Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
0f444e0c
Commit
0f444e0c
authored
Feb 14, 2025
by
mtgu0705
Browse files
Initial int4 moe, compile pass, function not check.
parent
2d256913
Changes
13
Hide whitespace changes
Inline
Side-by-side
Showing
13 changed files
with
6636 additions
and
2 deletions
+6636
-2
example/01_gemm/gemm_xdl_fp8_pk_i4_bpreshuffle_v3.cpp
example/01_gemm/gemm_xdl_fp8_pk_i4_bpreshuffle_v3.cpp
+1
-1
example/65_gemm_multiply_multiply/CMakeLists.txt
example/65_gemm_multiply_multiply/CMakeLists.txt
+2
-1
example/65_gemm_multiply_multiply/moe_pk_i4_gemm1.cpp
example/65_gemm_multiply_multiply/moe_pk_i4_gemm1.cpp
+431
-0
include/ck/library/utility/host_tensor.hpp
include/ck/library/utility/host_tensor.hpp
+28
-0
include/ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1_mod8.hpp
...pu/block/thread_group_tensor_slice_transfer_v4r1_mod8.hpp
+204
-0
include/ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7r3_scatter.hpp
...block/thread_group_tensor_slice_transfer_v7r3_scatter.hpp
+231
-0
include/ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp
...ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp
+45
-0
include/ck/tensor_operation/gpu/device/impl/device_moe_gemm.hpp
...e/ck/tensor_operation/gpu/device/impl/device_moe_gemm.hpp
+630
-0
include/ck/tensor_operation/gpu/grid/gridwise_moe_gemm_gather.hpp
...ck/tensor_operation/gpu/grid/gridwise_moe_gemm_gather.hpp
+1631
-0
include/ck/tensor_operation/gpu/grid/gridwise_moe_gemm_scatter.hpp
...k/tensor_operation/gpu/grid/gridwise_moe_gemm_scatter.hpp
+1592
-0
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v3r1_gather.hpp
...u/thread/threadwise_tensor_slice_transfer_v3r1_gather.hpp
+909
-0
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v7r3_scatter.hpp
.../thread/threadwise_tensor_slice_transfer_v7r3_scatter.hpp
+716
-0
library/include/ck/library/reference_tensor_operation/cpu/reference_moe_gemm.hpp
...ary/reference_tensor_operation/cpu/reference_moe_gemm.hpp
+216
-0
No files found.
example/01_gemm/gemm_xdl_fp8_pk_i4_bpreshuffle_v3.cpp
View file @
0f444e0c
...
...
@@ -5,7 +5,7 @@
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3_b_preshuffle.hpp"
using
F8
=
ck
::
f8_t
;
using
F8
=
ck
::
f8_t
;
using
I4
=
ck
::
pk_i4_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
...
...
example/65_gemm_multiply_multiply/CMakeLists.txt
View file @
0f444e0c
add_example_executable
(
example_gemm_multiply_multiply_xdl_fp8 gemm_multiply_multiply_xdl_fp8.cpp
)
add_example_executable
(
example_gemm_multiply_multiply_xdl_fp8_ab_scale gemm_multiply_multiply_xdl_fp8_ab_scale.cpp
)
add_example_executable
(
example_gemm_add_add_xdl_fp16 gemm_add_add_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_multiply_multiply_xdl_int8 gemm_multiply_multiply_xdl_int8.cpp
)
\ No newline at end of file
add_example_executable
(
example_gemm_multiply_multiply_xdl_int8 gemm_multiply_multiply_xdl_int8.cpp
)
add_example_executable
(
example_moe_pk_i4_gemm1 moe_pk_i4_gemm1.cpp
)
\ No newline at end of file
example/65_gemm_multiply_multiply/moe_pk_i4_gemm1.cpp
0 → 100644
View file @
0f444e0c
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_moe_gemm.hpp"
// #include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_moe_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
I4
=
ck
::
pk_i4_t
;
using
F16
=
ck
::
half_t
;
// using BF16 = ck::bhalf_t;
using
F8
=
ck
::
f8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
F8
;
using
B0DataType
=
I4
;
using
EDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
F32
;
using
D1DataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
,
D1DataType
>
;
using
A0Layout
=
Row
;
using
B0Layout
=
Col
;
using
ELayout
=
Row
;
using
D0Layout
=
Row
;
using
D1Layout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
,
D1Layout
>
;
// for gate, a_scale, b_scale
struct
MulABScale
{
template
<
typename
E
,
typename
C
,
typename
D0
,
typename
D1
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D0
&
d0
,
const
D1
&
d1
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
EDataType
,
float
,
float
,
float
>
(
EDataType
&
e
,
const
float
&
c
,
const
float
&
d0
,
const
float
&
d1
)
const
{
e
=
ck
::
type_convert
<
EDataType
>
(
c
*
d1
*
d0
);
}
};
// for gate, a_scale, b_scale, fuse silu,
struct
MulABScaleSilu
{
template
<
typename
E
,
typename
C
,
typename
D0
,
typename
D1
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D0
&
d0
,
const
D1
&
d1
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
EDataType
,
float
,
float
>
(
EDataType
&
e
,
const
float
&
c
,
const
float
&
d0
,
const
float
&
d1
)
const
{
// act
float
x0
=
0
;
ck
::
tensor_operation
::
element_wise
::
Silu
{}(
x0
,
c
*
d1
*
d0
);
e
=
ck
::
type_convert
<
EDataType
>
(
x0
);
}
};
// using DsLayout = DsLayoutGate;
// using DsDataType = DsDataTypeGate;
using
CDEElementOp
=
MulABScale
;
// using CDEElementOp = MulABScaleSiluMulGate;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
ck
::
index_t
MPerBlock
=
128
;
static
constexpr
ck
::
index_t
MNPerXDL
=
32
;
static
constexpr
ck
::
index_t
CShuffleMXDLPerWave
=
MPerBlock
/
32
;
static
constexpr
ck
::
index_t
KPerBlock
=
128
/
sizeof
(
A0DataType
);
static
constexpr
ck
::
index_t
MXDLPerWave
=
MPerBlock
/
32
;
//todo fix this constraint
static
constexpr
ck
::
index_t
AK1
=
16
/
sizeof
(
A0DataType
);
static
constexpr
ck
::
index_t
BK1
=
32
/
sizeof
(
B0DataType
);
static
constexpr
ck
::
index_t
EVec
=
16
/
sizeof
(
EDataType
);
static
constexpr
ck
::
index_t
D0Vec
=
1
;
static
constexpr
ck
::
index_t
D1Vec
=
1
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceMoeGemm
<
Row
,
Col
,
DsLayout
,
ELayout
,
A0DataType
,
B0DataType
,
DsDataType
,
EDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
256
,
MPerBlock
,
128
,
KPerBlock
,
AK1
,
BK1
,
MNPerXDL
,
MNPerXDL
,
MXDLPerWave
,
1
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
AK1
,
AK1
,
0
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
BK1
,
BK1
,
0
,
CShuffleMXDLPerWave
,
1
,
S
<
1
,
32
,
1
,
8
>
,
S
<
EVec
,
D0Vec
,
D1Vec
>
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v1
,
true
,
A0DataType
>
;
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// tokens = 1
// topk = 1
// experts = 8
// per expert:
// GEMM shape
ck
::
index_t
N
=
6144
;
ck
::
index_t
K
=
8192
;
ck
::
index_t
experts
=
8
;
ck
::
index_t
sorted_tile_num
=
8
;
ck
::
index_t
sorted_tile_size
=
MPerBlock
;
ck
::
index_t
SORTED_SIZE
=
sorted_tile_num
*
sorted_tile_size
;
ck
::
index_t
tokens
=
128
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
6
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
N
=
std
::
stoi
(
argv
[
4
]);
K
=
std
::
stoi
(
argv
[
5
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 5: N, K
\n
"
);
exit
(
0
);
}
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
K
;
ck
::
index_t
StrideE
=
N
;
ck
::
index_t
batch_stride_B
=
K
*
N
;
constexpr
ck
::
index_t
NumDTensor
=
DsDataType
::
Size
();
constexpr
auto
StrideDs
=
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
0
,
0
};
ck
::
index_t
KBatch
=
1
;
// const ck::index_t experts = 8;
Tensor
<
ck
::
index_t
>
expert_ids
(
HostTensorDescriptor
({
experts
},
{
1
}));
Tensor
<
ck
::
index_t
>
sorted_token_ids
(
HostTensorDescriptor
({
SORTED_SIZE
},
{
1
}));
for
(
int
i
=
0
;
i
<
sorted_tile_num
;
i
++
)
{
expert_ids
.
mData
[
i
]
=
i
;
}
int
token_per_tile
=
tokens
/
sorted_tile_num
;
int
tokenid
=
0
;
// sorted_token_ids.mData[0] = 0;
for
(
int
i
=
0
;
i
<
SORTED_SIZE
;
i
++
)
{
int
tile_off
=
i
%
sorted_tile_size
;
if
(
tile_off
<
token_per_tile
)
sorted_token_ids
.
mData
[
i
]
=
tokenid
++
;
else
sorted_token_ids
.
mData
[
i
]
=
tokens
;
}
expert_ids
.
savetxt
(
"expert_ids.txt"
,
"int"
);
sorted_token_ids
.
savetxt
(
"sorted_token_ids.txt"
,
"int"
);
Tensor
<
A0DataType
>
a0_t_k
(
HostTensorDescriptor
({
tokens
,
K
},
{
K
,
1
}));
Tensor
<
B0DataType
>
b0_e_n_k
(
HostTensorDescriptor
({
experts
,
N
,
K
},
{
N
*
K
,
K
,
1
}));
Tensor
<
B0DataType
>
b0_preshuffled
(
HostTensorDescriptor
({
experts
,
N
,
K
},
{
N
*
K
,
K
,
1
}));
Tensor
<
D0DataType
>
d0_t_n
(
HostTensorDescriptor
({
tokens
,
N
},
{
StrideDs
[
0
],
0
}));
Tensor
<
D1DataType
>
d1_e_n
(
HostTensorDescriptor
({
experts
,
N
},
{
1
,
StrideDs
[
1
]}));
Tensor
<
EDataType
>
e_m_n_host_result
(
HostTensorDescriptor
({
SORTED_SIZE
,
N
},
{
N
,
1
}));
Tensor
<
EDataType
>
e_m_n_device_result
(
HostTensorDescriptor
({
SORTED_SIZE
,
N
},
{
N
,
1
}));
std
::
cout
<<
"a0_t_k: "
<<
a0_t_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_e_n_k: "
<<
b0_e_n_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_e_n: "
<<
d1_e_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_t_n: "
<<
d0_t_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a0_t_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
2
,
2
});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
0
,
2
});
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
1
,
3
});
d1_e_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D1DataType
>
{
1
,
3
});
break
;
case
2
:
a0_t_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
A0DataType
>
{});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D0DataType
>
{});
d1_e_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D1DataType
>
{});
break
;
default:
a0_t_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
-
0.5
,
0.5
});
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
d1_e_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
0.0
,
1.0
});
}
d0_t_n
.
savetxt
(
"d0_t_n.txt"
,
"int"
);
d1_e_n
.
savetxt
(
"d1_e_n.txt"
,
"int"
);
DeviceMem
sorted_token_ids_dev
(
sizeof
(
ck
::
index_t
)
*
sorted_token_ids
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
expert_ids_dev
(
sizeof
(
ck
::
index_t
)
*
expert_ids
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
a0_t_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
b0_e_n_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
d0_t_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_e_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_t_k
.
savetxt
(
"a.txt"
);
sorted_token_ids_dev
.
ToDevice
(
sorted_token_ids
.
mData
.
data
());
expert_ids_dev
.
ToDevice
(
expert_ids
.
mData
.
data
());
a0_device_buf
.
ToDevice
(
a0_t_k
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_t_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_e_n
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_m_n_device_result
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
// preShuffleBuffer(b0_e_n_k.mData.data(), b0_preshuffled.mData.data(), N * experts, K, NPerXdl);
printf
(
"Start PreShuffle
\n
"
);
// weight pre-shuffle
int
KPack
=
32
;
// int4 -> 32, fp8 -> 16, fp16 -> 8
int
NLane
=
device_op
.
GetPreShuffleParameters
();
int
KLane
=
64
/
NLane
;
int
K0
=
K
/
(
KLane
*
KPack
);
// K -> K0 KLane KPack
// N -> N0 NLane
// N, K -> N0 K0 KLane NLane KPack
int
tempk
;
for
(
int
e
=
0
;
e
<
experts
;
++
e
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
int
n0
=
n
/
NLane
;
int
n1
=
n
%
NLane
;
int
k0
=
k
/
(
KLane
*
KPack
);
tempk
=
k
%
(
KLane
*
KPack
);
int
k1
=
tempk
/
KPack
;
int
k2
=
tempk
%
KPack
;
int
outputIndex
=
n0
*
KPack
*
NLane
*
KLane
*
K0
+
k0
*
KPack
*
NLane
*
KLane
+
k1
*
KPack
*
NLane
+
n1
*
KPack
+
k2
;
b0_preshuffled
(
e
*
batch_stride_B
+
outputIndex
)
=
b0_e_n_k
(
e
*
batch_stride_B
+
n
*
K
+
k
);
}
}
}
printf
(
"End PreShuffle, and Start vector permute
\n
"
);
// vector pk_i4x4 permute
for
(
int
e
=
0
;
e
<
experts
;
e
++
)
{
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
for
(
int
j
=
0
;
j
<
K
;
j
++
)
{
int
input
[
8
];
for
(
int
k
=
0
;
k
<
4
;
k
++
)
{
int
i4x2
=
b0_preshuffled
(
e
,
j
+
k
*
2
,
i
).
data
;
input
[
k
*
2
+
0
]
=
(
i4x2
>>
4
)
&
0xf
;
input
[
k
*
2
+
1
]
=
(
i4x2
>>
0
)
&
0xf
;
}
// permute 01234567->20643175
{
int
hi
=
input
[
2
];
int
lo
=
input
[
0
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b0_preshuffled
(
e
,
j
+
0
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
6
];
int
lo
=
input
[
4
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b0_preshuffled
(
e
,
j
+
2
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
3
];
int
lo
=
input
[
1
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b0_preshuffled
(
e
,
j
+
4
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
7
];
int
lo
=
input
[
5
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b0_preshuffled
(
e
,
j
+
6
,
i
)
=
i4x2
;
}
}
}
}
b0_device_buf
.
ToDevice
(
b0_preshuffled
.
mData
.
data
());
printf
(
"End Permute and Start GEMM
\n
"
);
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
sorted_token_ids_dev
.
GetDeviceBuffer
(),
expert_ids_dev
.
GetDeviceBuffer
(),
a0_device_buf
.
GetDeviceBuffer
(),
b0_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
NumDTensor
>
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
tokens
,
SORTED_SIZE
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideE
,
KBatch
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
if
(
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
SORTED_SIZE
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
SORTED_SIZE
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
*
experts
+
sizeof
(
EDataType
)
*
SORTED_SIZE
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
}
if
(
do_verification
)
{
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
,
0
,
0
,
1
});
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
Tensor
<
CShuffleDataType
>
c_m_n
({
SORTED_SIZE
,
N
});
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceMoeGemm
<
A0DataType
,
B0DataType
,
CShuffleDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
auto
ref_moe_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_moe_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_moe_gemm
.
MakeArgument
(
sorted_token_ids
,
expert_ids
,
sorted_tile_size
,
a0_t_k
,
b0_e_n_k
,
c_m_n
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
SORTED_SIZE
;
++
m
)
{
const
int
t
=
sorted_token_ids
(
m
);
const
int
e
=
expert_ids
(
m
/
sorted_tile_size
);
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d0_t_n
(
t
,
n
),
d1_e_n
(
e
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
e_m_n_device_result
.
savetxt
(
"out.txt"
);
e_m_n_host_result
.
savetxt
(
"ref.txt"
);
return
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
,
"Error: Incorrect results!"
,
1e-3
,
5e-2
)
?
0
:
1
;
}
return
0
;
}
include/ck/library/utility/host_tensor.hpp
View file @
0f444e0c
...
...
@@ -6,6 +6,7 @@
#include <algorithm>
#include <cassert>
#include <iostream>
#include <fstream>
#include <numeric>
#include <thread>
#include <utility>
...
...
@@ -323,6 +324,33 @@ struct Tensor
{
}
void
savetxt
(
std
::
string
file_name
,
std
::
string
dtype
=
"float"
)
{
std
::
ofstream
file
(
file_name
);
if
(
file
.
is_open
())
{
for
(
auto
&
itm
:
mData
)
{
if
(
dtype
==
"float"
)
file
<<
ck
::
type_convert
<
float
>
(
itm
)
<<
std
::
endl
;
else
if
(
dtype
==
"int"
)
file
<<
ck
::
type_convert
<
int
>
(
itm
)
<<
std
::
endl
;
else
// TODO: we didn't implement operator<< for all custom
// data types, here fall back to float in case compile error
file
<<
ck
::
type_convert
<
float
>
(
itm
)
<<
std
::
endl
;
}
file
.
close
();
}
else
{
// Print an error message to the standard error
// stream if the file cannot be opened.
throw
std
::
runtime_error
(
std
::
string
(
"unable to open file:"
)
+
file_name
);
}
}
decltype
(
auto
)
GetLengths
()
const
{
return
mDesc
.
GetLengths
();
}
decltype
(
auto
)
GetStrides
()
const
{
return
mDesc
.
GetStrides
();
}
...
...
include/ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1_mod8.hpp
0 → 100644
View file @
0f444e0c
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/cluster_descriptor.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v3r1_gather.hpp"
namespace
ck
{
/**
* @brief Blockwise data transfer
*
* This version does following things to avoid scratch memory issue
* 1. Use StaticallyIndexedArray instead of C array for thread buffer
* 2. ThreadwiseTensorSliceTransfer_v3 does not keep reference to tensor descriptor
* 3. ThreadwiseTensorSliceTransfer_v3::Run() does not construct new tensor coordinate
*
*/
template
<
typename
ThreadGroup
,
typename
SrcElementwiseOperation
,
typename
DstElementwiseOperation
,
InMemoryDataOperationEnum
DstInMemOp
,
typename
BlockSliceLengths
,
typename
ThreadClusterLengths
,
typename
ThreadClusterArrangeOrder
,
typename
SrcData
,
typename
DstData
,
typename
SrcDesc
,
typename
DstDesc
,
typename
SrcDimAccessOrder
,
typename
DstDimAccessOrder
,
index_t
SrcVectorDim
,
index_t
DstVectorDim
,
index_t
SrcScalarPerVector
,
index_t
DstScalarPerVector
,
index_t
SrcScalarStrideInVector
,
index_t
DstScalarStrideInVector
,
bool
ThreadTransferSrcResetCoordinateAfterRun
,
bool
ThreadTransferDstResetCoordinateAfterRun
,
index_t
GatherDim
=
1
,
index_t
NumThreadScratch
=
1
>
struct
ThreadGroupTensorSliceTransfer_v4r1_mod8
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
index_t
nDim
=
remove_reference_t
<
SrcDesc
>::
GetNumOfDimension
();
static
constexpr
auto
thread_slice_lengths
=
BlockSliceLengths
{}
/
ThreadClusterLengths
{};
static
constexpr
index_t
gather_num
=
thread_slice_lengths
.
At
(
Number
<
GatherDim
>
{});
static
constexpr
index_t
mod_num
=
ThreadClusterLengths
{}.
At
(
I0
);
// Dirty HACK FELIX, TODO fix
using
Index
=
MultiIndex
<
nDim
>
;
__device__
constexpr
ThreadGroupTensorSliceTransfer_v4r1_mod8
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_block_slice_origin
,
const
SrcElementwiseOperation
&
src_element_op
,
const
DstDesc
&
dst_desc
,
const
Index
&
dst_block_slice_origin
,
const
DstElementwiseOperation
&
dst_element_op
,
const
StaticallyIndexedArray
<
index_t
,
gather_num
>
&
gather_offsets
)
:
threadwise_transfer_
(
src_desc
,
make_zero_multi_index
<
nDim
>
(),
src_element_op
,
dst_desc
,
make_zero_multi_index
<
nDim
>
(),
dst_element_op
,
gather_offsets
)
{
static_assert
(
nDim
==
remove_cvref_t
<
SrcDesc
>::
GetNumOfDimension
()
&&
nDim
==
remove_cvref_t
<
DstDesc
>::
GetNumOfDimension
()
&&
nDim
==
ThreadClusterLengths
::
Size
()
&&
nDim
==
ThreadClusterArrangeOrder
::
Size
()
&&
nDim
==
SrcDimAccessOrder
::
Size
()
&&
nDim
==
DstDimAccessOrder
::
Size
(),
"wrong! nDim not consistent"
);
static_assert
(
is_same
<
BlockSliceLengths
,
decltype
(
thread_slice_lengths
*
ThreadClusterLengths
{})
>
{},
"wrong! threads should be mapped to cover entire slicing window"
);
static_assert
(
ThreadGroup
::
GetNumOfThread
()
>=
thread_cluster_desc_
.
GetElementSize
(),
"wrong! ThreadGroup::GetNumOfThread() too small"
);
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
const
auto
src_thread_cluster_idx
=
thread_cluster_desc_
.
CalculateBottomIndex
(
make_multi_index
(
ThreadGroup
::
GetThreadId
()
%
mod_num
));
threadwise_transfer_
.
SetSrcSliceOrigin
(
src_desc
,
src_block_slice_origin
+
src_thread_cluster_idx
*
thread_slice_lengths
);
const
auto
dst_thread_cluster_idx
=
thread_cluster_desc_
.
CalculateBottomIndex
(
make_multi_index
(
ThreadGroup
::
GetThreadId
()));
threadwise_transfer_
.
SetDstSliceOrigin
(
dst_desc
,
dst_block_slice_origin
+
dst_thread_cluster_idx
*
thread_slice_lengths
);
}
}
__device__
void
SetSrcSliceOrigin
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_block_slice_origin
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
const
auto
thread_cluster_idx
=
thread_cluster_desc_
.
CalculateBottomIndex
(
make_multi_index
(
ThreadGroup
::
GetThreadId
()
%
mod_num
));
const
auto
thread_data_idx_begin
=
thread_cluster_idx
*
thread_slice_lengths
;
threadwise_transfer_
.
SetSrcSliceOrigin
(
src_desc
,
src_block_slice_origin
+
thread_data_idx_begin
);
}
}
template
<
typename
SeqIdx
,
index_t
ThreadScratchId
=
0
>
__device__
constexpr
auto
GetSrcThreadScratchIdx
()
{
return
threadwise_transfer_
.
template
GetSrcThreadScratchIdx
<
SeqIdx
,
ThreadScratchId
>();
}
template
<
typename
SrcBuffer
,
index_t
ThreadScratchId
=
0
>
__device__
void
RunRead
(
const
SrcDesc
&
src_desc
,
const
SrcBuffer
&
src_buf
,
Number
<
ThreadScratchId
>
thread_scratch_id
=
Number
<
ThreadScratchId
>
{})
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
RunRead
(
src_desc
,
src_buf
,
thread_scratch_id
);
}
}
template
<
typename
DstBuffer
,
index_t
ThreadScratchId
=
0
>
__device__
void
RunWrite
(
const
DstDesc
&
dst_desc
,
DstBuffer
&
dst_buf
,
Number
<
ThreadScratchId
>
thread_scratch_id
=
Number
<
ThreadScratchId
>
{})
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
RunWrite
(
dst_desc
,
dst_buf
,
thread_scratch_id
);
}
}
template
<
typename
SrcBuffer
,
typename
DstBuffer
,
index_t
ThreadScratchId
>
__device__
void
Run
(
const
SrcDesc
&
src_desc
,
const
SrcBuffer
&
src_buf
,
const
DstDesc
&
dst_desc
,
DstBuffer
&
dst_buf
,
Number
<
ThreadScratchId
>
thread_scratch_id
)
{
RunRead
(
src_desc
,
src_buf
,
thread_scratch_id
);
RunWrite
(
dst_desc
,
dst_buf
,
thread_scratch_id
);
}
__device__
void
MoveSrcSliceWindow
(
const
SrcDesc
&
src_desc
,
const
Index
&
step
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
MoveSrcSliceWindow
(
src_desc
,
step
);
}
}
__device__
void
MoveDstSliceWindow
(
const
DstDesc
&
dst_desc
,
const
Index
&
step
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
MoveDstSliceWindow
(
dst_desc
,
step
);
}
}
private:
static
constexpr
auto
thread_cluster_desc_
=
make_cluster_descriptor
(
ThreadClusterLengths
{},
ThreadClusterArrangeOrder
{});
using
ThreadwiseTransfer
=
ThreadwiseTensorSliceTransfer_v3r1_gather
<
decltype
(
thread_slice_lengths
),
SrcElementwiseOperation
,
DstElementwiseOperation
,
DstInMemOp
,
SrcData
,
DstData
,
SrcDesc
,
DstDesc
,
SrcDimAccessOrder
,
DstDimAccessOrder
,
SrcVectorDim
,
DstVectorDim
,
SrcScalarPerVector
,
DstScalarPerVector
,
SrcScalarStrideInVector
,
DstScalarStrideInVector
,
ThreadTransferSrcResetCoordinateAfterRun
,
ThreadTransferDstResetCoordinateAfterRun
,
GatherDim
,
NumThreadScratch
>
;
ThreadwiseTransfer
threadwise_transfer_
;
};
}
// namespace ck
include/ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7r3_scatter.hpp
0 → 100644
View file @
0f444e0c
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/cluster_descriptor.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v7r3_scatter.hpp"
#include "ck/utility/is_detected.hpp"
namespace
ck
{
// Thread-group level multi-source, multi-destination tensor slice data movement
// Assume:
// 1. All sources and destinations are DynamicBuffer
// 2. Same VectorDim and ScalerPerVector for all sources and destinations
// 3. DstInMemOps are per destination tensor
// 4. ThreadTransferSrcResetCoordinateAfterRunFlags are per source tensor
// 5. ThreadTransferDstResetCoordinateAfterRunFlags are per destination tensor
//
// Does following things to avoid scratch memory issue
// 1. Pass tensor descritpors by reference (or tuple of references)
// 2. Does not keep reference to tensor descriptor
// 3. Does not construct new tensor coordinate when call Run()
template
<
typename
ThreadGroup
,
typename
SrcDatas
,
typename
DstDatas
,
typename
SrcDescs
,
typename
DstDescs
,
typename
ElementwiseOperation
,
typename
DstInMemOps
,
// Sequence<InMemoryDataOperationEnum ...>
typename
SliceLengths
,
typename
ThreadClusterLengths
,
typename
ThreadClusterArrangeOrder
,
typename
SrcDimAccessOrder
,
typename
DstDimAccessOrder
,
index_t
SrcVectorDim
,
index_t
DstVectorDim
,
typename
SrcScalarPerVectors
,
index_t
DstScalarPerVector
,
typename
ThreadTransferSrcResetCoordinateAfterRunFlags
,
typename
ThreadTransferDstResetCoordinateAfterRunFlags
,
index_t
ScatterDim
=
1
,
bool
OutputScatter
=
true
,
index_t
ScatterWeightIdx
=
3
,
index_t
NumThreadScratch
=
1
>
struct
ThreadGroupTensorSliceTransfer_v7r3_scatter
{
static
constexpr
index_t
nDim
=
remove_cvref_t
<
tuple_element_t
<
0
,
SrcDescs
>>::
GetNumOfDimension
();
static
constexpr
index_t
mod_num
=
ThreadClusterLengths
{}.
At
(
Number
<
3
>
{})
;
// Dirty HACK FELIX, TODO fix
static
constexpr
index_t
nSrc
=
remove_cvref_t
<
SrcDescs
>::
Size
();
static
constexpr
index_t
nDst
=
remove_cvref_t
<
DstDescs
>::
Size
();
using
Index
=
MultiIndex
<
nDim
>
;
static
constexpr
auto
thread_slice_lengths
=
SliceLengths
{}
/
ThreadClusterLengths
{};
static
constexpr
index_t
scatter_num
=
thread_slice_lengths
.
At
(
Number
<
ScatterDim
>
{});
__device__
constexpr
ThreadGroupTensorSliceTransfer_v7r3_scatter
(
const
SrcDescs
&
src_descs
,
const
StaticallyIndexedArray
<
Index
,
nSrc
>&
src_block_slice_origins
,
const
DstDescs
&
dst_descs
,
const
StaticallyIndexedArray
<
Index
,
nDst
>&
dst_block_slice_origins
,
const
ElementwiseOperation
&
element_op
,
const
StaticallyIndexedArray
<
index_t
,
scatter_num
>
&
scatter_offsets
,
const
StaticallyIndexedArray
<
float
,
scatter_num
>
&
scatter_weights
)
:
threadwise_transfer_
(
src_descs
,
StaticallyIndexedArray
<
Index
,
nSrc
>
{},
dst_descs
,
StaticallyIndexedArray
<
Index
,
nDst
>
{},
element_op
,
scatter_offsets
,
scatter_weights
)
{
static_assert
(
nSrc
==
SrcDatas
::
Size
()
&&
nSrc
==
SrcDescs
::
Size
()
&&
nSrc
==
ThreadTransferSrcResetCoordinateAfterRunFlags
::
Size
()
&&
nDst
==
DstDatas
::
Size
()
&&
nDst
==
DstDescs
::
Size
()
&&
nDst
==
ThreadTransferDstResetCoordinateAfterRunFlags
::
Size
(),
"wrong!"
);
static_for
<
0
,
nSrc
,
1
>
{}([
&
](
auto
i
)
{
static_assert
(
nDim
==
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
SrcDescs
>>::
GetNumOfDimension
(),
"wrong!"
);
});
static_for
<
0
,
nDst
,
1
>
{}([
&
](
auto
i
)
{
static_assert
(
nDim
==
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DstDescs
>>::
GetNumOfDimension
(),
"wrong!"
);
});
static_assert
(
nDim
==
ThreadClusterLengths
::
Size
()
&&
nDim
==
ThreadClusterArrangeOrder
::
Size
()
&&
nDim
==
SrcDimAccessOrder
::
Size
()
&&
nDim
==
DstDimAccessOrder
::
Size
(),
"wrong! nDim not consistent"
);
static_assert
(
is_same
<
SliceLengths
,
decltype
(
thread_slice_lengths
*
ThreadClusterLengths
{})
>
{},
"wrong! threads should be mapped to cover entire slicing window"
);
static_assert
(
ThreadGroup
::
GetNumOfThread
()
>=
thread_cluster_desc_
.
GetElementSize
(),
"wrong! ThreadGroup::GetNumOfThread() too small"
);
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
const
auto
src_thread_cluster_idx
=
thread_cluster_desc_
.
CalculateBottomIndex
(
make_multi_index
(
ThreadGroup
::
GetThreadId
()));
const
auto
src_thread_slice_origins
=
generate_tuple
(
[
&
](
auto
i
)
{
return
src_block_slice_origins
[
i
]
+
src_thread_cluster_idx
*
thread_slice_lengths
;
},
Number
<
nSrc
>
{});
const
auto
dst_thread_cluster_idx
=
thread_cluster_desc_
.
CalculateBottomIndex
(
make_multi_index
(
OutputScatter
?
ThreadGroup
::
GetThreadId
()
%
mod_num
:
ThreadGroup
::
GetThreadId
()));
const
auto
dst_thread_slice_origins
=
generate_tuple
(
[
&
](
auto
i
)
{
return
dst_block_slice_origins
[
i
]
+
dst_thread_cluster_idx
*
thread_slice_lengths
;
},
Number
<
nDst
>
{});
threadwise_transfer_
.
SetSrcSliceOrigins
(
src_descs
,
src_thread_slice_origins
);
threadwise_transfer_
.
SetDstSliceOrigins
(
dst_descs
,
dst_thread_slice_origins
);
}
}
template
<
typename
SrcBuffers
,
index_t
ThreadScratchId
=
0
>
__device__
void
RunRead
(
const
SrcDescs
&
src_descs
,
const
SrcBuffers
&
src_bufs
,
Number
<
ThreadScratchId
>
thread_scratch_id
=
Number
<
ThreadScratchId
>
{})
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
RunRead
(
src_descs
,
src_bufs
,
thread_scratch_id
);
}
}
template
<
typename
T
>
using
is_tuple
=
decltype
(
std
::
declval
<
T
&>
().
IsTuple
());
template
<
typename
DstBuffers
,
index_t
ThreadScratchId
=
0
>
__device__
void
RunWrite
(
const
DstDescs
&
dst_descs
,
DstBuffers
dst_bufs
,
Number
<
ThreadScratchId
>
thread_scratch_id
=
Number
<
ThreadScratchId
>
{})
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
if
constexpr
(
is_detected
<
is_tuple
,
decltype
(
dst_bufs
)
>::
value
)
threadwise_transfer_
.
RunWrite
(
dst_descs
,
dst_bufs
,
thread_scratch_id
);
else
threadwise_transfer_
.
RunWrite
(
dst_descs
,
tie
(
dst_bufs
),
thread_scratch_id
);
}
}
template
<
typename
SrcBuffers
,
typename
DstBuffers
>
__device__
void
Run
(
const
SrcDescs
&
src_descs
,
const
SrcBuffers
&
src_bufs
,
const
DstDescs
&
dst_descs
,
DstBuffers
dst_bufs
)
{
RunRead
(
src_descs
,
src_bufs
);
RunWrite
(
dst_descs
,
dst_bufs
);
}
template
<
index_t
ISrc
>
__device__
void
MoveSrcSliceWindow
(
const
SrcDescs
&
src_descs
,
Number
<
ISrc
>
iSrc
,
const
Index
&
step
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
MoveSrcSliceWindow
(
src_descs
,
iSrc
,
step
);
}
}
__device__
void
MoveSrcSliceWindow
(
const
SrcDescs
&
src_descs
,
const
Index
&
step
)
{
static_for
<
0
,
SrcDescs
::
Size
(),
1
>
{}(
[
&
](
auto
i
)
{
MoveSrcSliceWindow
(
src_descs
,
i
,
step
);
});
}
template
<
index_t
IDst
>
__device__
void
MoveDstSliceWindow
(
const
DstDescs
&
dst_descs
,
Number
<
IDst
>
iDst
,
const
Index
&
step
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
MoveDstSliceWindow
(
dst_descs
,
iDst
,
step
);
}
}
__device__
void
MoveDstSliceWindow
(
const
DstDescs
&
dst_descs
,
const
Index
&
step
)
{
static_for
<
0
,
DstDescs
::
Size
(),
1
>
{}(
[
&
](
auto
i
)
{
MoveDstSliceWindow
(
dst_descs
,
i
,
step
);
});
}
private:
static
constexpr
auto
thread_cluster_desc_
=
make_cluster_descriptor
(
ThreadClusterLengths
{},
ThreadClusterArrangeOrder
{});
using
ThreadwiseTransfer
=
ThreadwiseTensorSliceTransfer_v7r3_scatter
<
SrcDatas
,
DstDatas
,
SrcDescs
,
DstDescs
,
ElementwiseOperation
,
DstInMemOps
,
decltype
(
thread_slice_lengths
),
SrcDimAccessOrder
,
DstDimAccessOrder
,
SrcVectorDim
,
DstVectorDim
,
SrcScalarPerVectors
,
DstScalarPerVector
,
ThreadTransferSrcResetCoordinateAfterRunFlags
,
ThreadTransferDstResetCoordinateAfterRunFlags
,
ScatterDim
,
OutputScatter
,
ScatterWeightIdx
,
NumThreadScratch
>
;
ThreadwiseTransfer
threadwise_transfer_
;
};
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp
View file @
0f444e0c
...
...
@@ -96,6 +96,51 @@ struct DeviceGemmMultipleDSplitK : public BaseOperator
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
// GEMM:
// input : A[M, K], B[K, N],
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// D0, D1, ... and E have the same layout
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
>
struct
DeviceGemmMultipleDSplitKBPreShuffle
:
public
BaseOperator
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
StrideDs
,
ck
::
index_t
StrideE
,
ck
::
index_t
KBatch
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
virtual
int
GetPreShuffleParameters
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_moe_gemm.hpp
0 → 100644
View file @
0f444e0c
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_moe_gemm_gather.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_moe_gemm_scatter.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/flush_cache.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
CDataType
,
typename
GemmAccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
CDEShuffleBlockTransferScalarPerVectors
,
BlockGemmPipelineScheduler
BlkGemmPipeSched
=
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
BlkGemmPipelineVer
=
BlockGemmPipelineVersion
::
v1
,
bool
IsGatherGemm
=
true
,
typename
ComputeTypeA
=
CDataType
,
typename
ComputeTypeB
=
ComputeTypeA
,
typename
LDSTypeA
=
ComputeTypeA
,
typename
LDSTypeB
=
ComputeTypeB
>
struct
DeviceMoeGemm
:
public
DeviceGemmMultipleDSplitKBPreShuffle
<
ALayout
,
BLayout
,
DsLayout
,
CLayout
,
ADataType
,
BDataType
,
DsDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
using
GridwiseGemm
=
std
::
conditional_t
<
IsGatherGemm
,
GridwiseMoeGemmGather
<
ALayout
,
BLayout
,
DsLayout
,
CLayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
DsDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
GemmSpec
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEShuffleBlockTransferScalarPerVectors
,
BlkGemmPipeSched
,
BlkGemmPipelineVer
,
ComputeTypeA
,
ComputeTypeB
,
LDSTypeA
,
LDSTypeB
>
,
GridwiseMoeGemmScatter
<
ALayout
,
BLayout
,
DsLayout
,
CLayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
DsDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
GemmSpec
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEShuffleBlockTransferScalarPerVectors
,
BlkGemmPipeSched
,
BlkGemmPipelineVer
,
ComputeTypeA
,
ComputeTypeB
,
LDSTypeA
,
LDSTypeB
>>
;
using
Argument
=
typename
GridwiseGemm
::
Argument
;
int
GetPreShuffleParameters
()
override
{
return
NPerXDL
;
}
// Invoker
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
stream_config
.
log_level_
>
0
)
{
arg
.
Print
();
}
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
index_t
gdx
,
gdy
,
gdz
;
std
::
tie
(
gdx
,
gdy
,
gdz
)
=
GridwiseGemm
::
CalculateGridSize
(
arg
.
M
,
arg
.
N
);
float
ave_time
=
0
;
index_t
k_grain
=
arg
.
KBatch
*
KPerBlock
;
index_t
K_split
=
(
arg
.
K
+
k_grain
-
1
)
/
k_grain
*
KPerBlock
;
const
bool
has_main_k_block_loop
=
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K_split
);
const
auto
RunKernel
=
[
&
](
const
auto
&
kernel
)
{
if
(
stream_config
.
flush_cache
)
{
std
::
array
<
std
::
size_t
,
NumDTensor
>
DsSize
;
Argument
arg_
=
arg
;
const
auto
a_grid_desc_ak0_m_ak1
=
GridwiseGemm
::
MakeAGridDescriptor_AK0_M_AK1
(
arg_
.
M
,
arg_
.
MPadded
,
arg_
.
K
,
arg_
.
KPadded
,
arg_
.
StrideA
,
arg_
.
AK0
);
const
auto
b_grid_desc_bk0_n_bk1
=
GridwiseGemm
::
MakeBGridDescriptor_BK0_N_BK1
(
arg_
.
K
,
arg_
.
KPadded
,
arg_
.
N
,
arg_
.
NPadded
,
arg_
.
StrideB
,
arg_
.
BK0
);
auto
size_a_buffer
=
a_grid_desc_ak0_m_ak1
.
GetElementSpaceSize
()
*
sizeof
(
ADataType
);
auto
size_b_buffer
=
b_grid_desc_bk0_n_bk1
.
GetElementSpaceSize
()
*
sizeof
(
BDataType
);
const
auto
ds_grid_desc_m_n
=
GridwiseGemm
::
MakeDsGridDescriptor_M_N
(
arg_
.
M
,
arg_
.
MPadded
,
arg_
.
N
,
arg_
.
NPadded
,
arg_
.
StrideDs
);
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
DsSize
[
i
]
=
ds_grid_desc_m_n
[
i
].
GetElementSpaceSize
()
*
sizeof
(
DDataType
);
});
ck
::
utility
::
RotatingMemWrapperMultiD
<
Argument
,
DsDataType
>
rotating_mem
(
arg_
,
stream_config
.
rotating_count
,
size_a_buffer
,
size_b_buffer
,
DsSize
);
rotating_mem
.
Print
();
auto
run_flush_cache
=
[
&
]()
{
// flush icache
ck
::
utility
::
flush_icache
();
// rotating mem
rotating_mem
.
Next
();
// clear c mem
if
(
arg_
.
KBatch
>
1
)
hipGetErrorString
(
hipMemsetAsync
(
arg_
.
p_c_grid
,
0
,
arg_
.
M
*
arg_
.
N
*
sizeof
(
CDataType
),
stream_config
.
stream_id_
));
};
ave_time
=
ck
::
utility
::
launch_and_time_kernel_with_preprocess
<
false
>
(
stream_config
,
run_flush_cache
,
kernel
,
dim3
(
gdx
,
gdy
,
gdz
),
dim3
(
BlockSize
),
0
,
arg_
);
}
else
{
if
(
arg
.
KBatch
>
1
)
hipGetErrorString
(
hipMemsetAsync
(
arg
.
p_c_grid
,
0
,
arg
.
M
*
arg
.
N
*
sizeof
(
CDataType
),
stream_config
.
stream_id_
));
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
gdx
,
gdy
,
gdz
),
dim3
(
BlockSize
),
0
,
arg
);
}
};
constexpr
auto
estimated_reg_a
=
MPerBlock
*
KPerBlock
*
sizeof
(
ADataType
)
/
BlockSize
/
4
*
(
1
+
GridwiseGemm
::
NWave
);
constexpr
auto
estimated_reg_b
=
NPerBlock
*
KPerBlock
*
sizeof
(
BDataType
)
/
BlockSize
/
4
*
(
2
);
constexpr
auto
estimated_reg_c
=
MPerBlock
*
NPerBlock
*
sizeof
(
GemmAccDataType
)
/
BlockSize
/
4
;
constexpr
auto
estimated_reg_total
=
estimated_reg_a
+
estimated_reg_b
+
estimated_reg_c
;
constexpr
index_t
minimum_occupancy
=
(
estimated_reg_total
>=
256
)
?
1
:
2
;
// static_assert(BlkGemmPipelineVer == BlockGemmPipelineVersion::v3 &&
// has_main_k_block_loop, "only impl BlockGemmPipelineVersion::v3 and has mainloop right
// now");
if
(
has_main_k_block_loop
)
{
// Tail number always full
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v1
)
{
// if(arg.KBatch > 1)
// {
// if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
// {
// if constexpr (IsGatherGemm) {
// const auto kernel = kernel_moe_gemm_gather<
// GridwiseGemm,
// true,
// InMemoryDataOperationEnum::AtomicAdd,
// minimum_occupancy,
// TailNumber::Odd>;
// RunKernel(kernel);
// else {
// const auto kernel = kernel_moe_gemm_scatter<
// GridwiseGemm,
// true,
// InMemoryDataOperationEnum::AtomicAdd,
// minimum_occupancy,
// TailNumber::Odd>;
// RunKernel(kernel);
// }
// }
// else
// {
// if constexpr (IsGatherGemm) {
// const auto kernel = kernel_moe_gemm_gather<
// GridwiseGemm,
// true,
// InMemoryDataOperationEnum::AtomicAdd,
// minimum_occupancy,
// TailNumber::Even>;
// RunKernel(kernel);
// else {
// const auto kernel = kernel_moe_gemm_scatter<
// GridwiseGemm,
// true,
// InMemoryDataOperationEnum::AtomicAdd,
// minimum_occupancy,
// TailNumber::Even>;
// RunKernel(kernel);
// }
// }
// }
// else
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Odd
)
{
if
constexpr
(
IsGatherGemm
)
{
const
auto
kernel
=
kernel_moe_gemm_gather
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Odd
>
;
RunKernel
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_moe_gemm_scatter
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Odd
>
;
RunKernel
(
kernel
);
}
}
else
{
if
constexpr
(
IsGatherGemm
)
{
const
auto
kernel
=
kernel_moe_gemm_gather
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Even
>
;
RunKernel
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_moe_gemm_scatter
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Even
>
;
RunKernel
(
kernel
);
}
}
}
}
// else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2)
// {
// if(arg.KBatch > 1)
// {
// if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
// {
// const auto kernel =
// kernel_moe_gemm_gather_2lds<
// GridwiseGemm,
// true,
// InMemoryDataOperationEnum::AtomicAdd,
// minimum_occupancy,
// TailNumber::Odd>;
// RunKernel(kernel);
// }
// else
// {
// const auto kernel =
// kernel_moe_gemm_gather_2lds<
// GridwiseGemm,
// true,
// InMemoryDataOperationEnum::AtomicAdd,
// minimum_occupancy,
// TailNumber::Even>;
// RunKernel(kernel);
// }
// }
// else
// {
// if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
// {
// const auto kernel =
// kernel_moe_gemm_gather_2lds<
// GridwiseGemm,
// true,
// IsGatherGemm? InMemoryDataOperationEnum::Set : InMemoryDataOperationEnum::AtomicAdd,
// minimum_occupancy,
// TailNumber::Odd>;
// RunKernel(kernel);
// }
// else
// {
// const auto kernel =
// kernel_moe_gemm_gather_2lds<
// GridwiseGemm,
// true,
// IsGatherGemm? InMemoryDataOperationEnum::Set : InMemoryDataOperationEnum::AtomicAdd,
// minimum_occupancy,
// TailNumber::Even>;
// RunKernel(kernel);
// }
// }
// }
else
{
throw
std
::
runtime_error
(
"todo: only v1 & v2 support now"
);
}
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
if
(
!
is_bf16_atomic_supported
()
&&
std
::
is_same_v
<
CDataType
,
ck
::
bhalf_t
>
&&
arg
.
KBatch
>
1
)
{
return
false
;
}
if
((
arg
.
K
%
AK1
!=
0
||
arg
.
K
%
BK1
!=
0
)
&&
!
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
||
GemmSpec
==
GemmSpecialization
::
KPadding
))
{
return
false
;
}
if
(
arg
.
N
%
NPerBlock
!=
0
||
arg
.
K
%
KPerBlock
!=
0
)
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_sorted_token_ids
,
const
void
*
p_sorted_expert_ids
,
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_c
,
index_t
NumTokens
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideC
,
index_t
KBatch
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
static_cast
<
const
index_t
*>
(
p_sorted_token_ids
),
static_cast
<
const
index_t
*>
(
p_sorted_expert_ids
),
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
p_ds
,
static_cast
<
CDataType
*>
(
p_c
),
NumTokens
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideC
,
KBatch
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideC
,
index_t
KBatch
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
override
{
// assert(0, "no impl");
return
std
::
make_unique
<
Argument
>
(
nullptr
,
nullptr
,
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
p_ds
,
static_cast
<
CDataType
*>
(
p_c
),
M
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideC
,
KBatch
,
a_element_op
,
b_element_op
,
c_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
std
::
map
<
BlockGemmPipelineScheduler
,
std
::
string
>
BlkGemmPipelineSchedulerToString
{
{
BlockGemmPipelineScheduler
::
Intrawave
,
"Intrawave"
},
{
BlockGemmPipelineScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
BlockGemmPipelineVersion
,
std
::
string
>
BlkGemmPipelineVersionToString
{
{
BlockGemmPipelineVersion
::
v1
,
"v1"
},
{
BlockGemmPipelineVersion
::
v2
,
"v2"
}};
// clang-format off
str
<<
"DeviceMoeGEmm"
<<
"<"
<<
getGemmSpecializationString
(
GemmSpec
)
<<
", "
<<
std
::
string
(
ALayout
::
name
)[
0
]
<<
std
::
string
(
BLayout
::
name
)[
0
]
<<
std
::
string
(
CLayout
::
name
)[
0
]
<<
">"
<<
" BlkSize: "
<<
BlockSize
<<
", "
<<
"BlkTile: "
<<
MPerBlock
<<
"x"
<<
NPerBlock
<<
"x"
<<
KPerBlock
<<
", "
<<
"WaveTile: "
<<
MPerXDL
<<
"x"
<<
NPerXDL
<<
", "
<<
"WaveMap: "
<<
MXdlPerWave
<<
"x"
<<
NXdlPerWave
<<
", "
<<
"VmemReadVec: "
<<
ABlockTransferSrcScalarPerVector
<<
"x"
<<
BBlockTransferSrcScalarPerVector
<<
", "
<<
"BlkGemmPipelineScheduler: "
<<
BlkGemmPipelineSchedulerToString
[
BlkGemmPipeSched
]
<<
", "
<<
"BlkGemmPipelineVersion: "
<<
BlkGemmPipelineVersionToString
[
BlkGemmPipelineVer
]
<<
", "
<<
"BlkGemmPipelinePrefetchStages: "
<<
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_moe_gemm_gather.hpp
0 → 100644
View file @
0f444e0c
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle_selector.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1_mod8.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7r3_scatter.hpp"
#define DEBUG_LOG 0
namespace
ck
{
// Currently we do not have a elegant way to put single lds buffer & double lds buffer pipe in same
// kernel function Blockers:
// 1. Two separted declaration of __shared__ pointer is the key to make sure data access operate on
// two lds chunks.
// 2. Occupied __shared__ won't release until whole shader end, a.k.a AB and C may not use same lds
// buffer when we declare __shared__ inside blkgemmpipe
template
<
typename
GridwiseGemm
,
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
index_t
MinimumOccupancy
=
1
,
TailNumber
TailNum
=
TailNumber
::
Even
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
MinimumOccupancy
)
#endif
// __attribute__((amdgpu_waves_per_eu(1, 1)))
kernel_moe_gemm_gather
(
typename
GridwiseGemm
::
Argument
karg
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
auto
splitk_batch_offset
=
typename
GridwiseGemm
::
SplitKBatchOffset
(
karg
,
blockIdx
.
z
);
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
,
CGlobalMemoryDataOperation
,
TailNum
>(
karg
.
p_sorted_token_ids
,
karg
.
p_sorted_expert_ids
,
karg
.
p_a_grid
+
splitk_batch_offset
.
a_k_split_offset
,
karg
.
p_b_grid
+
splitk_batch_offset
.
b_k_split_offset
,
karg
.
p_ds_grid
,
karg
.
p_c_grid
,
p_shared
,
karg
,
karg
.
a_element_op
,
karg
.
b_element_op
,
karg
.
c_element_op
);
#else
ignore
=
karg
;
#endif // end of if (defined(__gfx9__))
}
// template <typename GridwiseGemm,
// bool HasMainKBlockLoop,
// InMemoryDataOperationEnum CGlobalMemoryDataOperation,
// index_t MinimumOccupancy = 1,
// TailNumber TailNum = TailNumber::Even>
// __global__ void
// #if CK_USE_LAUNCH_BOUNDS
// __launch_bounds__(CK_MAX_THREAD_PER_BLOCK, MinimumOccupancy)
// #endif
// // __attribute__((amdgpu_waves_per_eu(1, 1)))
// kernel_moe_gemm_gather_2lds(typename GridwiseGemm::Argument karg)
// {
// #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
// __shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
// __shared__ char p_shared1[GridwiseGemm::GetSharedMemoryNumberOfByte()];
// auto splitk_batch_offset = typename GridwiseGemm::SplitKBatchOffset(karg, blockIdx.z);
// GridwiseGemm::template Run_2Lds<HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
// karg.p_a_grid + splitk_batch_offset.a_k_split_offset,
// karg.p_b_grid + splitk_batch_offset.b_k_split_offset,
// karg.p_ds_grid,
// karg.p_c_grid,
// p_shared,
// p_shared1,
// karg,
// karg.a_element_op,
// karg.b_element_op,
// karg.c_element_op);
// #else
// ignore = karg;
// #endif // end of if (defined(__gfx9__))
// }
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1Value
,
index_t
BK1Value
,
index_t
MPerXdl
,
index_t
NPerXdl
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
AThreadTransferSrcResetCoordinateAfterRun
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BThreadTransferSrcResetCoordinateAfterRun
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
CDEShuffleBlockTransferScalarPerVectors
,
BlockGemmPipelineScheduler
BlkGemmPipeSched
=
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
BlkGemmPipelineVer
=
BlockGemmPipelineVersion
::
v1
,
typename
ComputeTypeA
=
CDataType
,
typename
ComputeTypeB
=
ComputeTypeA
,
typename
LDSTypeA
=
ADataType
,
typename
LDSTypeB
=
BDataType
>
struct
GridwiseMoeGemmGather
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
static
constexpr
auto
CShuffleBlockTransferScalarPerVector_NPerBlock
=
CDEShuffleBlockTransferScalarPerVectors
{}[
I0
];
// K1 should be Number<...>
static
constexpr
auto
AK0Number
=
Number
<
KPerBlock
/
AK1Value
>
{};
static
constexpr
auto
BK0Number
=
Number
<
KPerBlock
/
BK1Value
>
{};
static
constexpr
auto
AK1Number
=
Number
<
AK1Value
>
{};
static
constexpr
auto
BK1Number
=
Number
<
BK1Value
>
{};
static
constexpr
auto
BlockSizeNumber
=
Number
<
BlockSize
>
{};
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
using
mfma_selector
=
MfmaSelector
<
ComputeTypeA
,
MPerXdl
,
NPerXdl
,
ComputeTypeB
>
;
static
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1Number
,
BK1Number
),
mfma_selector
::
selected_mfma
.
k_per_blk
);
static
constexpr
index_t
KLane
=
mfma_selector
::
GetKPerXdlops
()
/
mfma_selector
::
GetK1PerXdlops
();
static
constexpr
index_t
KRepeat
=
KPerBlock
/
KLane
/
KPack
;
static
constexpr
index_t
NLane
=
NPerXdl
;
static
constexpr
index_t
NWave
=
NPerBlock
/
NPerXdl
/
NXdlPerWave
;
static_assert
(
NWave
*
warpSize
==
BlockSize
);
// static constexpr index_t NumTokens = 1;
static
constexpr
index_t
SortedTileSize
=
MPerBlock
;
static
constexpr
auto
MakeDsGridPointer
()
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
return
static_cast
<
const
DDataType
*>
(
nullptr
);
},
Number
<
NumDTensor
>
{});
}
using
DsGridPointer
=
decltype
(
MakeDsGridPointer
());
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
static
constexpr
index_t
APackedSize
=
[]()
{
if
constexpr
(
is_same_v
<
remove_cvref_t
<
ADataType
>
,
pk_i4_t
>
)
return
2
;
else
return
1
;
}();
static
constexpr
index_t
BPackedSize
=
[]()
{
if
constexpr
(
is_same_v
<
remove_cvref_t
<
BDataType
>
,
pk_i4_t
>
)
return
2
;
else
return
1
;
}();
__host__
static
auto
CalculateGridSize
(
index_t
M
,
index_t
N
)
{
return
std
::
make_tuple
(
math
::
integer_divide_ceil
(
N
,
NPerBlock
),
math
::
integer_divide_ceil
(
M
,
MPerBlock
),
1
);
}
__host__
__device__
static
auto
CalculateMPadded
(
index_t
M
)
{
return
math
::
integer_least_multiple
(
M
,
MPerBlock
);
}
__host__
__device__
static
auto
CalculateNPadded
(
index_t
N
)
{
return
math
::
integer_least_multiple
(
N
,
NPerBlock
);
}
__host__
__device__
static
auto
CalculateBN0Shuffled
(
index_t
N
)
{
return
math
::
integer_divide_ceil
(
N
,
NLane
);
}
__host__
__device__
static
auto
CalculateBK0Shuffled
(
index_t
K
)
{
return
math
::
integer_divide_ceil
(
K
,
KLane
*
KPack
);
}
__host__
__device__
static
auto
CalculateKPadded
(
index_t
K
)
{
return
math
::
integer_divide_ceil
(
K
,
KPerBlock
)
*
KPerBlock
;
}
__host__
__device__
static
auto
CalculateAK0Padded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
(
KPerBlock
/
AK1Value
);
}
__host__
__device__
static
auto
CalculateBK0Padded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
(
KPerBlock
/
BK1Value
);
}
__host__
__device__
static
auto
CalculateKPadded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
KPerBlock
;
}
__host__
__device__
static
auto
CalculateKRead
(
index_t
K
,
index_t
K_Batch
=
1
)
{
constexpr
auto
KReadVec
=
math
::
lcm
(
AK1Number
,
BK1Number
);
auto
K_t
=
K_Batch
*
KReadVec
;
return
(
K
+
K_t
-
1
)
/
K_t
*
KReadVec
;
}
__host__
__device__
static
auto
CalculateMBlock
(
index_t
M
)
{
return
math
::
integer_divide_ceil
(
M
,
MPerBlock
);
}
__host__
__device__
static
auto
CalculateNBlock
(
index_t
N
)
{
return
math
::
integer_divide_ceil
(
N
,
NPerBlock
);
}
template
<
index_t
MNXdlPerWave
,
index_t
MNWaves
,
index_t
MNPerXdl
,
typename
TileDesc_K0_MN_K1
>
__host__
__device__
static
constexpr
auto
MakeGemmMmaTileDescriptor
(
const
TileDesc_K0_MN_K1
&
)
{
constexpr
index_t
K0
=
TileDesc_K0_MN_K1
{}.
GetLength
(
Number
<
0
>
{});
constexpr
index_t
K1
=
TileDesc_K0_MN_K1
{}.
GetLength
(
Number
<
2
>
{});
return
transform_tensor_descriptor
(
TileDesc_K0_MN_K1
{},
make_tuple
(
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
K0
>
{},
Number
<
K1
>
{})),
make_unmerge_transform
(
make_tuple
(
Number
<
MNXdlPerWave
>
{},
Number
<
MNWaves
>
{},
Number
<
MNPerXdl
>
{}))),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
3
>
{},
Sequence
<
0
,
1
,
2
>
{}));
}
__host__
__device__
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
index_t
M
,
index_t
MPad
,
index_t
K
,
index_t
KPad
,
index_t
StrideA
,
index_t
AK0
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
I1
,
StrideA
));
}
}();
using
GemmSpecialization
=
tensor_operation
::
device
::
GemmSpecialization
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both M and K
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
MPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad M, but not K
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_right_pad_transform
(
M
,
MPad
-
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad K, but not M
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_pass_through_transform
(
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
{
// not pad M or K
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
}
__host__
__device__
static
auto
MakeBGridDescriptor_Preshuffled
(
index_t
N0
,
index_t
K0
)
{
constexpr
index_t
NkSwizzleNumber
=
Number
<
warpSize
*
KPack
>
{};
return
make_naive_tensor_descriptor
(
make_tuple
(
N0
/
NWave
,
NWave
,
K0
,
NkSwizzleNumber
),
make_tuple
(
NWave
*
K0
*
NkSwizzleNumber
,
K0
*
NkSwizzleNumber
,
NkSwizzleNumber
,
I1
));
}
__host__
__device__
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
index_t
K
,
index_t
KPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideB
,
index_t
BK0
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
K
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
K
),
make_tuple
(
StrideB
,
I1
));
}
}();
using
GemmSpecialization
=
tensor_operation
::
device
::
GemmSpecialization
;
static_assert
(
!
(
is_same_v
<
remove_cvref_t
<
ADataType
>
,
pk_i4_t
>
&&
GemmSpec
!=
GemmSpecialization
::
Default
),
"pk_i4_t does not support padding"
);
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both N and K
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_right_pad_transform
(
N
,
NPad
-
N
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
NPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad N, but not K
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad K, but not N
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_pass_through_transform
(
N
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
{
// not pad N or K
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
}
template
<
typename
ABlockDesc_AK0_M_AK1
>
__host__
__device__
static
constexpr
auto
MakeAMmaTileDescriptor_M0_M1_M2_K
(
const
ABlockDesc_AK0_M_AK1
&
)
{
constexpr
index_t
MWaves
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
return
MakeGemmMmaTileDescriptor
<
MXdlPerWave
,
MWaves
,
MPerXdl
>
(
ABlockDesc_AK0_M_AK1
{});
}
template
<
typename
BBlockDesc_BK0_N_BK1
>
__host__
__device__
static
constexpr
auto
MakeBMmaTileDescriptor_N0_N1_N2_K
(
const
BBlockDesc_BK0_N_BK1
&
)
{
return
MakeGemmMmaTileDescriptor
<
NXdlPerWave
,
NWave
,
NPerXdl
>
(
BBlockDesc_BK0_N_BK1
{});
}
template
<
typename
ELayout
>
__host__
__device__
static
auto
MakeCGridDescriptor_M_N
(
index_t
M
,
index_t
MPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideC
)
{
const
auto
c_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideC
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I1
,
StrideC
));
}
}();
// pad M and N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
template
<
typename
DLayout
>
__host__
__device__
static
auto
MakeDGridDescriptor_M_N
(
index_t
M
,
index_t
MPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideC
)
{
const
auto
c_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
DLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideC
,
I0
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
DLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I0
,
StrideC
));
}
}();
// pad M and N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
__host__
__device__
static
auto
MakeDsGridDescriptor_M_N
(
index_t
M
,
index_t
MPad
,
index_t
N
,
index_t
NPad
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
MakeDGridDescriptor_M_N
<
DLayout
>
(
M
,
MPad
,
N
,
NPad
,
StrideDs
[
i
]);
},
Number
<
NumDTensor
>
{});
}
template
<
typename
DsGridDesc
>
__device__
static
constexpr
auto
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
DsGridDesc
&
ds_grid_desc_m_n
,
index_t
MBlock
,
index_t
NBlock
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
return
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
[
i
],
MBlock
,
NBlock
);
},
Number
<
NumDTensor
>
{});
}
struct
Problem
{
__host__
__device__
Problem
(
index_t
NumTokens_
,
index_t
M_
,
index_t
N_
,
index_t
K_
,
index_t
StrideA_
,
index_t
StrideB_
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs_
,
index_t
StrideC_
,
index_t
KBatch_
)
:
NumTokens
{
NumTokens_
},
M
{
M_
},
N
{
N_
},
K
{
K_
},
StrideA
{
StrideA_
},
StrideB
{
StrideB_
},
StrideDs
{
StrideDs_
},
StrideC
{
StrideC_
},
KBatch
{
KBatch_
},
MPadded
{
CalculateMPadded
(
M_
)},
NPadded
{
CalculateNPadded
(
N_
)},
KRead
{
CalculateKRead
(
K_
,
KBatch_
)},
KPadded
{
CalculateKPadded
(
K_
,
KBatch_
)},
AK0
{
CalculateAK0Padded
(
K_
,
KBatch_
)},
BK0
{
CalculateBK0Padded
(
K_
,
KBatch_
)},
MBlock
{
CalculateMBlock
(
M_
)},
NBlock
{
CalculateNBlock
(
N_
)},
BN0Shuffled
{
CalculateBN0Shuffled
(
N_
)},
BK0Shuffled
{
CalculateBK0Shuffled
(
K_
)}
{
}
__host__
void
Print
()
const
{
std
::
cout
<<
"problem {"
<<
"NumTokens:"
<<
NumTokens
<<
", "
<<
"M:"
<<
M
<<
", "
<<
"N:"
<<
N
<<
", "
<<
"K:"
<<
K
<<
", "
<<
"SA:"
<<
StrideA
<<
", "
<<
"SB:"
<<
StrideB
<<
", "
<<
"SC:"
<<
StrideC
<<
", "
<<
"MP:"
<<
MPadded
<<
", "
<<
"NP:"
<<
NPadded
<<
", "
<<
"KRead:"
<<
KRead
<<
", "
<<
"KP:"
<<
KPadded
<<
", "
<<
"AK0:"
<<
AK0
<<
", "
<<
"BK0:"
<<
BK0
<<
", "
<<
"MBlock: "
<<
MBlock
<<
", "
<<
"NBlock: "
<<
NBlock
<<
"}"
<<
std
::
endl
;
}
index_t
NumTokens
;
index_t
M
;
index_t
N
;
index_t
K
;
index_t
StrideA
;
index_t
StrideB
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
;
index_t
StrideC
;
index_t
KBatch
;
index_t
MPadded
;
index_t
NPadded
;
index_t
KRead
;
index_t
KPadded
;
index_t
AK0
;
index_t
BK0
;
index_t
MBlock
;
index_t
NBlock
;
// FOR PRESHUFFLE ONLY
index_t
BN0Shuffled
;
index_t
BK0Shuffled
;
};
// Argument
struct
Argument
:
public
tensor_operation
::
device
::
BaseArgument
,
public
Problem
{
__host__
Argument
(
const
index_t
*
p_sorted_token_ids_
,
const
index_t
*
p_sorted_expert_ids_
,
const
ADataType
*
p_a_grid_
,
const
BDataType
*
p_b_grid_
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid_
,
CDataType
*
p_c_grid_
,
index_t
NumTokens_
,
index_t
M_
,
index_t
N_
,
index_t
K_
,
index_t
StrideA_
,
index_t
StrideB_
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs_
,
index_t
StrideC_
,
index_t
k_batch_
,
AElementwiseOperation
a_element_op_
,
BElementwiseOperation
b_element_op_
,
CElementwiseOperation
c_element_op_
)
:
Problem
{
NumTokens_
,
M_
,
N_
,
K_
,
StrideA_
,
StrideB_
,
StrideDs_
,
StrideC_
,
k_batch_
},
p_sorted_token_ids
{
p_sorted_token_ids_
},
p_sorted_expert_ids
{
p_sorted_expert_ids_
},
p_a_grid
{
p_a_grid_
},
p_b_grid
{
p_b_grid_
},
p_ds_grid
{},
p_c_grid
{
p_c_grid_
},
a_element_op
{
a_element_op_
},
b_element_op
{
b_element_op_
},
c_element_op
{
c_element_op_
}
{
// populate pointer, desc for Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DDataType_
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid
(
i
)
=
static_cast
<
const
DDataType_
*>
(
p_ds_grid_
[
i
]);
});
}
const
index_t
*
p_sorted_token_ids
;
const
index_t
*
p_sorted_expert_ids
;
const
ADataType
*
p_a_grid
;
const
BDataType
*
p_b_grid
;
DsGridPointer
p_ds_grid
;
CDataType
*
p_c_grid
;
const
AElementwiseOperation
a_element_op
;
const
BElementwiseOperation
b_element_op
;
const
CElementwiseOperation
c_element_op
;
};
struct
SplitKBatchOffset
{
__device__
SplitKBatchOffset
(
Argument
&
karg
,
index_t
k_id
)
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
a_k_split_offset
=
k_id
*
karg
.
KRead
/
APackedSize
;
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
a_k_split_offset
=
k_id
*
karg
.
KRead
*
karg
.
StrideA
;
}
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>
)
{
b_k_split_offset
=
k_id
*
karg
.
KRead
*
karg
.
StrideB
;
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>
)
{
// KPack * NLane * KLane * K0 * N0
b_k_split_offset
=
k_id
*
karg
.
KRead
*
NLane
/
BPackedSize
;
}
if
(
k_id
<
karg
.
KBatch
-
1
)
{
karg
.
K
=
karg
.
KRead
;
}
else
{
karg
.
K
=
karg
.
K
-
karg
.
KRead
*
(
karg
.
KBatch
-
1
);
}
}
index_t
a_k_split_offset
;
index_t
b_k_split_offset
;
};
__device__
static
constexpr
auto
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()
{
// A matrix in LDS memory, dst of blockwise copy
if
constexpr
(
ABlockLdsExtraM
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
AK0Number
,
Number
<
MPerBlock
>
{},
AK1Number
),
make_tuple
(
AK1Number
,
Number
<
KPerBlock
+
ABlockLdsExtraM
>
{},
I1
));
}
// xor tensor transformation request more unnecessary vgpr usage, would cause register spill
// in some cases.
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
constexpr
auto
MLdsLayer
=
32
*
4
/
KPerBlock
/
sizeof
(
LDSTypeA
)
/
APackedSize
<
1
?
1
:
32
*
4
/
KPerBlock
/
sizeof
(
LDSTypeA
);
constexpr
auto
a_lds_block_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
AK0Number
*
Number
<
MLdsLayer
>
{},
Number
<
MPerBlock
/
MLdsLayer
>
{},
AK1Number
),
make_tuple
(
AK1Number
,
Number
<
KPerBlock
*
MLdsLayer
>
{},
I1
));
constexpr
auto
a_lds_block_desc_permuted
=
transform_tensor_descriptor
(
a_lds_block_desc
,
make_tuple
(
make_xor_with_modulo_transform
(
make_tuple
(
Number
<
MPerBlock
/
MLdsLayer
>
{},
Number
<
AK0Number
*
MLdsLayer
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
1
,
0
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
1
,
0
>
{},
Sequence
<
2
>
{}));
constexpr
auto
a_lds_block_desc_ak0_mldslayer_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_permuted
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0Number
,
Number
<
MLdsLayer
>
{})),
make_pass_through_transform
(
Number
<
MPerBlock
/
MLdsLayer
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{},
Sequence
<
3
>
{}));
constexpr
auto
a_lds_block_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_ak0_mldslayer_m_ak1
,
make_tuple
(
make_pass_through_transform
(
AK0Number
),
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
MPerBlock
/
MLdsLayer
>
{},
Number
<
MLdsLayer
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
a_lds_block_desc_ak0_m_ak1
;
}
else
// ColumnMajor A
{
// kfold and mpair dimension is not always required.
// more dimension in merge_transform increase the difficulty of generating immarg offset
// for compiler.
constexpr
auto
M0
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I1
);
constexpr
auto
M1
=
MPerBlock
/
M0
;
constexpr
auto
KThreadWrite
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I0
);
constexpr
auto
K0PerThreadWrite
=
AK0Number
/
KThreadWrite
;
constexpr
auto
KThreadRead
=
64
/
MPerXdl
;
constexpr
auto
K0PerThreadRead
=
AK0Number
/
KThreadRead
;
constexpr
auto
kfold
=
(
AK1Number
*
M0
*
sizeof
(
LDSTypeA
)
>
128
)
?
1
:
128
/
(
AK1Number
*
M0
*
sizeof
(
LDSTypeA
));
constexpr
auto
KThreadReadPerm
=
(
kfold
*
K0PerThreadWrite
/
K0PerThreadRead
)
>
1
?
KThreadRead
/
(
kfold
*
K0PerThreadWrite
/
K0PerThreadRead
)
:
KThreadRead
;
// 1<=mpair<=n0
constexpr
auto
mpair
=
(
AK1Number
*
MPerXdl
*
sizeof
(
LDSTypeA
)
>
128
)
?
1
:
((
128
/
(
AK1Number
*
MPerXdl
*
sizeof
(
LDSTypeA
)))
>
M0
?
M0
:
128
/
(
AK1Number
*
MPerXdl
*
sizeof
(
LDSTypeA
)));
constexpr
auto
a_lds_block_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{},
Number
<
K0PerThreadWrite
>
{},
Number
<
KThreadReadPerm
*
M1
>
{},
Number
<
kfold
*
M0
/
mpair
>
{},
Number
<
mpair
>
{},
AK1Number
));
constexpr
auto
a_lds_block_desc_permuted
=
transform_tensor_descriptor
(
a_lds_block_desc
,
make_tuple
(
make_pass_through_transform
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{}),
make_pass_through_transform
(
Number
<
K0PerThreadWrite
>
{}),
make_xor_with_modulo_transform
(
make_tuple
(
Number
<
KThreadReadPerm
*
M1
>
{},
Number
<
kfold
*
M0
/
mpair
>
{})),
make_pass_through_transform
(
Number
<
mpair
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}));
constexpr
auto
a_lds_block_desc_unmerged
=
transform_tensor_descriptor
(
a_lds_block_desc_permuted
,
make_tuple
(
make_pass_through_transform
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{}),
make_pass_through_transform
(
Number
<
K0PerThreadWrite
>
{}),
make_unmerge_transform
(
make_tuple
(
Number
<
KThreadReadPerm
>
{},
Number
<
M1
>
{})),
make_unmerge_transform
(
make_tuple
(
Number
<
kfold
>
{},
Number
<
M0
/
mpair
>
{})),
make_pass_through_transform
(
Number
<
mpair
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
0
,
3
>
{},
Sequence
<
4
,
5
>
{},
Sequence
<
6
>
{},
Sequence
<
7
>
{}));
constexpr
auto
a_lds_block_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_unmerged
,
make_tuple
(
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
KThreadReadPerm
>
{},
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{},
Number
<
kfold
>
{},
Number
<
K0PerThreadWrite
>
{})),
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
M0
/
mpair
>
{},
Number
<
mpair
>
{},
Number
<
M1
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
,
1
,
4
,
2
>
{},
Sequence
<
5
,
6
,
3
>
{},
Sequence
<
7
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
a_lds_block_desc_ak0_m_ak1
;
}
}
__device__
static
constexpr
auto
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()
{
// K0 -> N0/NWave -> NWave -> KLane -> NLane -> KPack
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
NXdlPerWave
>
{},
I1
,
Number
<
KRepeat
>
{},
Number
<
BK1Value
>
{}));
}
__device__
static
constexpr
auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
()
{
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
>
{},
I1
,
Number
<
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
{}));
return
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
;
}
using
BlockwiseGemmPipe
=
remove_cvref_t
<
decltype
(
BlockGemmBPreshufflePipeline_Selector
<
BlkGemmPipelineVer
,
BlkGemmPipeSched
,
BlockSize
,
ADataType
,
BDataType
,
ComputeTypeA
,
AccDataType
,
decltype
(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()),
decltype
(
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()),
decltype
(
MakeAMmaTileDescriptor_M0_M1_M2_K
(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
())),
decltype
(
MakeBMmaTileDescriptor_N0_N1_N2_K
(
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
())),
ABlockTransferSrcScalarPerVector
,
BBlockTransferSrcScalarPerVector
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
MPerXdl
,
NPerXdl
,
MXdlPerWave
,
NXdlPerWave
,
KPack
>
())
>
;
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1Number
,
BK1Number
);
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
// LDS allocation for C shuffle in LDS
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
constexpr
auto
c_block_size
=
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
();
return
math
::
max
(
a_block_space_size_aligned
*
sizeof
(
LDSTypeA
)
/
APackedSize
,
c_block_size
*
sizeof
(
CShuffleDataType
));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
__host__
static
constexpr
bool
CheckValidity
(
const
Argument
&
karg
)
{
static_assert
((
MPerBlock
%
(
MPerXdl
*
MXdlPerWave
)
==
0
)
&&
(
NPerBlock
%
(
NXdlPerWave
*
NPerXdl
))
==
0
,
"Invalid tuning param!"
);
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
&&
!
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
))
{
if
(
!
(
karg
.
M
%
MPerBlock
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg M value is not a multiple of MPerBlock! M: "
<<
karg
.
M
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
&&
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
))
{
if
(
!
(
karg
.
N
%
NPerBlock
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg N value is not a multiple of NPerBlock! N: "
<<
karg
.
N
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
KPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
))
{
auto
K_t
=
karg
.
KBatch
*
KPerBlock
;
if
(
!
(
karg
.
K
%
K_t
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K value is not a multiple of K_Batch * K0PerBlock * K1! K: "
<<
karg
.
K
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
constexpr
auto
KReadVec
=
math
::
lcm
(
AK1Number
,
BK1Number
);
auto
K_t
=
karg
.
KBatch
*
KReadVec
;
auto
KReadPadSplited
=
math
::
integer_divide_ceil
(
karg
.
K
,
K_t
)
*
KReadVec
;
if
((
KReadPadSplited
*
(
karg
.
KBatch
-
1
))
>=
karg
.
K
)
{
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
if
(
karg
.
K
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K ("
<<
karg
.
K
<<
") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<<
ABlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
if
(
karg
.
M
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg M ("
<<
karg
.
M
<<
") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<<
ABlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
if
(
karg
.
N
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg N ("
<<
karg
.
N
<<
") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<<
BBlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
if
(
karg
.
K
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K ("
<<
karg
.
K
<<
") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<<
BBlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
if
(
karg
.
N
%
CShuffleBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg N ("
<<
karg
.
N
<<
") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<<
CShuffleBlockTransferScalarPerVector_NPerBlock
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
if
(
karg
.
M
%
CShuffleBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg M ("
<<
karg
.
M
<<
") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<<
CShuffleBlockTransferScalarPerVector_NPerBlock
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
// check gridwise gemm pipeline
#if 1
const
auto
num_k_loop
=
karg
.
AK0
/
(
KPerBlock
/
AK1Value
);
if
(
num_k_loop
<=
BlockwiseGemmPipe
::
PrefetchStages
)
{
return
false
;
}
#endif
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return
true
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainKBlockLoop
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
BlockwiseGemmPipe
::
BlockHasHotloop
(
num_loop
);
}
__host__
__device__
static
constexpr
TailNumber
CalculateKBlockLoopTailNum
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
BlockwiseGemmPipe
::
BlockLoopTailNum
(
num_loop
);
}
template
<
typename
CGridDesc
>
__device__
static
constexpr
auto
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
CGridDesc
&
c_grid_desc_m_n
,
index_t
MBlock
,
index_t
NBlock
)
{
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{})),
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
return
c_grid_desc_mblock_mperblock_nblock_nperblock
;
}
// return block_id to C matrix tile idx (m0, n0) mapping
// if arch = gfx942
// using Block2CTileMapDefault = BlockToCTileMap_Grouped_M00_N0_M01Adapt<8, MPerBlock, NPerBlock>;
template
<
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
TailNumber
TailNum
=
TailNumber
::
Odd
>
__device__
static
void
Run
(
const
index_t
*
p_sorted_token_ids
,
const
index_t
*
p_sorted_expert_ids
,
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
DsGridPointer
&
p_ds_grid
,
CDataType
*
p_c_grid
,
void
*
p_shared
,
const
Problem
&
problem
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
ignore
=
b_element_op
;
const
auto
a_grid_desc_ak0_m_ak1
=
MakeAGridDescriptor_AK0_M_AK1
(
problem
.
NumTokens
,
problem
.
MPadded
,
problem
.
K
,
problem
.
KPadded
,
problem
.
StrideA
,
problem
.
AK0
);
const
auto
b_grid_desc_bpreshuffled
=
MakeBGridDescriptor_Preshuffled
(
problem
.
BN0Shuffled
,
problem
.
BK0Shuffled
);
const
auto
c_grid_desc_m_n
=
MakeCGridDescriptor_M_N
<
CLayout
>
(
problem
.
M
,
problem
.
MPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideC
);
// printf("tido %d size %d %d MNBLOCK %d %d %d %d\n", threadIdx.x, problem.StrideC, c_grid_desc_m_n.GetElementSpaceSize(),
// problem.MBlock, problem.NBlock, MPerBlock, NPerBlock);
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
c_grid_desc_m_n
,
problem
.
MBlock
,
problem
.
NBlock
);
const
index_t
block_n_id
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
x
);
const
index_t
block_m_id
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
y
);
const
index_t
expert_id
=
__builtin_amdgcn_readfirstlane
(
p_sorted_expert_ids
[
block_m_id
]);
// constexpr auto M0 = ABlockTransferThreadClusterLengths_AK0_M_AK1{}.At(I1);
constexpr
auto
AMThreads
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I1
);
constexpr
auto
AK0Threads
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I0
);
constexpr
auto
AK1Threads
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I2
);
constexpr
auto
AKThreads
=
AK0Threads
*
AK1Threads
;
constexpr
auto
AMRepeats
=
MPerBlock
/
AMThreads
;
// static_assert(MLoadRepeats == 1, "only support 1 line per thread now!");
const
index_t
token_pos
=
block_m_id
*
MPerBlock
+
threadIdx
.
x
/
AKThreads
*
AMRepeats
;
const
index_t
t0
=
(
p_sorted_token_ids
[
block_m_id
*
MPerBlock
]
&
0xffffff
);
if
(
t0
>=
problem
.
NumTokens
)
return
;
StaticallyIndexedArray
<
index_t
,
AMRepeats
>
gather_offsets
;
//= p_sorted_token_ids[token_pos];
static_for
<
0
,
AMRepeats
,
1
>
{}([
&
](
auto
m0
)
{
gather_offsets
(
m0
)
=
(
p_sorted_token_ids
[
token_pos
+
m0
]
&
0xffffff
)
*
problem
.
K
;
// printf("init off tid %d m %d off %d\n", threadIdx.x, m0(), gather_offsets(m0));
});
// const index_t m_block_data_idx_on_grid =
// __builtin_amdgcn_readfirstlane(block_m_id * MPerBlock);
const
index_t
expert_stride
=
__builtin_amdgcn_readfirstlane
(
problem
.
N
*
problem
.
K
);
// N0, K0, Blocksize*KPack
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_n_id
*
NXdlPerWave
);
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_ak0_m_ak1
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
+
expert_id
*
expert_stride
,
b_grid_desc_bpreshuffled
.
GetElementSpaceSize
());
// if(threadIdx.x==0)
// printf("tid %d eid %d expert_stride %d bufsize %d\n",
// threadIdx.x, expert_id, expert_stride, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
// dummy
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1_mod8
<
ThisThreadBlock
,
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
AK0Number
,
MPerBlock
,
AK1Number
>
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ADataType
,
LDSTypeA
,
decltype
(
a_grid_desc_ak0_m_ak1
),
decltype
(
a_block_desc_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
0
,
1
,
2
>
,
ABlockTransferSrcVectorDim
,
2
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
1
,
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
,
1
,
BlockwiseGemmPipe
::
GlobalBufferNum
>
(
a_grid_desc_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
),
a_element_op
,
a_block_desc_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
gather_offsets
);
// Thread-wise copy
// K0 -> N0/NWave -> NWave -> KLane -> NLane -> KPack
auto
b_block_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
BDataType
>
(
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
auto
b_blockwise_copy
=
ThreadwiseTensorSliceTransfer_v2
<
BDataType
,
BDataType
,
decltype
(
b_grid_desc_bpreshuffled
),
decltype
(
b_block_desc_bk0_n_bk1
),
Sequence
<
Number
<
NXdlPerWave
>
{},
I1
,
Number
<
KRepeat
>
{},
Number
<
BK1Value
>
{}
>
,
Sequence
<
0
,
1
,
2
,
3
>
,
3
,
BBlockTransferSrcScalarPerVector
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
>
(
b_grid_desc_bpreshuffled
,
make_multi_index
(
n_block_data_idx_on_grid
,
get_warp_local_1d_id
(),
0
,
KPack
*
(
get_thread_local_1d_id
()
%
warpSize
)));
// LDS allocation for A and B: be careful of alignment
// Cast after lds
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
LDSTypeA
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
AK1Number
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
0
,
0
,
KRepeat
,
0
);
// Blockwise GEMM pipeline
static_assert
(
std
::
is_default_constructible_v
<
BlockwiseGemmPipe
>
);
auto
blockwise_gemm_pipeline
=
BlockwiseGemmPipe
{};
auto
c_thread_buf
=
blockwise_gemm_pipeline
.
GetCThreadBuffer
();
const
index_t
num_k_block_main_loop
=
__builtin_amdgcn_readfirstlane
(
(
a_grid_desc_ak0_m_ak1
.
GetLength
(
I0
)
*
a_grid_desc_ak0_m_ak1
.
GetLength
(
I2
))
/
KPerBlock
);
blockwise_gemm_pipeline
.
template
Run
<
HasMainKBlockLoop
,
TailNum
>(
a_grid_desc_ak0_m_ak1
,
a_block_desc_ak0_m_ak1
,
a_blockwise_copy
,
a_grid_buf
,
a_block_buf
,
a_block_slice_copy_step
,
b_grid_desc_bpreshuffled
,
b_blockwise_copy
,
b_grid_buf
,
b_block_buf
,
b_block_slice_copy_step
,
c_thread_buf
,
num_k_block_main_loop
);
// shuffle C and write out
{
static_assert
(
MXdlPerWave
%
CShuffleMXdlPerWavePerShuffle
==
0
&&
NXdlPerWave
%
CShuffleNXdlPerWavePerShuffle
==
0
,
"wrong!"
);
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
// TODO: hacky, fix it!
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
blockwise_gemm_pipeline
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
=
blockwise_gemm_pipeline
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I4
);
constexpr
auto
M3
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I5
);
constexpr
auto
M4
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I6
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I7
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
auto
c_shuffle_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
CShuffleDataType
*>
(
p_shared
),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleMXdlPerWavePerShuffle
>
{},
// M0 (MXdlPerWave) per shuffle
M1
,
// M1 = MWave
M2
,
// M2 * M3 * M4 = MPerXdl
M3
,
M4
)),
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleNXdlPerWavePerShuffle
>
{},
// N0 (NXdlPerWave) per shuffle
N1
,
// N1 = NWave
N2
))),
// N2 = NPerXdl
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
,
2
,
4
,
5
,
6
>
{},
Sequence
<>
{},
Sequence
<
1
,
3
,
7
>
{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm_pipeline
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
,
M3
,
M4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_to_n0_n1_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_n0_n1_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// shuffle: threadwise copy C from VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
CShuffleDataType
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
I1
,
I1
,
M2
,
I1
,
M4
,
I1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_multi_index
(
0
,
0
,
m_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
m_thread_data_on_block_idx
[
I3
],
m_thread_data_on_block_idx
[
I4
],
n_thread_data_on_block_idx
[
I2
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
using
EDataType
=
CDataType
;
const
auto
ds_grid_desc_m_n
=
MakeDsGridDescriptor_M_N
(
problem
.
M
,
problem
.
MPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideDs
);
const
auto
ds_grid_desc_mblock_mperblock_nblock_nperblock
=
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
,
problem
.
MBlock
,
problem
.
NBlock
);
const
auto
ds_grid_buf
=
generate_tuple
(
[
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
const
DDataType
*
ptr_
=
p_ds_grid
[
i
];
// hack logic here to support different kind of strides. todo fix it.
// ascale t, 1; bscale E, N, 1, move ptr to E
if
(
i
.
value
==
1
)
{
ptr_
+=
expert_id
*
(
problem
.
StrideDs
[
1
]
?
problem
.
StrideDs
[
1
]
*
problem
.
N
:
1
);
// if ( threadIdx.x % 16 ==0)
// printf("bid %d eid %d b eoff %d %f\n", blockIdx.y, expert_id, expert_id * (problem.StrideDs[1]? problem.StrideDs[1] * problem.N : 1), ptr_[0]);
}
return
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
ptr_
,
ds_grid_desc_m_n
[
i
].
GetElementSpaceSize
());
},
Number
<
NumDTensor
>
{});
// tuple of reference to C/Ds tensor descriptors
const
auto
c_ds_desc_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_desc_mblock_mperblock_nblock_nperblock
[
i
];
},
Number
<
NumDTensor
>
{}));
// tuple of reference to C/Ds tensor descriptors
const
auto
c_ds_buf_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_buf
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_buf
[
i
];
},
Number
<
NumDTensor
>
{}));
// tuple of starting index of C/Ds blockwise copy
const
auto
idx_c_ds_block_begin
=
container_concat
(
make_tuple
(
make_multi_index
(
0
,
0
,
0
,
0
)),
generate_tuple
(
[
&
](
auto
)
{
return
make_multi_index
(
block_m_id
,
0
,
block_n_id
,
0
);
// return make_multi_index(block_work_idx[I0], 0, block_work_idx[I1], 0);
},
Number
<
NumDTensor
>
{}));
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock
=
c_grid_desc_mblock_mperblock_nblock_nperblock
;
using
CDEBlockTransferCluster
=
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
;
const
auto
EGlobalMemoryDataOperation
=
CGlobalMemoryDataOperation
;
constexpr
auto
EMThreads
=
CDEBlockTransferCluster
{}.
At
(
I0
)
*
CDEBlockTransferCluster
{}.
At
(
I1
);
constexpr
auto
EMRepeats
=
MPerBlock
/
EMThreads
;
constexpr
auto
ENThreads
=
CDEBlockTransferCluster
{}.
At
(
I2
)
*
CDEBlockTransferCluster
{}.
At
(
I3
);
const
index_t
c_token_pos
=
block_m_id
*
MPerBlock
+
threadIdx
.
x
/
ENThreads
*
EMRepeats
;
StaticallyIndexedArray
<
index_t
,
EMRepeats
>
scatter_offsets
;
//= p_sorted_token_ids[c_token_pos];
StaticallyIndexedArray
<
float
,
EMRepeats
>
scatter_weights
;
//= for topk
// too hack here, 2 specific for topk weights, fixme
const
float
*
p_sorted_weights
=
p_ds_grid
[
I0
];
static_for
<
0
,
EMRepeats
,
1
>
{}([
&
](
auto
m0
)
{
scatter_offsets
(
m0
)
=
0
;
scatter_weights
(
m0
)
=
p_sorted_weights
[(
c_token_pos
+
m0
)
*
problem
.
StrideDs
[
0
]];
// if(threadIdx.x % 16 == 0)
// printf("init off bid %d tid %d m %d off %d\n", blockIdx.y, threadIdx.x, m0(), scatter_offsets(m0));
});
auto
cde_block_copy_lds_and_global
=
ThreadGroupTensorSliceTransfer_v7r3_scatter
<
ThisThreadBlock
,
decltype
(
container_concat
(
make_tuple
(
CShuffleDataType
{}),
DsDataType
{})),
Tuple
<
EDataType
>
,
decltype
(
c_ds_desc_refs
),
decltype
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
)),
CElementwiseOperation
,
Sequence
<
static_cast
<
index_t
>
(
EGlobalMemoryDataOperation
)
>
,
// FIXME: make Sequence
// support arbitray type
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
,
// BlockSliceLengths,
CDEBlockTransferCluster
,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename ThreadClusterArrangeOrder,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename SrcDimAccessOrder,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename DstDimAccessOrder,
3
,
// index_t SrcVectorDim,
3
,
// index_t DstVectorDim,
CDEShuffleBlockTransferScalarPerVectors
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
sequence_merge_t
<
Sequence
<
true
>
,
uniform_sequence_gen_t
<
NumDTensor
,
false
>>
,
// ThreadTransferSrcResetCoordinateAfterRunFlags
Sequence
<
false
>
,
// ThreadTransferDstResetCoordinateAfterRunFlags
1
,
//ScatterDim
false
,
//OutputScatter: false, only use scatter weights
1
// ScatterWeightIdx: ascale
>
{
c_ds_desc_refs
,
idx_c_ds_block_begin
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
make_tuple
(
make_multi_index
(
block_m_id
,
0
,
block_n_id
,
0
)),
c_element_op
,
scatter_offsets
,
scatter_weights
};
auto
c_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_grid
,
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
// space filling curve for threadwise C in VGPR
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MXdlPerWave
,
NXdlPerWave
,
1
,
1
,
M2
,
1
,
M4
,
1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
1
,
1
,
M2
,
1
,
M4
,
1
>>
{};
constexpr
index_t
num_access
=
sfc_c_vgpr
.
GetNumOfAccess
();
// space filling curve for shuffled blockwise C/D/E
constexpr
auto
sfc_cde_block
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>>
{};
static_assert
(
num_access
==
sfc_cde_block
.
GetNumOfAccess
(),
"wrong!"
);
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
access_id
)
{
// make sure it's safe to write to LDS
block_sync_lds
();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
sfc_c_vgpr
.
GetIndexTupleOfNumber
(
access_id
),
c_thread_buf
,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
c_shuffle_block_buf
);
// make sure it's safe to read from LDS
block_sync_lds
();
// each block copy its data from LDS to global
cde_block_copy_lds_and_global
.
Run
(
c_ds_desc_refs
,
c_ds_buf_refs
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
tie
(
c_grid_buf
));
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
cde_lds_and_global_step
=
sfc_cde_block
.
GetForwardStep
(
access_id
);
// move on Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
cde_block_copy_lds_and_global
.
MoveSrcSliceWindow
(
c_ds_desc_refs
,
i
+
I1
,
cde_lds_and_global_step
);
});
// move on E
cde_block_copy_lds_and_global
.
MoveDstSliceWindow
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
I0
,
cde_lds_and_global_step
);
}
});
}
}
// template <bool HasMainKBlockLoop,
// InMemoryDataOperationEnum CGlobalMemoryDataOperation,
// TailNumber TailNum = TailNumber::Odd>
// __device__ static void Run_2Lds(const ADataType* p_a_grid,
// const BDataType* p_b_grid,
// DsGridPointer& p_ds_grid,
// CDataType* p_c_grid,
// void* p_shared,
// void* p_shared1,
// const Problem& problem,
// AElementwiseOperation a_element_op,
// BElementwiseOperation b_element_op,
// CElementwiseOperation c_element_op)
// {
// // const auto block_2_ctile_map = Block2CTileMapDefault{problem.M, problem.N, 4};
// // Run_2Lds<Block2CTileMapDefault, HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
// // p_a_grid,
// // p_b_grid,
// // p_ds_grid,
// // p_c_grid,
// // p_shared,
// // p_shared1,
// // problem,
// // a_element_op,
// // b_element_op,
// // c_element_op,
// // block_2_ctile_map);
// }
// template <typename Block2CTileMap,
// bool HasMainKBlockLoop,
// InMemoryDataOperationEnum CGlobalMemoryDataOperation,
// TailNumber TailNum = TailNumber::Odd>
// __device__ static void Run_2Lds(const ADataType* p_a_grid,
// const BDataType* p_b_grid,
// DsGridPointer& p_ds_grid,
// CDataType* p_c_grid,
// void* p_shared,
// void* p_shared1,
// const Problem& problem,
// AElementwiseOperation a_element_op,
// BElementwiseOperation b_element_op,
// CElementwiseOperation c_element_op,
// const Block2CTileMap& block_2_ctile_map)
// {
// }
};
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_moe_gemm_scatter.hpp
0 → 100644
View file @
0f444e0c
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle_selector.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7r3_scatter.hpp"
#define DEBUG_LOG 0
namespace
ck
{
// Currently we do not have a elegant way to put single lds buffer & double lds buffer pipe in same
// kernel function Blockers:
// 1. Two separted declaration of __shared__ pointer is the key to make sure data access operate on
// two lds chunks.
// 2. Occupied __shared__ won't release until whole shader end, a.k.a AB and C may not use same lds
// buffer when we declare __shared__ inside blkgemmpipe
template
<
typename
GridwiseGemm
,
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
index_t
MinimumOccupancy
=
1
,
TailNumber
TailNum
=
TailNumber
::
Even
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
MinimumOccupancy
)
#endif
// __attribute__((amdgpu_waves_per_eu(1, 1)))
kernel_moe_gemm_scatter
(
typename
GridwiseGemm
::
Argument
karg
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
auto
splitk_batch_offset
=
typename
GridwiseGemm
::
SplitKBatchOffset
(
karg
,
blockIdx
.
z
);
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
,
CGlobalMemoryDataOperation
,
TailNum
>(
karg
.
p_sorted_token_ids
,
karg
.
p_sorted_expert_ids
,
karg
.
p_a_grid
+
splitk_batch_offset
.
a_k_split_offset
,
karg
.
p_b_grid
+
splitk_batch_offset
.
b_k_split_offset
,
karg
.
p_ds_grid
,
karg
.
p_c_grid
,
p_shared
,
karg
,
karg
.
a_element_op
,
karg
.
b_element_op
,
karg
.
c_element_op
);
#else
ignore
=
karg
;
#endif // end of if (defined(__gfx9__))
}
// template <typename GridwiseGemm,
// bool HasMainKBlockLoop,
// InMemoryDataOperationEnum CGlobalMemoryDataOperation,
// index_t MinimumOccupancy = 1,
// TailNumber TailNum = TailNumber::Even>
// __global__ void
// #if CK_USE_LAUNCH_BOUNDS
// __launch_bounds__(CK_MAX_THREAD_PER_BLOCK, MinimumOccupancy)
// #endif
// // __attribute__((amdgpu_waves_per_eu(1, 1)))
// kernel_moe_gemm_scatter_2lds(typename GridwiseGemm::Argument karg)
// {
// #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
// __shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
// __shared__ char p_shared1[GridwiseGemm::GetSharedMemoryNumberOfByte()];
// auto splitk_batch_offset = typename GridwiseGemm::SplitKBatchOffset(karg, blockIdx.z);
// GridwiseGemm::template Run_2Lds<HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
// karg.p_a_grid + splitk_batch_offset.a_k_split_offset,
// karg.p_b_grid + splitk_batch_offset.b_k_split_offset,
// karg.p_ds_grid,
// karg.p_c_grid,
// p_shared,
// p_shared1,
// karg,
// karg.a_element_op,
// karg.b_element_op,
// karg.c_element_op);
// #else
// ignore = karg;
// #endif // end of if (defined(__gfx9__))
// }
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1Value
,
index_t
BK1Value
,
index_t
MPerXdl
,
index_t
NPerXdl
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
AThreadTransferSrcResetCoordinateAfterRun
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BThreadTransferSrcResetCoordinateAfterRun
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
CDEShuffleBlockTransferScalarPerVectors
,
BlockGemmPipelineScheduler
BlkGemmPipeSched
=
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
BlkGemmPipelineVer
=
BlockGemmPipelineVersion
::
v1
,
typename
ComputeTypeA
=
CDataType
,
typename
ComputeTypeB
=
ComputeTypeA
,
typename
LDSTypeA
=
ADataType
,
typename
LDSTypeB
=
BDataType
>
struct
GridwiseMoeGemmScatter
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
static
constexpr
auto
CShuffleBlockTransferScalarPerVector_NPerBlock
=
CDEShuffleBlockTransferScalarPerVectors
{}[
I0
];
// K1 should be Number<...>
static
constexpr
auto
AK0Number
=
Number
<
KPerBlock
/
AK1Value
>
{};
static
constexpr
auto
BK0Number
=
Number
<
KPerBlock
/
BK1Value
>
{};
static
constexpr
auto
AK1Number
=
Number
<
AK1Value
>
{};
static
constexpr
auto
BK1Number
=
Number
<
BK1Value
>
{};
static
constexpr
auto
BlockSizeNumber
=
Number
<
BlockSize
>
{};
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
using
mfma_selector
=
MfmaSelector
<
ComputeTypeA
,
MPerXdl
,
NPerXdl
,
ComputeTypeB
>
;
static
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1Number
,
BK1Number
),
mfma_selector
::
selected_mfma
.
k_per_blk
);
static
constexpr
index_t
KLane
=
mfma_selector
::
GetKPerXdlops
()
/
mfma_selector
::
GetK1PerXdlops
();
static
constexpr
index_t
KRepeat
=
KPerBlock
/
KLane
/
KPack
;
static
constexpr
index_t
NLane
=
NPerXdl
;
static
constexpr
index_t
NWave
=
NPerBlock
/
NPerXdl
/
NXdlPerWave
;
static_assert
(
NWave
*
warpSize
==
BlockSize
);
// static constexpr index_t NumTokens = 1;
static
constexpr
index_t
SortedTileSize
=
MPerBlock
;
static
constexpr
auto
MakeDsGridPointer
()
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
return
static_cast
<
const
DDataType
*>
(
nullptr
);
},
Number
<
NumDTensor
>
{});
}
using
DsGridPointer
=
decltype
(
MakeDsGridPointer
());
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
__host__
static
auto
CalculateGridSize
(
index_t
M
,
index_t
N
)
{
return
std
::
make_tuple
(
math
::
integer_divide_ceil
(
N
,
NPerBlock
),
math
::
integer_divide_ceil
(
M
,
MPerBlock
),
1
);
}
__host__
__device__
static
auto
CalculateMPadded
(
index_t
M
)
{
return
math
::
integer_least_multiple
(
M
,
MPerBlock
);
}
__host__
__device__
static
auto
CalculateNPadded
(
index_t
N
)
{
return
math
::
integer_least_multiple
(
N
,
NPerBlock
);
}
__host__
__device__
static
auto
CalculateBN0Shuffled
(
index_t
N
)
{
return
math
::
integer_divide_ceil
(
N
,
NLane
);
}
__host__
__device__
static
auto
CalculateBK0Shuffled
(
index_t
K
)
{
return
math
::
integer_divide_ceil
(
K
,
KLane
*
KPack
);
}
__host__
__device__
static
auto
CalculateKPadded
(
index_t
K
)
{
return
math
::
integer_divide_ceil
(
K
,
KPerBlock
)
*
KPerBlock
;
}
__host__
__device__
static
auto
CalculateAK0Padded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
(
KPerBlock
/
AK1Value
);
}
__host__
__device__
static
auto
CalculateBK0Padded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
(
KPerBlock
/
BK1Value
);
}
__host__
__device__
static
auto
CalculateKPadded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
KPerBlock
;
}
__host__
__device__
static
auto
CalculateKRead
(
index_t
K
,
index_t
K_Batch
=
1
)
{
constexpr
auto
KReadVec
=
math
::
lcm
(
AK1Number
,
BK1Number
);
auto
K_t
=
K_Batch
*
KReadVec
;
return
(
K
+
K_t
-
1
)
/
K_t
*
KReadVec
;
}
__host__
__device__
static
auto
CalculateMBlock
(
index_t
M
)
{
return
math
::
integer_divide_ceil
(
M
,
MPerBlock
);
}
__host__
__device__
static
auto
CalculateNBlock
(
index_t
N
)
{
return
math
::
integer_divide_ceil
(
N
,
NPerBlock
);
}
template
<
index_t
MNXdlPerWave
,
index_t
MNWaves
,
index_t
MNPerXdl
,
typename
TileDesc_K0_MN_K1
>
__host__
__device__
static
constexpr
auto
MakeGemmMmaTileDescriptor
(
const
TileDesc_K0_MN_K1
&
)
{
constexpr
index_t
K0
=
TileDesc_K0_MN_K1
{}.
GetLength
(
Number
<
0
>
{});
constexpr
index_t
K1
=
TileDesc_K0_MN_K1
{}.
GetLength
(
Number
<
2
>
{});
return
transform_tensor_descriptor
(
TileDesc_K0_MN_K1
{},
make_tuple
(
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
K0
>
{},
Number
<
K1
>
{})),
make_unmerge_transform
(
make_tuple
(
Number
<
MNXdlPerWave
>
{},
Number
<
MNWaves
>
{},
Number
<
MNPerXdl
>
{}))),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
3
>
{},
Sequence
<
0
,
1
,
2
>
{}));
}
__host__
__device__
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
index_t
M
,
index_t
MPad
,
index_t
K
,
index_t
KPad
,
index_t
StrideA
,
index_t
AK0
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
I1
,
StrideA
));
}
}();
using
GemmSpecialization
=
tensor_operation
::
device
::
GemmSpecialization
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both M and K
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
MPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad M, but not K
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_right_pad_transform
(
M
,
MPad
-
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad K, but not M
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_pass_through_transform
(
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
{
// not pad M or K
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
}
__host__
__device__
static
auto
MakeBGridDescriptor_Preshuffled
(
index_t
N0
,
index_t
K0
)
{
constexpr
index_t
NkSwizzleNumber
=
Number
<
warpSize
*
KPack
>
{};
return
make_naive_tensor_descriptor
(
make_tuple
(
N0
/
NWave
,
NWave
,
K0
,
NkSwizzleNumber
),
make_tuple
(
NWave
*
K0
*
NkSwizzleNumber
,
K0
*
NkSwizzleNumber
,
NkSwizzleNumber
,
I1
));
}
__host__
__device__
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
index_t
K
,
index_t
KPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideB
,
index_t
BK0
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
K
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
K
),
make_tuple
(
StrideB
,
I1
));
}
}();
using
GemmSpecialization
=
tensor_operation
::
device
::
GemmSpecialization
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both N and K
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_right_pad_transform
(
N
,
NPad
-
N
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
NPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad N, but not K
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad K, but not N
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_pass_through_transform
(
N
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
{
// not pad N or K
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
}
template
<
typename
ABlockDesc_AK0_M_AK1
>
__host__
__device__
static
constexpr
auto
MakeAMmaTileDescriptor_M0_M1_M2_K
(
const
ABlockDesc_AK0_M_AK1
&
)
{
constexpr
index_t
MWaves
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
return
MakeGemmMmaTileDescriptor
<
MXdlPerWave
,
MWaves
,
MPerXdl
>
(
ABlockDesc_AK0_M_AK1
{});
}
template
<
typename
BBlockDesc_BK0_N_BK1
>
__host__
__device__
static
constexpr
auto
MakeBMmaTileDescriptor_N0_N1_N2_K
(
const
BBlockDesc_BK0_N_BK1
&
)
{
return
MakeGemmMmaTileDescriptor
<
NXdlPerWave
,
NWave
,
NPerXdl
>
(
BBlockDesc_BK0_N_BK1
{});
}
template
<
typename
ELayout
>
__host__
__device__
static
auto
MakeCGridDescriptor_M_N
(
index_t
M
,
index_t
MPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideC
)
{
const
auto
c_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideC
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I1
,
StrideC
));
}
}();
// pad M and N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
template
<
typename
DLayout
>
__host__
__device__
static
auto
MakeDGridDescriptor_M_N
(
index_t
M
,
index_t
MPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideC
)
{
const
auto
c_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
DLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideC
,
I0
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
DLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I0
,
StrideC
));
}
}();
// pad M and N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
__host__
__device__
static
auto
MakeDsGridDescriptor_M_N
(
index_t
M
,
index_t
MPad
,
index_t
N
,
index_t
NPad
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
MakeDGridDescriptor_M_N
<
DLayout
>
(
M
,
MPad
,
N
,
NPad
,
StrideDs
[
i
]);
},
Number
<
NumDTensor
>
{});
}
template
<
typename
DsGridDesc
>
__device__
static
constexpr
auto
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
DsGridDesc
&
ds_grid_desc_m_n
,
index_t
MBlock
,
index_t
NBlock
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
return
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
[
i
],
MBlock
,
NBlock
);
},
Number
<
NumDTensor
>
{});
}
struct
Problem
{
__host__
__device__
Problem
(
index_t
NumTokens_
,
index_t
M_
,
index_t
N_
,
index_t
K_
,
index_t
StrideA_
,
index_t
StrideB_
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs_
,
index_t
StrideC_
,
index_t
KBatch_
)
:
NumTokens
{
NumTokens_
},
M
{
M_
},
N
{
N_
},
K
{
K_
},
StrideA
{
StrideA_
},
StrideB
{
StrideB_
},
StrideDs
{
StrideDs_
},
StrideC
{
StrideC_
},
KBatch
{
KBatch_
},
MPadded
{
CalculateMPadded
(
M_
)},
NPadded
{
CalculateNPadded
(
N_
)},
KRead
{
CalculateKRead
(
K_
,
KBatch_
)},
KPadded
{
CalculateKPadded
(
K_
,
KBatch_
)},
AK0
{
CalculateAK0Padded
(
K_
,
KBatch_
)},
BK0
{
CalculateBK0Padded
(
K_
,
KBatch_
)},
MBlock
{
CalculateMBlock
(
M_
)},
NBlock
{
CalculateNBlock
(
N_
)},
BN0Shuffled
{
CalculateBN0Shuffled
(
N_
)},
BK0Shuffled
{
CalculateBK0Shuffled
(
K_
)}
{
}
__host__
void
Print
()
const
{
std
::
cout
<<
"problem {"
<<
"NumTokens:"
<<
NumTokens
<<
", "
<<
"M:"
<<
M
<<
", "
<<
"N:"
<<
N
<<
", "
<<
"K:"
<<
K
<<
", "
<<
"SA:"
<<
StrideA
<<
", "
<<
"SB:"
<<
StrideB
<<
", "
<<
"SC:"
<<
StrideC
<<
", "
<<
"MP:"
<<
MPadded
<<
", "
<<
"NP:"
<<
NPadded
<<
", "
<<
"KRead:"
<<
KRead
<<
", "
<<
"KP:"
<<
KPadded
<<
", "
<<
"AK0:"
<<
AK0
<<
", "
<<
"BK0:"
<<
BK0
<<
", "
<<
"MBlock: "
<<
MBlock
<<
", "
<<
"NBlock: "
<<
NBlock
<<
"}"
<<
std
::
endl
;
}
index_t
NumTokens
;
index_t
M
;
index_t
N
;
index_t
K
;
index_t
StrideA
;
index_t
StrideB
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
;
index_t
StrideC
;
index_t
KBatch
;
index_t
MPadded
;
index_t
NPadded
;
index_t
KRead
;
index_t
KPadded
;
index_t
AK0
;
index_t
BK0
;
index_t
MBlock
;
index_t
NBlock
;
// FOR PRESHUFFLE ONLY
index_t
BN0Shuffled
;
index_t
BK0Shuffled
;
};
// Argument
struct
Argument
:
public
tensor_operation
::
device
::
BaseArgument
,
public
Problem
{
__host__
Argument
(
const
index_t
*
p_sorted_token_ids_
,
const
index_t
*
p_sorted_expert_ids_
,
const
ADataType
*
p_a_grid_
,
const
BDataType
*
p_b_grid_
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid_
,
CDataType
*
p_c_grid_
,
index_t
NumTokens_
,
index_t
M_
,
index_t
N_
,
index_t
K_
,
index_t
StrideA_
,
index_t
StrideB_
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs_
,
index_t
StrideC_
,
index_t
k_batch_
,
AElementwiseOperation
a_element_op_
,
BElementwiseOperation
b_element_op_
,
CElementwiseOperation
c_element_op_
)
:
Problem
{
NumTokens_
,
M_
,
N_
,
K_
,
StrideA_
,
StrideB_
,
StrideDs_
,
StrideC_
,
k_batch_
},
p_sorted_token_ids
{
p_sorted_token_ids_
},
p_sorted_expert_ids
{
p_sorted_expert_ids_
},
p_a_grid
{
p_a_grid_
},
p_b_grid
{
p_b_grid_
},
p_ds_grid
{},
p_c_grid
{
p_c_grid_
},
a_element_op
{
a_element_op_
},
b_element_op
{
b_element_op_
},
c_element_op
{
c_element_op_
}
{
// populate pointer, desc for Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DDataType_
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid
(
i
)
=
static_cast
<
const
DDataType_
*>
(
p_ds_grid_
[
i
]);
});
}
const
index_t
*
p_sorted_token_ids
;
const
index_t
*
p_sorted_expert_ids
;
const
ADataType
*
p_a_grid
;
const
BDataType
*
p_b_grid
;
DsGridPointer
p_ds_grid
;
CDataType
*
p_c_grid
;
const
AElementwiseOperation
a_element_op
;
const
BElementwiseOperation
b_element_op
;
const
CElementwiseOperation
c_element_op
;
};
struct
SplitKBatchOffset
{
__device__
SplitKBatchOffset
(
Argument
&
karg
,
index_t
k_id
)
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
a_k_split_offset
=
k_id
*
karg
.
KRead
;
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
a_k_split_offset
=
k_id
*
karg
.
KRead
*
karg
.
StrideA
;
}
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>
)
{
b_k_split_offset
=
k_id
*
karg
.
KRead
*
karg
.
StrideB
;
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>
)
{
// KPack * NLane * KLane * K0 * N0
b_k_split_offset
=
k_id
*
karg
.
KRead
*
NLane
;
}
if
(
k_id
<
karg
.
KBatch
-
1
)
{
karg
.
K
=
karg
.
KRead
;
}
else
{
karg
.
K
=
karg
.
K
-
karg
.
KRead
*
(
karg
.
KBatch
-
1
);
}
}
index_t
a_k_split_offset
;
index_t
b_k_split_offset
;
};
__device__
static
constexpr
auto
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()
{
// A matrix in LDS memory, dst of blockwise copy
if
constexpr
(
ABlockLdsExtraM
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
AK0Number
,
Number
<
MPerBlock
>
{},
AK1Number
),
make_tuple
(
AK1Number
,
Number
<
KPerBlock
+
ABlockLdsExtraM
>
{},
I1
));
}
// xor tensor transformation request more unnecessary vgpr usage, would cause register spill
// in some cases.
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
constexpr
auto
MLdsLayer
=
32
*
4
/
KPerBlock
/
sizeof
(
LDSTypeA
)
<
1
?
1
:
32
*
4
/
KPerBlock
/
sizeof
(
LDSTypeA
);
constexpr
auto
a_lds_block_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
AK0Number
*
Number
<
MLdsLayer
>
{},
Number
<
MPerBlock
/
MLdsLayer
>
{},
AK1Number
),
make_tuple
(
AK1Number
,
Number
<
KPerBlock
*
MLdsLayer
>
{},
I1
));
constexpr
auto
a_lds_block_desc_permuted
=
transform_tensor_descriptor
(
a_lds_block_desc
,
make_tuple
(
make_xor_with_modulo_transform
(
make_tuple
(
Number
<
MPerBlock
/
MLdsLayer
>
{},
Number
<
AK0Number
*
MLdsLayer
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
1
,
0
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
1
,
0
>
{},
Sequence
<
2
>
{}));
constexpr
auto
a_lds_block_desc_ak0_mldslayer_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_permuted
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0Number
,
Number
<
MLdsLayer
>
{})),
make_pass_through_transform
(
Number
<
MPerBlock
/
MLdsLayer
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{},
Sequence
<
3
>
{}));
constexpr
auto
a_lds_block_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_ak0_mldslayer_m_ak1
,
make_tuple
(
make_pass_through_transform
(
AK0Number
),
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
MPerBlock
/
MLdsLayer
>
{},
Number
<
MLdsLayer
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
a_lds_block_desc_ak0_m_ak1
;
}
else
// ColumnMajor A
{
// kfold and mpair dimension is not always required.
// more dimension in merge_transform increase the difficulty of generating immarg offset
// for compiler.
constexpr
auto
M0
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I1
);
constexpr
auto
M1
=
MPerBlock
/
M0
;
constexpr
auto
KThreadWrite
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I0
);
constexpr
auto
K0PerThreadWrite
=
AK0Number
/
KThreadWrite
;
constexpr
auto
KThreadRead
=
64
/
MPerXdl
;
constexpr
auto
K0PerThreadRead
=
AK0Number
/
KThreadRead
;
constexpr
auto
kfold
=
(
AK1Number
*
M0
*
sizeof
(
LDSTypeA
)
>
128
)
?
1
:
128
/
(
AK1Number
*
M0
*
sizeof
(
LDSTypeA
));
constexpr
auto
KThreadReadPerm
=
(
kfold
*
K0PerThreadWrite
/
K0PerThreadRead
)
>
1
?
KThreadRead
/
(
kfold
*
K0PerThreadWrite
/
K0PerThreadRead
)
:
KThreadRead
;
// 1<=mpair<=n0
constexpr
auto
mpair
=
(
AK1Number
*
MPerXdl
*
sizeof
(
LDSTypeA
)
>
128
)
?
1
:
((
128
/
(
AK1Number
*
MPerXdl
*
sizeof
(
LDSTypeA
)))
>
M0
?
M0
:
128
/
(
AK1Number
*
MPerXdl
*
sizeof
(
LDSTypeA
)));
constexpr
auto
a_lds_block_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{},
Number
<
K0PerThreadWrite
>
{},
Number
<
KThreadReadPerm
*
M1
>
{},
Number
<
kfold
*
M0
/
mpair
>
{},
Number
<
mpair
>
{},
AK1Number
));
constexpr
auto
a_lds_block_desc_permuted
=
transform_tensor_descriptor
(
a_lds_block_desc
,
make_tuple
(
make_pass_through_transform
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{}),
make_pass_through_transform
(
Number
<
K0PerThreadWrite
>
{}),
make_xor_with_modulo_transform
(
make_tuple
(
Number
<
KThreadReadPerm
*
M1
>
{},
Number
<
kfold
*
M0
/
mpair
>
{})),
make_pass_through_transform
(
Number
<
mpair
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}));
constexpr
auto
a_lds_block_desc_unmerged
=
transform_tensor_descriptor
(
a_lds_block_desc_permuted
,
make_tuple
(
make_pass_through_transform
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{}),
make_pass_through_transform
(
Number
<
K0PerThreadWrite
>
{}),
make_unmerge_transform
(
make_tuple
(
Number
<
KThreadReadPerm
>
{},
Number
<
M1
>
{})),
make_unmerge_transform
(
make_tuple
(
Number
<
kfold
>
{},
Number
<
M0
/
mpair
>
{})),
make_pass_through_transform
(
Number
<
mpair
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
0
,
3
>
{},
Sequence
<
4
,
5
>
{},
Sequence
<
6
>
{},
Sequence
<
7
>
{}));
constexpr
auto
a_lds_block_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_unmerged
,
make_tuple
(
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
KThreadReadPerm
>
{},
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{},
Number
<
kfold
>
{},
Number
<
K0PerThreadWrite
>
{})),
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
M0
/
mpair
>
{},
Number
<
mpair
>
{},
Number
<
M1
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
,
1
,
4
,
2
>
{},
Sequence
<
5
,
6
,
3
>
{},
Sequence
<
7
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
a_lds_block_desc_ak0_m_ak1
;
}
}
__device__
static
constexpr
auto
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()
{
// K0 -> N0/NWave -> NWave -> KLane -> NLane -> KPack
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
NXdlPerWave
>
{},
I1
,
Number
<
KRepeat
>
{},
Number
<
BK1Value
>
{}));
}
__device__
static
constexpr
auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
()
{
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
>
{},
I1
,
Number
<
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
{}));
return
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
;
}
using
BlockwiseGemmPipe
=
remove_cvref_t
<
decltype
(
BlockGemmBPreshufflePipeline_Selector
<
BlkGemmPipelineVer
,
BlkGemmPipeSched
,
BlockSize
,
LDSTypeA
,
LDSTypeB
,
ComputeTypeA
,
AccDataType
,
decltype
(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()),
decltype
(
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()),
decltype
(
MakeAMmaTileDescriptor_M0_M1_M2_K
(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
())),
decltype
(
MakeBMmaTileDescriptor_N0_N1_N2_K
(
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
())),
ABlockTransferSrcScalarPerVector
,
BBlockTransferSrcScalarPerVector
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
MPerXdl
,
NPerXdl
,
MXdlPerWave
,
NXdlPerWave
,
KPack
>
())
>
;
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1Number
,
BK1Number
);
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
// LDS allocation for C shuffle in LDS
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
constexpr
auto
c_block_size
=
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
();
return
math
::
max
(
a_block_space_size_aligned
*
sizeof
(
LDSTypeA
),
c_block_size
*
sizeof
(
CShuffleDataType
));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
__host__
static
constexpr
bool
CheckValidity
(
const
Argument
&
karg
)
{
static_assert
((
MPerBlock
%
(
MPerXdl
*
MXdlPerWave
)
==
0
)
&&
(
NPerBlock
%
(
NXdlPerWave
*
NPerXdl
))
==
0
,
"Invalid tuning param!"
);
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
&&
!
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
))
{
if
(
!
(
karg
.
M
%
MPerBlock
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg M value is not a multiple of MPerBlock! M: "
<<
karg
.
M
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
&&
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
))
{
if
(
!
(
karg
.
N
%
NPerBlock
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg N value is not a multiple of NPerBlock! N: "
<<
karg
.
N
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
KPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
))
{
auto
K_t
=
karg
.
KBatch
*
KPerBlock
;
if
(
!
(
karg
.
K
%
K_t
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K value is not a multiple of K_Batch * K0PerBlock * K1! K: "
<<
karg
.
K
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
constexpr
auto
KReadVec
=
math
::
lcm
(
AK1Number
,
BK1Number
);
auto
K_t
=
karg
.
KBatch
*
KReadVec
;
auto
KReadPadSplited
=
math
::
integer_divide_ceil
(
karg
.
K
,
K_t
)
*
KReadVec
;
if
((
KReadPadSplited
*
(
karg
.
KBatch
-
1
))
>=
karg
.
K
)
{
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
if
(
karg
.
K
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K ("
<<
karg
.
K
<<
") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<<
ABlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
if
(
karg
.
M
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg M ("
<<
karg
.
M
<<
") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<<
ABlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
if
(
karg
.
N
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg N ("
<<
karg
.
N
<<
") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<<
BBlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
if
(
karg
.
K
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K ("
<<
karg
.
K
<<
") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<<
BBlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
if
(
karg
.
N
%
CShuffleBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg N ("
<<
karg
.
N
<<
") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<<
CShuffleBlockTransferScalarPerVector_NPerBlock
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
if
(
karg
.
M
%
CShuffleBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg M ("
<<
karg
.
M
<<
") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<<
CShuffleBlockTransferScalarPerVector_NPerBlock
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
// check gridwise gemm pipeline
#if 1
const
auto
num_k_loop
=
karg
.
AK0
/
(
KPerBlock
/
AK1Value
);
if
(
num_k_loop
<=
BlockwiseGemmPipe
::
PrefetchStages
)
{
return
false
;
}
#endif
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return
true
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainKBlockLoop
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
BlockwiseGemmPipe
::
BlockHasHotloop
(
num_loop
);
}
__host__
__device__
static
constexpr
TailNumber
CalculateKBlockLoopTailNum
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
BlockwiseGemmPipe
::
BlockLoopTailNum
(
num_loop
);
}
template
<
typename
CGridDesc
>
__device__
static
constexpr
auto
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
CGridDesc
&
c_grid_desc_m_n
,
index_t
MBlock
,
index_t
NBlock
)
{
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{})),
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
return
c_grid_desc_mblock_mperblock_nblock_nperblock
;
}
// return block_id to C matrix tile idx (m0, n0) mapping
// if arch = gfx942
// using Block2CTileMapDefault = BlockToCTileMap_Grouped_M00_N0_M01Adapt<8, MPerBlock, NPerBlock>;
template
<
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
TailNumber
TailNum
=
TailNumber
::
Odd
>
__device__
static
void
Run
(
const
index_t
*
p_sorted_token_ids
,
const
index_t
*
p_sorted_expert_ids
,
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
DsGridPointer
&
p_ds_grid
,
CDataType
*
p_c_grid
,
void
*
p_shared
,
const
Problem
&
problem
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
ignore
=
b_element_op
;
const
auto
a_grid_desc_ak0_m_ak1
=
MakeAGridDescriptor_AK0_M_AK1
(
problem
.
M
,
problem
.
MPadded
,
problem
.
K
,
problem
.
KPadded
,
problem
.
StrideA
,
problem
.
AK0
);
const
auto
b_grid_desc_bpreshuffled
=
MakeBGridDescriptor_Preshuffled
(
problem
.
BN0Shuffled
,
problem
.
BK0Shuffled
);
const
auto
c_grid_desc_m_n
=
MakeCGridDescriptor_M_N
<
CLayout
>
(
problem
.
NumTokens
,
problem
.
MPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideC
);
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
c_grid_desc_m_n
,
problem
.
MBlock
,
problem
.
NBlock
);
const
index_t
block_n_id
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
x
);
const
index_t
block_m_id
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
y
);
const
index_t
expert_id
=
__builtin_amdgcn_readfirstlane
(
p_sorted_expert_ids
[
block_m_id
]);
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_m_id
*
MPerBlock
);
const
index_t
expert_stride
=
__builtin_amdgcn_readfirstlane
(
problem
.
N
*
problem
.
K
);
const
index_t
t0
=
(
p_sorted_token_ids
[
block_m_id
*
MPerBlock
]
&
0xffffff
);
if
(
t0
>=
problem
.
NumTokens
)
return
;
// N0, K0, Blocksize*KPack
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_n_id
*
NXdlPerWave
);
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_ak0_m_ak1
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
+
expert_id
*
expert_stride
,
b_grid_desc_bpreshuffled
.
GetElementSpaceSize
());
// if(threadIdx.x==0)
// printf("tid %d eid %d expert_stride %d bufsize %d\n",
// threadIdx.x, expert_id, expert_stride, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
// dummy
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
AK0Number
,
MPerBlock
,
AK1Number
>
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ADataType
,
LDSTypeA
,
decltype
(
a_grid_desc_ak0_m_ak1
),
decltype
(
a_block_desc_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
0
,
1
,
2
>
,
ABlockTransferSrcVectorDim
,
2
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
1
,
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
,
BlockwiseGemmPipe
::
GlobalBufferNum
>
(
a_grid_desc_ak0_m_ak1
,
make_multi_index
(
0
,
m_block_data_idx_on_grid
,
0
),
a_element_op
,
a_block_desc_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// Thread-wise copy
// K0 -> N0/NWave -> NWave -> KLane -> NLane -> KPack
auto
b_block_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
BDataType
>
(
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
auto
b_blockwise_copy
=
ThreadwiseTensorSliceTransfer_v2
<
BDataType
,
BDataType
,
decltype
(
b_grid_desc_bpreshuffled
),
decltype
(
b_block_desc_bk0_n_bk1
),
Sequence
<
Number
<
NXdlPerWave
>
{},
I1
,
Number
<
KRepeat
>
{},
Number
<
BK1Value
>
{}
>
,
Sequence
<
0
,
1
,
2
,
3
>
,
3
,
BBlockTransferSrcScalarPerVector
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
>
(
b_grid_desc_bpreshuffled
,
make_multi_index
(
n_block_data_idx_on_grid
,
get_warp_local_1d_id
(),
0
,
KPack
*
(
get_thread_local_1d_id
()
%
warpSize
)));
// LDS allocation for A and B: be careful of alignment
// Cast after lds
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
LDSTypeA
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
AK1Number
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
0
,
0
,
KRepeat
,
0
);
// Blockwise GEMM pipeline
static_assert
(
std
::
is_default_constructible_v
<
BlockwiseGemmPipe
>
);
auto
blockwise_gemm_pipeline
=
BlockwiseGemmPipe
{};
auto
c_thread_buf
=
blockwise_gemm_pipeline
.
GetCThreadBuffer
();
const
index_t
num_k_block_main_loop
=
__builtin_amdgcn_readfirstlane
(
(
a_grid_desc_ak0_m_ak1
.
GetLength
(
I0
)
*
a_grid_desc_ak0_m_ak1
.
GetLength
(
I2
))
/
KPerBlock
);
blockwise_gemm_pipeline
.
template
Run
<
HasMainKBlockLoop
,
TailNum
>(
a_grid_desc_ak0_m_ak1
,
a_block_desc_ak0_m_ak1
,
a_blockwise_copy
,
a_grid_buf
,
a_block_buf
,
a_block_slice_copy_step
,
b_grid_desc_bpreshuffled
,
b_blockwise_copy
,
b_grid_buf
,
b_block_buf
,
b_block_slice_copy_step
,
c_thread_buf
,
num_k_block_main_loop
);
// shuffle C and write out
{
static_assert
(
MXdlPerWave
%
CShuffleMXdlPerWavePerShuffle
==
0
&&
NXdlPerWave
%
CShuffleNXdlPerWavePerShuffle
==
0
,
"wrong!"
);
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
// TODO: hacky, fix it!
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
blockwise_gemm_pipeline
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
=
blockwise_gemm_pipeline
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I4
);
constexpr
auto
M3
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I5
);
constexpr
auto
M4
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I6
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I7
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
auto
c_shuffle_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
CShuffleDataType
*>
(
p_shared
),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleMXdlPerWavePerShuffle
>
{},
// M0 (MXdlPerWave) per shuffle
M1
,
// M1 = MWave
M2
,
// M2 * M3 * M4 = MPerXdl
M3
,
M4
)),
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleNXdlPerWavePerShuffle
>
{},
// N0 (NXdlPerWave) per shuffle
N1
,
// N1 = NWave
N2
))),
// N2 = NPerXdl
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
,
2
,
4
,
5
,
6
>
{},
Sequence
<>
{},
Sequence
<
1
,
3
,
7
>
{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm_pipeline
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
,
M3
,
M4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_to_n0_n1_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_n0_n1_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// shuffle: threadwise copy C from VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
CShuffleDataType
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
I1
,
I1
,
M2
,
I1
,
M4
,
I1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_multi_index
(
0
,
0
,
m_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
m_thread_data_on_block_idx
[
I3
],
m_thread_data_on_block_idx
[
I4
],
n_thread_data_on_block_idx
[
I2
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
using
EDataType
=
CDataType
;
const
auto
ds_grid_desc_m_n
=
MakeDsGridDescriptor_M_N
(
problem
.
M
,
problem
.
MPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideDs
);
const
auto
ds_grid_desc_mblock_mperblock_nblock_nperblock
=
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
,
problem
.
MBlock
,
problem
.
NBlock
);
const
auto
ds_grid_buf
=
generate_tuple
(
[
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
const
DDataType
*
ptr_
=
p_ds_grid
[
i
];
// hack logic here to support different kind of strides. todo fix it.
// ascale M, 1; bscale E, N, 1, move ptr to E
if
(
i
.
value
==
1
)
{
ptr_
+=
expert_id
*
(
problem
.
StrideDs
[
1
]
?
problem
.
StrideDs
[
1
]
*
problem
.
N
:
1
);
// if ( threadIdx.x ==0)
// printf("bid %d eid %d b eoff %d %f\n", blockIdx.y, expert_id, expert_id * (problem.StrideDs[1]? problem.StrideDs[1] * problem.N : 1), ptr_[0]);
}
return
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
ptr_
,
ds_grid_desc_m_n
[
i
].
GetElementSpaceSize
());
},
Number
<
NumDTensor
>
{});
// tuple of reference to C/Ds tensor descriptors
const
auto
c_ds_desc_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_desc_mblock_mperblock_nblock_nperblock
[
i
];
},
Number
<
NumDTensor
>
{}));
// tuple of reference to C/Ds tensor descriptors
const
auto
c_ds_buf_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_buf
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_buf
[
i
];
},
Number
<
NumDTensor
>
{}));
// tuple of starting index of C/Ds blockwise copy
const
auto
idx_c_ds_block_begin
=
container_concat
(
make_tuple
(
make_multi_index
(
0
,
0
,
0
,
0
)),
generate_tuple
(
[
&
](
auto
)
{
return
make_multi_index
(
block_m_id
,
0
,
block_n_id
,
0
);
// return make_multi_index(block_work_idx[I0], 0, block_work_idx[I1], 0);
},
Number
<
NumDTensor
>
{}));
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock
=
c_grid_desc_mblock_mperblock_nblock_nperblock
;
using
CDEBlockTransferCluster
=
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
;
const
auto
EGlobalMemoryDataOperation
=
CGlobalMemoryDataOperation
;
constexpr
auto
EMThreads
=
CDEBlockTransferCluster
{}.
At
(
I0
)
*
CDEBlockTransferCluster
{}.
At
(
I1
);
constexpr
auto
EMRepeats
=
MPerBlock
/
EMThreads
;
constexpr
auto
ENThreads
=
CDEBlockTransferCluster
{}.
At
(
I2
)
*
CDEBlockTransferCluster
{}.
At
(
I3
);
const
index_t
c_token_pos
=
block_m_id
*
MPerBlock
+
threadIdx
.
x
/
ENThreads
*
EMRepeats
;
StaticallyIndexedArray
<
index_t
,
EMRepeats
>
scatter_offsets
;
//= p_sorted_token_ids[c_token_pos];
StaticallyIndexedArray
<
float
,
EMRepeats
>
scatter_weights
;
//= for topk
// too hack here, 2 specific for topk weights, fixme
const
float
*
p_sorted_weights
=
p_ds_grid
[
I2
];
static_for
<
0
,
EMRepeats
,
1
>
{}([
&
](
auto
m0
)
{
scatter_offsets
(
m0
)
=
(
p_sorted_token_ids
[
c_token_pos
+
m0
]
&
0xffffff
)
*
problem
.
N
;
scatter_weights
(
m0
)
=
p_sorted_weights
[
c_token_pos
+
m0
];
// printf("init off bid %d tid %d m %d off %d\n", blockIdx.y, threadIdx.x, m0(), scatter_offsets(m0));
});
// printf("tid %d pos %d offset %d size %d\n", threadIdx.x, token_pos, scatter_offsets(I0), c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
auto
cde_block_copy_lds_and_global
=
ThreadGroupTensorSliceTransfer_v7r3_scatter
<
ThisThreadBlock
,
decltype
(
container_concat
(
make_tuple
(
CShuffleDataType
{}),
DsDataType
{})),
Tuple
<
EDataType
>
,
decltype
(
c_ds_desc_refs
),
decltype
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
)),
CElementwiseOperation
,
Sequence
<
static_cast
<
index_t
>
(
EGlobalMemoryDataOperation
)
>
,
// FIXME: make Sequence
// support arbitray type
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
,
// BlockSliceLengths,
CDEBlockTransferCluster
,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename ThreadClusterArrangeOrder,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename SrcDimAccessOrder,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename DstDimAccessOrder,
3
,
// index_t SrcVectorDim,
3
,
// index_t DstVectorDim,
CDEShuffleBlockTransferScalarPerVectors
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
sequence_merge_t
<
Sequence
<
true
>
,
uniform_sequence_gen_t
<
NumDTensor
,
false
>>
,
// ThreadTransferSrcResetCoordinateAfterRunFlags
Sequence
<
false
>>
// ThreadTransferDstResetCoordinateAfterRunFlags
{
c_ds_desc_refs
,
idx_c_ds_block_begin
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
make_tuple
(
make_multi_index
(
0
,
0
,
block_n_id
,
0
)),
c_element_op
,
scatter_offsets
,
scatter_weights
};
// if(threadIdx.x== 0)
auto
c_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_grid
,
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
// space filling curve for threadwise C in VGPR
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MXdlPerWave
,
NXdlPerWave
,
1
,
1
,
M2
,
1
,
M4
,
1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
1
,
1
,
M2
,
1
,
M4
,
1
>>
{};
constexpr
index_t
num_access
=
sfc_c_vgpr
.
GetNumOfAccess
();
// space filling curve for shuffled blockwise C/D/E
constexpr
auto
sfc_cde_block
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>>
{};
static_assert
(
num_access
==
sfc_cde_block
.
GetNumOfAccess
(),
"wrong!"
);
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
access_id
)
{
// make sure it's safe to write to LDS
block_sync_lds
();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
sfc_c_vgpr
.
GetIndexTupleOfNumber
(
access_id
),
c_thread_buf
,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
c_shuffle_block_buf
);
// make sure it's safe to read from LDS
block_sync_lds
();
// each block copy its data from LDS to global
cde_block_copy_lds_and_global
.
Run
(
c_ds_desc_refs
,
c_ds_buf_refs
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
tie
(
c_grid_buf
));
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
cde_lds_and_global_step
=
sfc_cde_block
.
GetForwardStep
(
access_id
);
// move on Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
cde_block_copy_lds_and_global
.
MoveSrcSliceWindow
(
c_ds_desc_refs
,
i
+
I1
,
cde_lds_and_global_step
);
});
// move on E
cde_block_copy_lds_and_global
.
MoveDstSliceWindow
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
I0
,
cde_lds_and_global_step
);
}
});
}
}
// template <bool HasMainKBlockLoop,
// InMemoryDataOperationEnum CGlobalMemoryDataOperation,
// TailNumber TailNum = TailNumber::Odd>
// __device__ static void Run_2Lds(const ADataType* p_a_grid,
// const BDataType* p_b_grid,
// DsGridPointer& p_ds_grid,
// CDataType* p_c_grid,
// void* p_shared,
// void* p_shared1,
// const Problem& problem,
// AElementwiseOperation a_element_op,
// BElementwiseOperation b_element_op,
// CElementwiseOperation c_element_op)
// {
// // const auto block_2_ctile_map = Block2CTileMapDefault{problem.M, problem.N, 4};
// // Run_2Lds<Block2CTileMapDefault, HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
// // p_a_grid,
// // p_b_grid,
// // p_ds_grid,
// // p_c_grid,
// // p_shared,
// // p_shared1,
// // problem,
// // a_element_op,
// // b_element_op,
// // c_element_op,
// // block_2_ctile_map);
// }
// template <typename Block2CTileMap,
// bool HasMainKBlockLoop,
// InMemoryDataOperationEnum CGlobalMemoryDataOperation,
// TailNumber TailNum = TailNumber::Odd>
// __device__ static void Run_2Lds(const ADataType* p_a_grid,
// const BDataType* p_b_grid,
// DsGridPointer& p_ds_grid,
// CDataType* p_c_grid,
// void* p_shared,
// void* p_shared1,
// const Problem& problem,
// AElementwiseOperation a_element_op,
// BElementwiseOperation b_element_op,
// CElementwiseOperation c_element_op,
// const Block2CTileMap& block_2_ctile_map)
// {
// }
};
}
// namespace ck
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v3r1_gather.hpp
0 → 100644
View file @
0f444e0c
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/tensor/static_tensor.hpp"
#include "ck/utility/is_detected.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_util.hpp"
namespace
ck
{
// Assume:
// 1. src_desc and dst_desc are not known at compile-time
// 2. SrcBuffer and DstBuffer are DynamicBuffer
// 3. src_slice_origin and dst_slice_origin are not known at compile-time,
// 4. Use thread buffer
template
<
typename
SliceLengths
,
typename
SrcElementwiseOperation
,
typename
DstElementwiseOperation
,
InMemoryDataOperationEnum
DstInMemOp
,
typename
SrcData
,
typename
DstData
,
typename
SrcDesc
,
typename
DstDesc
,
typename
SrcDimAccessOrder
,
typename
DstDimAccessOrder
,
index_t
SrcVectorDim
,
index_t
DstVectorDim
,
index_t
SrcScalarPerVector
,
index_t
DstScalarPerVector
,
index_t
SrcScalarStrideInVector
,
index_t
DstScalarStrideInVector
,
bool
SrcResetCoordinateAfterRun
,
// control whether to move back src coordinate after each
// RunRead(), will be fused with MoveSrcSliceWindow to
// save addr computation
bool
DstResetCoordinateAfterRun
,
// control whether to move back dst coordinate after each
// RunWrite(), will be fused with MoveDstSliceWindow to
// save addr computation
index_t
GatherDim
=
1
,
index_t
NumThreadScratch
=
1
>
struct
ThreadwiseTensorSliceTransfer_v3r1_gather
{
static
constexpr
index_t
nDim
=
SliceLengths
::
Size
();
using
Index
=
MultiIndex
<
nDim
>
;
using
SrcCoord
=
decltype
(
make_tensor_coordinate
(
SrcDesc
{},
Index
{}));
using
DstCoord
=
decltype
(
make_tensor_coordinate
(
DstDesc
{},
Index
{}));
using
SrcCoordStep
=
decltype
(
make_tensor_coordinate_step
(
SrcDesc
{},
Index
{}));
using
DstCoordStep
=
decltype
(
make_tensor_coordinate_step
(
DstDesc
{},
Index
{}));
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
index_t
gather_num
=
SliceLengths
{}.
At
(
Number
<
GatherDim
>
{});
__device__
constexpr
ThreadwiseTensorSliceTransfer_v3r1_gather
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_slice_origin
,
const
SrcElementwiseOperation
&
src_element_op
,
const
DstDesc
&
dst_desc
,
const
Index
&
dst_slice_origin
,
const
DstElementwiseOperation
&
dst_element_op
,
const
StaticallyIndexedArray
<
index_t
,
gather_num
>
&
gather_offsets
)
:
src_coord_
(
make_tensor_coordinate
(
src_desc
,
src_slice_origin
)),
dst_coord_
(
make_tensor_coordinate
(
dst_desc
,
dst_slice_origin
)),
src_element_op_
(
src_element_op
),
dst_element_op_
(
dst_element_op
),
gather_offsets_
(
gather_offsets
)
{
}
__device__
void
SetSrcSliceOrigin
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_slice_origin_idx
)
{
src_coord_
=
make_tensor_coordinate
(
src_desc
,
src_slice_origin_idx
);
}
__device__
void
SetDstSliceOrigin
(
const
DstDesc
&
dst_desc
,
const
Index
&
dst_slice_origin_idx
)
{
dst_coord_
=
make_tensor_coordinate
(
dst_desc
,
dst_slice_origin_idx
);
}
template
<
typename
SrcBuffer
,
index_t
ThreadScratchId
=
0
>
__device__
void
RunRead
(
const
SrcDesc
&
src_desc
,
const
SrcBuffer
&
src_buf
,
Number
<
ThreadScratchId
>
thread_scratch_id
=
Number
<
ThreadScratchId
>
{})
{
static_assert
(
SrcBuffer
::
GetAddressSpace
()
==
AddressSpaceEnum
::
Global
or
SrcBuffer
::
GetAddressSpace
()
==
AddressSpaceEnum
::
Lds
,
"wrong!"
);
static_assert
(
is_same
<
remove_cvref_t
<
typename
SrcBuffer
::
type
>
,
remove_cvref_t
<
SrcData
>>::
value
,
"wrong! SrcBuffer and SrcData data type are inconsistent"
);
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
src_access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
static_assert
(
SliceLengths
::
At
(
SrcVectorDim
)
%
SrcScalarPerVector
==
0
,
"SliceLengths[SrcVectorDim] must be divisible by SrcScalarPerVector"
);
constexpr
auto
src_dim_access_order
=
SrcDimAccessOrder
{};
constexpr
auto
ordered_gather_dim
=
src_dim_access_order
[
GatherDim
];
constexpr
auto
ordered_src_access_lengths
=
container_reorder_given_new2old
(
src_access_lengths
,
src_dim_access_order
);
// make forward steps
const
auto
src_forward_steps
=
generate_tuple
(
[
&
](
auto
i
)
{
Index
forward_step_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
forward_step_idx
(
j
)
=
(
i
.
value
==
j
.
value
)
?
src_scalar_per_access
[
i
]
:
0
;
});
return
make_tensor_coordinate_step
(
src_desc
,
forward_step_idx
);
},
Number
<
nDim
>
{});
// make backward steps
const
auto
src_backward_steps
=
generate_tuple
(
[
&
](
auto
i
)
{
Index
backward_step_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
backward_step_idx
(
j
)
=
(
i
.
value
==
j
.
value
)
?
-
src_scalar_per_access
[
i
]
:
0
;
});
return
make_tensor_coordinate_step
(
src_desc
,
backward_step_idx
);
},
Number
<
nDim
>
{});
// loop over tensor and copy
static_ford
<
decltype
(
ordered_src_access_lengths
)
>
{}([
&
](
auto
ordered_src_access_idx
)
{
// judge move forward or move backward
constexpr
auto
forward_sweep
=
[
&
]()
{
StaticallyIndexedArray
<
bool
,
nDim
>
forward_sweep_
;
forward_sweep_
(
I0
)
=
true
;
static_for
<
1
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
index_t
tmp
=
ordered_src_access_idx
[
I0
];
static_for
<
1
,
i
,
1
>
{}([
&
](
auto
j
)
{
tmp
=
tmp
*
ordered_src_access_lengths
[
j
]
+
ordered_src_access_idx
[
j
];
});
forward_sweep_
(
i
)
=
tmp
%
2
==
0
;
});
return
forward_sweep_
;
}();
// calculate src data index
constexpr
auto
src_data_idx
=
[
&
]()
{
Index
ordered_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
ordered_idx
(
i
)
=
forward_sweep
[
i
]
?
ordered_src_access_idx
[
i
]
:
ordered_src_access_lengths
[
i
]
-
1
-
ordered_src_access_idx
[
i
];
});
return
container_reorder_given_old2new
(
ordered_idx
,
src_dim_access_order
)
*
src_scalar_per_access
;
}();
constexpr
auto
src_data_idx_seq
=
generate_sequence_v2
(
[
&
](
auto
i
)
{
return
Number
<
src_data_idx
[
i
]
>
{};
},
Number
<
src_data_idx
.
Size
()
>
{});
auto
gather_offset
=
gather_offsets_
(
ordered_src_access_idx
[
Number
<
ordered_gather_dim
>
{}]);
// maintain a container record is_src_valid, waiting for RunWrite use.
const
index_t
ld_offset
=
src_coord_
.
GetOffset
()
+
gather_offset
;
const
bool
is_src_valid
=
ld_offset
<
src_desc
.
GetElementSpaceSize
();
//hack felix, todo use coord
//coordinate_has_valid_offset_assuming_visible_index_is_valid(src_desc, src_coord_) && (gather_offset < 32*512);
src_oob_thread_scratch_tuple_
(
thread_scratch_id
)
.
template
SetAsType
<
bool
>(
src_data_idx_seq
,
is_src_valid
);
using
src_vector_type
=
vector_type_maker_t
<
SrcData
,
SrcScalarPerVector
>
;
using
src_vector_t
=
typename
src_vector_type
::
type
;
// if(threadIdx.x==0)
// printf("use tid %d num %d off %d %d\n", threadIdx.x, ordered_src_access_idx[Number<ordered_gather_dim>{}](), src_coord_.GetOffset(), gather_offset );
auto
src_vector_container
=
src_vector_type
{
src_buf
.
template
Get
<
src_vector_t
>(
ld_offset
,
true
)};
using
dst_vector_type
=
vector_type_maker_t
<
DstData
,
SrcScalarPerVector
>
;
using
dst_vector_t
=
typename
dst_vector_type
::
type
;
dst_vector_type
op_r_v
;
constexpr
auto
get_elem_op_vec_len
=
[]()
{
if
constexpr
(
is_detected
<
is_pack8_invocable_t
,
decltype
(
src_element_op_
)
>::
value
)
{
if
constexpr
(
decltype
(
src_element_op_
)
::
is_pack8_invocable
)
return
math
::
min
(
8
,
SrcScalarPerVector
);
}
if
constexpr
(
is_detected
<
is_pack4_invocable_t
,
decltype
(
src_element_op_
)
>::
value
)
{
if
constexpr
(
decltype
(
src_element_op_
)
::
is_pack4_invocable
)
return
math
::
min
(
4
,
SrcScalarPerVector
);
}
if
constexpr
(
is_detected
<
is_pack2_invocable_t
,
decltype
(
src_element_op_
)
>::
value
)
{
if
constexpr
(
decltype
(
src_element_op_
)
::
is_pack2_invocable
)
return
math
::
min
(
2
,
SrcScalarPerVector
);
}
return
1
;
};
constexpr
index_t
elem_op_vec_len
=
get_elem_op_vec_len
();
using
src_elem_op_vec_t
=
typename
vector_type
<
SrcData
,
elem_op_vec_len
>::
type
;
using
dst_elem_op_vec_t
=
typename
vector_type
<
DstData
,
elem_op_vec_len
>::
type
;
static_for
<
0
,
SrcScalarPerVector
/
elem_op_vec_len
,
1
>
{}([
&
](
auto
idx
)
{
// apply the src elementwise op and convert to DstData under the hood if needed
src_element_op_
(
op_r_v
.
template
AsType
<
dst_elem_op_vec_t
>()(
idx
),
src_vector_container
.
template
AsType
<
src_elem_op_vec_t
>()[
idx
]);
});
// copy data from src_vector_container into src_thread_scratch_
src_thread_scratch_tuple_
(
thread_scratch_id
)
.
template
SetAsType
<
dst_vector_t
>(
src_data_idx_seq
,
op_r_v
.
template
AsType
<
dst_vector_t
>()[
I0
]);
// if(1) {
// using print_vec_t = typename vector_type<DstData, 1>::type;
// static_for<0, SrcScalarPerVector, 1>{}([&](auto idx) {
// printf("tid %d %f\n",threadIdx.x, type_convert<float>(src_vector_container.template AsType<print_vec_t>()[idx]));
// });
// }
auto
move_on_dim
=
[
&
]()
constexpr
{
StaticallyIndexedArray
<
bool
,
nDim
>
move_on_dim_
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
move_on_dim_
(
i
)
=
ordered_src_access_idx
[
i
]
<
ordered_src_access_lengths
[
i
]
-
1
;
static_for
<
i
+
1
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
move_on_dim_
(
i
)
&=
ordered_src_access_idx
[
j
]
==
ordered_src_access_lengths
[
j
]
-
1
;
});
move_on_dim_
(
i
)
&=
i
.
value
!=
ordered_gather_dim
;
// if(threadIdx.x==0)
// printf("i %d %d ordered_gather_dim %d\n", i.value, move_on_dim_(i), ordered_gather_dim);
});
return
move_on_dim_
;
}
();
// move src coord
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
// if(threadIdx.x==0)
// printf("use tid %d ori cord: %d i %d mov %d\n", threadIdx.x, src_coord_.GetOffset(), i.value, move_on_dim[i]);
if
(
move_on_dim
[
i
])
{
if
constexpr
(
forward_sweep
[
i
])
{
move_tensor_coordinate
(
src_desc
,
src_coord_
,
src_forward_steps
[
src_dim_access_order
[
i
]]);
}
else
{
move_tensor_coordinate
(
src_desc
,
src_coord_
,
src_backward_steps
[
src_dim_access_order
[
i
]]);
}
}
// if(threadIdx.x==0)
// printf("use tid %d moved cord: %d\n", threadIdx.x, src_coord_.GetOffset());
});
});
// move src coordinate back to slice origin (or not)
if
constexpr
(
SrcResetCoordinateAfterRun
)
{
const
auto
src_reset_step
=
make_tensor_coordinate_step
(
src_desc
,
GetSrcCoordinateResetStep
());
move_tensor_coordinate
(
src_desc
,
src_coord_
,
src_reset_step
);
}
}
template
<
typename
SeqIdx
,
index_t
ThreadScratchId
=
0
>
__device__
constexpr
auto
GetSrcThreadScratchIdx
(
Number
<
ThreadScratchId
>
thread_scratch_id
=
Number
<
ThreadScratchId
>
{})
{
using
vector_t
=
typename
vector_type_maker
<
SrcData
,
SrcScalarPerVector
>::
type
::
type
;
return
src_thread_scratch_tuple_
(
thread_scratch_id
).
template
GetAsType
<
vector_t
>(
SeqIdx
{});
}
template
<
index_t
ThreadScratchId
>
__device__
void
TransferDataFromSrcThreadScratchToDstThreadScratch
(
Number
<
ThreadScratchId
>
thread_scratch_id
)
{
#if !CK_EXPERIMENTAL_USE_IN_REGISTER_SUB_DWORD_TRANSPOSE
static_ford
<
SliceLengths
>
{}([
&
](
auto
idx
)
{
dst_thread_scratch_
(
idx
)
=
src_thread_scratch_tuple_
[
thread_scratch_id
][
idx
];
});
#else
// OOB Check
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
src_access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
constexpr
auto
src_dim_access_order
=
SrcDimAccessOrder
{};
constexpr
auto
ordered_src_access_lengths
=
container_reorder_given_new2old
(
src_access_lengths
,
src_dim_access_order
);
// loop over tensor and copy
static_ford
<
decltype
(
ordered_src_access_lengths
)
>
{}([
&
](
auto
ordered_src_access_idx
)
{
// judge move forward or move backward
constexpr
auto
forward_sweep
=
[
&
]()
{
StaticallyIndexedArray
<
bool
,
nDim
>
forward_sweep_
;
forward_sweep_
(
I0
)
=
true
;
static_for
<
1
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
index_t
tmp
=
ordered_src_access_idx
[
I0
];
static_for
<
1
,
i
,
1
>
{}([
&
](
auto
j
)
{
tmp
=
tmp
*
ordered_src_access_lengths
[
j
]
+
ordered_src_access_idx
[
j
];
});
forward_sweep_
(
i
)
=
tmp
%
2
==
0
;
});
return
forward_sweep_
;
}();
// calculate src data index
constexpr
auto
src_data_idx
=
[
&
]()
{
Index
ordered_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
ordered_idx
(
i
)
=
forward_sweep
[
i
]
?
ordered_src_access_idx
[
i
]
:
ordered_src_access_lengths
[
i
]
-
1
-
ordered_src_access_idx
[
i
];
});
return
container_reorder_given_old2new
(
ordered_idx
,
src_dim_access_order
)
*
src_scalar_per_access
;
}();
constexpr
auto
src_data_idx_seq
=
generate_sequence_v2
(
[
&
](
auto
i
)
{
return
Number
<
src_data_idx
[
i
]
>
{};
},
Number
<
src_data_idx
.
Size
()
>
{});
using
vector_t
=
typename
vector_type_maker
<
DstData
,
SrcScalarPerVector
>::
type
::
type
;
auto
op_r
=
src_thread_scratch_tuple_
(
thread_scratch_id
)
.
template
GetAsType
<
vector_t
>(
src_data_idx_seq
);
const
bool
is_src_valid
=
src_oob_thread_scratch_tuple_
(
thread_scratch_id
)
.
template
GetAsType
<
bool
>(
src_data_idx_seq
);
auto
op_r_v
=
is_src_valid
?
op_r
:
vector_t
(
0
);
src_thread_scratch_tuple_
(
thread_scratch_id
)
.
template
SetAsType
<
vector_t
>(
src_data_idx_seq
,
op_r_v
);
});
// sub-dword transpose between src_thread_scratch_ and dst_thread_scratch_
// TODO make this logic more generic for more sub-dword datatype
if
constexpr
(
SrcVectorDim
!=
DstVectorDim
&&
((
is_same
<
half_t
,
remove_cvref_t
<
DstData
>>::
value
&&
SrcScalarPerVector
%
2
==
0
&&
DstScalarPerVector
%
2
==
0
)
||
(
is_same
<
int8_t
,
remove_cvref_t
<
DstData
>>::
value
&&
SrcScalarPerVector
%
4
==
0
&&
DstScalarPerVector
%
4
==
0
)
||
(
is_same
<
f8_t
,
remove_cvref_t
<
DstData
>>::
value
&&
SrcScalarPerVector
%
4
==
0
&&
DstScalarPerVector
%
4
==
0
)))
{
// each transpose does
// DstScalarPerVector # of src vectors in src_thread_scratch_
// SrcScalarPerVector # of dst vectors in dst_thread_scratch_
constexpr
index_t
num_src_vector
=
Number
<
DstScalarPerVector
>
{};
constexpr
index_t
num_dst_vector
=
Number
<
SrcScalarPerVector
>
{};
// Assume SrcVectorDim is not the same as DstVectorDim, so we do transpose
// TODO: make this logic generic for all scenario
static_assert
(
SrcVectorDim
!=
DstVectorDim
,
"wrong"
);
constexpr
auto
src_scalar_step_in_vector
=
generate_sequence
(
detail
::
lambda_scalar_step_in_vector
<
SrcVectorDim
>
{},
Number
<
nDim
>
{});
constexpr
auto
dst_scalar_step_in_vector
=
generate_sequence
(
detail
::
lambda_scalar_step_in_vector
<
DstVectorDim
>
{},
Number
<
nDim
>
{});
constexpr
auto
scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access_for_src_and_dst
<
SrcVectorDim
,
SrcScalarPerVector
,
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
access_lengths
=
SliceLengths
{}
/
scalar_per_access
;
static_ford
<
decltype
(
access_lengths
)
>
{}([
&
](
auto
access_idx
)
{
constexpr
auto
data_idx
=
access_idx
*
scalar_per_access
;
constexpr
auto
data_idx_seq
=
generate_sequence_v2
(
[
&
](
auto
i
)
{
return
Number
<
data_idx
[
i
]
>
{};
},
Number
<
nDim
>
{});
using
src_vector_t
=
vector_type_maker_t
<
DstData
,
SrcScalarPerVector
>
;
using
dst_vector_t
=
vector_type_maker_t
<
DstData
,
DstScalarPerVector
>
;
// get DstScalarPerVector # of read-only references to src vectors from
// src_thread_scratch_
const
auto
src_vector_refs
=
generate_tie
(
[
&
](
auto
i
)
->
const
src_vector_t
&
{
// i increment corresponds to movement in DstVectorDim
return
src_thread_scratch_tuple_
[
thread_scratch_id
].
GetVectorTypeReference
(
data_idx_seq
+
i
*
dst_scalar_step_in_vector
);
},
Number
<
num_src_vector
>
{});
// get SrcScalarPerVector # of references to dst vectors from dst_thread_scratch_
auto
dst_vector_refs
=
generate_tie
(
[
&
](
auto
i
)
->
dst_vector_t
&
{
// i increment corresponds to movement in SrcVectorDim
return
dst_thread_scratch_
.
GetVectorTypeReference
(
data_idx_seq
+
i
*
src_scalar_step_in_vector
);
},
Number
<
num_dst_vector
>
{});
// do data transpose
transpose_vectors
<
DstData
,
DstScalarPerVector
,
SrcScalarPerVector
>
{}(
src_vector_refs
,
dst_vector_refs
);
});
}
else
{
static_ford
<
SliceLengths
>
{}([
&
](
auto
idx
)
{
dst_thread_scratch_
(
idx
)
=
src_thread_scratch_tuple_
[
thread_scratch_id
][
idx
];
});
}
#endif
}
template
<
typename
DstBuffer
,
index_t
ThreadScratchId
=
0
>
__device__
void
RunWrite
(
const
DstDesc
&
dst_desc
,
DstBuffer
&
dst_buf
,
Number
<
ThreadScratchId
>
thread_scratch_id
=
Number
<
ThreadScratchId
>
{})
{
// if there is transpose, it's done here
// if there is oob check, it's done here
// TODO move this elsewhere
TransferDataFromSrcThreadScratchToDstThreadScratch
(
thread_scratch_id
);
static_assert
(
DstBuffer
::
GetAddressSpace
()
==
AddressSpaceEnum
::
Global
or
DstBuffer
::
GetAddressSpace
()
==
AddressSpaceEnum
::
Lds
,
"wrong!"
);
static_assert
(
is_same
<
remove_cvref_t
<
typename
DstBuffer
::
type
>
,
remove_cvref_t
<
DstData
>>::
value
,
"wrong! SrcBuffer or DstBuffer data type is wrong"
);
// src scalar per access on each dim
// TODO: don't use this
constexpr
auto
dst_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
dst_access_lengths
=
SliceLengths
{}
/
dst_scalar_per_access
;
constexpr
auto
dst_dim_access_order
=
DstDimAccessOrder
{};
constexpr
auto
ordered_dst_access_lengths
=
container_reorder_given_new2old
(
dst_access_lengths
,
dst_dim_access_order
);
// make forward steps
const
auto
dst_forward_steps
=
generate_tuple
(
[
&
](
auto
i
)
{
Index
forward_step_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
forward_step_idx
(
j
)
=
(
i
.
value
==
j
.
value
)
?
dst_scalar_per_access
[
i
]
:
0
;
});
return
make_tensor_coordinate_step
(
dst_desc
,
forward_step_idx
);
},
Number
<
nDim
>
{});
// make backward steps
const
auto
dst_backward_steps
=
generate_tuple
(
[
&
](
auto
i
)
{
Index
backward_step_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
backward_step_idx
(
j
)
=
(
i
.
value
==
j
.
value
)
?
-
dst_scalar_per_access
[
i
]
:
0
;
});
return
make_tensor_coordinate_step
(
dst_desc
,
backward_step_idx
);
},
Number
<
nDim
>
{});
// loop over tensor and copy
static_ford
<
decltype
(
ordered_dst_access_lengths
)
>
{}([
&
](
auto
ordered_dst_access_idx
)
{
// judge move forward or move backward
constexpr
auto
forward_sweep
=
[
&
]()
{
StaticallyIndexedArray
<
bool
,
nDim
>
forward_sweep_
;
forward_sweep_
(
I0
)
=
true
;
static_for
<
1
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
index_t
tmp
=
ordered_dst_access_idx
[
I0
];
static_for
<
1
,
i
,
1
>
{}([
&
](
auto
j
)
{
tmp
=
tmp
*
ordered_dst_access_lengths
[
j
]
+
ordered_dst_access_idx
[
j
];
});
forward_sweep_
(
i
)
=
tmp
%
2
==
0
;
});
return
forward_sweep_
;
}();
// calculate dst data index
constexpr
auto
dst_data_idx
=
[
&
]()
{
Index
ordered_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
ordered_idx
(
i
)
=
forward_sweep
[
i
]
?
ordered_dst_access_idx
[
i
]
:
ordered_dst_access_lengths
[
i
]
-
1
-
ordered_dst_access_idx
[
i
];
});
return
container_reorder_given_old2new
(
ordered_idx
,
dst_dim_access_order
)
*
dst_scalar_per_access
;
}();
constexpr
auto
dst_data_idx_seq
=
generate_sequence_v2
(
[
&
](
auto
i
)
{
return
Number
<
dst_data_idx
[
i
]
>
{};
},
Number
<
dst_data_idx
.
Size
()
>
{});
const
bool
is_dst_valid
=
coordinate_has_valid_offset_assuming_visible_index_is_valid
(
dst_desc
,
dst_coord_
);
using
dst_vector_type
=
vector_type_maker_t
<
DstData
,
DstScalarPerVector
>
;
using
dst_vector_t
=
typename
dst_vector_type
::
type
;
// copy data from dst_thread_scratch_ into dst_vector_container
auto
dst_vector_container
=
dst_vector_type
{
dst_thread_scratch_
.
template
GetAsType
<
dst_vector_t
>(
dst_data_idx_seq
)};
static_for
<
0
,
DstScalarPerVector
,
1
>
{}([
&
](
auto
i
)
{
DstData
dst_v
;
// apply DstElementwiseOperation
dst_element_op_
(
dst_v
,
dst_vector_container
.
template
AsType
<
DstData
>()[
i
]);
dst_vector_container
.
template
AsType
<
DstData
>()(
i
)
=
dst_v
;
});
// copy data from dst_vector_container to dst_buf
dst_buf
.
template
Set
<
dst_vector_t
>(
dst_coord_
.
GetOffset
(),
is_dst_valid
,
dst_vector_container
.
template
AsType
<
dst_vector_t
>()[
I0
]);
// if(1) {
// using print_vec_t = typename vector_type<DstData, 1>::type;
// static_for<0, DstScalarPerVector, 1>{}([&](auto idx) {
// printf("tid %d off %d valid %d val %f\n",threadIdx.x, dst_coord_.GetOffset(), is_dst_valid, type_convert<float>(dst_vector_container.template AsType<print_vec_t>()[idx]));
// });
// }
constexpr
auto
move_on_dim
=
[
&
]()
constexpr
{
StaticallyIndexedArray
<
bool
,
nDim
>
move_on_dim_
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
move_on_dim_
(
i
)
=
ordered_dst_access_idx
[
i
]
<
ordered_dst_access_lengths
[
i
]
-
1
;
static_for
<
i
+
1
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
move_on_dim_
(
i
)
&=
ordered_dst_access_idx
[
j
]
==
ordered_dst_access_lengths
[
j
]
-
1
;
});
});
return
move_on_dim_
;
}
();
// move dst coord
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
if
constexpr
(
move_on_dim
[
i
])
{
if
constexpr
(
forward_sweep
[
i
])
{
move_tensor_coordinate
(
dst_desc
,
dst_coord_
,
dst_forward_steps
[
dst_dim_access_order
[
i
]]);
}
else
{
move_tensor_coordinate
(
dst_desc
,
dst_coord_
,
dst_backward_steps
[
dst_dim_access_order
[
i
]]);
}
}
});
});
// move dst coordinate back to slice origin (or not)
if
constexpr
(
DstResetCoordinateAfterRun
)
{
const
auto
dst_reset_step
=
make_tensor_coordinate_step
(
dst_desc
,
GetDstCoordinateResetStep
());
move_tensor_coordinate
(
dst_desc
,
dst_coord_
,
dst_reset_step
);
}
}
__device__
static
constexpr
auto
GetSrcCoordinateResetStep
()
{
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
src_access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
constexpr
auto
src_dim_access_order
=
SrcDimAccessOrder
{};
constexpr
auto
ordered_src_access_lengths
=
container_reorder_given_new2old
(
src_access_lengths
,
src_dim_access_order
);
// judge move forward or move backward during the last iteration
constexpr
auto
forward_sweep
=
[
&
]()
{
StaticallyIndexedArray
<
bool
,
nDim
>
forward_sweep_
;
forward_sweep_
(
I0
)
=
true
;
static_for
<
1
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
index_t
tmp
=
ordered_src_access_lengths
[
I0
]
-
1
;
static_for
<
1
,
i
,
1
>
{}([
&
](
auto
j
)
{
tmp
=
tmp
*
ordered_src_access_lengths
[
j
]
+
ordered_src_access_lengths
[
j
]
-
1
;
});
forward_sweep_
(
i
)
=
tmp
%
2
==
0
;
});
return
forward_sweep_
;
}();
// calculate src data index after last iteration in RunRead(), if it has not being reset by
// RunRead()
constexpr
auto
src_data_idx
=
[
&
]()
{
Index
ordered_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
ordered_idx
(
i
)
=
forward_sweep
[
i
]
?
ordered_src_access_lengths
[
i
]
-
1
:
0
;
});
return
container_reorder_given_old2new
(
ordered_idx
,
src_dim_access_order
)
*
src_scalar_per_access
;
}();
//
constexpr
auto
reset_src_data_step
=
[
&
]()
{
Index
reset_src_data_step_
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
reset_src_data_step_
(
i
)
=
i
.
value
==
GatherDim
?
0
:
-
src_data_idx
[
i
];
});
return
reset_src_data_step_
;
}();
return
reset_src_data_step
;
}
__device__
static
constexpr
auto
GetDstCoordinateResetStep
()
{
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
dst_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
dst_access_lengths
=
SliceLengths
{}
/
dst_scalar_per_access
;
constexpr
auto
dst_dim_access_order
=
DstDimAccessOrder
{};
constexpr
auto
ordered_dst_access_lengths
=
container_reorder_given_new2old
(
dst_access_lengths
,
dst_dim_access_order
);
// judge move forward or move backward during the last iteration
constexpr
auto
forward_sweep
=
[
&
]()
{
StaticallyIndexedArray
<
bool
,
nDim
>
forward_sweep_
;
forward_sweep_
(
I0
)
=
true
;
static_for
<
1
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
index_t
tmp
=
ordered_dst_access_lengths
[
I0
]
-
1
;
static_for
<
1
,
i
,
1
>
{}([
&
](
auto
j
)
{
tmp
=
tmp
*
ordered_dst_access_lengths
[
j
]
+
ordered_dst_access_lengths
[
j
]
-
1
;
});
forward_sweep_
(
i
)
=
tmp
%
2
==
0
;
});
return
forward_sweep_
;
}();
// calculate dst data index after last iteration in RunWrite(), if it has not being reset by
// RunWrite()
constexpr
auto
dst_data_idx
=
[
&
]()
{
Index
ordered_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
ordered_idx
(
i
)
=
forward_sweep
[
i
]
?
ordered_dst_access_lengths
[
i
]
-
1
:
0
;
});
return
container_reorder_given_old2new
(
ordered_idx
,
dst_dim_access_order
)
*
dst_scalar_per_access
;
}();
//
constexpr
auto
reset_dst_data_step
=
[
&
]()
{
Index
reset_dst_data_step_
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
reset_dst_data_step_
(
i
)
=
-
dst_data_idx
[
i
];
});
return
reset_dst_data_step_
;
}();
return
reset_dst_data_step
;
}
// src_slice_origin_step_idx need to be known at compile-time, for performance reason
__device__
void
MoveSrcSliceWindow
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_slice_origin_step_idx
)
{
// if src coord was not reset by RunRead(), then need to adjust the step here
const
auto
adjusted_step_idx
=
SrcResetCoordinateAfterRun
?
src_slice_origin_step_idx
:
src_slice_origin_step_idx
+
GetSrcCoordinateResetStep
();
// is it OK to construct a new step every time?
const
auto
adjusted_step
=
make_tensor_coordinate_step
(
src_desc
,
adjusted_step_idx
);
move_tensor_coordinate
(
src_desc
,
src_coord_
,
adjusted_step
);
}
// dst_slice_origin_step_idx need to be known at compile-time, for performance reason
__device__
void
MoveDstSliceWindow
(
const
DstDesc
&
dst_desc
,
const
Index
&
dst_slice_origin_step_idx
)
{
// if dst coord was not reset by RunWrite(), then need to adjust the step here
const
auto
adjusted_step_idx
=
DstResetCoordinateAfterRun
?
dst_slice_origin_step_idx
:
dst_slice_origin_step_idx
+
GetDstCoordinateResetStep
();
// is it OK to construct a new step every time?
const
auto
adjusted_step
=
make_tensor_coordinate_step
(
dst_desc
,
adjusted_step_idx
);
move_tensor_coordinate
(
dst_desc
,
dst_coord_
,
adjusted_step
);
}
__device__
static
constexpr
auto
GetSrcThreadScratchDescriptor
()
{
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
src_access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
constexpr
auto
src_access_lengths_and_vector_length
=
container_push_back
(
sequence_to_tuple_of_number
(
src_access_lengths
),
Number
<
SrcScalarPerVector
>
{});
// 1st stage of transforms
constexpr
auto
desc0
=
make_naive_tensor_descriptor_packed
(
src_access_lengths_and_vector_length
);
// 2nd stage of transforms
constexpr
auto
transforms
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
SrcVectorDim
)
{
return
make_merge_transform_v3_division_mod
(
make_tuple
(
src_access_lengths_and_vector_length
[
i
],
src_access_lengths_and_vector_length
[
Number
<
nDim
>
{}]));
}
else
{
return
make_pass_through_transform
(
src_access_lengths_and_vector_length
[
i
]);
}
},
Number
<
nDim
>
{});
constexpr
auto
low_dim_idss
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
SrcVectorDim
)
{
return
Sequence
<
i
.
value
,
nDim
>
{};
}
else
{
return
Sequence
<
i
.
value
>
{};
}
},
Number
<
nDim
>
{});
constexpr
auto
up_dim_idss
=
generate_tuple
([
&
](
auto
i
)
{
return
Sequence
<
i
.
value
>
{};
},
Number
<
nDim
>
{});
return
transform_tensor_descriptor
(
desc0
,
transforms
,
low_dim_idss
,
up_dim_idss
);
}
__device__
static
constexpr
auto
GetSrcOOBThreadScratchDescriptor
()
{
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
src_access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
return
make_naive_tensor_descriptor_packed
(
src_access_lengths
);
}
__device__
static
constexpr
auto
GetDstThreadScratchDescriptor
()
{
// 1st stage of transforms
constexpr
auto
dst_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
dst_access_lengths
=
SliceLengths
{}
/
dst_scalar_per_access
;
constexpr
auto
dst_access_lengths_and_vector_length
=
container_push_back
(
sequence_to_tuple_of_number
(
dst_access_lengths
),
Number
<
DstScalarPerVector
>
{});
constexpr
auto
desc0
=
make_naive_tensor_descriptor_packed
(
dst_access_lengths_and_vector_length
);
// 2nd stage of transforms
constexpr
auto
transforms
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
DstVectorDim
)
{
return
make_merge_transform_v3_division_mod
(
make_tuple
(
dst_access_lengths_and_vector_length
[
i
],
dst_access_lengths_and_vector_length
[
Number
<
nDim
>
{}]));
}
else
{
return
make_pass_through_transform
(
dst_access_lengths_and_vector_length
[
i
]);
}
},
Number
<
nDim
>
{});
constexpr
auto
low_dim_idss
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
DstVectorDim
)
{
return
Sequence
<
i
.
value
,
nDim
>
{};
}
else
{
return
Sequence
<
i
.
value
>
{};
}
},
Number
<
nDim
>
{});
constexpr
auto
up_dim_idss
=
generate_tuple
([
&
](
auto
i
)
{
return
Sequence
<
i
.
value
>
{};
},
Number
<
nDim
>
{});
return
transform_tensor_descriptor
(
desc0
,
transforms
,
low_dim_idss
,
up_dim_idss
);
}
private:
static
constexpr
auto
src_thread_scratch_desc_
=
decltype
(
GetSrcThreadScratchDescriptor
()){};
static
constexpr
auto
src_oob_thread_scratch_desc_
=
decltype
(
GetSrcThreadScratchDescriptor
()){};
static
constexpr
auto
dst_thread_scratch_desc_
=
decltype
(
GetDstThreadScratchDescriptor
()){};
using
SrcThreadScratch
=
StaticTensorTupleOfVectorBuffer
<
AddressSpaceEnum
::
Vgpr
,
DstData
,
// apply data_convert with SrcThreadScratch
SrcScalarPerVector
,
decltype
(
src_thread_scratch_desc_
),
true
>
;
using
SrcOOBThreadScratch
=
StaticTensorTupleOfVectorBuffer
<
AddressSpaceEnum
::
Vgpr
,
bool
,
// apply data_convert with SrcThreadScratch
1
,
decltype
(
src_oob_thread_scratch_desc_
),
true
>
;
using
DstThreadScratch
=
StaticTensorTupleOfVectorBuffer
<
AddressSpaceEnum
::
Vgpr
,
DstData
,
DstScalarPerVector
,
decltype
(
dst_thread_scratch_desc_
),
true
>
;
StaticallyIndexedArray
<
SrcThreadScratch
,
NumThreadScratch
>
src_thread_scratch_tuple_
;
StaticallyIndexedArray
<
SrcOOBThreadScratch
,
NumThreadScratch
>
src_oob_thread_scratch_tuple_
;
DstThreadScratch
dst_thread_scratch_
;
SrcCoord
src_coord_
;
DstCoord
dst_coord_
;
const
SrcElementwiseOperation
src_element_op_
;
const
DstElementwiseOperation
dst_element_op_
;
StaticallyIndexedArray
<
index_t
,
gather_num
>
gather_offsets_
;
};
}
// namespace ck
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v7r3_scatter.hpp
0 → 100644
View file @
0f444e0c
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/tensor_space_filling_curve.hpp"
#include "ck/utility/is_detected.hpp"
#include "ck/tensor/static_tensor.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_util.hpp"
namespace
ck
{
// Thread-level multi-source, multi-destination tensor slice data movement
// Assume:
// 1. All sources and destinations are DynamicBuffer
// 2. Same VectorDim and ScalerPerVector for all sources and destinations
// 3. DstInMemOps are per destination tensor
// 4. ThreadTransferSrcResetCoordinateAfterRunFlags are per source tensor
// 5. ThreadTransferDstResetCoordinateAfterRunFlags are per destination tensor
// 6. Does not need to know src_descs and dst_descs at compile-time
// 7. Does not need to know src_slice_origins and dst_slice_origins at compile-time,
//
// Does following things to avoid scratch memory issue
// 1. Use StaticallyIndexedArray or vector_type instead of C array for thread buffer
// 2. Pass tensor descritpors by reference (or tuple of references)
// 3. Does not keep reference to tensor descriptor
// 4. Does not construct new tensor coordinate when call Run()
template
<
typename
SrcDatas
,
typename
DstDatas
,
typename
SrcDescs
,
typename
DstDescs
,
typename
ElementwiseOperation
,
typename
DstInMemOps
,
// Sequence<InMemoryDataOperationEnum ...>
typename
SliceLengths
,
typename
SrcDimAccessOrder
,
typename
DstDimAccessOrder
,
index_t
SrcVectorDim
,
index_t
DstVectorDim
,
typename
SrcScalarPerVectors
,
index_t
DstScalarPerVector
,
typename
SrcResetCoordinateAfterRunFlags
,
// Sequence<bool ...>
typename
DstResetCoordinateAfterRunFlags
,
// Sequence<bool ...>
index_t
ScatterDim
=
1
,
bool
OutputScatter
=
true
,
index_t
ScatterWeightIdx
=
3
,
index_t
NumThreadScratch
=
1
>
struct
ThreadwiseTensorSliceTransfer_v7r3_scatter
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
SrcScalarPerVector
=
SrcScalarPerVectors
{}[
I0
];
static
constexpr
index_t
nDim
=
SliceLengths
::
Size
();
static
constexpr
index_t
nSrc
=
SrcDescs
::
Size
();
static
constexpr
index_t
nDst
=
DstDescs
::
Size
();
using
Index
=
MultiIndex
<
nDim
>
;
static
constexpr
index_t
scatter_num
=
SliceLengths
{}.
At
(
Number
<
ScatterDim
>
{});
// return a tuple of coordiantes for a tuple of tensor
template
<
typename
Descs
,
typename
Indices
,
enable_if_t
<
Descs
::
Size
()
==
Indices
::
Size
(),
bool
>
=
false
>
static
constexpr
auto
MakeCoordinates
(
const
Descs
&
descs
,
const
Indices
&
indices
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
make_tensor_coordinate
(
descs
[
i
],
indices
[
i
]);
},
Number
<
Descs
::
Size
()
>
{});
}
using
SrcCoords
=
decltype
(
MakeCoordinates
(
SrcDescs
{},
StaticallyIndexedArray
<
Index
,
nSrc
>
{}));
using
DstCoords
=
decltype
(
MakeCoordinates
(
DstDescs
{},
StaticallyIndexedArray
<
Index
,
nDst
>
{}));
// scalar per access on each dim
// FIXME: don't use lambda_scalar_per_access
static
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
static
constexpr
auto
dst_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
using
SrcSpaceFillingCurve
=
SpaceFillingCurve
<
SliceLengths
,
SrcDimAccessOrder
,
remove_cv_t
<
decltype
(
src_scalar_per_access
)
>
,
false
>
;
using
DstSpaceFillingCurve
=
SpaceFillingCurve
<
SliceLengths
,
DstDimAccessOrder
,
remove_cv_t
<
decltype
(
dst_scalar_per_access
)
>
,
false
>
;
__device__
constexpr
ThreadwiseTensorSliceTransfer_v7r3_scatter
(
const
SrcDescs
&
src_descs
,
const
StaticallyIndexedArray
<
Index
,
nSrc
>&
src_slice_origins
,
const
DstDescs
&
dst_descs
,
const
StaticallyIndexedArray
<
Index
,
nDst
>&
dst_slice_origins
,
const
ElementwiseOperation
&
element_op
,
const
StaticallyIndexedArray
<
index_t
,
scatter_num
>
&
scatter_offsets
,
const
StaticallyIndexedArray
<
float
,
scatter_num
>
&
scatter_weights
)
:
src_coords_
(
MakeCoordinates
(
src_descs
,
src_slice_origins
)),
dst_coords_
(
MakeCoordinates
(
dst_descs
,
dst_slice_origins
)),
element_op_
(
element_op
),
scatter_offsets_
(
scatter_offsets
),
scatter_weights_
(
scatter_weights
)
{
static_assert
(
SliceLengths
::
At
(
Number
<
SrcVectorDim
>
{})
%
SrcScalarPerVector
==
0
,
"wrong! cannot evenly divide"
);
static_assert
(
SliceLengths
::
At
(
Number
<
DstVectorDim
>
{})
%
DstScalarPerVector
==
0
,
"wrong! cannot evenly divide"
);
}
template
<
typename
Indices
,
enable_if_t
<
SrcDescs
::
Size
()
==
Indices
::
Size
(),
bool
>
=
false
>
__device__
void
SetSrcSliceOrigins
(
const
SrcDescs
&
src_descs
,
const
Indices
&
src_slice_origin_idxs
)
{
static_for
<
0
,
nSrc
,
1
>
{}([
&
](
auto
i
)
{
src_coords_
(
i
)
=
make_tensor_coordinate
(
src_descs
[
i
],
src_slice_origin_idxs
[
i
]);
});
}
template
<
typename
Indices
,
enable_if_t
<
DstDescs
::
Size
()
==
Indices
::
Size
(),
bool
>
=
false
>
__device__
void
SetDstSliceOrigins
(
const
DstDescs
&
dst_descs
,
const
Indices
&
dst_slice_origin_idxs
)
{
static_for
<
0
,
nDst
,
1
>
{}([
&
](
auto
i
)
{
dst_coords_
(
i
)
=
make_tensor_coordinate
(
dst_descs
[
i
],
dst_slice_origin_idxs
[
i
]);
// printf("tid %d origin %d %d %d %d off %d\n", threadIdx.x, dst_slice_origin_idxs[i][I0], dst_slice_origin_idxs[i][I1], dst_slice_origin_idxs[i][I2], dst_slice_origin_idxs[i][I3], dst_coords_(i).GetOffset());
});
}
template
<
typename
DataTypes
,
index_t
ScalarPerVector
>
__device__
static
auto
generate_vectors
()
{
auto
data_types
=
DataTypes
{};
constexpr
index_t
num
=
data_types
.
Size
();
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DataType
=
remove_cvref_t
<
decltype
(
data_types
[
i
])
>
;
return
vector_type_maker_t
<
DataType
,
ScalarPerVector
>
{};
},
Number
<
num
>
{});
}
// SrcDescs: Tuple<const SrcDesc0&, const SrcDesc1&, ...>
// SrcBuffers: Tuple<const SrcBuffer0&, const SrcBuffer1&, ...>
template
<
typename
SrcBuffers
,
index_t
ThreadScratchId
=
0
,
enable_if_t
<
SrcDescs
::
Size
()
==
SrcBuffers
::
Size
(),
bool
>
=
false
>
__device__
void
RunRead
(
const
SrcDescs
&
src_descs
,
const
SrcBuffers
&
src_bufs
,
Number
<
ThreadScratchId
>
thread_scratch_id
=
Number
<
ThreadScratchId
>
{})
{
// loop over space-filling curve
static_for
<
0
,
src_num_access
,
1
>
{}([
&
](
auto
iAccess
)
{
auto
src_vectors
=
generate_vectors
<
SrcDatas
,
SrcScalarPerVector
>
();
auto
elm_vectors
=
generate_vectors
<
DstDatas
,
SrcScalarPerVector
>
();
bool
oob_val
=
true
;
// copy data from src_bufs into src_vectors
static_for
<
0
,
nSrc
,
1
>
{}([
&
](
auto
i
)
{
using
src_vector_t
=
typename
remove_cvref_t
<
decltype
(
src_vectors
[
i
])
>::
type
;
const
bool
is_src_valid
=
coordinate_has_valid_offset_assuming_visible_index_is_valid
(
src_descs
[
i
],
src_coords_
[
i
]);
oob_val
=
oob_val
&
is_src_valid
;
if
(
i
.
value
==
ScatterWeightIdx
)
{
static_assert
(
SrcScalarPerVectors
{}[
Number
<
ScatterWeightIdx
>
{}]
==
1
,
"scatter weight dim, should only one vec"
);
constexpr
auto
iScatter
=
SrcSpaceFillingCurve
::
GetIndex
(
iAccess
)(
Number
<
ScatterDim
>
{});
// if(threadIdx.x % 8 ==0 )
// printf("bid %d tid %d srcid %d sv %f\n", blockIdx.y, threadIdx.x, i.value, scatter_weights_(Number<iScatter>{}));
static_for
<
0
,
SrcScalarPerVector
,
1
>
{}(
[
&
](
auto
j
)
{
src_vectors
(
i
).
template
AsType
<
float
>()(
j
)
=
scatter_weights_
(
Number
<
iScatter
>
{});
});
}
else
if
constexpr
(
SrcScalarPerVectors
{}[
i
]
==
1
)
{
auto
data_types
=
SrcDatas
{};
using
DataType
=
remove_cvref_t
<
decltype
(
data_types
[
i
])
>
;
const
auto
tmp
=
src_bufs
[
i
].
template
Get
<
DataType
>(
src_coords_
[
i
].
GetOffset
(),
true
);
// if(threadIdx.x % 8 ==0 )
// printf("bid %d tid %d srcid %d off %d v %f\n", blockIdx.y, threadIdx.x, i.value, src_coords_[i].GetOffset(), tmp);
static_for
<
0
,
SrcScalarPerVector
,
1
>
{}(
[
&
](
auto
j
)
{
src_vectors
(
i
).
template
AsType
<
DataType
>()(
j
)
=
tmp
;
});
}
else
{
// if(threadIdx.x % 8 ==0 )
// printf("bid %d tid %d srcid %d vn\n", blockIdx.y, threadIdx.x, i.value);
src_vectors
(
i
).
template
AsType
<
src_vector_t
>()(
I0
)
=
src_bufs
[
i
].
template
Get
<
src_vector_t
>(
src_coords_
[
i
].
GetOffset
(),
true
);
}
});
constexpr
auto
get_elem_op_vec_len
=
[]()
{
if
constexpr
(
is_detected
<
is_pack8_invocable_t
,
decltype
(
element_op_
)
>::
value
)
{
if
constexpr
(
decltype
(
element_op_
)
::
is_pack8_invocable
)
return
math
::
min
(
8
,
SrcScalarPerVector
);
}
if
constexpr
(
is_detected
<
is_pack4_invocable_t
,
decltype
(
element_op_
)
>::
value
)
{
if
constexpr
(
decltype
(
element_op_
)
::
is_pack4_invocable
)
return
math
::
min
(
4
,
SrcScalarPerVector
);
}
if
constexpr
(
is_detected
<
is_pack2_invocable_t
,
decltype
(
element_op_
)
>::
value
)
{
if
constexpr
(
decltype
(
element_op_
)
::
is_pack2_invocable
)
return
math
::
min
(
2
,
SrcScalarPerVector
);
}
return
1
;
};
constexpr
index_t
elem_op_vec_len
=
get_elem_op_vec_len
();
// apply pointwise function
static_for
<
0
,
SrcScalarPerVector
/
elem_op_vec_len
,
1
>
{}([
&
](
auto
i
)
{
// get reference to src data
const
auto
src_data_refs
=
generate_tie
(
// return type should be lvalue
[
&
](
auto
iSrc
)
->
const
auto
&
{
using
SrcData
=
remove_cvref_t
<
tuple_element_t
<
iSrc
.
value
,
SrcDatas
>>
;
using
elem_op_vec_t
=
typename
vector_type
<
SrcData
,
elem_op_vec_len
>::
type
;
return
src_vectors
[
iSrc
].
template
AsType
<
elem_op_vec_t
>()[
i
];
},
Number
<
nSrc
>
{});
// get reference to dst data
auto
dst_data_refs
=
generate_tie
(
// return type should be lvalue
[
&
](
auto
iDst
)
->
auto
&
{
using
DstData
=
remove_cvref_t
<
tuple_element_t
<
iDst
.
value
,
DstDatas
>>
;
using
elem_op_vec_t
=
typename
vector_type
<
DstData
,
elem_op_vec_len
>::
type
;
return
elm_vectors
(
iDst
).
template
AsType
<
elem_op_vec_t
>()(
i
);
},
Number
<
nDst
>
{});
// apply pointwise function
// pointwise function signature:
// element_op_(dst_data_refs[I0],
// dst_data_refs[I1],
// ...,
// src_data_refs[I0],
// src_data_refs[I1],
// ...)
unpack2
(
element_op_
,
dst_data_refs
,
src_data_refs
);
});
elm_vectors_tuple_
(
thread_scratch_id
)(
iAccess
)
=
elm_vectors
;
oob_vectors_tuple_
(
thread_scratch_id
)(
iAccess
)
=
oob_val
;
// move coordinate
if
constexpr
(
iAccess
.
value
!=
src_num_access
-
1
)
{
constexpr
auto
forward_step
=
SrcSpaceFillingCurve
::
GetForwardStep
(
iAccess
);
static_for
<
0
,
nSrc
,
1
>
{}([
&
](
auto
i
)
{
move_tensor_coordinate
(
src_descs
[
i
],
src_coords_
(
i
),
make_tensor_coordinate_step
(
src_descs
[
i
],
forward_step
));
});
}
});
// move coordinate back to slice origin (or not)
static_for
<
0
,
nSrc
,
1
>
{}([
&
](
auto
i
)
{
if
constexpr
(
SrcResetCoordinateAfterRunFlags
::
At
(
i
))
{
const
auto
src_reset_step
=
make_tensor_coordinate_step
(
src_descs
[
i
],
GetSrcCoordinateResetStep
());
move_tensor_coordinate
(
src_descs
[
i
],
src_coords_
(
i
),
src_reset_step
);
}
});
}
#if 1
template
<
index_t
ThreadScratchId
=
0
>
__device__
void
OOBCheck
(
Number
<
ThreadScratchId
>
thread_scratch_id
=
Number
<
ThreadScratchId
>
{})
{
// loop over space-filling curve
static_for
<
0
,
src_num_access
,
1
>
{}([
&
](
auto
iAccess
)
{
auto
elm_vectors
=
elm_vectors_tuple_
[
thread_scratch_id
][
iAccess
];
auto
oob_val
=
oob_vectors_tuple_
[
thread_scratch_id
][
iAccess
];
static_for
<
0
,
nDst
,
1
>
{}([
&
](
auto
i
)
{
using
elm_vector_t
=
typename
remove_cvref_t
<
decltype
(
elm_vectors
[
i
])
>::
type
;
elm_vectors
(
i
).
template
AsType
<
elm_vector_t
>()(
I0
)
=
oob_val
?
elm_vectors
(
i
).
template
AsType
<
elm_vector_t
>()[
I0
]
:
elm_vector_t
{
0
};
});
elm_vectors_tuple_
(
thread_scratch_id
)(
iAccess
)
=
elm_vectors
;
});
}
#endif
template
<
index_t
ThreadScratchId
=
0
>
__device__
void
TransposeFromElmToDst
(
Number
<
ThreadScratchId
>
thread_scratch_id
=
Number
<
ThreadScratchId
>
{})
{
using
DstData
=
remove_cvref_t
<
decltype
(
DstDatas
{}[
I0
])
>
;
using
ElmThreadScratch
=
StaticTensorTupleOfVectorBuffer
<
AddressSpaceEnum
::
Vgpr
,
DstData
,
SrcScalarPerVector
,
decltype
(
GetSrcThreadScratchDescriptor
()),
true
>
;
using
DstThreadScratch
=
StaticTensorTupleOfVectorBuffer
<
AddressSpaceEnum
::
Vgpr
,
DstData
,
DstScalarPerVector
,
decltype
(
GetDstThreadScratchDescriptor
()),
true
>
;
ElmThreadScratch
elm_thread_scratch_
;
DstThreadScratch
dst_thread_scratch_
;
elm_thread_scratch_
.
data_
=
bit_cast
<
decltype
(
elm_thread_scratch_
.
data_
)
>
(
elm_vectors_tuple_
[
thread_scratch_id
]);
if
constexpr
(
SrcVectorDim
!=
DstVectorDim
&&
((
is_same
<
half_t
,
remove_cvref_t
<
DstData
>>::
value
&&
SrcScalarPerVector
%
2
==
0
&&
DstScalarPerVector
%
2
==
0
)
||
(
is_same
<
f8_t
,
remove_cvref_t
<
DstData
>>::
value
&&
SrcScalarPerVector
%
4
==
0
&&
DstScalarPerVector
%
4
==
0
)
||
(
is_same
<
int8_t
,
remove_cvref_t
<
DstData
>>::
value
&&
SrcScalarPerVector
%
4
==
0
&&
DstScalarPerVector
%
4
==
0
)))
{
// each transpose does
// DstScalarPerVector # of src vectors in src_thread_scratch_
// SrcScalarPerVector # of dst vectors in dst_thread_scratch_
constexpr
index_t
num_src_vector
=
Number
<
DstScalarPerVector
>
{};
constexpr
index_t
num_dst_vector
=
Number
<
SrcScalarPerVector
>
{};
// Assume SrcVectorDim is not the same as DstVectorDim, so we do transpose
// TODO: make this logic generic for all scenario
constexpr
auto
src_scalar_step_in_vector
=
generate_sequence
(
detail
::
lambda_scalar_step_in_vector
<
SrcVectorDim
>
{},
Number
<
nDim
>
{});
constexpr
auto
dst_scalar_step_in_vector
=
generate_sequence
(
detail
::
lambda_scalar_step_in_vector
<
DstVectorDim
>
{},
Number
<
nDim
>
{});
constexpr
auto
scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access_for_src_and_dst
<
SrcVectorDim
,
SrcScalarPerVector
,
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
access_lengths
=
SliceLengths
{}
/
scalar_per_access
;
static_ford
<
decltype
(
access_lengths
)
>
{}([
&
](
auto
access_idx
)
{
constexpr
auto
data_idx
=
access_idx
*
scalar_per_access
;
constexpr
auto
data_idx_seq
=
generate_sequence_v2
(
[
&
](
auto
i
)
{
return
Number
<
data_idx
[
i
]
>
{};
},
Number
<
nDim
>
{});
using
src_vector_t
=
vector_type_maker_t
<
DstData
,
SrcScalarPerVector
>
;
using
dst_vector_t
=
vector_type_maker_t
<
DstData
,
DstScalarPerVector
>
;
// get DstScalarPerVector # of read-only references to src vectors from
// src_thread_scratch_
const
auto
src_vector_refs
=
generate_tie
(
[
&
](
auto
i
)
->
const
src_vector_t
&
{
// i increment corresponds to movement in DstVectorDim
return
elm_thread_scratch_
.
GetVectorTypeReference
(
data_idx_seq
+
i
*
dst_scalar_step_in_vector
);
},
Number
<
num_src_vector
>
{});
// get SrcScalarPerVector # of references to dst vectors from
// dst_thread_scratch_
auto
dst_vector_refs
=
generate_tie
(
[
&
](
auto
i
)
->
dst_vector_t
&
{
// i increment corresponds to movement in SrcVectorDim
return
dst_thread_scratch_
.
GetVectorTypeReference
(
data_idx_seq
+
i
*
src_scalar_step_in_vector
);
},
Number
<
num_dst_vector
>
{});
// do data transpose
transpose_vectors
<
DstData
,
DstScalarPerVector
,
SrcScalarPerVector
>
{}(
src_vector_refs
,
dst_vector_refs
);
});
}
else
{
static_ford
<
SliceLengths
>
{}(
[
&
](
auto
idx
)
{
dst_thread_scratch_
(
idx
)
=
elm_thread_scratch_
[
idx
];
});
}
dst_vectors_tuple_
(
thread_scratch_id
)
=
bit_cast
<
DstVectorTuple
>
(
dst_thread_scratch_
.
data_
);
}
// DstDescs: Tuple<const DstDesc0&, const DstDesc1&, ...>
// DstBuffers: Tuple<const DstBuffer0&, const DstBuffer1&, ...>
template
<
typename
DstBuffers
,
index_t
ThreadScratchId
=
0
,
enable_if_t
<
DstDescs
::
Size
()
==
1
&&
DstBuffers
::
Size
()
==
1
,
bool
>
=
false
>
__device__
void
RunWrite
(
const
DstDescs
&
dst_descs
,
DstBuffers
dst_bufs
,
Number
<
ThreadScratchId
>
thread_scratch_id
=
Number
<
ThreadScratchId
>
{})
{
OOBCheck
(
thread_scratch_id
);
TransposeFromElmToDst
(
thread_scratch_id
);
// loop over space-filling curve
static_for
<
0
,
dst_num_access
,
1
>
{}([
&
](
auto
iAccess
)
{
auto
dst_vectors
=
dst_vectors_tuple_
[
thread_scratch_id
][
iAccess
];
auto
scatter_offset
=
0
;
if
constexpr
(
OutputScatter
)
{
constexpr
auto
iScatter
=
DstSpaceFillingCurve
::
GetIndex
(
iAccess
)(
Number
<
ScatterDim
>
{});
scatter_offset
=
scatter_offsets_
(
Number
<
iScatter
>
{});
}
// copy data from buf_vectors into dst_bufs
static_for
<
0
,
nDst
,
1
>
{}([
&
](
auto
i
)
{
using
dst_vector_t
=
typename
remove_cvref_t
<
decltype
(
dst_vectors
[
i
])
>::
type
;
auto
dst_offset
=
scatter_offset
+
dst_coords_
[
i
].
GetOffset
();
const
bool
is_dst_valid
=
dst_offset
<
dst_descs
[
i
].
GetElementSpaceSize
();
//hack felix, todo use coord
// coordinate_has_valid_offset_assuming_visible_index_is_valid(dst_descs[i],
// dst_coords_[i]);
constexpr
InMemoryDataOperationEnum
DstInMemOp
=
static_cast
<
InMemoryDataOperationEnum
>
(
DstInMemOps
::
At
(
i
.
value
));
// if(threadIdx.x==0)
// printf("use tid %d off %d %d\n", threadIdx.x, dst_coords_[i].GetOffset(), scatter_offset );
dst_bufs
(
i
).
template
Update
<
DstInMemOp
,
dst_vector_t
>(
dst_offset
,
is_dst_valid
,
dst_vectors
[
i
].
template
AsType
<
dst_vector_t
>()[
I0
]);
// if(1) {
// static_for<0, DstScalarPerVector, 1>{}([&](auto idx) {
// using DstData = remove_cvref_t<tuple_element_t<0, DstDatas>>;
// using print_vec_t = typename vector_type<DstData, 1>::type;
// printf("tid %d off %d valid %d %f\n",threadIdx.x, dst_coords_[i].GetOffset(), is_dst_valid,
// type_convert<float>(dst_vectors[i].template AsType<print_vec_t>()[idx]));
// });
// }
});
// move coordinate
if
constexpr
(
iAccess
.
value
!=
dst_num_access
-
1
)
{
constexpr
auto
forward_step
=
DstSpaceFillingCurve
::
GetForwardStep
(
iAccess
);
auto
forward_step_scatter
=
[
&
]()
constexpr
{
Index
step_
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
step_
(
i
)
=
(
i
.
value
==
ScatterDim
&&
OutputScatter
)
?
0
:
forward_step
[
i
];
// if(threadIdx.x==0)
// printf("i %d %d ordered_gather_dim %d\n", i.value, step_(i), ordered_gather_dim);
});
return
step_
;
}
();
static_for
<
0
,
nDst
,
1
>
{}([
&
](
auto
i
)
{
move_tensor_coordinate
(
dst_descs
[
i
],
dst_coords_
(
i
),
make_tensor_coordinate_step
(
dst_descs
[
i
],
forward_step_scatter
));
});
}
});
static_for
<
0
,
nDst
,
1
>
{}([
&
](
auto
i
)
{
if
constexpr
(
DstResetCoordinateAfterRunFlags
::
At
(
i
))
{
const
auto
dst_reset_step
=
make_tensor_coordinate_step
(
dst_descs
[
i
],
GetDstCoordinateResetStep
());
move_tensor_coordinate
(
dst_descs
[
i
],
dst_coords_
(
i
),
dst_reset_step
);
}
});
}
// SrcDescs: Tuple<const SrcDesc0&, const SrcDesc1&, ...>
// SrcBuffers: Tuple<const SrcBuffer0&, const SrcBuffer1&, ...>
// DstDescs: Tuple<const DstDesc0&, const DstDesc1&, ...>
// DstBuffers: Tuple<const DstBuffer0&, const DstBuffer1&, ...>
template
<
typename
SrcBuffers
,
typename
DstBuffers
,
enable_if_t
<
SrcDescs
::
Size
()
==
SrcBuffers
::
Size
()
&&
DstDescs
::
Size
()
==
DstBuffers
::
Size
(),
bool
>
=
false
>
__device__
void
Run
(
const
SrcDescs
&
src_descs
,
const
SrcBuffers
&
src_bufs
,
const
DstDescs
&
dst_descs
,
DstBuffers
dst_bufs
)
{
RunRead
(
src_descs
,
src_bufs
);
RunWrite
(
dst_descs
,
dst_bufs
);
}
__device__
static
constexpr
auto
GetSrcCoordinateResetStep
()
{
if
constexpr
(
src_num_access
==
0
)
{
return
typename
SrcSpaceFillingCurve
::
Index
{};
}
else
{
return
SrcSpaceFillingCurve
::
GetStepBetween
(
Number
<
src_num_access
-
1
>
{},
Number
<
0
>
{});
}
}
__device__
static
constexpr
auto
GetDstCoordinateResetStep
()
{
if
constexpr
(
dst_num_access
==
0
)
{
return
typename
DstSpaceFillingCurve
::
Index
{};
}
else
{
constexpr
auto
reset_step
=
DstSpaceFillingCurve
::
GetStepBetween
(
Number
<
dst_num_access
-
1
>
{},
Number
<
0
>
{});
auto
reset_step_scatter
=
[
&
]()
constexpr
{
Index
step_
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
step_
(
i
)
=
(
i
.
value
==
ScatterDim
&&
OutputScatter
)
?
0
:
reset_step
[
Number
<
i
>
{}];
// if(threadIdx.x==0)
// printf("i %d %d ordered_gather_dim %d\n", i.value, step_(i), ordered_gather_dim);
});
return
step_
;
}
();
return
reset_step_scatter
;
}
}
__device__
static
constexpr
auto
GetSrcThreadScratchDescriptor
()
{
// constexpr auto src_scalar_per_access = generate_sequence(
// detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector>{},
// Number<nDim>{});
constexpr
auto
src_access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
constexpr
auto
src_access_lengths_and_vector_length
=
container_push_back
(
sequence_to_tuple_of_number
(
src_access_lengths
),
Number
<
SrcScalarPerVector
>
{});
// 1st stage of transforms
constexpr
auto
desc0
=
make_naive_tensor_descriptor_packed
(
src_access_lengths_and_vector_length
);
// 2nd stage of transforms
constexpr
auto
transforms
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
SrcVectorDim
)
{
return
make_merge_transform_v3_division_mod
(
make_tuple
(
src_access_lengths_and_vector_length
[
i
],
src_access_lengths_and_vector_length
[
Number
<
nDim
>
{}]));
}
else
{
return
make_pass_through_transform
(
src_access_lengths_and_vector_length
[
i
]);
}
},
Number
<
nDim
>
{});
constexpr
auto
low_dim_idss
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
SrcVectorDim
)
{
return
Sequence
<
i
.
value
,
nDim
>
{};
}
else
{
return
Sequence
<
i
.
value
>
{};
}
},
Number
<
nDim
>
{});
constexpr
auto
up_dim_idss
=
generate_tuple
([
&
](
auto
i
)
{
return
Sequence
<
i
.
value
>
{};
},
Number
<
nDim
>
{});
return
transform_tensor_descriptor
(
desc0
,
transforms
,
low_dim_idss
,
up_dim_idss
);
}
__device__
static
constexpr
auto
GetDstThreadScratchDescriptor
()
{
// 1st stage of transforms
// constexpr auto dst_scalar_per_access = generate_sequence(
// detail::lambda_scalar_per_access<DstVectorDim, DstScalarPerVector>{},
// Number<nDim>{});
constexpr
auto
dst_access_lengths
=
SliceLengths
{}
/
dst_scalar_per_access
;
constexpr
auto
dst_access_lengths_and_vector_length
=
container_push_back
(
sequence_to_tuple_of_number
(
dst_access_lengths
),
Number
<
DstScalarPerVector
>
{});
constexpr
auto
desc0
=
make_naive_tensor_descriptor_packed
(
dst_access_lengths_and_vector_length
);
// 2nd stage of transforms
constexpr
auto
transforms
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
DstVectorDim
)
{
return
make_merge_transform_v3_division_mod
(
make_tuple
(
dst_access_lengths_and_vector_length
[
i
],
dst_access_lengths_and_vector_length
[
Number
<
nDim
>
{}]));
}
else
{
return
make_pass_through_transform
(
dst_access_lengths_and_vector_length
[
i
]);
}
},
Number
<
nDim
>
{});
constexpr
auto
low_dim_idss
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
DstVectorDim
)
{
return
Sequence
<
i
.
value
,
nDim
>
{};
}
else
{
return
Sequence
<
i
.
value
>
{};
}
},
Number
<
nDim
>
{});
constexpr
auto
up_dim_idss
=
generate_tuple
([
&
](
auto
i
)
{
return
Sequence
<
i
.
value
>
{};
},
Number
<
nDim
>
{});
return
transform_tensor_descriptor
(
desc0
,
transforms
,
low_dim_idss
,
up_dim_idss
);
}
// src_slice_origin_step_idx need to be known at compile-time, for performance reason
template
<
index_t
ISrc
>
__device__
void
MoveSrcSliceWindow
(
const
SrcDescs
&
src_descs
,
Number
<
ISrc
>
iSrc
,
const
Index
&
src_slice_origin_step_idx
)
{
// if src coord was not reset by RunRead(), then need to adjust the step here
const
auto
adjusted_step_idx
=
SrcResetCoordinateAfterRunFlags
::
At
(
iSrc
)
?
src_slice_origin_step_idx
:
src_slice_origin_step_idx
+
GetSrcCoordinateResetStep
();
// is it OK to construct a new step every time?
const
auto
adjusted_step
=
make_tensor_coordinate_step
(
src_descs
[
iSrc
],
adjusted_step_idx
);
move_tensor_coordinate
(
src_descs
[
iSrc
],
src_coords_
(
iSrc
),
adjusted_step
);
}
// dst_slice_origin_step_idx need to be known at compile-time, for performance reason
template
<
index_t
IDst
>
__device__
void
MoveDstSliceWindow
(
const
DstDescs
&
dst_descs
,
Number
<
IDst
>
iDst
,
const
Index
&
dst_slice_origin_step_idx
)
{
// if dst coord was not reset by Run(), then need to adjust the step here
const
auto
adjusted_step_idx
=
DstResetCoordinateAfterRunFlags
::
At
(
iDst
)
?
dst_slice_origin_step_idx
:
dst_slice_origin_step_idx
+
GetDstCoordinateResetStep
();
// is it OK to construct a new step every time?
const
auto
adjusted_step
=
make_tensor_coordinate_step
(
dst_descs
[
iDst
],
adjusted_step_idx
);
move_tensor_coordinate
(
dst_descs
[
iDst
],
dst_coords_
(
iDst
),
adjusted_step
);
}
private:
using
SrcVectorsType
=
decltype
(
generate_vectors
<
SrcDatas
,
SrcScalarPerVector
>
());
using
ElmVectorsType
=
decltype
(
generate_vectors
<
DstDatas
,
SrcScalarPerVector
>
());
using
DstVectorsType
=
decltype
(
generate_vectors
<
DstDatas
,
DstScalarPerVector
>
());
static
constexpr
auto
src_num_access
=
SrcSpaceFillingCurve
::
GetNumOfAccess
();
static
constexpr
auto
dst_num_access
=
DstSpaceFillingCurve
::
GetNumOfAccess
();
using
ElmVectorTuple
=
StaticallyIndexedArray
<
ElmVectorsType
,
src_num_access
>
;
using
DstVectorTuple
=
StaticallyIndexedArray
<
DstVectorsType
,
dst_num_access
>
;
StaticallyIndexedArray
<
ElmVectorTuple
,
NumThreadScratch
>
elm_vectors_tuple_
;
StaticallyIndexedArray
<
DstVectorTuple
,
NumThreadScratch
>
dst_vectors_tuple_
;
using
OOBVectorTuple
=
StaticallyIndexedArray
<
bool
,
src_num_access
>
;
StaticallyIndexedArray
<
OOBVectorTuple
,
NumThreadScratch
>
oob_vectors_tuple_
;
SrcCoords
src_coords_
;
DstCoords
dst_coords_
;
const
ElementwiseOperation
element_op_
;
StaticallyIndexedArray
<
index_t
,
scatter_num
>
scatter_offsets_
;
StaticallyIndexedArray
<
float
,
scatter_num
>
scatter_weights_
;
};
}
// namespace ck
library/include/ck/library/reference_tensor_operation/cpu/reference_moe_gemm.hpp
0 → 100644
View file @
0f444e0c
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
host
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
typename
ComputeTypeA
=
CDataType
,
typename
ComputeTypeB
=
ComputeTypeA
>
struct
ReferenceMoeGemm
:
public
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ck
::
index_t
>&
sorted_token_ids
,
const
Tensor
<
ck
::
index_t
>&
expert_ids
,
const
index_t
sorted_tile_size
,
const
Tensor
<
ADataType
>&
a_t_k
,
const
Tensor
<
BDataType
>&
b_e_n_k
,
Tensor
<
CDataType
>&
c_m_n
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
:
sorted_token_ids_
{
sorted_token_ids
},
expert_ids_
{
expert_ids
},
sorted_tile_size_
{
sorted_tile_size
},
a_t_k_
{
a_t_k
},
b_e_n_k_
{
b_e_n_k
},
c_m_n_
{
c_m_n
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
}
const
Tensor
<
ck
::
index_t
>&
sorted_token_ids_
;
const
Tensor
<
ck
::
index_t
>&
expert_ids_
;
index_t
sorted_tile_size_
;
const
Tensor
<
ADataType
>&
a_t_k_
;
const
Tensor
<
BDataType
>&
b_e_n_k_
;
Tensor
<
CDataType
>&
c_m_n_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
};
// Invoker
struct
Invoker
:
public
device
::
BaseInvoker
{
using
Argument
=
ReferenceMoeGemm
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_mk_kn_mn
=
[
&
](
auto
m
,
auto
n
)
{
const
int
K
=
arg
.
a_t_k_
.
mDesc
.
GetLengths
()[
1
];
AccDataType
v_acc
{
0
};
ComputeTypeA
v_a
{
0
};
ComputeTypeB
v_b
{
0
};
const
int
t
=
arg
.
sorted_token_ids_
(
m
);
const
int
e
=
arg
.
expert_ids_
(
m
/
arg
.
sorted_tile_size_
);
const
int
token_cnt
=
arg
.
a_t_k_
.
mDesc
.
GetLengths
()[
0
];
if
(
t
<
token_cnt
)
{
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
// // use PassThrough instead of ConvertBF16RTN for reference calculation
// if constexpr(is_same_v<AElementwiseOperation,
// ck::tensor_operation::element_wise::ConvertBF16RTN>)
// {
// ck::tensor_operation::element_wise::PassThrough{}(v_a, arg.a_t_k_(t, k));
// }
if
constexpr
(
is_same_v
<
ADataType
,
pk_i4_t
>
)
{
uint8_t
i4x2
=
arg
.
a_t_k_
(
t
,
k
).
data
;
uint8_t
i4
=
0
;
if
(
k
%
2
==
1
)
i4
=
(
i4x2
>>
0
)
&
0xf
;
else
i4
=
(
i4x2
>>
4
)
&
0xf
;
v_a
=
i4_to_f32_gfx9
(
i4
);
}
else
{
arg
.
a_element_op_
(
v_a
,
arg
.
a_t_k_
(
t
,
k
));
}
// // same for B matrix
// if constexpr(is_same_v<BElementwiseOperation,
// ck::tensor_operation::element_wise::ConvertBF16RTN>)
// {
// ck::tensor_operation::element_wise::PassThrough{}(v_b, arg.b_e_n_k_(e, n, k));
// }
if
constexpr
(
is_same_v
<
BDataType
,
pk_i4_t
>
)
{
uint8_t
i4x2
=
arg
.
b_e_n_k_
(
e
,
n
,
k
).
data
;
uint8_t
i4
=
0
;
if
(
k
%
2
==
1
)
i4
=
(
i4x2
>>
0
)
&
0xf
;
else
i4
=
(
i4x2
>>
4
)
&
0xf
;
v_b
=
i4_to_f32_gfx9
(
i4
);
}
else
{
arg
.
b_element_op_
(
v_b
,
arg
.
b_e_n_k_
(
e
,
n
,
k
));
}
v_acc
+=
ck
::
type_convert
<
AccDataType
>
(
v_a
)
*
ck
::
type_convert
<
AccDataType
>
(
v_b
);
}
}
CDataType
v_c
{
0
};
arg
.
c_element_op_
(
v_c
,
v_acc
);
arg
.
c_m_n_
(
m
,
n
)
=
v_c
;
};
make_ParallelTensorFunctor
(
f_mk_kn_mn
,
arg
.
c_m_n_
.
mDesc
.
GetLengths
()[
0
],
arg
.
c_m_n_
.
mDesc
.
GetLengths
()[
1
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ck
::
index_t
>&
sorted_token_ids
,
const
Tensor
<
ck
::
index_t
>&
expert_ids
,
const
index_t
sorted_tile_size
,
const
Tensor
<
ADataType
>&
a_t_k
,
const
Tensor
<
BDataType
>&
b_e_n_k
,
Tensor
<
CDataType
>&
c_m_n
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
sorted_token_ids
,
expert_ids
,
sorted_tile_size
,
a_t_k
,
b_e_n_k
,
c_m_n
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceMoeGemm"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
static
float
i4_to_f32_gfx9
(
uint8_t
i4
)
{
static
std
::
unordered_map
<
uint8_t
,
float
>
u
=
{{
0b1000
,
-
0.5000
f
},
{
0b1001
,
-
0.4375
f
},
{
0b1010
,
-
0.3750
f
},
{
0b1011
,
-
0.3125
f
},
{
0b1100
,
-
0.2500
f
},
{
0b1101
,
-
0.1875
f
},
{
0b1110
,
-
0.1250
f
},
{
0b1111
,
-
0.0625
f
},
{
0b0
,
+
0.0000
f
},
{
0b1
,
+
0.0625
f
},
{
0b10
,
+
0.1250
f
},
{
0b11
,
+
0.1875
f
},
{
0b100
,
+
0.2500
f
},
{
0b101
,
+
0.3125
f
},
{
0b110
,
+
0.3750
f
},
{
0b111
,
+
0.4375
f
}};
return
u
[
i4
];
}
};
}
// namespace host
}
// namespace tensor_operation
}
// namespace ck
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment