1 << (we - 1)) - 1 + (is_fnuz ? 1 : 0);
const int f8_denormal_act_exponent = 1 - f8_bias; // actual exponent of f8 denormal
// act_exponent is the actual exponent of fp32/fp16 (after subtracting bias)
// f8_exponent is the converted f8 exponent with bias encoding
// exponent_diff is the diff between fp32/fp16 exponent and f8 exponent,
// the difference needs to be adjusted and mantissa shifted
int act_exponent, f8_exponent, exponent_diff;
if(exponent == 0)
{ // fp32/fp16 is in denormal.
/* fp32 denormal is below 2^-127 so it is usually not a concern here, we
mostly concern fp16 here. In this case, f8 is usually in denormal. But there
could be exceptions. fp16 denormal has exponent bias 15 while bf8 with NANOO has
exponent bias 16. It means that there are some numbers in fp16 denormal but they
are bf8 (NANOO) normals - smallest bf8 (NANOO) normal is 2^-15. fp16 numbers
where exponent==0 (actual exponent -14) and highest bit of mantissa is 1 are bf8
(NANOO) normal. In this case, the fp16 mantissa should be shift left by 1 */
act_exponent = exponent - bias + 1;
exponent_diff = f8_denormal_act_exponent -
act_exponent; // actual exponent is exponent-bias+1 as it is denormal
}
else
{ // fp32/fp16 is normal with implicit 1
act_exponent = exponent - bias;
if(act_exponent <= f8_denormal_act_exponent)
{
/* This is the case where fp32/fp16 is normal but it is in f8 denormal
range. For example fp8 nanoo mode, denormal exponent is -7, but if the fp32/fp16
actual exponent is -7, it is actually larger due to the implict 1,
Therefore it needs to be adjust to -6 and mantissa shift right by 1.
So for fp32/fp16, exponent -8 is the cut point to convert to fp8 nanoo */
exponent_diff = f8_denormal_act_exponent - act_exponent;
}
else
{ // both fp32/fp16 and f8 are in normal range
exponent_diff = 0; // exponent_diff=0 does not mean there is no difference
// for this case, act_exponent could be larger. Just
// that it does not need shift mantissa
}
mantissa += (1ull << mfmt); // Add the implicit 1 into mantissa
}
bool midpoint = (mantissa & ((1ull << (mfmt - wm + exponent_diff)) - 1)) ==
(1ull << (mfmt - wm + exponent_diff - 1));
/* This part is a bit tricky. The judgment of whether it is a tie needs to be
done before we shift right as shift right could rip off some residual part and
make something not midpoint look like midpoint. For example, the fp16 number
0x1002 (0 00100 0000000010), it is larger than midpoint, but after shift right
by 4 bits, it would look like midpoint.
*/
if(exponent_diff > 0)
mantissa >>= exponent_diff;
else if(exponent_diff == -1)
mantissa <<= -exponent_diff;
bool implicit_one = mantissa & (1ull << mfmt);
// if there is no implict 1, it means the f8 is denormal and need to adjust
// to denorm exponent
f8_exponent =
(act_exponent + exponent_diff) /*actual f8 exponent*/ + f8_bias - (implicit_one ? 0 : 1);
// Now we have the exponent and mantissa adjusted
unsigned long long drop_mask = (1ull << (mfmt - wm)) - 1;
bool odd =
mantissa & (1ull << (mfmt - wm)); // if the least significant bit that is not truncated is 1
mantissa +=
(stoch ? rng : (midpoint ? (odd ? mantissa : mantissa - 1ull) : mantissa)) & drop_mask;
// Now we deal with overflow
if(f8_exponent == 0)
{
if((1ull << mfmt) & mantissa)
{
f8_exponent = 1; // denormal overflow to become normal, promote exponent
}
}
else
{
if((1ull << (mfmt + 1)) & mantissa)
{
mantissa >>= 1;
f8_exponent++;
}
}
mantissa >>= (mfmt - wm);
// above range: quantize to maximum possible float of the same sign
const int max_exp = (1 << we) - 1;
if(f8_exponent > max_exp)
{
if(clip)
{
mantissa = (1 << wm) - 1;
f8_exponent = max_exp;
}
else
{
return signed_inf;
}
}
if(f8_exponent == 0 && mantissa == 0)
return is_fnuz ? 0 : (sign << 7);
mantissa &= (1 << wm) - 1;
return (sign << 7) | (f8_exponent << wm) | mantissa;
}
// The conversion function is from rocblas
// https://github.com/ROCm/rocBLAS/blob/9b7f692abe3c54b88d1e77e045a7db7f1f188b69/library/include/internal/rocblas_hip_f8_impl.h#L220
// This has been modified to handle double types as well
template <typename T, bool is_fnuz>
__host__ __device__ static inline T cast_from_f8(fp8_storage_t x, int wm, int we, bool clip = false)
{
// TODO: synchronize with f8_utils.hpp implementation for FNUZ
constexpr bool is_half = __hip_internal::is_same<T, _Float16>::value;
constexpr bool is_float = __hip_internal::is_same<T, float>::value;
constexpr bool is_double = __hip_internal::is_same<T, double>::value;
static_assert(is_half || is_float || is_double, "only half, float and double are supported");
constexpr int weo = is_half ? 5 : (is_float ? 8 : 11);
constexpr int wmo = is_half ? 10 : (is_float ? 23 : 52);
T fInf, fNegInf, fNaN, fNeg0, fmax, fmin;
if constexpr(is_half)
{
const unsigned short int ihInf = 0x7C00;
const unsigned short int ihNegInf = 0xFC00;
const unsigned short int ihNaN = 0x7C01;
const unsigned short int ihNeg0 = 0x8000;
/* Max number in e5m2 57344*/
const unsigned short int ifmax = 0x7B00;
const unsigned short int ifmin = 0xFB00;
fInf = bit_cast<_Float16>(ihInf);
fNegInf = bit_cast<_Float16>(ihNegInf);
fNaN = bit_cast<_Float16>(ihNaN);
fNeg0 = bit_cast<_Float16>(ihNeg0);
fmax = bit_cast<_Float16>(ifmax);
fmin = bit_cast<_Float16>(ifmin);
}
else if(is_float)
{
const unsigned int ifInf = 0x7F800000;
const unsigned int ifNegInf = 0xFF800000;
const unsigned int ifNaN = 0x7F800001;
const unsigned int ifNeg0 = 0x80000000;
/* Max number in e5m2 57344*/
const unsigned int ifmax = 0x47600000;
const unsigned int ifmin = 0xC7600000;
fInf = bit_cast<float>(ifInf);
fNegInf = bit_cast<float>(ifNegInf);
fNaN = bit_cast<float>(ifNaN);
fNeg0 = bit_cast<float>(ifNeg0);
fmax = bit_cast<float>(ifmax);
fmin = bit_cast<float>(ifmin);
}
else if(is_double)
{
const unsigned long long ifInf = 0x7FF0000000000000ull;
const unsigned long long ifNegInf = 0xFFF0000000000000ull;
const unsigned long long ifNaN = 0x7FF0000000000001ull;
const unsigned long long ifNeg0 = 0x8000000000000000ull;
/* Max number in e5m2 57344*/
const unsigned long long ifmax = 0x40EC000000000000ull;
const unsigned long long ifmin = 0xC0EC000000000000ull;
fInf = bit_cast<double>(ifInf);
fNegInf = bit_cast<double>(ifNegInf);
fNaN = bit_cast<double>(ifNaN);
fNeg0 = bit_cast<double>(ifNeg0);
fmax = bit_cast<double>(ifmax);
fmin = bit_cast<double>(ifmin);
}
if(x == 0)
{
return 0;
}
unsigned long long sign = x >> 7;
unsigned long long mantissa = x & ((1 << wm) - 1);
int exponent = (x & 0x7F) >> wm;
if constexpr(is_fnuz)
{
if(x == 0x80)
{
return fNaN;
}
}
else
{
if(x == 0x80)
{
return fNeg0;
}
if(we == 4)
{ // e4m3
if((x & 0x7F) == 0x7F)
{
return fNaN;
}
}
else if((x & 0x7C) == 0x7C)
{ // e5m2
if((x & 0x3) == 0)
{
if(clip)
{
return sign ? fmin : fmax;
}
return sign ? fNegInf : fInf;
}
return fNaN;
}
}
typename __hip_internal::conditional<
sizeof(T) == 2,
unsigned short int,
typename __hip_internal::conditional<sizeof(T) == 4, unsigned int, unsigned long long>::
type>::type retval;
if(we == 5 && is_half && !is_fnuz)
{
retval = x << 8;
return bit_cast<T>(retval);
}
const int exp_low_cutoff = (1 << (weo - 1)) - (1 << (we - 1)) + 1 - (is_fnuz ? 1 : 0);
// subnormal input
if(exponent == 0)
{
#if defined(__HIP_DEVICE_COMPILE__) && __HIP_DEVICE_COMPILE__
// guaranteed mantissa!=0 since cases 0x0 and 0x80 are handled above
int sh = 1 + __clz(mantissa) - (32 - wm);
#else
int sh = 1 + __builtin_clz(mantissa) - (32 - wm);
#endif
mantissa <<= sh;
exponent += 1 - sh;
mantissa &= ((1ull << wm) - 1);
}
exponent += exp_low_cutoff - 1;
mantissa <<= wmo - wm;
// subnormal output (occurs when T=half, we=5, negative_zero_nan=true)
if(exponent <= 0)
{
mantissa |= 1 << wmo;
mantissa >>= 1 - exponent;
exponent = 0;
}
if constexpr(sizeof(T) == 2)
retval = (sign << 15) | (exponent << 10) | mantissa;
else if(sizeof(T) == 4)
retval = (sign << 31) | (exponent << 23) | mantissa;
else
retval = (sign << 63) | (static_cast<unsigned long long>(exponent) << 52) | mantissa;
return bit_cast<T>(retval);
}
#if CK_FP8_CVT_FAST_PATH
static __device__ float cast_to_f32_from_f8(fp8_storage_t v, uint32_t interpret)
{
union
{
unsigned int i32val;
unsigned char i8val[4];
} val;
val.i8val[0] = v;
float fval = (interpret == internal::CK_E4M3_FNUZ) || (interpret == internal::CK_E4M3_OCP)
? __builtin_amdgcn_cvt_f32_fp8(val.i32val, 0)
: __builtin_amdgcn_cvt_f32_bf8(val.i32val, 0);
return fval;
}
// The conversion function is from rocblas
// https://github.com/ROCm/rocBLAS/blob/9b7f692abe3c54b88d1e77e045a7db7f1f188b69/library/include/internal/rocblas_float8.h#L79
template <bool stochastic_rounding = false>
static __device__ fp8_storage_t
cast_to_f8_from_f32(float v, bool saturate, ck_fp8_interpretation_t interpret, unsigned int rng = 0)
{
fp8_storage_t i8data;
union
{
float fval;
unsigned int i32val;
unsigned char i8val[4]; // NOTE: not endian independent
} val;
unsigned int ival = 0;
val.fval = v;
if(saturate)
{
if(interpret == CK_E4M3_FNUZ)
{
if((val.i32val & 0x7F800000) != 0x7F800000)
{ /// propagate NAN/INF, no clipping
val.fval = __builtin_amdgcn_fmed3f(val.fval, 240.0, -240.0);
}
}
else if(interpret == CK_E4M3_OCP)
{ // OCP type
if((val.i32val & 0x7F800000) != 0x7F800000)
{ /// propagate NAN/INF, no clipping
val.fval = __builtin_amdgcn_fmed3f(val.fval, 448.0, -448.0);
}
}
else
{
if((val.i32val & 0x7F800000) != 0x7F800000)
{ /// propagate NAN/INF, no clipping
val.fval = __builtin_amdgcn_fmed3f(val.fval, 57344.0, -57344.0);
}
}
}
if(stochastic_rounding)
{
ival = (interpret == CK_E4M3_FNUZ) || (interpret == CK_E4M3_OCP)
? __builtin_amdgcn_cvt_sr_fp8_f32(val.fval, rng, ival, 0)
: __builtin_amdgcn_cvt_sr_bf8_f32(val.fval, rng, ival, 0); // 0 pos
val.i32val = ival;
i8data = val.i8val[0]; // little endian
}
else
{ // RNE CVT
ival = (interpret == CK_E4M3_FNUZ) || (interpret == CK_E4M3_OCP)
? __builtin_amdgcn_cvt_pk_fp8_f32(val.fval, val.fval, ival, false)
: __builtin_amdgcn_cvt_pk_bf8_f32(val.fval,
val.fval,
ival,
false); // false -> WORD0
val.i32val = ival;
i8data = val.i8val[0];
}
return i8data;
}
#endif // CK_FP8_CVT_FAST_PATH
/**
* \brief convert float to @p fp8_storage_t
*
* \tparam sat saturation of fp8
* \param f float number
* \param interp interpretation of fp8
* \return fp8_storage_t
*/
template <ck_saturation_t sat = CK_SATFINITE>
#if CK_FP8_CVT_FAST_PATH
__host__ __device__ static inline fp8_storage_t
cvt_float_to_fp8(const float f, const ck_fp8_interpretation_t interp)
{
internal::__is_interpret_supported(interp);
return internal::cast_to_f8_from_f32<false>(f, sat == CK_SATFINITE, interp);
#else
#if CK_USE_OCP_FP8
__host__ __device__ static inline fp8_storage_t
cvt_float_to_fp8(const float f, const ck_fp8_interpretation_t interp)
{
#else
__host__ static inline fp8_storage_t cvt_float_to_fp8(const float f,
const ck_fp8_interpretation_t interp)
{
#endif
if(interp == CK_E4M3_FNUZ)
{
return internal::cast_to_f8<float, 3, 4, true, sat == CK_SATFINITE>(f);
}
else if(interp == CK_E5M2_FNUZ)
{
return internal::cast_to_f8<float, 2, 5, true, sat == CK_SATFINITE>(f);
}
else if(interp == CK_E4M3_OCP)
{
return internal::cast_to_f8<float, 3, 4, false, sat == CK_SATFINITE>(f);
}
else if(interp == CK_E5M2_OCP)
{
return internal::cast_to_f8<float, 2, 5, false, sat == CK_SATFINITE>(f);
}
else
{
__hip_assert(false && "FP8 type is not supported by current target device");
return 0;
}
#endif // CK_FP8_CVT_FAST_PATH
}
/* For fp8 fnuz types, finite and NaN values are supported. Zero is unsigned.
Inf are not supported. This gives us one additional number to represent.
NaN are represented by 1-0000-000 or 1-00000-00 */
template <
typename T,
std::enable_if_t<std::is_same_v<T, bf8_fnuz_t> || std::is_same_v<T, f8_fnuz_t>, bool> = true>
__host__ __device__ inline constexpr bool fnuz_fp8_is_nan(T a)
{
return static_cast<unsigned char>(a) == 0x80;
}
__host__ __device__ static inline constexpr bool fnuz_f8_is_nan(f8_fnuz_t a)
{
return static_cast<unsigned char>(a) == 0x80;
}
__host__ __device__ static inline constexpr bool fnuz_bf8_is_nan(bf8_fnuz_t a)
{
return static_cast<unsigned char>(a) == 0x80;
}
__host__ __device__ static inline constexpr bool ocp_f8_is_nan(fp8_storage_t a)
{
return (a & 0x7f) == 0x7f;
}
__host__ __device__ static inline constexpr bool ocp_bf8_is_nan(fp8_storage_t a)
{
return (a & 0x7f) > 0x7c;
}
} // namespace internal
struct f8_ocp_t
{
using data_type = fp8_storage_t;
data_type data;
constexpr static internal::ck_saturation_t default_saturation = internal::CK_SATFINITE;
constexpr static internal::ck_fp8_interpretation_t default_interpret = internal::CK_E4M3_OCP;
constexpr static unsigned int we = 4; // exponent width
constexpr static unsigned int wm = 3; // mantissa width
__host__ __device__ constexpr bool operator==(const f8_ocp_t& other) const
{
return (data == other.data) && (internal::ocp_f8_is_nan(data) == false); // NaN != NaN
}
#if CK_USE_OCP_FP8
__host__ __device__ explicit operator float() const {
#else
__host__ explicit operator float() const
{
#endif
#if CK_FP8_CVT_FAST_PATH
return internal::cast_to_f32_from_f8(this->data, default_interpret);
#else
return internal::cast_from_f8<float, false>(this->data, wm, we);
#endif
}
}; // namespace ck
struct bf8_ocp_t
{
using type = __hip_fp8_storage_t;
type data;
using data_type = fp8_storage_t;
data_type data;
};
namespace internal {
template <typename T,
std::enable_if_t<std::is_same_v<T, bf8_ocp_t> || std::is_same_v<T, f8_ocp_t> ||
std::is_same_v<T, bf8_fnuz_t> || std::is_same_v<T, f8_fnuz_t>,
bool> = true>
__host__ __device__ static inline constexpr bool fp8_is_inf(T)
{
return false;
}
template <>
__host__ __device__ inline constexpr bool fp8_is_inf(bf8_ocp_t a)
{
return (a.data & 0x7f) == 0x7c;
}
} // namespace internal
// Declare a template function for fp8 conversion using RNE
template <typename Y, typename X>
__host__ __device__ constexpr Y f8_convert_rne(X x);
// convert fp32 to fp8 with rounding to nearest even
template <>
inline __host__ __device__ f8_ocp_t f8_convert_rne<f8_ocp_t, float>(float x)
{
return f8_ocp_t{
internal::cvt_float_to_fp8<f8_ocp_t::default_saturation>(x, f8_ocp_t::default_interpret)};
}
#if CK_USE_OCP_FP8
using f8_t = f8_ocp_t;
using bf8_t = bf8_ocp_t;
#define CK_FP8_TYPE_FNUZ 0
#define CK_FP8_TYPE_OCP 1
#else
using f8_t = f8_fnuz_t;
using f8_t = f8_fnuz_t;
using bf8_t = bf8_fnuz_t;
#define CK_FP8_TYPE_FNUZ 1
#define CK_FP8_TYPE_OCP 0
#endif
inline constexpr auto next_pow2(uint32_t x)
{
// Precondition: x > 1.
return x > 1u ? (1u << (32u - __builtin_clz(x - 1u))) : x;
}
// native types: double, float, _Float16, ushort, int32_t, int8_t, uint8_t, f8_fnuz_t, bf8_fnuz_t,
// native types: bool
template <typename T>
inline constexpr bool is_native_type()
{
return is_same<T, double>::value || is_same<T, float>::value || is_same<T, half_t>::value ||
is_same<T, bhalf_t>::value || is_same<T, int32_t>::value || is_same<T, int8_t>::value ||
is_same<T, uint8_t>::value || is_same<T, f8_fnuz_t>::value ||
is_same<T, bf8_fnuz_t>::value || is_same<T, bool>::value;
}
// vector_type
template <typename T, index_t N>
template <typename T, index_t N, typename Enable = void>
struct vector_type;
// Caution: DO NOT REMOVE
......@@ -201,19 +916,19 @@ struct scalar_type<bf8_fnuz_t>
static constexpr index_t vector_size = 1;
};
// template <>
// struct scalar_type<f8_ocp_t>
// {
// using type = f8_ocp_t;
// static constexpr index_t vector_size = 1;
// };
template <>
struct scalar_type<f8_ocp_t>
{
using type = f8_ocp_t::data_type;
static constexpr index_t vector_size = 1;
};
// template <>
// struct scalar_type<bf8_ocp_t>
// {
// using type = bf8_ocp_t;
// static constexpr index_t vector_size = 1;
// };
template <>
struct scalar_type<bf8_ocp_t>
{
using type = bf8_ocp_t::data_type;
static constexpr index_t vector_size = 1;
};
template <>
struct scalar_type<bool>
......@@ -223,7 +938,7 @@ struct scalar_type<bool>
};
template <typename T>
struct vector_type<T, 1>
struct vector_type<T, 1, typename std::enable_if_t<is_native_type<T>()>>
{
using d1_t = T;
using type = d1_t;
......@@ -241,7 +956,8 @@ struct vector_type<T, 1>
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value, "wrong!");
static_assert(is_same<X, d1_t>::value,
"Something went wrong, please check src and dst types.");
return data_.d1x1_;
}
......@@ -249,7 +965,8 @@ struct vector_type<T, 1>
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value, "wrong!");
static_assert(is_same<X, d1_t>::value,
"Something went wrong, please check src and dst types.");
return data_.d1x1_;
}
......@@ -257,7 +974,7 @@ struct vector_type<T, 1>
__device__ int static err = 0;
template <typename T>
struct vector_type<T, 2>
struct vector_type<T, 2, typename std::enable_if_t<is_native_type<T>()>>
{
using d1_t = T;
typedef T d2_t __attribute__((ext_vector_type(2)));
......@@ -278,7 +995,8 @@ struct vector_type<T, 2>
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value, "wrong!");
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -297,7 +1015,8 @@ struct vector_type<T, 2>
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value, "wrong!");
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -315,7 +1034,7 @@ struct vector_type<T, 2>
};
template <typename T>
struct vector_type<T, 4>
struct vector_type<T, 4, typename std::enable_if_t<is_native_type<T>()>>
{
using d1_t = T;
typedef T d2_t __attribute__((ext_vector_type(2)));
......@@ -339,7 +1058,7 @@ struct vector_type<T, 4>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value || is_same<X, d4_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -363,7 +1082,7 @@ struct vector_type<T, 4>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value || is_same<X, d4_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -385,7 +1104,7 @@ struct vector_type<T, 4>
};
template <typename T>
struct vector_type<T, 8>
struct vector_type<T, 8, typename std::enable_if_t<is_native_type<T>()>>
{
using d1_t = T;
typedef T d2_t __attribute__((ext_vector_type(2)));
......@@ -412,7 +1131,7 @@ struct vector_type<T, 8>
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -441,7 +1160,7 @@ struct vector_type<T, 8>
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -467,7 +1186,7 @@ struct vector_type<T, 8>
};
template <typename T>
struct vector_type<T, 16>
struct vector_type<T, 16, typename std::enable_if_t<is_native_type<T>()>>
{
using d1_t = T;
typedef T d2_t __attribute__((ext_vector_type(2)));
......@@ -497,7 +1216,7 @@ struct vector_type<T, 16>
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -531,7 +1250,7 @@ struct vector_type<T, 16>
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -561,7 +1280,7 @@ struct vector_type<T, 16>
};
template <typename T>
struct vector_type<T, 32>
struct vector_type<T, 32, typename std::enable_if_t<is_native_type<T>()>>
{
using d1_t = T;
typedef T d2_t __attribute__((ext_vector_type(2)));
......@@ -593,7 +1312,7 @@ struct vector_type<T, 32>
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value || is_same<X, d32_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -631,7 +1350,7 @@ struct vector_type<T, 32>
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value || is_same<X, d32_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -665,7 +1384,7 @@ struct vector_type<T, 32>
};
template <typename T>
struct vector_type<T, 64>
struct vector_type<T, 64, typename std::enable_if_t<is_native_type<T>()>>
{
using d1_t = T;
typedef T d2_t __attribute__((ext_vector_type(2)));
......@@ -700,7 +1419,7 @@ struct vector_type<T, 64>
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value || is_same<X, d32_t>::value ||
is_same<X, d64_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -743,7 +1462,7 @@ struct vector_type<T, 64>
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value || is_same<X, d32_t>::value ||
is_same<X, d64_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -781,7 +1500,7 @@ struct vector_type<T, 64>
};
template <typename T>
struct vector_type<T, 128>
struct vector_type<T, 128, typename std::enable_if_t<is_native_type<T>()>>
{
using d1_t = T;
typedef T d2_t __attribute__((ext_vector_type(2)));
......@@ -818,7 +1537,7 @@ struct vector_type<T, 128>
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value || is_same<X, d32_t>::value ||
is_same<X, d64_t>::value || is_same<X, d128_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -865,7 +1584,7 @@ struct vector_type<T, 128>
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value || is_same<X, d32_t>::value ||
is_same<X, d64_t>::value || is_same<X, d128_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -907,7 +1626,7 @@ struct vector_type<T, 128>
};
template <typename T>
struct vector_type<T, 256>
struct vector_type<T, 256, typename std::enable_if_t<is_native_type<T>()>>
{
using d1_t = T;
typedef T d2_t __attribute__((ext_vector_type(2)));
......@@ -946,7 +1665,7 @@ struct vector_type<T, 256>
is_same<X, d1_t>::value || is_same<X, d2_t>::value || is_same<X, d4_t>::value ||
is_same<X, d8_t>::value || is_same<X, d16_t>::value || is_same<X, d32_t>::value ||
is_same<X, d64_t>::value || is_same<X, d128_t>::value || is_same<X, d256_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -997,7 +1716,7 @@ struct vector_type<T, 256>
is_same<X, d1_t>::value || is_same<X, d2_t>::value || is_same<X, d4_t>::value ||
is_same<X, d8_t>::value || is_same<X, d16_t>::value || is_same<X, d32_t>::value ||
is_same<X, d64_t>::value || is_same<X, d128_t>::value || is_same<X, d256_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -1042,6 +1761,579 @@ struct vector_type<T, 256>
}
};
template <typename T, index_t N>
struct non_native_vector_base
{
using type = non_native_vector_base<T, N>;
__host__ __device__ non_native_vector_base() = default;
typedef char data_v __attribute__((ext_vector_type(sizeof(T) * N)));
data_v d;
};
// non-native vector_type implementation
template <typename T>
struct vector_type<T, 1, typename std::enable_if_t<!is_native_type<T>()>>
{
using d1_t = T;
using type = d1_t;
union alignas(next_pow2(1 * sizeof(T)))
{
d1_t d1_;
StaticallyIndexedArray<d1_t, 1> d1x1_;
} data_;
__host__ __device__ constexpr vector_type() : data_{type{}} {}
__host__ __device__ constexpr vector_type(type v) : data_{v} {}
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value,
"Something went wrong, please check src and dst types.");
return data_.d1x1_;
}
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value,
"Something went wrong, please check src and dst types.");
return data_.d1x1_;
}
};
template <typename T>
struct vector_type<T, 2, typename std::enable_if_t<!is_native_type<T>()>>
{
using d1_t = T;
using d2_t = non_native_vector_base<T, 2>;
using type = d2_t;
union alignas(next_pow2(2 * sizeof(T)))
{
d2_t d2_;
StaticallyIndexedArray<d1_t, 2> d1x2_;
StaticallyIndexedArray<d2_t, 1> d2x1_;
} data_;
__host__ __device__ constexpr vector_type() : data_{type{}} {}
__host__ __device__ constexpr vector_type(type v) : data_{v} {}
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x2_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x1_;
}
else
{
return err;
}
}
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x2_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x1_;
}
else
{
return err;
}
}
};
template <typename T>
struct vector_type<T, 4, typename std::enable_if_t<!is_native_type<T>()>>
{
using d1_t = T;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
using type = d4_t;
union alignas(next_pow2(4 * sizeof(T)))
{
d4_t d4_;
StaticallyIndexedArray<d1_t, 4> d1x4_;
StaticallyIndexedArray<d2_t, 2> d2x2_;
StaticallyIndexedArray<d4_t, 1> d4x1_;
} data_;
__host__ __device__ constexpr vector_type() : data_{type{}} {}
__host__ __device__ constexpr vector_type(type v) : data_{v} {}
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value || is_same<X, d4_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x4_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x2_;
}
else if constexpr(is_same<X, d4_t>::value)
{
return data_.d4x1_;
}
else
{
return err;
}
}
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value || is_same<X, d4_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x4_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x2_;
}
else if constexpr(is_same<X, d4_t>::value)
{
return data_.d4x1_;
}
else
{
return err;
}
}
};
template <typename T>
struct vector_type<T, 8, typename std::enable_if_t<!is_native_type<T>()>>
{
using d1_t = T;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
using d8_t = non_native_vector_base<T, 8>;
using type = d8_t;
union alignas(next_pow2(8 * sizeof(T)))
{
d8_t d8_;
StaticallyIndexedArray<d1_t, 8> d1x8_;
StaticallyIndexedArray<d2_t, 4> d2x4_;
StaticallyIndexedArray<d4_t, 2> d4x2_;
StaticallyIndexedArray<d8_t, 1> d8x1_;
} data_;
__host__ __device__ constexpr vector_type() : data_{type{}} {}
__host__ __device__ constexpr vector_type(type v) : data_{v} {}
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x8_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x4_;
}
else if constexpr(is_same<X, d4_t>::value)
{
return data_.d4x2_;
}
else if constexpr(is_same<X, d8_t>::value)
{
return data_.d8x1_;
}
else
{
return err;
}
}
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x8_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x4_;
}
else if constexpr(is_same<X, d4_t>::value)
{
return data_.d4x2_;
}
else if constexpr(is_same<X, d8_t>::value)
{
return data_.d8x1_;
}
else
{
return err;
}
}
};
template <typename T>
struct vector_type<T, 16, typename std::enable_if_t<!is_native_type<T>()>>
{
using d1_t = T;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
using d8_t = non_native_vector_base<T, 8>;
using d16_t = non_native_vector_base<T, 16>;
using type = d16_t;
union alignas(next_pow2(16 * sizeof(T)))
{
d16_t d16_;
StaticallyIndexedArray<d1_t, 16> d1x16_;
StaticallyIndexedArray<d2_t, 8> d2x8_;
StaticallyIndexedArray<d4_t, 4> d4x4_;
StaticallyIndexedArray<d8_t, 2> d8x2_;
StaticallyIndexedArray<d16_t, 1> d16x1_;
} data_;
__host__ __device__ constexpr vector_type() : data_{type{}} {}
__host__ __device__ constexpr vector_type(type v) : data_{v} {}
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x16_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x8_;
}
else if constexpr(is_same<X, d4_t>::value)
{
return data_.d4x4_;
}
else if constexpr(is_same<X, d8_t>::value)
{
return data_.d8x2_;
}
else if constexpr(is_same<X, d16_t>::value)
{
return data_.d16x1_;
}
else
{
return err;
}
}
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x16_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x8_;
}
else if constexpr(is_same<X, d4_t>::value)
{
return data_.d4x4_;
}
else if constexpr(is_same<X, d8_t>::value)
{
return data_.d8x2_;
}
else if constexpr(is_same<X, d16_t>::value)
{
return data_.d16x1_;
}
else
{
return err;
}
}
};
template <typename T>
struct vector_type<T, 32, typename std::enable_if_t<!is_native_type<T>()>>
{
using d1_t = T;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
using d8_t = non_native_vector_base<T, 8>;
using d16_t = non_native_vector_base<T, 16>;
using d32_t = non_native_vector_base<T, 32>;
using type = d32_t;
union alignas(next_pow2(32 * sizeof(T)))
{
d32_t d32_;
StaticallyIndexedArray<d1_t, 32> d1x32_;
StaticallyIndexedArray<d2_t, 16> d2x16_;
StaticallyIndexedArray<d4_t, 8> d4x8_;
StaticallyIndexedArray<d8_t, 4> d8x4_;
StaticallyIndexedArray<d16_t, 2> d16x2_;
StaticallyIndexedArray<d32_t, 1> d32x1_;
} data_;
__host__ __device__ constexpr vector_type() : data_{type{}} {}
__host__ __device__ constexpr vector_type(type v) : data_{v} {}
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value || is_same<X, d32_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x32_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x16_;
}
else if constexpr(is_same<X, d4_t>::value)
{
return data_.d4x8_;
}
else if constexpr(is_same<X, d8_t>::value)
{
return data_.d8x4_;
}
else if constexpr(is_same<X, d16_t>::value)
{
return data_.d16x2_;
}
else if constexpr(is_same<X, d32_t>::value)
{
return data_.d32x1_;
}
else
{
return err;
}
}
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value || is_same<X, d32_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x32_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x16_;
}
else if constexpr(is_same<X, d4_t>::value)
{
return data_.d4x8_;
}
else if constexpr(is_same<X, d8_t>::value)
{
return data_.d8x4_;
}
else if constexpr(is_same<X, d16_t>::value)
{
return data_.d16x2_;
}
else if constexpr(is_same<X, d32_t>::value)
{
return data_.d32x1_;
}
else
{
return err;
}
}
};
template <typename T>
struct vector_type<T, 64, typename std::enable_if_t<!is_native_type<T>()>>
{
using d1_t = T;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
using d8_t = non_native_vector_base<T, 8>;
using d16_t = non_native_vector_base<T, 16>;
using d32_t = non_native_vector_base<T, 32>;
using d64_t = non_native_vector_base<T, 64>;
using type = d64_t;
union alignas(next_pow2(64 * sizeof(T)))
{
d64_t d64_;
StaticallyIndexedArray<d1_t, 64> d1x64_;
StaticallyIndexedArray<d2_t, 32> d2x32_;
StaticallyIndexedArray<d4_t, 16> d4x16_;
StaticallyIndexedArray<d8_t, 8> d8x8_;
StaticallyIndexedArray<d16_t, 4> d16x4_;
StaticallyIndexedArray<d32_t, 2> d32x2_;
StaticallyIndexedArray<d64_t, 1> d64x1_;
} data_;
__host__ __device__ constexpr vector_type() : data_{type{}} {}
__host__ __device__ constexpr vector_type(type v) : data_{v} {}
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value || is_same<X, d32_t>::value ||
is_same<X, d64_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x64_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x32_;
}
else if constexpr(is_same<X, d4_t>::value)
{
return data_.d4x16_;
}
else if constexpr(is_same<X, d8_t>::value)
{
return data_.d8x8_;
}
else if constexpr(is_same<X, d16_t>::value)
{
return data_.d16x4_;
}
else if constexpr(is_same<X, d32_t>::value)
{
return data_.d32x2_;
}
else if constexpr(is_same<X, d64_t>::value)
{
return data_.d64x1_;
}
else
{
return err;
}
}
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value || is_same<X, d32_t>::value ||
is_same<X, d64_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x64_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x32_;
}
else if constexpr(is_same<X, d4_t>::value)
{
return data_.d4x16_;
}
else if constexpr(is_same<X, d8_t>::value)
{
return data_.d8x8_;
}
else if constexpr(is_same<X, d16_t>::value)
{
return data_.d16x4_;
}
else if constexpr(is_same<X, d32_t>::value)
{
return data_.d32x2_;
}
else if constexpr(is_same<X, d64_t>::value)
{
return data_.d64x1_;
}
else
{
return err;
}
}
};
using int64_t = long;
// fp64
......@@ -1105,20 +2397,20 @@ using bf8x32_fnuz_t = typename vector_type<bf8_fnuz_t, 32>::type;
using bf8x64_fnuz_t = typename vector_type<bf8_fnuz_t, 64>::type;
// f8
using f8x2_ocp_t = typename vector_type<f8_ocp_t::type, 2>::type;
using f8x4_ocp_t = typename vector_type<f8_ocp_t::type, 4>::type;
using f8x8_ocp_t = typename vector_type<f8_ocp_t::type, 8>::type;
using f8x16_ocp_t = typename vector_type<f8_ocp_t::type, 16>::type;
using f8x32_ocp_t = typename vector_type<f8_ocp_t::type, 32>::type;
using f8x64_ocp_t = typename vector_type<f8_ocp_t::type, 64>::type;
using f8x2_ocp_t = typename vector_type<f8_ocp_t, 2>::type;
using f8x4_ocp_t = typename vector_type<f8_ocp_t, 4>::type;
using f8x8_ocp_t = typename vector_type<f8_ocp_t, 8>::type;
using f8x16_ocp_t = typename vector_type<f8_ocp_t, 16>::type;
using f8x32_ocp_t = typename vector_type<f8_ocp_t, 32>::type;
using f8x64_ocp_t = typename vector_type<f8_ocp_t, 64>::type;
// bf8
using bf8x2_ocp_t = typename vector_type<bf8_ocp_t::type, 2>::type;
using bf8x4_ocp_t = typename vector_type<bf8_ocp_t::type, 4>::type;
using bf8x8_ocp_t = typename vector_type<bf8_ocp_t::type, 8>::type;
using bf8x16_ocp_t = typename vector_type<bf8_ocp_t::type, 16>::type;
using bf8x32_ocp_t = typename vector_type<bf8_ocp_t::type, 32>::type;
using bf8x64_ocp_t = typename vector_type<bf8_ocp_t::type, 64>::type;
using bf8x2_ocp_t = typename vector_type<bf8_ocp_t, 2>::type;
using bf8x4_ocp_t = typename vector_type<bf8_ocp_t, 4>::type;
using bf8x8_ocp_t = typename vector_type<bf8_ocp_t, 8>::type;
using bf8x16_ocp_t = typename vector_type<bf8_ocp_t, 16>::type;
using bf8x32_ocp_t = typename vector_type<bf8_ocp_t, 32>::type;
using bf8x64_ocp_t = typename vector_type<bf8_ocp_t, 64>::type;
#if CK_FP8_TYPE_OCP
// f8
......@@ -1138,17 +2430,17 @@ using bf8x32_t = bf8x32_ocp_t;
using bf8x64_t = bf8x64_ocp_t;
#elif CK_FP8_TYPE_FNUZ
// f8
using f8x2_t = f8x2_fnuz_t;
using f8x4_t = f8x4_fnuz_t;
using f8x8_t = f8x8_fnuz_t;
using f8x2_t = f8x2_fnuz_t;
using f8x4_t = f8x4_fnuz_t;
using f8x8_t = f8x8_fnuz_t;
using f8x16_t = f8x16_fnuz_t;
using f8x32_t = f8x32_fnuz_t;
using f8x64_t = f8x64_fnuz_t;
// bf8
using bf8x2_t = bf8x2_fnuz_t;
using bf8x4_t = bf8x4_fnuz_t;
using bf8x8_t = bf8x8_fnuz_t;
using bf8x2_t = bf8x2_fnuz_t;
using bf8x4_t = bf8x4_fnuz_t;
using bf8x8_t = bf8x8_fnuz_t;
using bf8x16_t = bf8x16_fnuz_t;
using bf8x32_t = bf8x32_fnuz_t;
using bf8x64_t = bf8x64_fnuz_t;
......
......@@ -100,6 +100,12 @@ inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, int8_t>(int8_
return type_convert<bhalf_t>(x_fp32);
}
template <>
inline __host__ __device__ constexpr f8_ocp_t type_convert<f8_ocp_t, int>(int x)
{
return f8_ocp_t{type_convert<f8_ocp_t::data_type>(x)};
}
// Convert X to Y
template <typename Y, typename X>
__host__ __device__ constexpr Y type_convert_sp(X x)
......@@ -409,7 +415,7 @@ inline __host__ __device__ float type_convert<float, f8_fnuz_t>(f8_fnuz_t x)
}
template <>
inline __host__ __device__ float2_t type_convert<float2_t, f8x2_t>(f8x2_t x)
inline __host__ __device__ float2_t type_convert<float2_t, f8x2_fnuz_t>(f8x2_fnuz_t x)
{
#if defined(__gfx94__)
const auto i16val = bit_cast<uint16_t>(x);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "ck/utility/data_type.hpp"
#include "ck/utility/type_convert.hpp"
using ck::bf8_ocp_t;
using ck::f8_convert_rne;
using ck::f8_convert_sr;
using ck::half_t;
using ck::type_convert;
TEST(BF8OCP, NumericLimits) {}
TEST(BF8OCP, ConvertFP32Nearest) {}
TEST(BF8OCP, ConvertFP32Stochastic) {}
TEST(BF8OCP, ConvertFP16Nearest) {}
TEST(BF8OCP, ConvertFP16Stochastic) {}
......@@ -38,6 +38,11 @@ TEST(FP8FNUZ, ConvertFP32Nearest)
// convert maximal f8_fnuz_t to float and check if equal to fp8 max
ASSERT_NEAR(
max_f8_t_float, type_convert<float>(f8_convert_rne<f8_fnuz_t>(max_f8_t_float)), abs_tol);
// XXX: FNUZ f8_convert_rne behavior is inconsistent.
// Clipping large values to fp8 max (saturation to finite) contradicts converting inf float to
// fp8 qNAN (no saturation).
// convert maximal float to fp8 and back, check if clipped to fp8 max
ASSERT_NEAR(max_f8_t_float,
type_convert<float>(f8_convert_rne<f8_fnuz_t>(std::numeric_limits<float>::max())),
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "ck/utility/data_type.hpp"
#include "ck/utility/type_convert.hpp"
using ck::f8_convert_rne;
using ck::f8_convert_sr;
using ck::f8_ocp_t;
using ck::half_t;
using ck::type_convert;
TEST(FP8OCP, NumericLimits)
{
// constants given for OCP FP8
EXPECT_EQ(ck::NumericLimits<f8_ocp_t>::Min(),
type_convert<f8_ocp_t>(0x08)); // 0b00001000 = 2^-6
EXPECT_EQ(ck::NumericLimits<f8_ocp_t>::Max(), type_convert<f8_ocp_t>(0x7E)); // 0b01111110 = 448
EXPECT_EQ(ck::NumericLimits<f8_ocp_t>::Lowest(),
type_convert<f8_ocp_t>(0xFE)); // 0b11111110 = -448
EXPECT_EQ(ck::NumericLimits<f8_ocp_t>::QuietNaN().data,
type_convert<f8_ocp_t>(0x7F).data); // 0b01111111
EXPECT_FALSE(ck::NumericLimits<f8_ocp_t>::QuietNaN() ==
ck::NumericLimits<f8_ocp_t>::QuietNaN());
}
TEST(FP8OCP, ConvertFP32Nearest)
{
// fix the tolerance value
float abs_tol = 1e-6;
// convert 0 float to fp8 and back, check if holds
ASSERT_NEAR(0.0f, type_convert<float>(f8_convert_rne<f8_ocp_t>(0.0f)), 0.0f);
// convert minimal float to fp8 and back, check if holds
ASSERT_NEAR(std::numeric_limits<float>::min(),
type_convert<float>(f8_convert_rne<f8_ocp_t>(std::numeric_limits<float>::min())),
abs_tol);
const auto max_f8_t_float = type_convert<float>(ck::NumericLimits<f8_ocp_t>::Max());
// convert maximal f8_ocp_t to float and check if equal to fp8 max
ASSERT_NEAR(
max_f8_t_float, type_convert<float>(f8_convert_rne<f8_ocp_t>(max_f8_t_float)), 0.0f);
// convert maximal float to fp8 and back, check if clipped to fp8 max (saturation to finite)
ASSERT_NEAR(max_f8_t_float,
type_convert<float>(f8_convert_rne<f8_ocp_t>(std::numeric_limits<float>::max())),
0.0f);
// convert float infinity to f8_ocp_t and check if it is max value (saturation to finite)
ASSERT_EQ(ck::NumericLimits<f8_ocp_t>::Max(),
f8_convert_rne<f8_ocp_t>(std::numeric_limits<float>::infinity()));
// positive norm float value to fp8 and back, check if holds
float pos_float = 0.017578125f;
ASSERT_NEAR(pos_float, type_convert<float>(f8_convert_rne<f8_ocp_t>(pos_float)), abs_tol);
// smallest normal fp8 value to fp8 and back, check if holds
float neg_float = -0.015625f; //-2^-6
ASSERT_NEAR(neg_float, type_convert<float>(f8_convert_rne<f8_ocp_t>(neg_float)), 0.0f);
// positive subnorm float value to fp8 and back, check if holds
pos_float = 0.00390625f;
ASSERT_NEAR(pos_float, type_convert<float>(f8_convert_rne<f8_ocp_t>(pos_float)), abs_tol);
// min subnorm fp8 value to fp8 and back, check if holds
neg_float = -0.001953125f; //-2^-9
ASSERT_NEAR(neg_float, type_convert<float>(f8_convert_rne<f8_ocp_t>(neg_float)), 0.0f);
// smaller than min subnorm fp8 value to fp8 must be zero
auto less_than_min_subnorm = 0.0009765625f; // 2^-10
ASSERT_EQ(0.0f, type_convert<float>(f8_convert_rne<f8_ocp_t>(less_than_min_subnorm)));
// convert quiet NaN to f8_ocp_t and check if it is quiet NaN
auto f8_nan = f8_convert_rne<f8_ocp_t>(std::numeric_limits<float>::quiet_NaN());
ASSERT_TRUE((f8_nan.data & 0x7f) == 0x7f);
}
TEST(FP8OCP, ConvertFP32Stochastic) {}
TEST(FP8OCP, ConvertFP16Nearest) {}
TEST(FP8OCP, ConvertFP16Stochastic) {}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment