Commit 082cf643 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents 7e8230da 59136091
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND gpu_list2 gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list2 AND target EQUAL 0)
add_example_executable(example_gemm_multiABD_xdl_fp16 gemm_multiABD_xdl_fp16.cpp)
set(target 1)
endif()
endforeach()
endif()
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using DDataType = F16;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using DLayout = Row;
using ELayout = Row;
struct AddScale
{
static constexpr auto I0 = ck::Number<0>{};
static constexpr auto I1 = ck::Number<1>{};
static constexpr auto I2 = ck::Number<2>{};
static constexpr auto I3 = ck::Number<3>{};
__host__ __device__ constexpr void
operator()(ck::half4_t& a, const ck::half4_t& a0, const ck::half4_t& a1) const
{
const auto a0_v_t = ck::vector_type<ck::half_t, 4>{a0};
const auto a1_v_t = ck::vector_type<ck::half_t, 4>{a1};
auto r_v_t = ck::vector_type<ck::half_t, 4>{};
r_v_t.AsType<ck::half_t>()(I0) =
scale * (a0_v_t.AsType<ck::half_t>()[I0] + a1_v_t.AsType<ck::half_t>()[I0]);
r_v_t.AsType<ck::half_t>()(I1) =
scale * (a0_v_t.AsType<ck::half_t>()[I1] + a1_v_t.AsType<ck::half_t>()[I1]);
r_v_t.AsType<ck::half_t>()(I2) =
scale * (a0_v_t.AsType<ck::half_t>()[I2] + a1_v_t.AsType<ck::half_t>()[I2]);
r_v_t.AsType<ck::half_t>()(I3) =
scale * (a0_v_t.AsType<ck::half_t>()[I3] + a1_v_t.AsType<ck::half_t>()[I3]);
a = r_v_t.AsType<ck::half4_t>()[I0];
}
__host__ __device__ constexpr void
operator()(ck::half_t& a, const ck::half_t& a0, const ck::half_t& a1) const
{
a = scale * (a0 + a1);
}
static constexpr ck::index_t vec_len = 4;
float scale = 1.0;
};
struct AlphaBetaAdd
{
AlphaBetaAdd(float alpha, float beta) : alpha_(alpha), beta_(beta){};
template <typename E, typename C, typename D>
__host__ __device__ constexpr void operator()(E& e, const C& c, const D& d) const;
template <>
__host__ __device__ constexpr void operator()<ck::half_t, float, ck::half_t>(
ck::half_t& e, const float& c, const ck::half_t& d) const
{
e = ck::type_convert<ck::half_t>(alpha_ * c + beta_ * ck::type_convert<float>(d));
};
float alpha_;
float beta_;
};
using AElementOp = AddScale;
using BElementOp = PassThrough;
using CDEElementOp = AlphaBetaAdd;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleABD_Xdl_CShuffle<
ck::Tuple<ALayout, ALayout>,
ck::Tuple<BLayout>,
ck::Tuple<DLayout>,
ELayout,
ck::Tuple<ADataType, ADataType>,
ck::Tuple<BDataType>,
AccDataType,
CShuffleDataType,
ck::Tuple<DDataType>,
EDataType,
AElementOp,
BElementOp,
CDEElementOp,
GemmSpec,
1,
256,
256,
128,
32,
8,
8,
32,
32,
4,
2,
S<4, 64, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
1,
S<4, 64, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
1,
1,
1,
S<1, 32, 1, 8>,
8>;
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideD = 4096;
ck::index_t StrideE = 4096;
float alpha = 1.0f;
float beta = 1.0f;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 6)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
alpha = std::stof(argv[4]);
beta = std::stof(argv[5]);
}
else if(argc == 13)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideD = std::stoi(argv[9]);
StrideE = std::stoi(argv[10]);
alpha = std::stof(argv[11]);
beta = std::stof(argv[12]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE, alpha, "
"beta\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<ADataType> a0_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<ADataType> a1_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<DDataType> d_m_n(f_host_tensor_descriptor(M, N, StrideD, DLayout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a0_m_k: " << a0_m_k.mDesc << std::endl;
std::cout << "a1_m_k: " << a1_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "d_m_n: " << d_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a0_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
a1_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d_m_n.GenerateTensorValue(GeneratorTensor_2<DDataType>{-5, 5});
break;
default:
a0_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
a1_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d_m_n.GenerateTensorValue(GeneratorTensor_3<DDataType>{-0.5, 0.5});
}
DeviceMem a0_device_buf(sizeof(ADataType) * a0_m_k.mDesc.GetElementSpaceSize());
DeviceMem a1_device_buf(sizeof(ADataType) * a1_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(DDataType) * d_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a0_device_buf.ToDevice(a0_m_k.mData.data());
a1_device_buf.ToDevice(a1_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
d_device_buf.ToDevice(d_m_n.mData.data());
e_device_buf.ToDevice(e_m_n_device_result.mData.data());
auto a_element_op = AElementOp{0.2};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{alpha, beta};
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(std::array<const void*, 2>{a0_device_buf.GetDeviceBuffer(),
a1_device_buf.GetDeviceBuffer()},
std::array<const void*, 1>{b_device_buf.GetDeviceBuffer()},
std::array<const void*, 1>{d_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
std::array<ck::index_t, 2>{StrideA, StrideA},
std::array<ck::index_t, 1>{StrideB},
std::array<ck::index_t, 1>{StrideD},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_m_n({M, N});
Tensor<ADataType> a_m_k({M, K});
for(int m = 0; m < M; ++m)
{
for(int k = 0; k < K; ++k)
{
a_element_op(a_m_k(m, k), a0_m_k(m, k), a1_m_k(m, k));
}
}
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CShuffleDataType,
AccDataType,
PassThrough,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, PassThrough{}, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d_m_n(m, n));
}
}
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
return ck::utils::check_err(e_m_n_device_result, e_m_n_host_result) ? 0 : 1;
}
return 0;
}
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND gpu_list2 gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list2 AND target EQUAL 0)
add_example_executable(example_gemm_multi_ABD_xdl_fp16 gemm_multi_ABD_xdl_fp16.cpp)
set(target 1)
endif()
endforeach()
endif()
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using DDataType = F16;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using DLayout = Row;
using ELayout = Row;
struct AddScale
{
static constexpr auto I0 = ck::Number<0>{};
static constexpr auto I1 = ck::Number<1>{};
static constexpr auto I2 = ck::Number<2>{};
static constexpr auto I3 = ck::Number<3>{};
__host__ __device__ constexpr void
operator()(ck::half4_t& a, const ck::half4_t& a0, const ck::half4_t& a1) const
{
const auto a0_v_t = ck::vector_type<ck::half_t, 4>{a0};
const auto a1_v_t = ck::vector_type<ck::half_t, 4>{a1};
auto r_v_t = ck::vector_type<ck::half_t, 4>{};
r_v_t.AsType<ck::half_t>()(I0) =
scale * (a0_v_t.AsType<ck::half_t>()[I0] + a1_v_t.AsType<ck::half_t>()[I0]);
r_v_t.AsType<ck::half_t>()(I1) =
scale * (a0_v_t.AsType<ck::half_t>()[I1] + a1_v_t.AsType<ck::half_t>()[I1]);
r_v_t.AsType<ck::half_t>()(I2) =
scale * (a0_v_t.AsType<ck::half_t>()[I2] + a1_v_t.AsType<ck::half_t>()[I2]);
r_v_t.AsType<ck::half_t>()(I3) =
scale * (a0_v_t.AsType<ck::half_t>()[I3] + a1_v_t.AsType<ck::half_t>()[I3]);
a = r_v_t.AsType<ck::half4_t>()[I0];
}
__host__ __device__ constexpr void
operator()(ck::half_t& a, const ck::half_t& a0, const ck::half_t& a1) const
{
a = scale * (a0 + a1);
}
// this attribute will force copy_function applying element_wise with vector_type
static constexpr ck::index_t vec_len = 4;
float scale = 1.0;
};
struct AlphaBetaAdd
{
AlphaBetaAdd(float alpha, float beta) : alpha_(alpha), beta_(beta){};
template <typename E, typename C, typename D>
__host__ __device__ constexpr void operator()(E& e, const C& c, const D& d) const;
template <>
__host__ __device__ constexpr void operator()<ck::half_t, float, ck::half_t>(
ck::half_t& e, const float& c, const ck::half_t& d) const
{
e = ck::type_convert<ck::half_t>(alpha_ * c + beta_ * ck::type_convert<float>(d));
};
float alpha_;
float beta_;
};
using AElementOp = AddScale;
using BElementOp = PassThrough;
using CDEElementOp = AlphaBetaAdd;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleABD_Xdl_CShuffle<
ck::Tuple<ALayout, ALayout>,
ck::Tuple<BLayout>,
ck::Tuple<DLayout>,
ELayout,
ck::Tuple<ADataType, ADataType>,
ck::Tuple<BDataType>,
AccDataType,
CShuffleDataType,
ck::Tuple<DDataType>,
EDataType,
AElementOp,
BElementOp,
CDEElementOp,
GemmSpec,
1,
256,
256,
128,
32,
8,
8,
32,
32,
4,
2,
S<4, 64, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
1,
S<4, 64, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
1,
1,
1,
S<1, 32, 1, 8>,
8>;
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideD = 4096;
ck::index_t StrideE = 4096;
float alpha = 1.0f;
float beta = 1.0f;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 6)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
alpha = std::stof(argv[4]);
beta = std::stof(argv[5]);
}
else if(argc == 13)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideD = std::stoi(argv[9]);
StrideE = std::stoi(argv[10]);
alpha = std::stof(argv[11]);
beta = std::stof(argv[12]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE, alpha, "
"beta\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<ADataType> a0_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<ADataType> a1_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<DDataType> d_m_n(f_host_tensor_descriptor(M, N, StrideD, DLayout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a0_m_k: " << a0_m_k.mDesc << std::endl;
std::cout << "a1_m_k: " << a1_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "d_m_n: " << d_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a0_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
a1_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d_m_n.GenerateTensorValue(GeneratorTensor_2<DDataType>{-5, 5});
break;
default:
a0_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
a1_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d_m_n.GenerateTensorValue(GeneratorTensor_3<DDataType>{-0.5, 0.5});
}
DeviceMem a0_device_buf(sizeof(ADataType) * a0_m_k.mDesc.GetElementSpaceSize());
DeviceMem a1_device_buf(sizeof(ADataType) * a1_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(DDataType) * d_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a0_device_buf.ToDevice(a0_m_k.mData.data());
a1_device_buf.ToDevice(a1_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
d_device_buf.ToDevice(d_m_n.mData.data());
e_device_buf.ToDevice(e_m_n_device_result.mData.data());
auto a_element_op = AElementOp{0.2};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{alpha, beta};
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(std::array<const void*, 2>{a0_device_buf.GetDeviceBuffer(),
a1_device_buf.GetDeviceBuffer()},
std::array<const void*, 1>{b_device_buf.GetDeviceBuffer()},
std::array<const void*, 1>{d_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
std::array<ck::index_t, 2>{StrideA, StrideA},
std::array<ck::index_t, 1>{StrideB},
std::array<ck::index_t, 1>{StrideD},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_m_n({M, N});
Tensor<ADataType> a_m_k({M, K});
for(int m = 0; m < M; ++m)
{
for(int k = 0; k < K; ++k)
{
a_element_op(a_m_k(m, k), a0_m_k(m, k), a1_m_k(m, k));
}
}
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CShuffleDataType,
AccDataType,
PassThrough,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, PassThrough{}, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d_m_n(m, n));
}
}
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
return ck::utils::check_err(e_m_n_device_result, e_m_n_host_result) ? 0 : 1;
}
return 0;
}
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND gpu_list2 gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list2 AND target EQUAL 0)
add_example_executable(example_contraction_multi_ABD_xdl_fp16 contraction_multi_ABD_xdl_fp16.cpp)
set(target 1)
endif()
endforeach()
endif()
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_contraction.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/numeric.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using A0DataType = F16;
using A1DataType = F32;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using DDataType = F16;
using EDataType = F16;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
struct AlphaBetaAdd
{
AlphaBetaAdd(float alpha, float beta) : alpha_(alpha), beta_(beta){};
template <typename E, typename C, typename D>
__host__ __device__ constexpr void operator()(E& e, const C& c, const D& d) const;
template <>
__host__ __device__ constexpr void operator()<ck::half_t, float, ck::half_t>(
ck::half_t& e, const float& c, const ck::half_t& d) const
{
e = ck::type_convert<ck::half_t>(alpha_ * c + beta_ * ck::type_convert<float>(d));
};
float alpha_;
float beta_;
};
struct Multiply
{
__host__ __device__ constexpr void
operator()(ck::half_t& a, const ck::half_t& a0, const float& a1) const
{
a = ck::type_convert<ck::half_t>(ck::type_convert<float>(a0) * a1);
}
};
using AElementOp = Multiply;
using BElementOp = PassThrough;
using CDEElementOp = AlphaBetaAdd;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using DeviceOpInstance = ck::tensor_operation::device::DeviceContractionMultipleABD_Xdl_CShuffle<
NumDimM,
NumDimN,
NumDimK,
ck::Tuple<A0DataType, A1DataType>,
ck::Tuple<BDataType>,
AccDataType,
CShuffleDataType,
ck::Tuple<DDataType>,
EDataType,
AElementOp,
BElementOp,
CDEElementOp,
GemmSpec,
1,
256,
256,
128,
32,
8,
8,
32,
32,
4,
2,
S<4, 64, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
1,
S<4, 64, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
1,
1,
1,
S<1, 32, 1, 8>,
8>;
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
float alpha = 1.0f;
float beta = 1.0f;
// A0[M0, M1, K0, K1]
std::vector<ck::index_t> a0_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a0_ms_ks_strides{128 * 32 * 64, 32 * 64, 64, 1};
// A1[M1, K1] -> A1[M0, M1, K0, K1]
std::vector<ck::index_t> a1_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a1_ms_ks_strides{0, 64, 0, 1};
// B[N0, N1, K0, K1]
std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
std::vector<ck::index_t> b_ns_ks_strides{64 * 32 * 64, 32 * 64, 64, 1};
// D[M0, M1, N0, N1]
std::vector<ck::index_t> d_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> d_ms_ns_strides{128 * 32 * 64, 32 * 64, 64, 1};
// E[M0, M1, N0, N1]
std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> e_ms_ns_strides{128 * 32 * 64, 32 * 64, 64, 1};
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
exit(0);
}
Tensor<A0DataType> a0_ms_ks(a0_ms_ks_lengths, a0_ms_ks_strides);
Tensor<A1DataType> a1_ms_ks(a1_ms_ks_lengths, a1_ms_ks_strides);
Tensor<BDataType> b_ns_ks(b_ns_ks_lengths, b_ns_ks_strides);
Tensor<EDataType> d_ms_ns(d_ms_ns_lengths, d_ms_ns_strides);
Tensor<EDataType> e_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
Tensor<EDataType> e_ms_ns_device_result(e_ms_ns_lengths, e_ms_ns_strides);
std::cout << "a0_ms_ks: " << a0_ms_ks.mDesc << std::endl;
std::cout << "a1_ms_ks: " << a1_ms_ks.mDesc << std::endl;
std::cout << "b_ns_ks: " << b_ns_ks.mDesc << std::endl;
std::cout << "d_ms_ns: " << d_ms_ns.mDesc << std::endl;
std::cout << "e_ms_ns: " << e_ms_ns_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a0_ms_ks.GenerateTensorValue(GeneratorTensor_2<A0DataType>{-5, 5});
a1_ms_ks.GenerateTensorValue(GeneratorTensor_2<A1DataType>{-5, 5});
b_ns_ks.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d_ms_ns.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a0_ms_ks.GenerateTensorValue(GeneratorTensor_3<A0DataType>{0.0, 1.0});
a1_ms_ks.GenerateTensorValue(GeneratorTensor_3<A1DataType>{0.0, 1.0});
b_ns_ks.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d_ms_ns.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
}
DeviceMem a0_device_buf(sizeof(A0DataType) * a0_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem a1_device_buf(sizeof(A1DataType) * a1_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(DDataType) * d_ms_ns.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_ms_ns_device_result.mDesc.GetElementSpaceSize());
a0_device_buf.ToDevice(a0_ms_ks.mData.data());
a1_device_buf.ToDevice(a1_ms_ks.mData.data());
b_device_buf.ToDevice(b_ns_ks.mData.data());
d_device_buf.ToDevice(d_ms_ns.mData.data());
// set zero
e_device_buf.SetZero();
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{alpha, beta};
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument = device_op.MakeArgument(
std::array<const void*, 2>{a0_device_buf.GetDeviceBuffer(),
a1_device_buf.GetDeviceBuffer()},
std::array<const void*, 1>{b_device_buf.GetDeviceBuffer()},
std::array<const void*, 1>{d_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
std::array<std::vector<ck::index_t>, 2>{a0_ms_ks_lengths, a1_ms_ks_lengths},
std::array<std::vector<ck::index_t>, 2>{a0_ms_ks_strides, a1_ms_ks_strides},
std::array<std::vector<ck::index_t>, 1>{b_ns_ks_lengths},
std::array<std::vector<ck::index_t>, 1>{b_ns_ks_strides},
std::array<std::vector<ck::index_t>, 1>{d_ms_ns_lengths},
std::array<std::vector<ck::index_t>, 1>{d_ms_ns_strides},
e_ms_ns_lengths,
e_ms_ns_strides,
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_contraction with the specified compilation parameters does "
"not support this problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
if(time_kernel)
{
ck::index_t M =
ck::accumulate_n<ck::index_t>(e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t N = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t K = ck::accumulate_n<ck::index_t>(
a0_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(A0DataType) * M * K + sizeof(BDataType) * K * N + +sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s" << std::endl;
}
if(do_verification)
{
Tensor<CShuffleDataType> c_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
Tensor<A0DataType> a_ms_ks(a0_ms_ks_lengths, a0_ms_ks_strides);
for(size_t m0 = 0; m0 < a_ms_ks.mDesc.GetLengths()[0]; ++m0)
{
for(size_t m1 = 0; m1 < a_ms_ks.mDesc.GetLengths()[1]; ++m1)
{
for(size_t k0 = 0; k0 < a_ms_ks.mDesc.GetLengths()[2]; ++k0)
{
for(size_t k1 = 0; k1 < a_ms_ks.mDesc.GetLengths()[3]; ++k1)
{
a_element_op(a_ms_ks(m0, m1, k0, k1),
a0_ms_ks(m0, m1, k0, k1),
a1_ms_ks(m0, m1, k0, k1));
}
}
}
}
using ReferenceOpInstance =
ck::tensor_operation::host::ReferenceContraction_M2_N2_K2<NumDimM,
NumDimN,
NumDimK,
A0DataType,
BDataType,
CShuffleDataType,
AccDataType,
PassThrough,
BElementOp>;
auto ref_op = ReferenceOpInstance{};
auto ref_invoker = ref_op.MakeInvoker();
Tensor<float> empty_tensor(std::vector<ck::index_t>{}, std::vector<ck::index_t>{});
auto ref_argument =
ref_op.MakeArgument(a_ms_ks, b_ns_ks, c_ms_ns_host_result, PassThrough{}, b_element_op);
ref_invoker.Run(ref_argument);
for(size_t m0 = 0; m0 < e_ms_ns_host_result.mDesc.GetLengths()[0]; ++m0)
{
for(size_t m1 = 0; m1 < e_ms_ns_host_result.mDesc.GetLengths()[1]; ++m1)
{
for(size_t n0 = 0; n0 < e_ms_ns_host_result.mDesc.GetLengths()[2]; ++n0)
{
for(size_t n1 = 0; n1 < e_ms_ns_host_result.mDesc.GetLengths()[3]; ++n1)
{
cde_element_op(e_ms_ns_host_result(m0, m1, n0, n1),
c_ms_ns_host_result(m0, m1, n0, n1),
d_ms_ns(m0, m1, n0, n1));
}
}
}
}
e_device_buf.FromDevice(e_ms_ns_device_result.mData.data());
return ck::utils::check_err(e_ms_ns_device_result, e_ms_ns_host_result) ? 0 : 1;
}
return 0;
}
...@@ -30,7 +30,7 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME) ...@@ -30,7 +30,7 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME)
set(test 0) set(test 0)
break() break()
elseif((source MATCHES "fp8" OR source MATCHES "fp32" OR source MATCHES "fp64" OR source MATCHES "bf16" OR source MATCHES "int8" OR source MATCHES "fp16" OR elseif((source MATCHES "fp8" OR source MATCHES "fp32" OR source MATCHES "fp64" OR source MATCHES "bf16" OR source MATCHES "int8" OR source MATCHES "fp16" OR
source MATCHES "_f8" OR source MATCHES "_f32" OR source MATCHES "_f64" OR source MATCHES "_i8" OR source MATCHES "_f16" OR source MATCHES "_b16") AND source MATCHES "_f8" OR source MATCHES "_f32" OR source MATCHES "_f64" OR source MATCHES "_i8" OR source MATCHES "_f16" OR source MATCHES "_b16") AND
NOT(source MATCHES type OR source MATCHES type1)) NOT(source MATCHES type OR source MATCHES type1))
#if filename contains a type which doesn't match any selected type, mark it for removal #if filename contains a type which doesn't match any selected type, mark it for removal
set(test 1) set(test 1)
...@@ -59,7 +59,7 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME) ...@@ -59,7 +59,7 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME)
set(result 0) set(result 0)
endif() endif()
#message("add_example returns ${result}") #message("add_example returns ${result}")
return(PROPAGATE result) set(result ${result} PARENT_SCOPE)
endfunction(add_example_executable EXAMPLE_NAME) endfunction(add_example_executable EXAMPLE_NAME)
function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME) function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME)
...@@ -87,7 +87,7 @@ function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME) ...@@ -87,7 +87,7 @@ function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME)
set(test 0) set(test 0)
break() break()
elseif((source MATCHES "fp8" OR source MATCHES "fp32" OR source MATCHES "fp64" OR source MATCHES "bf16" OR source MATCHES "int8" OR source MATCHES "fp16" OR elseif((source MATCHES "fp8" OR source MATCHES "fp32" OR source MATCHES "fp64" OR source MATCHES "bf16" OR source MATCHES "int8" OR source MATCHES "fp16" OR
source MATCHES "_f8" OR source MATCHES "_f32" OR source MATCHES "_f64" OR source MATCHES "_i8" OR source MATCHES "_f16" OR source MATCHES "_b16") AND source MATCHES "_f8" OR source MATCHES "_f32" OR source MATCHES "_f64" OR source MATCHES "_i8" OR source MATCHES "_f16" OR source MATCHES "_b16") AND
NOT(source MATCHES type OR source MATCHES type1)) NOT(source MATCHES type OR source MATCHES type1))
#if filename contains a type which doesn't match any selected type, mark it for removal #if filename contains a type which doesn't match any selected type, mark it for removal
set(test 1) set(test 1)
...@@ -96,7 +96,7 @@ function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME) ...@@ -96,7 +96,7 @@ function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME)
if(test EQUAL 1) if(test EQUAL 1)
message("removing example ${source} ") message("removing example ${source} ")
list(REMOVE_ITEM FILE_NAME "${source}") list(REMOVE_ITEM FILE_NAME "${source}")
endif() endif()
endforeach() endforeach()
endif() endif()
foreach(source IN LISTS FILE_NAME) foreach(source IN LISTS FILE_NAME)
...@@ -114,7 +114,7 @@ function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME) ...@@ -114,7 +114,7 @@ function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME)
set(result 0) set(result 0)
endif() endif()
#message("add_example returns ${result}") #message("add_example returns ${result}")
return(PROPAGATE result) set(result ${result} PARENT_SCOPE)
endfunction(add_example_executable_no_testing EXAMPLE_NAME) endfunction(add_example_executable_no_testing EXAMPLE_NAME)
# add all example subdir # add all example subdir
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// GEMM:
// input : A0[M0, M1, ... K0, K1, ...], ...
// input : B0[N0, N1, ... K0, K1, ...], ...
// input : D0[M0, M1, ... N0, N1, ...], D1[M0, M1, ... N0, N1, ...], ...
// output : E[M0, M1, ... N0, N1, ...]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// D0, D1, ... and E have the same layout
template <index_t NumDimM,
index_t NumDimN,
index_t NumDimK,
typename AsDataType,
typename BsDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation>
struct DeviceContractionMultipleABD : public BaseOperator
{
static constexpr index_t NumATensor = AsDataType::Size();
static constexpr index_t NumBTensor = BsDataType::Size();
static constexpr index_t NumDTensor = DsDataType::Size();
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(std::array<const void*, NumATensor> p_as,
std::array<const void*, NumBTensor> p_bs,
std::array<const void*, NumDTensor> p_ds,
void* p_e,
const std::array<std::vector<index_t>, NumATensor>& a_ms_ks_lengths,
const std::array<std::vector<index_t>, NumATensor>& a_ms_ks_strides,
const std::array<std::vector<index_t>, NumBTensor>& b_ns_ks_lengths,
const std::array<std::vector<index_t>, NumBTensor>& b_ns_ks_strides,
const std::array<std::vector<index_t>, NumDTensor>& d_ms_ns_lengths,
const std::array<std::vector<index_t>, NumDTensor>& d_ms_ns_strides,
const std::vector<index_t>& e_ms_ns_length,
const std::vector<index_t>& e_ms_ns_stride,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -33,8 +33,7 @@ template <index_t NumDimM, ...@@ -33,8 +33,7 @@ template <index_t NumDimM,
typename EDataType, typename EDataType,
typename AElementwiseOperation, typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
typename CDEElementwiseOperation, typename CDEElementwiseOperation>
typename ComputeDataType = ADataType>
struct DeviceContractionMultipleD : public BaseOperator struct DeviceContractionMultipleD : public BaseOperator
{ {
static constexpr index_t NumDTensor = DsDataType::Size(); static constexpr index_t NumDTensor = DsDataType::Size();
......
...@@ -29,7 +29,9 @@ template <ck::index_t NDimSpatial, ...@@ -29,7 +29,9 @@ template <ck::index_t NDimSpatial,
typename EDataType, typename EDataType,
typename AElementwiseOperation, typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
typename CDEElementwiseOperation> typename CDEElementwiseOperation,
typename AComputeType = ADataType,
typename BComputeType = AComputeType>
struct DeviceGroupedConvBwdDataMultipleD : public BaseOperator struct DeviceGroupedConvBwdDataMultipleD : public BaseOperator
{ {
static constexpr index_t NumDTensor = DsDataType::Size(); static constexpr index_t NumDTensor = DsDataType::Size();
......
...@@ -20,7 +20,9 @@ template <ck::index_t NDimSpatial, ...@@ -20,7 +20,9 @@ template <ck::index_t NDimSpatial,
typename OutDataType, typename OutDataType,
typename InElementwiseOperation, typename InElementwiseOperation,
typename WeiElementwiseOperation, typename WeiElementwiseOperation,
typename OutElementwiseOperation> typename OutElementwiseOperation,
typename ComputeTypeA = InDataType,
typename ComputeTypeB = ComputeTypeA>
struct DeviceGroupedConvBwdWeight : public BaseOperator struct DeviceGroupedConvBwdWeight : public BaseOperator
{ {
virtual std::unique_ptr<BaseArgument> virtual std::unique_ptr<BaseArgument>
......
...@@ -29,7 +29,8 @@ template <index_t NDimSpatial, ...@@ -29,7 +29,8 @@ template <index_t NDimSpatial,
typename EDataType, typename EDataType,
typename AElementwiseOperation, typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
typename CDEElementwiseOperation> typename CDEElementwiseOperation,
typename ComputeType = ADataType>
struct DeviceGroupedConvFwdMultipleD : public BaseOperator struct DeviceGroupedConvFwdMultipleD : public BaseOperator
{ {
static constexpr index_t NumDTensor = DsDataType::Size(); static constexpr index_t NumDTensor = DsDataType::Size();
......
...@@ -112,7 +112,6 @@ template <index_t NumDimM, ...@@ -112,7 +112,6 @@ template <index_t NumDimM,
typename CShuffleDataType, typename CShuffleDataType,
typename DsDataType, typename DsDataType,
typename EDataType, typename EDataType,
typename ComputeDataType,
typename AElementwiseOperation, typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
typename CDEElementwiseOperation, typename CDEElementwiseOperation,
...@@ -157,8 +156,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle ...@@ -157,8 +156,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
EDataType, EDataType,
AElementwiseOperation, AElementwiseOperation,
BElementwiseOperation, BElementwiseOperation,
CDEElementwiseOperation, CDEElementwiseOperation>
ComputeDataType>
{ {
using DeviceOp = DeviceContractionMultipleD_Xdl_CShuffle; using DeviceOp = DeviceContractionMultipleD_Xdl_CShuffle;
...@@ -312,6 +310,8 @@ struct DeviceContractionMultipleD_Xdl_CShuffle ...@@ -312,6 +310,8 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({{}}, {{}}))>; using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({{}}, {{}}))>;
using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N({}, {})); using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N({}, {}));
using ComputeDataType = ADataType;
// GridwiseGemm // GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle< using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle<
ADataType, // TODO: distinguish A/B datatype ADataType, // TODO: distinguish A/B datatype
......
...@@ -428,7 +428,7 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle ...@@ -428,7 +428,7 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
[&](auto i) { [&](auto i) {
using ALayout = remove_cvref_t<tuple_element_t<i.value, AsLayout>>; using ALayout = remove_cvref_t<tuple_element_t<i.value, AsLayout>>;
return MakeAGridDescriptor_M_K<ALayout, GemmSpec>(MRaws[i], KRaws[i], AsStride[i]); return MakeAGridDescriptor_M_N<ALayout, GemmSpec>(MRaws[i], KRaws[i], AsStride[i]);
}, },
Number<NumATensor>{}); Number<NumATensor>{});
} }
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment