Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
082cf643
Commit
082cf643
authored
Oct 05, 2023
by
Jun Liu
Browse files
Merge branch 'develop' into amd-develop
parents
7e8230da
59136091
Changes
157
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
138 additions
and
945 deletions
+138
-945
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_kknn_instance.cpp
...l_c_shuffle_f64_f64_f64_f64_compute_f32_kknn_instance.cpp
+0
-57
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_knnn_instance.cpp
...l_c_shuffle_f64_f64_f64_f64_compute_f32_knnn_instance.cpp
+0
-57
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_mknn_instance.cpp
...l_c_shuffle_f64_f64_f64_f64_compute_f32_mknn_instance.cpp
+0
-57
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_mnnn_instance.cpp
...l_c_shuffle_f64_f64_f64_f64_compute_f32_mnnn_instance.cpp
+0
-57
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance.cpp
..._m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance.cpp
+34
-15
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance.cpp
..._m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance.cpp
+34
-15
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance.cpp
..._m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance.cpp
+34
-15
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance.cpp
..._m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance.cpp
+34
-15
library/src/tensor_operation_instance/gpu/contraction_scale/CMakeLists.txt
...r_operation_instance/gpu/contraction_scale/CMakeLists.txt
+2
-30
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_kkn_instance.cpp
...xdl_c_shuffle_bf16_bf16_bf16_compute_f32_kkn_instance.cpp
+0
-57
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_knn_instance.cpp
...xdl_c_shuffle_bf16_bf16_bf16_compute_f32_knn_instance.cpp
+0
-57
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_mkn_instance.cpp
...xdl_c_shuffle_bf16_bf16_bf16_compute_f32_mkn_instance.cpp
+0
-57
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_mnn_instance.cpp
...xdl_c_shuffle_bf16_bf16_bf16_compute_f32_mnn_instance.cpp
+0
-57
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_kkn_instance.cpp
...k2_xdl_c_shuffle_f16_f16_f16_compute_f32_kkn_instance.cpp
+0
-57
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_knn_instance.cpp
...k2_xdl_c_shuffle_f16_f16_f16_compute_f32_knn_instance.cpp
+0
-57
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_mkn_instance.cpp
...k2_xdl_c_shuffle_f16_f16_f16_compute_f32_mkn_instance.cpp
+0
-57
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_mnn_instance.cpp
...k2_xdl_c_shuffle_f16_f16_f16_compute_f32_mnn_instance.cpp
+0
-57
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_kkn_instance.cpp
...2_xdl_c_shuffle_f32_f32_f32_compute_bf16_kkn_instance.cpp
+0
-57
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_knn_instance.cpp
...2_xdl_c_shuffle_f32_f32_f32_compute_bf16_knn_instance.cpp
+0
-57
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_mkn_instance.cpp
...2_xdl_c_shuffle_f32_f32_f32_compute_bf16_mkn_instance.cpp
+0
-57
No files found.
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_kknn_instance.cpp
deleted
100644 → 0
View file @
7e8230da
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_kknn_instance
=
device_contraction_f64_kk_instance
<
F64
,
F64
,
F32
,
F64
,
F64_Tuple
,
F64
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_kknn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
F32
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_kknn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_knnn_instance.cpp
deleted
100644 → 0
View file @
7e8230da
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_knnn_instance
=
device_contraction_f64_kn_instance
<
F64
,
F64
,
F32
,
F64
,
F64_Tuple
,
F64
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_knnn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
F32
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_knnn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_mknn_instance.cpp
deleted
100644 → 0
View file @
7e8230da
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_mknn_instance
=
device_contraction_f64_mk_instance
<
F64
,
F64
,
F32
,
F64
,
F64_Tuple
,
F64
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_mknn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
F32
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_mknn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_mnnn_instance.cpp
deleted
100644 → 0
View file @
7e8230da
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_mnnn_instance
=
device_contraction_f64_mn_instance
<
F64
,
F64
,
F32
,
F64
,
F64_Tuple
,
F64
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_mnnn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
F32
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_mnnn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance.cpp
View file @
082cf643
...
@@ -9,9 +9,11 @@
...
@@ -9,9 +9,11 @@
#include <cstdlib>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
ck
{
...
@@ -19,19 +21,37 @@ namespace tensor_operation {
...
@@ -19,19 +21,37 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
F64
=
double
;
using
F64_Tuple
=
ck
::
Tuple
<
F64
>
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/k/n/n are the fast changing dimension for A/B/D/E
// k/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance
=
std
::
tuple
<
device_contraction_f64_kk_instance
<
F64
,
// clang-format off
F64
,
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
F64
,
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
F64
,
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
F64_Tuple
,
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
F64
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
F64
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
PassThrough
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
PassThrough
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
>
,
Bilinear
>
;
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
32
,
16
,
2
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
32
,
128
,
16
,
2
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
16
,
2
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
64
,
32
,
64
,
16
,
2
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
>
// clang-format on
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance
(
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
...
@@ -43,8 +63,7 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn
...
@@ -43,8 +63,7 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn
F64
,
F64
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
Bilinear
,
Bilinear
>>>&
instances
)
F64
>>>&
instances
)
{
{
add_device_operation_instances
(
add_device_operation_instances
(
instances
,
instances
,
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance.cpp
View file @
082cf643
...
@@ -9,9 +9,11 @@
...
@@ -9,9 +9,11 @@
#include <cstdlib>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
ck
{
...
@@ -19,19 +21,37 @@ namespace tensor_operation {
...
@@ -19,19 +21,37 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
F64
=
double
;
using
F64_Tuple
=
ck
::
Tuple
<
F64
>
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/n/n/n are the fast changing dimension for A/B/D/E
// k/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance
=
std
::
tuple
<
device_contraction_f64_kn_instance
<
F64
,
// clang-format off
F64
,
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
F64
,
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
F64
,
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
F64_Tuple
,
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
F64
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
2
,
1
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
F64
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
PassThrough
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
2
,
1
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
PassThrough
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
Bilinear
>
;
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
2
,
1
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
2
,
1
,
16
,
16
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
2
,
1
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
// clang-format on
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance
(
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
...
@@ -43,8 +63,7 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn
...
@@ -43,8 +63,7 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn
F64
,
F64
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
Bilinear
,
Bilinear
>>>&
instances
)
F64
>>>&
instances
)
{
{
add_device_operation_instances
(
add_device_operation_instances
(
instances
,
instances
,
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance.cpp
View file @
082cf643
...
@@ -9,9 +9,11 @@
...
@@ -9,9 +9,11 @@
#include <cstdlib>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
ck
{
...
@@ -19,19 +21,37 @@ namespace tensor_operation {
...
@@ -19,19 +21,37 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
F64
=
double
;
using
F64_Tuple
=
ck
::
Tuple
<
F64
>
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/k/n/n are the fast changing dimension for A/B/D/E
// m/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance
=
std
::
tuple
<
device_contraction_f64_mk_instance
<
F64
,
// clang-format off
F64
,
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
F64
,
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
F64
,
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
F64_Tuple
,
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
F64
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
1
,
2
,
16
,
16
,
4
,
4
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
F64
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
PassThrough
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
1
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
PassThrough
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
Bilinear
>
;
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
1
,
2
,
16
,
16
,
4
,
4
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
1
,
2
,
16
,
16
,
4
,
2
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
1
,
2
,
16
,
16
,
2
,
4
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
// clang-format on
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance
(
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
...
@@ -43,8 +63,7 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn
...
@@ -43,8 +63,7 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn
F64
,
F64
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
Bilinear
,
Bilinear
>>>&
instances
)
F64
>>>&
instances
)
{
{
add_device_operation_instances
(
add_device_operation_instances
(
instances
,
instances
,
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance.cpp
View file @
082cf643
...
@@ -9,9 +9,11 @@
...
@@ -9,9 +9,11 @@
#include <cstdlib>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
ck
{
...
@@ -19,19 +21,37 @@ namespace tensor_operation {
...
@@ -19,19 +21,37 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
F64
=
double
;
using
F64_Tuple
=
ck
::
Tuple
<
F64
>
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/n/n/n are the fast changing dimension for A/B/D/E
// m/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance
=
std
::
tuple
<
device_contraction_f64_mn_instance
<
F64
,
// clang-format off
F64
,
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
F64
,
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
F64
,
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
F64_Tuple
,
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
F64
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
1
,
1
,
16
,
16
,
4
,
4
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
F64
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
PassThrough
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
1
,
1
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
PassThrough
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
,
Bilinear
>
;
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
1
,
1
,
16
,
16
,
4
,
4
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
1
,
1
,
16
,
16
,
4
,
2
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
2
,
2
,
16
,
16
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
1
,
1
,
16
,
16
,
2
,
4
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F64
,
F64
,
F64
,
F64
,
F64_Tuple
,
F64
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
2
,
2
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
1
>
// clang-format on
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance
(
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
...
@@ -43,8 +63,7 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn
...
@@ -43,8 +63,7 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn
F64
,
F64
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
Bilinear
,
Bilinear
>>>&
instances
)
F64
>>>&
instances
)
{
{
add_device_operation_instances
(
add_device_operation_instances
(
instances
,
instances
,
...
...
library/src/tensor_operation_instance/gpu/contraction_scale/CMakeLists.txt
View file @
082cf643
set
(
DEVICE_CONTRACTION_SCALE_INSTANCES
)
set
(
DEVICE_CONTRACTION_SCALE_INSTANCES
)
#float
# FP32
list
(
APPEND DEVICE_CONTRACTION_SCALE_INSTANCES device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_kkn_instance.cpp
list
(
APPEND DEVICE_CONTRACTION_SCALE_INSTANCES device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_kkn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_knn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_knn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mkn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mkn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mnn_instance.cpp
)
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mnn_instance.cpp
)
list
(
APPEND DEVICE_CONTRACTION_SCALE_INSTANCES device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_f16_kkn_instance.cpp
#double
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_f16_knn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_f16_mkn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_f16_mnn_instance.cpp
)
list
(
APPEND DEVICE_CONTRACTION_SCALE_INSTANCES device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_kkn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_knn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_mkn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_mnn_instance.cpp
)
# FP64
list
(
APPEND DEVICE_CONTRACTION_SCALE_INSTANCES device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_kkn_instance.cpp
list
(
APPEND DEVICE_CONTRACTION_SCALE_INSTANCES device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_kkn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_knn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_knn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mkn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mkn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mnn_instance.cpp
)
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mnn_instance.cpp
)
list
(
APPEND DEVICE_CONTRACTION_SCALE_INSTANCES device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_compute_f32_kkn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_compute_f32_knn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_compute_f32_mkn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_compute_f32_mnn_instance.cpp
)
# FP16
list
(
APPEND DEVICE_CONTRACTION_SCALE_INSTANCES device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_kkn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_knn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_mkn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_mnn_instance.cpp
)
# BF16
list
(
APPEND DEVICE_CONTRACTION_SCALE_INSTANCES device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_kkn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_knn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_mkn_instance.cpp
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_mnn_instance.cpp
)
add_instance_library
(
device_contraction_scale_instance
${
DEVICE_CONTRACTION_SCALE_INSTANCES
}
)
add_instance_library
(
device_contraction_scale_instance
${
DEVICE_CONTRACTION_SCALE_INSTANCES
}
)
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_kkn_instance.cpp
deleted
100644 → 0
View file @
7e8230da
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_kkn_instance
=
device_contraction_kk_instance
<
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
F32
,
PassThrough
,
PassThrough
,
Scale
>
;
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_kkn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
Scale
,
F32
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_kkn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_knn_instance.cpp
deleted
100644 → 0
View file @
7e8230da
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_knn_instance
=
device_contraction_kn_instance
<
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
F32
,
PassThrough
,
PassThrough
,
Scale
>
;
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_knn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
Scale
,
F32
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_knn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_mkn_instance.cpp
deleted
100644 → 0
View file @
7e8230da
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_mkn_instance
=
device_contraction_mk_instance
<
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
F32
,
PassThrough
,
PassThrough
,
Scale
>
;
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_mkn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
Scale
,
F32
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_mkn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_mnn_instance.cpp
deleted
100644 → 0
View file @
7e8230da
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_mnn_instance
=
device_contraction_mn_instance
<
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
F32
,
PassThrough
,
PassThrough
,
Scale
>
;
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_mnn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
Scale
,
F32
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_mnn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_kkn_instance.cpp
deleted
100644 → 0
View file @
7e8230da
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_kkn_instance
=
device_contraction_kk_instance
<
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
F32
,
PassThrough
,
PassThrough
,
Scale
>
;
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_kkn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
F32
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_kkn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_knn_instance.cpp
deleted
100644 → 0
View file @
7e8230da
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_knn_instance
=
device_contraction_kn_instance
<
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
F32
,
PassThrough
,
PassThrough
,
Scale
>
;
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_knn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
F32
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_knn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_mkn_instance.cpp
deleted
100644 → 0
View file @
7e8230da
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_mkn_instance
=
device_contraction_mk_instance
<
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
F32
,
PassThrough
,
PassThrough
,
Scale
>
;
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_mkn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
F32
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_mkn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_mnn_instance.cpp
deleted
100644 → 0
View file @
7e8230da
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_mnn_instance
=
device_contraction_mn_instance
<
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
F32
,
PassThrough
,
PassThrough
,
Scale
>
;
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_mnn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
F32
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_mnn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_kkn_instance.cpp
deleted
100644 → 0
View file @
7e8230da
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_kkn_instance
=
device_contraction_kk_instance
<
F32
,
F32
,
F32
,
F32
,
Empty_Tuple
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
Scale
>
;
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_kkn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
Scale
,
BF16
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_kkn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_knn_instance.cpp
deleted
100644 → 0
View file @
7e8230da
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_knn_instance
=
device_contraction_kn_instance
<
F32
,
F32
,
F32
,
F32
,
Empty_Tuple
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
Scale
>
;
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_knn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
Scale
,
BF16
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_knn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_scale/device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_mkn_instance.cpp
deleted
100644 → 0
View file @
7e8230da
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_mkn_instance
=
device_contraction_mk_instance
<
F32
,
F32
,
F32
,
F32
,
Empty_Tuple
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
Scale
>
;
void
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_mkn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
Scale
,
BF16
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_mkn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Prev
1
2
3
4
5
6
7
8
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment