Commit 082cf643 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents 7e8230da 59136091
......@@ -31,7 +31,7 @@ namespace ck {
// D0, D1, ... and E have the same layout
template <typename ADataType,
typename BDataType,
typename ComputeDataType_,
typename AComputeDataType_,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
......@@ -72,7 +72,8 @@ template <typename ADataType,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEShuffleBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched,
PipelineVersion PipelineVer = PipelineVersion::v1>
PipelineVersion PipelineVer = PipelineVersion::v1,
typename BComputeDataType = AComputeDataType_>
struct GridwiseGemmMultipleD_xdl_cshuffle
{
static constexpr index_t NumDTensor = DsDataType::Size();
......@@ -100,10 +101,10 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
decltype(GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>())>;
#if CK_WORKAROUND_DENORM_FIX
using ComputeDataType =
conditional_t<is_same_v<ComputeDataType_, ck::half_t>, ck::bhalf_t, ComputeDataType_>;
using AComputeDataType =
conditional_t<is_same_v<AComputeDataType_, ck::half_t>, ck::bhalf_t, AComputeDataType_>;
#else
using ComputeDataType = ComputeDataType_;
using AComputeDataType = AComputeDataType_;
#endif
__host__ __device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()
......@@ -172,8 +173,8 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
constexpr auto c_block_size =
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
return math::max((a_block_space_size_aligned + b_block_space_size_aligned) *
sizeof(ComputeDataType),
return math::max(a_block_space_size_aligned * sizeof(AComputeDataType) +
b_block_space_size_aligned * sizeof(BComputeDataType),
c_block_size * sizeof(CShuffleDataType));
}
......@@ -502,7 +503,7 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ADataType,
ComputeDataType,
AComputeDataType,
decltype(a_grid_desc_ak0_m_ak1),
decltype(a_block_desc_ak0_m_ak1),
ABlockTransferSrcAccessOrder,
......@@ -533,7 +534,7 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BDataType,
ComputeDataType,
BComputeDataType,
decltype(b_grid_desc_bk0_n_bk1),
decltype(b_block_desc_bk0_n_bk1),
BBlockTransferSrcAccessOrder,
......@@ -561,14 +562,15 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr index_t KPack =
math::max(math::lcm(AK1, BK1),
MfmaSelector<ComputeDataType, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
constexpr index_t KPack = math::max(
math::lcm(AK1, BK1),
MfmaSelector<AComputeDataType, MPerXdl, NPerXdl, BComputeDataType>::selected_mfma
.k_per_blk);
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
BlockSize,
ComputeDataType,
ComputeDataType,
AComputeDataType,
BComputeDataType,
AccDataType,
decltype(a_block_desc_ak0_m_ak1),
decltype(b_block_desc_bk0_n_bk1),
......@@ -586,10 +588,10 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ComputeDataType*>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
static_cast<AComputeDataType*>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ComputeDataType*>(p_shared) + a_block_space_size_aligned,
static_cast<BComputeDataType*>(p_shared) + a_block_space_size_aligned,
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock / AK1, 0, 0);
......
......@@ -139,7 +139,8 @@ __host__ __device__ constexpr auto make_merge_transform_v4_no_carry(const LowLen
}
template <typename GridwiseGemm,
typename FloatAB,
typename FloatA,
typename FloatB,
typename FloatC,
typename AGridDesc_B_K0_M_K1,
typename BGridDesc_B_K0_N_K1,
......@@ -153,8 +154,8 @@ __global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_xdlops_bwd_weight(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
kernel_gemm_xdlops_bwd_weight(const FloatA* __restrict__ p_a_grid,
const FloatB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
const AGridDesc_B_K0_M_K1 a_b_k0_m_k1_grid_desc,
const BGridDesc_B_K0_N_K1 b_b_k0_n_k1_grid_desc,
......@@ -181,21 +182,22 @@ __global__ void
c_element_op,
c_block_cluster_adaptor);
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_c_grid;
ignore = a_b_k0_m_k1_grid_desc;
ignore = b_b_k0_n_k1_grid_desc;
ignore = c_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = a_element_op;
ignore = b_element_op;
ignore = c_element_op;
ignore = c_block_cluster_adaptor;
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_c_grid;
ignore = a_b_k0_m_k1_grid_desc;
ignore = b_b_k0_n_k1_grid_desc;
ignore = c_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = a_element_op;
ignore = b_element_op;
ignore = c_element_op;
ignore = c_block_cluster_adaptor;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template <index_t BlockSize,
typename FloatAB,
typename FloatA,
typename FloatB,
typename FloatAcc,
typename FloatC,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
......@@ -242,7 +244,9 @@ template <index_t BlockSize,
bool ABlockLdsExtraM1Wrw = false,
bool BBlockLdsExtraN1Wrw = false,
index_t NumGemmKPrefetchStage = 1,
PipelineVersion PipelineVer = PipelineVersion::v1>
PipelineVersion PipelineVer = PipelineVersion::v1,
typename ComputeTypeA = FloatA,
typename ComputeTypeB = ComputeTypeA>
struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
{
static constexpr auto I0 = Number<0>{};
......@@ -265,11 +269,16 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
// denorm test fix, required to work around fp16 mfma issue
// we convert fp16->fp32->bf16 and execute bf16 mfma instruction
// when mfma if fixed, remove this section and update
// FloatABAdjusted -> FloatAB throughout this file
// FloatAAdjusted -> ComputeTypeA, FloatBAdjusted -> ComputeTypeB,
// throughout this file
#if CK_WORKAROUND_DENORM_FIX
using FloatABAdjusted = conditional_t<is_same_v<FloatAB, ck::half_t>, ck::bhalf_t, FloatAB>;
using FloatAAdjusted =
conditional_t<is_same_v<ComputeTypeA, ck::half_t>, ck::bhalf_t, ComputeTypeA>;
using FloatBAdjusted =
conditional_t<is_same_v<ComputeTypeB, ck::half_t>, ck::bhalf_t, ComputeTypeB>;
#else
using FloatABAdjusted = FloatAB;
using FloatAAdjusted = ComputeTypeA;
using FloatBAdjusted = ComputeTypeB;
#endif
// M0/M1/M1Padding
......@@ -506,7 +515,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
constexpr auto c_block_size =
GetCBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock().GetElementSpaceSize();
return math::max((a_block_space_size + b_block_space_size) * sizeof(FloatAB),
return math::max((a_block_space_size * sizeof(FloatAAdjusted) +
b_block_space_size * sizeof(FloatBAdjusted)),
c_block_size * sizeof(FloatC));
}
......@@ -610,8 +620,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
using CBlockClusterAdaptor = decltype(MakeCBlockClusterAdaptor(CMNGridDesc{}, 1, 1, 1));
template <bool HasMainKBlockLoop>
__device__ static void Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
__device__ static void Run(const FloatA* __restrict__ p_a_grid,
const FloatB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
void* __restrict__ p_shared,
const AGridDesc_B_K0_M_K1& a_b_k0_m_k1_grid_desc,
......@@ -673,8 +683,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
Sequence<1, K0PerBlock, MPerBlock, K1>,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatABAdjusted,
FloatA,
FloatAAdjusted,
decltype(a_b_k0_m_k1_grid_desc),
decltype(a_b_k0_m_k1_block_desc),
ABlockTransferSrcAccessOrder,
......@@ -703,8 +713,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
Sequence<1, K0PerBlock, NPerBlock, K1>,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatABAdjusted,
FloatB,
FloatBAdjusted,
decltype(b_b_k0_n_k1_grid_desc),
decltype(b_b_k0_n_k1_block_desc),
BBlockTransferSrcAccessOrder,
......@@ -733,12 +743,14 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
// sanity check
constexpr index_t KPack =
math::max(K1, MfmaSelector<FloatABAdjusted, MPerXDL, NPerXDL>::selected_mfma.k_per_blk);
math::max(K1,
MfmaSelector<FloatAAdjusted, MPerXDL, NPerXDL, FloatBAdjusted>::selected_mfma
.k_per_blk);
auto blockwise_gemm =
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
FloatABAdjusted,
FloatABAdjusted,
FloatAAdjusted,
FloatBAdjusted,
FloatAcc,
decltype(a_k0_m_k1_block_desc),
decltype(b_k0_n_k1_block_desc),
......@@ -758,10 +770,10 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
constexpr auto b_block_slice_copy_step = make_multi_index(0, K0PerBlock, 0, 0);
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<FloatABAdjusted*>(p_shared), a_k0_m_k1_block_desc.GetElementSpaceSize());
static_cast<FloatAAdjusted*>(p_shared), a_k0_m_k1_block_desc.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<FloatABAdjusted*>(p_shared) + a_block_space_size,
static_cast<FloatBAdjusted*>(p_shared) + a_block_space_size,
b_k0_n_k1_block_desc.GetElementSpaceSize());
// gridwise GEMM pipeline
......
......@@ -32,8 +32,12 @@ enum struct MfmaInstr
mfma_f64_16x16x4f64,
mfma_f32_32x32x16f8f8,
mfma_f32_16x16x32f8f8,
mfma_f32_32x32x16bf8bf8,
mfma_f32_16x16x32bf8bf8,
mfma_f32_32x32x16f8bf8,
mfma_f32_16x16x32f8bf8
mfma_f32_16x16x32f8bf8,
mfma_f32_32x32x16bf8f8,
mfma_f32_16x16x32bf8f8
};
template <MfmaInstr instr>
......@@ -504,6 +508,52 @@ struct mfma_type<MfmaInstr::mfma_f32_16x16x32f8f8>
};
#endif
#if defined CK_ENABLE_BF8
template <>
struct mfma_type<MfmaInstr::mfma_f32_32x32x16bf8bf8>
{
static constexpr index_t group_size = 4;
static constexpr index_t num_groups_per_blk = 4;
static constexpr index_t num_regs_per_blk = 16;
static constexpr index_t num_threads_per_blk = 32;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = 2;
static constexpr index_t num_output_blks = 1;
static constexpr index_t m_per_blk = 32;
static constexpr index_t n_per_blk = 32;
static constexpr index_t k_per_blk = 8;
static constexpr bool is_k_reduction = true;
template <index_t MPerXdlops, index_t NPerXdlops, class FloatA, class FloatB, class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
intrin_mfma_f32_32x32x16bf8bf8<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
}
};
template <>
struct mfma_type<MfmaInstr::mfma_f32_16x16x32bf8bf8>
{
static constexpr index_t group_size = 4;
static constexpr index_t num_groups_per_blk = 1;
static constexpr index_t num_regs_per_blk = 4;
static constexpr index_t num_threads_per_blk = 16;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = 4;
static constexpr index_t num_output_blks = 1;
static constexpr index_t m_per_blk = 16;
static constexpr index_t n_per_blk = 16;
static constexpr index_t k_per_blk = 8;
static constexpr bool is_k_reduction = true;
template <index_t MPerXdlops, index_t NPerXdlops, class FloatA, class FloatB, class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
intrin_mfma_f32_16x16x32bf8bf8<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
}
};
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
template <>
struct mfma_type<MfmaInstr::mfma_f32_32x32x16f8bf8>
......@@ -550,6 +600,52 @@ struct mfma_type<MfmaInstr::mfma_f32_16x16x32f8bf8>
};
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
template <>
struct mfma_type<MfmaInstr::mfma_f32_32x32x16bf8f8>
{
static constexpr index_t group_size = 4;
static constexpr index_t num_groups_per_blk = 4;
static constexpr index_t num_regs_per_blk = 16;
static constexpr index_t num_threads_per_blk = 32;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = 2;
static constexpr index_t num_output_blks = 1;
static constexpr index_t m_per_blk = 32;
static constexpr index_t n_per_blk = 32;
static constexpr index_t k_per_blk = 8;
static constexpr bool is_k_reduction = true;
template <index_t MPerXdlops, index_t NPerXdlops, class FloatA, class FloatB, class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
intrin_mfma_f32_32x32x16bf8f8<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
}
};
template <>
struct mfma_type<MfmaInstr::mfma_f32_16x16x32bf8f8>
{
static constexpr index_t group_size = 4;
static constexpr index_t num_groups_per_blk = 1;
static constexpr index_t num_regs_per_blk = 4;
static constexpr index_t num_threads_per_blk = 16;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = 4;
static constexpr index_t num_output_blks = 1;
static constexpr index_t m_per_blk = 16;
static constexpr index_t n_per_blk = 16;
static constexpr index_t k_per_blk = 8;
static constexpr bool is_k_reduction = true;
template <index_t MPerXdlops, index_t NPerXdlops, class FloatA, class FloatB, class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
intrin_mfma_f32_16x16x32bf8f8<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
}
};
#endif
template <typename base_type,
index_t MPerXdlops,
index_t NPerXdlops,
......@@ -710,6 +806,20 @@ struct MfmaSelector
}
#endif
#if defined CK_ENABLE_BF8
template <>
static constexpr auto GetMfma<bf8_t, 32, 32>()
{
return MfmaInstr::mfma_f32_32x32x16bf8bf8;
}
template <>
static constexpr auto GetMfma<bf8_t, 16, 16>()
{
return MfmaInstr::mfma_f32_16x16x32bf8bf8;
}
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
template <>
static constexpr auto GetMfma<f8_t, 32, 32, bf8_t>()
......@@ -724,6 +834,20 @@ struct MfmaSelector
}
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
template <>
static constexpr auto GetMfma<bf8_t, 32, 32, f8_t>()
{
return MfmaInstr::mfma_f32_32x32x16bf8f8;
}
template <>
static constexpr auto GetMfma<bf8_t, 16, 16, f8_t>()
{
return MfmaInstr::mfma_f32_16x16x32bf8f8;
}
#endif
static constexpr auto selected_mfma =
mfma_type<GetMfma<base_type, MPerXdlops, NPerXdlops, additional_type>()>{};
......@@ -931,8 +1055,12 @@ struct XdlopsGemm
#if defined CK_ENABLE_FP8
|| is_same<base_type, f8_t>::value
#endif
#if defined CK_ENABLE_BF8
|| is_same<base_type, bf8_t>::value
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
|| (is_same<base_type, f8_t>::value && is_same<additional_type, bf8_t>::value)
|| (is_same<base_type, f8_t>::value && is_same<additional_type, bf8_t>::value) ||
(is_same<base_type, bf8_t>::value && is_same<additional_type, f8_t>::value)
#endif
,
"base base_type must be double, float, half, bfloat16, int8_t, f8_t or bf8_t!");
......
......@@ -420,6 +420,71 @@ struct intrin_mfma_f32_16x16x32f8f8<16, 16>
};
#endif
#if defined CK_ENABLE_BF8
template <index_t MPerWave, index_t NPerWave>
struct intrin_mfma_f32_32x32x16bf8bf8;
template <>
struct intrin_mfma_f32_32x32x16bf8bf8<32, 32>
{
template <class FloatC>
__device__ static void Run(const bf8x8_t& reg_a, const bf8x8_t& reg_b, FloatC& reg_c)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
reg_c.template AsType<float16_t>()(Number<0>{}) =
__builtin_amdgcn_mfma_f32_32x32x16_bf8_bf8(
bit_cast<long>(reg_a),
bit_cast<long>(reg_b),
reg_c.template AsType<float16_t>()[Number<0>{}],
0,
0,
0);
#else
vector_type<bf8_t, 8> reg_a_v(reg_a);
vector_type<bf8_t, 8> reg_b_v(reg_b);
static_for<0, 8, 1>{}([&](auto k) {
float reg_a_f32 = type_convert<float>(reg_a_v.template AsType<bf8_t>()[Number<k>{}]);
float reg_b_f32 = type_convert<float>(reg_b_v.template AsType<bf8_t>()[Number<k>{}]);
intrin_mfma_f32_32x32x2f32<32, 32>::Run(reg_a_f32, reg_b_f32, reg_c);
});
#endif
}
};
template <index_t MPerWave, index_t NPerWave>
struct intrin_mfma_f32_16x16x32bf8bf8;
template <>
struct intrin_mfma_f32_16x16x32bf8bf8<16, 16>
{
template <class FloatC>
__device__ static void Run(const bf8x8_t& reg_a, const bf8x8_t& reg_b, FloatC& reg_c)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
reg_c.template AsType<float4_t>()(Number<0>{}) = __builtin_amdgcn_mfma_f32_16x16x32_bf8_bf8(
bit_cast<long>(reg_a),
bit_cast<long>(reg_b),
reg_c.template AsType<float4_t>()[Number<0>{}],
0,
0,
0);
#else
vector_type<bf8_t, 8> reg_a_v(reg_a);
vector_type<bf8_t, 8> reg_b_v(reg_b);
static_for<0, 8, 1>{}([&](auto k) {
float reg_a_f32 = type_convert<float>(reg_a_v.template AsType<bf8_t>()[Number<k>{}]);
float reg_b_f32 = type_convert<float>(reg_b_v.template AsType<bf8_t>()[Number<k>{}]);
intrin_mfma_f32_16x16x4f32<16, 16>::Run(reg_a_f32, reg_b_f32, reg_c);
});
#endif
}
};
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
template <index_t MPerWave, index_t NPerWave>
struct intrin_mfma_f32_32x32x16f8bf8;
......@@ -484,5 +549,70 @@ struct intrin_mfma_f32_16x16x32f8bf8<16, 16>
}
};
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
template <index_t MPerWave, index_t NPerWave>
struct intrin_mfma_f32_32x32x16bf8f8;
template <>
struct intrin_mfma_f32_32x32x16bf8f8<32, 32>
{
template <class FloatC>
__device__ static void Run(const bf8x8_t& reg_a, const f8x8_t& reg_b, FloatC& reg_c)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
reg_c.template AsType<float16_t>()(Number<0>{}) =
__builtin_amdgcn_mfma_f32_32x32x16_bf8_fp8(
bit_cast<long>(reg_a),
bit_cast<long>(reg_b),
reg_c.template AsType<float16_t>()[Number<0>{}],
0,
0,
0);
#else
vector_type<bf8_t, 8> reg_a_v(reg_a);
vector_type<f8_t, 8> reg_b_v(reg_b);
static_for<0, 8, 1>{}([&](auto k) {
float reg_a_f32 = type_convert<float>(reg_a_v.template AsType<bf8_t>()[Number<k>{}]);
float reg_b_f32 = type_convert<float>(reg_b_v.template AsType<f8_t>()[Number<k>{}]);
intrin_mfma_f32_32x32x2f32<32, 32>::Run(reg_a_f32, reg_b_f32, reg_c);
});
#endif
}
};
template <index_t MPerWave, index_t NPerWave>
struct intrin_mfma_f32_16x16x32bf8f8;
template <>
struct intrin_mfma_f32_16x16x32bf8f8<16, 16>
{
template <class FloatC>
__device__ static void Run(const bf8x8_t& reg_a, const f8x8_t& reg_b, FloatC& reg_c)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
reg_c.template AsType<float4_t>()(Number<0>{}) = __builtin_amdgcn_mfma_f32_16x16x32_bf8_fp8(
bit_cast<long>(reg_a),
bit_cast<long>(reg_b),
reg_c.template AsType<float4_t>()[Number<0>{}],
0,
0,
0);
#else
vector_type<bf8_t, 8> reg_a_v(reg_a);
vector_type<f8_t, 8> reg_b_v(reg_b);
static_for<0, 8, 1>{}([&](auto k) {
float reg_a_f32 = type_convert<float>(reg_a_v.template AsType<bf8_t>()[Number<k>{}]);
float reg_b_f32 = type_convert<float>(reg_b_v.template AsType<f8_t>()[Number<k>{}]);
intrin_mfma_f32_16x16x4f32<16, 16>::Run(reg_a_f32, reg_b_f32, reg_c);
});
#endif
}
};
#endif
} // namespace ck
#endif
......@@ -221,7 +221,7 @@ inline __host__ __device__ bf8_t type_convert<bf8_t, half_t>(half_t x)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// convert to float and use native converion
return type_convert<f8_t>(type_convert<float>(x));
return type_convert<bf8_t>(type_convert<float>(x));
#else
constexpr bool negative_zero_nan = true;
constexpr bool clip = true;
......
......@@ -23,7 +23,6 @@ template <ck::index_t NumDimM,
typename BDataType,
typename CDataType,
typename AccDataType,
typename ComputeDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
ck::enable_if_t<NumDimM == 2 && NumDimN == 2 && NumDimK == 2, bool> = false>
......@@ -70,24 +69,19 @@ struct ReferenceContraction_M2_N2_K2 : public ck::tensor_operation::device::Base
{
for(ck::index_t k1 = 0; k1 < K1; ++k1)
{
// Simulate the possible casting when ComputeDataType is different than the
// A/B data types
ComputeDataType v_a_compute_input =
ck::type_convert<ComputeDataType>(arg.a_ms_ks_(m0, m1, k0, k1));
ComputeDataType v_b_compute_input =
ck::type_convert<ComputeDataType>(arg.b_ns_ks_(n0, n1, k0, k1));
AccDataType v_a;
AccDataType v_b;
arg.a_element_op_(v_a, ck::type_convert<AccDataType>(v_a_compute_input));
arg.b_element_op_(v_b, ck::type_convert<AccDataType>(v_b_compute_input));
arg.a_element_op_(
v_a, ck::type_convert<const AccDataType>(arg.a_ms_ks_(m0, m1, k0, k1)));
arg.b_element_op_(
v_b, ck::type_convert<const AccDataType>(arg.b_ns_ks_(n0, n1, k0, k1)));
v_acc += v_a * v_b;
}
}
arg.c_ms_ns_(m0, m1, n0, n1) = ck::type_convert<CDataType>(v_acc);
arg.c_ms_ns_(m0, m1, n0, n1) = v_acc;
};
make_ParallelTensorFunctor(f_ms_ns,
......
......@@ -25,6 +25,8 @@ template <ck::index_t NDimSpatial,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation,
typename ComputeTypeA = OutDataType,
typename ComputeTypeB = InDataType,
typename std::enable_if<NDimSpatial >= 1 && NDimSpatial <= 3, bool>::type = false>
struct ReferenceConvBwdWeight : public device::BaseOperator
{
......@@ -98,8 +100,8 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
if(wi >= 0 &&
ck::type_convert<std::size_t>(wi) < arg.input_.GetLengths()[3])
{
float v_out;
float v_in;
ComputeTypeA v_out;
ComputeTypeB v_in;
arg.out_element_op_(
v_out, ck::type_convert<float>(arg.output_(g, n, k, wo)));
......@@ -107,7 +109,7 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
arg.in_element_op_(
v_in, ck::type_convert<float>(arg.input_(g, n, c, wi)));
v_acc += v_out * v_in;
v_acc += type_convert<float>(v_out) * type_convert<float>(v_in);
}
}
}
......@@ -158,8 +160,8 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
wi >= 0 &&
ck::type_convert<std::size_t>(wi) < arg.input_.GetLengths()[4])
{
float v_out;
float v_in;
ComputeTypeA v_out;
ComputeTypeB v_in;
arg.out_element_op_(
v_out,
......@@ -168,7 +170,7 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
arg.in_element_op_(
v_in, ck::type_convert<float>(arg.input_(g, n, c, hi, wi)));
v_acc += v_out * v_in;
v_acc += type_convert<float>(v_out) * type_convert<float>(v_in);
}
}
}
......@@ -226,8 +228,8 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
ck::type_convert<std::size_t>(wi) <
arg.input_.GetLengths()[5])
{
float v_out;
float v_in;
ComputeTypeA v_out;
ComputeTypeB v_in;
arg.out_element_op_(v_out,
ck::type_convert<float>(
......@@ -237,7 +239,8 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
ck::type_convert<float>(
arg.input_(g, n, c, di, hi, wi)));
v_acc += v_out * v_in;
v_acc +=
type_convert<float>(v_out) * type_convert<float>(v_in);
}
}
}
......
......@@ -29,8 +29,6 @@ using BF8 = ck::bf8_t;
using Empty_Tuple = ck::Tuple<>;
using BF16_Tuple = ck::Tuple<BF16>;
using F16_Tuple = ck::Tuple<F16>;
using F16_F16_Tuple = ck::Tuple<F16, F16>;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using F64 = double;
using F16_Tuple = ck::Tuple<F16>;
using BF16_Tuple = ck::Tuple<BF16>;
using F32_Tuple = ck::Tuple<F32>;
using F64_Tuple = ck::Tuple<F64>;
using Empty_Tuple = ck::Tuple<>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Bilinear = ck::tensor_operation::element_wise::Bilinear;
using Scale = ck::tensor_operation::element_wise::Scale;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename ComputeDataType,
typename AElementwiseOp,
typename BElementwiseOp,
typename CDEElementwiseOp>
using device_contraction_kk_instance = std::tuple<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| Compute| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Data| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Type| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 256, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 256, 16, 4, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 128, 16, 4, 4, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 64, 16, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 64, 128, 16, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 64, 64, 64, 16, 4, 4, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 8, 1, 8>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 64, 16, 4, 4, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 64, 128, 16, 4, 4, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 32, 16, 4, 4, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 32, 128, 16, 4, 4, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 64, 64, 32, 16, 4, 4, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 8, 1, 8>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 64, 32, 64, 16, 4, 4, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 8, 1, 8>, 4>
// clang-format on
>;
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename ComputeDataType,
typename AElementwiseOp,
typename BElementwiseOp,
typename CDEElementwiseOp>
using device_contraction_kn_instance = std::tuple<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| Compute| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Data| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Type| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 256, 128, 16, 4, 1, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 256, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 256, 16, 4, 1, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 256, 16, 4, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 128, 16, 4, 1, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 128, 16, 4, 1, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 128, 16, 4, 4, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 64, 16, 4, 1, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 64, 16, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 64, 128, 16, 4, 1, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 64, 128, 16, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 64, 16, 4, 1, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 64, 16, 4, 4, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 64, 128, 16, 4, 1, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 64, 128, 16, 4, 4, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>
// clang-format on
>;
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename ComputeDataType,
typename AElementwiseOp,
typename BElementwiseOp,
typename CDEElementwiseOp>
using device_contraction_mk_instance = std::tuple<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| Compute| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Data| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Type| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 256, 128, 16, 1, 4, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 256, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 256, 16, 1, 4, 32, 32, 2, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 256, 16, 4, 4, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 128, 16, 1, 4, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 128, 16, 1, 4, 32, 32, 2, 2, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 128, 16, 4, 4, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 64, 16, 1, 4, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 64, 16, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 64, 128, 16, 1, 4, 32, 32, 2, 2, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 64, 128, 16, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 64, 16, 1, 4, 32, 32, 2, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 64, 16, 4, 4, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 64, 128, 16, 1, 4, 32, 32, 1, 2, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 64, 128, 16, 4, 4, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>
// clang-format on
>;
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename ComputeDataType,
typename AElementwiseOp,
typename BElementwiseOp,
typename CDEElementwiseOp>
using device_contraction_mn_instance = std::tuple<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| Compute| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Data| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Type| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 256, 128, 16, 1, 1, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 256, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 256, 16, 1, 1, 32, 32, 2, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 256, 16, 4, 4, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 128, 16, 1, 1, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 128, 16, 1, 1, 32, 32, 2, 2, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 128, 16, 4, 4, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 64, 16, 1, 1, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 64, 16, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 64, 128, 16, 1, 1, 32, 32, 2, 2, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 64, 128, 16, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 8, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 64, 16, 1, 1, 32, 32, 2, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 64, 16, 4, 4, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 64, 128, 16, 1, 1, 32, 32, 1, 2, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 64, 128, 16, 4, 4, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>
// clang-format on
>;
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename ComputeDataType,
typename AElementwiseOp,
typename BElementwiseOp,
typename CDEElementwiseOp>
using device_contraction_f64_kk_instance = std::tuple<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| Compute| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Data| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Type| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 128, 16, 2, 2, 16, 16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 64, 16, 2, 2, 16, 16, 4, 4, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 8>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 64, 128, 16, 2, 2, 16, 16, 4, 4, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 8, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 64, 64, 64, 16, 2, 2, 16, 16, 4, 4, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 8, 1, 8>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 64, 16, 2, 2, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 64, 128, 16, 2, 2, 16, 16, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 32, 16, 2, 2, 16, 16, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 8>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 32, 128, 16, 2, 2, 16, 16, 2, 4, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 8, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 64, 64, 32, 16, 2, 2, 16, 16, 4, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 8, 1, 8>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 64, 32, 64, 16, 2, 2, 16, 16, 2, 4, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 8, 1, 8>, 1>
// clang-format on
>;
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename ComputeDataType,
typename AElementwiseOp,
typename BElementwiseOp,
typename CDEElementwiseOp>
using device_contraction_f64_kn_instance = std::tuple<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| Compute| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Data| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Type| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 128, 16, 2, 1, 16, 16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 128, 16, 2, 2, 16, 16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 64, 16, 2, 1, 16, 16, 4, 4, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, 1, 1, S<1, 16, 1, 8>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 64, 16, 2, 2, 16, 16, 4, 4, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 8>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 64, 128, 16, 2, 1, 16, 16, 4, 4, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, 1, 1, S<1, 8, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 64, 128, 16, 2, 2, 16, 16, 4, 4, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 8, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 64, 16, 2, 1, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 64, 16, 2, 2, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 64, 128, 16, 2, 1, 16, 16, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 64, 128, 16, 2, 2, 16, 16, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>
// clang-format on
>;
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename ComputeDataType,
typename AElementwiseOp,
typename BElementwiseOp,
typename CDEElementwiseOp>
using device_contraction_f64_mk_instance = std::tuple<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| Compute| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Data| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Type| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 128, 16, 1, 2, 16, 16, 4, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 128, 16, 2, 2, 16, 16, 4, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 64, 16, 1, 2, 16, 16, 4, 4, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 8>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 64, 16, 2, 2, 16, 16, 4, 4, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 8>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 64, 128, 16, 1, 2, 16, 16, 4, 4, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 8, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 64, 128, 16, 2, 2, 16, 16, 4, 4, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 8, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 64, 16, 1, 2, 16, 16, 4, 2, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 64, 16, 2, 2, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 64, 128, 16, 1, 2, 16, 16, 2, 4, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 64, 128, 16, 2, 2, 16, 16, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>
// clang-format on
>;
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename ComputeDataType,
typename AElementwiseOp,
typename BElementwiseOp,
typename CDEElementwiseOp>
using device_contraction_f64_mn_instance = std::tuple<
// clang-format off
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| Compute| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Data| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Type| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 128, 16, 1, 1, 16, 16, 4, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 128, 16, 2, 2, 16, 16, 4, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 64, 16, 1, 1, 16, 16, 4, 4, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, 1, 1, S<1, 16, 1, 8>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 64, 16, 2, 2, 16, 16, 4, 4, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 8>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 64, 128, 16, 1, 1, 16, 16, 4, 4, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, 1, 1, S<1, 8, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 128, 64, 128, 16, 2, 2, 16, 16, 4, 4, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 8, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 64, 16, 1, 1, 16, 16, 4, 2, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 64, 16, 2, 2, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 64, 128, 16, 1, 1, 16, 16, 2, 4, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 0, 1, 1, S<1, 16, 1, 16>, 1>,
DeviceContractionMultipleD_Xdl_CShuffle< 2, 2, 2, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ComputeDataType, AElementwiseOp, BElementwiseOp, CDEElementwiseOp, GemmMNKPadding, 1, 256, 64, 128, 16, 2, 2, 16, 16, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 16>, 1>
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -17,6 +17,7 @@ namespace tensor_operation {
namespace device {
namespace instance {
#ifdef CK_ENABLE_FP32
// float
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
......@@ -27,8 +28,7 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn
F32,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances);
Bilinear>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
......@@ -40,8 +40,7 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn
F32,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances);
Bilinear>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
......@@ -53,8 +52,7 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mknn
F32,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances);
Bilinear>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mnnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
......@@ -66,115 +64,10 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mnnn
F32,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_kknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
F32_Tuple,
F32,
PassThrough,
PassThrough,
Bilinear,
F16>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_knnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
F32_Tuple,
F32,
PassThrough,
PassThrough,
Bilinear,
F16>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_mknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
F32_Tuple,
F32,
PassThrough,
PassThrough,
Bilinear,
F16>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_mnnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
F32_Tuple,
F32,
PassThrough,
PassThrough,
Bilinear,
F16>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_kknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
F32_Tuple,
F32,
PassThrough,
PassThrough,
Bilinear,
BF16>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_knnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
F32_Tuple,
F32,
PassThrough,
PassThrough,
Bilinear,
BF16>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
F32_Tuple,
F32,
PassThrough,
PassThrough,
Bilinear,
BF16>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mnnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
F32_Tuple,
F32,
PassThrough,
PassThrough,
Bilinear,
BF16>>>& instances);
#endif // CK_ENABLE_FP32
Bilinear>>>& instances);
#endif
#ifdef CK_ENABLE_FP64
// double
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
......@@ -185,8 +78,7 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn
F64,
PassThrough,
PassThrough,
Bilinear,
F64>>>& instances);
Bilinear>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
......@@ -198,8 +90,7 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn
F64,
PassThrough,
PassThrough,
Bilinear,
F64>>>& instances);
Bilinear>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
......@@ -211,8 +102,7 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn
F64,
PassThrough,
PassThrough,
Bilinear,
F64>>>& instances);
Bilinear>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
......@@ -224,170 +114,8 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn
F64,
PassThrough,
PassThrough,
Bilinear,
F64>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_kknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F64,
F64,
F64_Tuple,
F64,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_knnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F64,
F64,
F64_Tuple,
F64,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_mknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F64,
F64,
F64_Tuple,
F64,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_mnnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F64,
F64,
F64_Tuple,
F64,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances);
#endif // CK_ENABLE_FP64
#ifdef CK_ENABLE_FP16
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_kknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F16,
F16,
F16_Tuple,
F16,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_knnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F16,
F16,
F16_Tuple,
F16,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F16,
F16,
F16_Tuple,
F16,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mnnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F16,
F16,
F16_Tuple,
F16,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances);
#endif // CK_ENABLE_FP16
#ifdef CK_ENABLE_BF16
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_kknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
BF16,
BF16,
BF16_Tuple,
BF16,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_knnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
BF16,
BF16,
BF16_Tuple,
BF16,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
BF16,
BF16,
BF16_Tuple,
BF16,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mnnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
BF16,
BF16,
BF16_Tuple,
BF16,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances);
#endif // CK_ENABLE_FP16
Bilinear>>>& instances);
#endif
// Contraction + Bilinear
template <index_t NumDimM,
index_t NumDimN,
......@@ -395,8 +123,7 @@ template <index_t NumDimM,
typename ADataType,
typename BDataType,
typename DDataType,
typename EDataType,
typename ComputeDataType>
typename EDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceContractionMultipleD<
NumDimM,
NumDimN,
......@@ -407,8 +134,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceContra
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::Bilinear,
ComputeDataType>>
ck::tensor_operation::element_wise::Bilinear>>
{
using DeviceOp = DeviceContractionMultipleD<NumDimM,
NumDimN,
......@@ -419,125 +145,45 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceContra
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::Bilinear,
ComputeDataType>;
ck::tensor_operation::element_wise::Bilinear>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<ADataType, float> && is_same_v<BDataType, float> &&
is_same_v<EDataType, float>)
is_same_v<DDataType, float> && is_same_v<EDataType, float>)
{
if constexpr(NumDimM == 2 && NumDimN == 2 && NumDimK == 2)
{
if constexpr(is_same_v<ComputeDataType, float>)
{
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mknn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mnnn_instance(
op_ptrs);
}
else if constexpr(is_same_v<ComputeDataType, ck::half_t>)
{
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_kknn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_knnn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_mknn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_mnnn_instance(
op_ptrs);
}
else if constexpr(is_same_v<ComputeDataType, ck::bhalf_t>)
{
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_kknn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_knnn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mknn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mnnn_instance(
op_ptrs);
}
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mnnn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mknn_instance(
op_ptrs);
}
}
#endif // CK_ENABLE_FP32
#endif
#ifdef CK_ENABLE_FP64
if constexpr(is_same_v<ADataType, double> && is_same_v<BDataType, double> &&
is_same_v<EDataType, double>)
{
if constexpr(NumDimM == 2 && NumDimN == 2 && NumDimK == 2)
{
if constexpr(is_same_v<ComputeDataType, double>)
{
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance(
op_ptrs);
}
else if constexpr(is_same_v<ComputeDataType, float>)
{
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_kknn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_knnn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_mknn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_mnnn_instance(
op_ptrs);
}
}
}
#endif // CK_ENABLE_FP64
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<ADataType, ck::half_t> && is_same_v<BDataType, ck::half_t> &&
is_same_v<EDataType, ck::half_t>)
{
if constexpr(NumDimM == 2 && NumDimN == 2 && NumDimK == 2)
{
if constexpr(is_same_v<ComputeDataType, float>)
{
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_kknn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_knnn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mknn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mnnn_instance(
op_ptrs);
}
}
}
#endif // CK_ENABLE_FP16
#ifdef CK_ENABLE_BF16
if constexpr(is_same_v<ADataType, ck::bhalf_t> && is_same_v<BDataType, ck::bhalf_t> &&
is_same_v<EDataType, ck::bhalf_t>)
is_same_v<DDataType, double> && is_same_v<EDataType, double>)
{
if constexpr(NumDimM == 2 && NumDimN == 2 && NumDimK == 2)
{
if constexpr(is_same_v<ComputeDataType, float>)
{
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_kknn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_knnn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mknn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mnnn_instance(
op_ptrs);
}
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance(
op_ptrs);
}
}
#endif // CK_ENABLE_BF16
#endif
return op_ptrs;
}
};
......
......@@ -17,6 +17,7 @@ namespace tensor_operation {
namespace device {
namespace instance {
#ifdef CK_ENABLE_FP32
// float
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_kkn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
......@@ -27,8 +28,7 @@ void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_kkn_instanc
F32,
PassThrough,
PassThrough,
Scale,
F32>>>& instances);
Scale>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_knn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
......@@ -40,8 +40,7 @@ void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_knn_instanc
F32,
PassThrough,
PassThrough,
Scale,
F32>>>& instances);
Scale>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mkn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
......@@ -53,8 +52,7 @@ void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mkn_instanc
F32,
PassThrough,
PassThrough,
Scale,
F32>>>& instances);
Scale>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
......@@ -66,115 +64,10 @@ void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mnn_instanc
F32,
PassThrough,
PassThrough,
Scale,
F32>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_f16_kkn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
Scale,
F16>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_f16_knn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
Scale,
F16>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_f16_mkn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
Scale,
F16>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_f16_mnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
Scale,
F16>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_kkn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
Scale,
BF16>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_knn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
Scale,
BF16>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_mkn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
Scale,
BF16>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_mnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
Scale,
BF16>>>& instances);
#endif // CK_ENABLE_FP32
Scale>>>& instances);
#endif
#ifdef CK_ENABLE_FP64
// double
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_kkn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
......@@ -185,8 +78,7 @@ void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_kkn_instanc
F64,
PassThrough,
PassThrough,
Scale,
F64>>>& instances);
Scale>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_knn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
......@@ -198,8 +90,7 @@ void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_knn_instanc
F64,
PassThrough,
PassThrough,
Scale,
F64>>>& instances);
Scale>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mkn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
......@@ -211,8 +102,7 @@ void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mkn_instanc
F64,
PassThrough,
PassThrough,
Scale,
F64>>>& instances);
Scale>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
......@@ -224,178 +114,15 @@ void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mnn_instanc
F64,
PassThrough,
PassThrough,
Scale,
F64>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_compute_f32_kkn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F64,
F64,
Empty_Tuple,
F64,
PassThrough,
PassThrough,
Scale,
F32>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_compute_f32_knn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F64,
F64,
Empty_Tuple,
F64,
PassThrough,
PassThrough,
Scale,
F32>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_compute_f32_mkn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F64,
F64,
Empty_Tuple,
F64,
PassThrough,
PassThrough,
Scale,
F32>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_compute_f32_mnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F64,
F64,
Empty_Tuple,
F64,
PassThrough,
PassThrough,
Scale,
F32>>>& instances);
#endif // CK_ENABLE_FP64
#ifdef CK_ENABLE_FP16
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_kkn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
Scale,
F32>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_knn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
Scale,
F32>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_mkn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
Scale,
F32>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_mnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
Scale,
F32>>>& instances);
#endif // CK_ENABLE_FP16
#ifdef CK_ENABLE_BF16
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_kkn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
BF16,
BF16,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
Scale,
F32>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_knn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
BF16,
BF16,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
Scale,
F32>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_mkn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
BF16,
BF16,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
Scale,
F32>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_mnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
BF16,
BF16,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
Scale,
F32>>>& instances);
#endif // CK_ENABLE_FP16
Scale>>>& instances);
#endif
// Contraction + Scale
template <index_t NumDimM,
index_t NumDimN,
index_t NumDimK,
typename ADataType,
typename BDataType,
typename EDataType,
typename ComputeDataType>
typename EDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceContractionMultipleD<
NumDimM,
NumDimN,
......@@ -406,8 +133,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceContra
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::Scale,
ComputeDataType>>
ck::tensor_operation::element_wise::Scale>>
{
using DeviceOp = DeviceContractionMultipleD<NumDimM,
NumDimN,
......@@ -418,8 +144,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceContra
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::Scale,
ComputeDataType>;
ck::tensor_operation::element_wise::Scale>;
static auto GetInstances()
{
......@@ -430,113 +155,34 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceContra
{
if constexpr(NumDimM == 2 && NumDimN == 2 && NumDimK == 2)
{
if constexpr(is_same_v<ComputeDataType, float>)
{
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_kkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_knn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mnn_instance(
op_ptrs);
}
else if constexpr(is_same_v<ComputeDataType, ck::half_t>)
{
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_f16_kkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_f16_knn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_f16_mkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_f16_mnn_instance(
op_ptrs);
}
else if constexpr(is_same_v<ComputeDataType, ck::bhalf_t>)
{
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_kkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_knn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_mkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_compute_bf16_mnn_instance(
op_ptrs);
}
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_kkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_knn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mnn_instance(
op_ptrs);
}
}
#endif // CK_ENABLE_FP32
#endif
#ifdef CK_ENABLE_FP64
if constexpr(is_same_v<ADataType, double> && is_same_v<BDataType, double> &&
is_same_v<EDataType, double>)
{
if constexpr(NumDimM == 2 && NumDimN == 2 && NumDimK == 2)
{
if constexpr(is_same_v<ComputeDataType, double>)
{
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_kkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_knn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mnn_instance(
op_ptrs);
}
else if constexpr(is_same_v<ComputeDataType, float>)
{
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_compute_f32_kkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_compute_f32_knn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_compute_f32_mkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_compute_f32_mnn_instance(
op_ptrs);
}
}
}
#endif // CK_ENABLE_FP64
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<ADataType, ck::half_t> && is_same_v<BDataType, ck::half_t> &&
is_same_v<EDataType, ck::half_t>)
{
if constexpr(NumDimM == 2 && NumDimN == 2 && NumDimK == 2)
{
if constexpr(is_same_v<ComputeDataType, float>)
{
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_kkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_knn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_mkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_compute_f32_mnn_instance(
op_ptrs);
}
}
}
#endif // CK_ENABLE_FP16
#ifdef CK_ENABLE_BF16
if constexpr(is_same_v<ADataType, ck::bhalf_t> && is_same_v<BDataType, ck::bhalf_t> &&
is_same_v<EDataType, ck::bhalf_t>)
{
if constexpr(NumDimM == 2 && NumDimN == 2 && NumDimK == 2)
{
if constexpr(is_same_v<ComputeDataType, float>)
{
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_kkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_knn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_mkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_compute_f32_mnn_instance(
op_ptrs);
}
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_kkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_knn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mnn_instance(
op_ptrs);
}
}
#endif // CK_ENABLE_BF16
#endif
return op_ptrs;
}
};
......
......@@ -18,6 +18,8 @@ namespace instance {
using BF16 = ck::bhalf_t;
using F16 = ck::half_t;
using F32 = float;
using BF8 = ck::bf8_t;
using F8 = ck::f8_t;
using Empty_Tuple = ck::Tuple<>;
......@@ -143,6 +145,43 @@ using device_grouped_conv_bwd_data_xdl_f32_instances =
// clang-format on
>;
// f16_f16_f16_comp_f8
template <index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
ConvolutionBackwardDataSpecialization ConvSpec>
using device_grouped_conv_bwd_data_xdl_input_fp16_comp_bf8f8_instances =
std::tuple<
// clang-format off
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< NDimSpatial, ALayout, BLayout, DsLayout, ELayout, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 4, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, BF8, F8>,
// instances for small conv.K and conv.C
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< NDimSpatial, ALayout, BLayout, DsLayout, ELayout, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 8>, 4, LoopScheduler::Default, BF8, F8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< NDimSpatial, ALayout, BLayout, DsLayout, ELayout, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, 1, 1, 1, S<1, 32, 1, 4>, 1, LoopScheduler::Default, BF8, F8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< NDimSpatial, ALayout, BLayout, DsLayout, ELayout, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 128, 256, 32, 8, 2, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 4, LoopScheduler::Default, BF8, F8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< NDimSpatial, ALayout, BLayout, DsLayout, ELayout, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 8>, 4, LoopScheduler::Default, BF8, F8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< NDimSpatial, ALayout, BLayout, DsLayout, ELayout, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 8>, 4, LoopScheduler::Default, BF8, F8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< NDimSpatial, ALayout, BLayout, DsLayout, ELayout, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 16, 1, 8>, 4, LoopScheduler::Default, BF8, F8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< NDimSpatial, ALayout, BLayout, DsLayout, ELayout, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 8>, 4, LoopScheduler::Default, BF8, F8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< NDimSpatial, ALayout, BLayout, DsLayout, ELayout, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 4>, 4, LoopScheduler::Default, BF8, F8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< NDimSpatial, ALayout, BLayout, DsLayout, ELayout, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 16, 1, 8>, 4, LoopScheduler::Default, BF8, F8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< NDimSpatial, ALayout, BLayout, DsLayout, ELayout, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 16, 1, 4>, 4, LoopScheduler::Default, BF8, F8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< NDimSpatial, ALayout, BLayout, DsLayout, ELayout, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 8>, 4, LoopScheduler::Default, BF8, F8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< NDimSpatial, ALayout, BLayout, DsLayout, ELayout, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 8>, 4, LoopScheduler::Default, BF8, F8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< NDimSpatial, ALayout, BLayout, DsLayout, ELayout, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 4>, 4, LoopScheduler::Default, BF8, F8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< NDimSpatial, ALayout, BLayout, DsLayout, ELayout, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 16, 1, 8>, 4, LoopScheduler::Default, BF8, F8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< NDimSpatial, ALayout, BLayout, DsLayout, ELayout, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, 1, 1, S<1, 16, 1, 4>, 4, LoopScheduler::Default, BF8, F8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< NDimSpatial, ALayout, BLayout, DsLayout, ELayout, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, LoopScheduler::Default, BF8, F8>
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
......
......@@ -19,6 +19,14 @@ using BF16 = ck::bhalf_t;
using F16 = ck::half_t;
using F32 = float;
#ifdef CK_ENABLE_FP8
using F8 = ck::f8_t;
#endif
#ifdef CK_ENABLE_BF8
using BF8 = ck::bf8_t;
#endif
using Empty_Tuple = ck::Tuple<>;
template <ck::index_t... Is>
......@@ -133,6 +141,43 @@ using device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_instances = std::tuple<
// clang-format on
>;
template <ck::index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename ELayout,
ConvolutionBackwardWeightSpecialization ConvSpec>
using device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_comp_bf8_f8_instances = std::tuple<
// clang-format off
//#########################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| Compute| Compute|
//#########################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| TypeA| TypeB|
//#########################################| Spatial| | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl| | |
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| | | |
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
// generic instance
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 2, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 2, 4, true, 1, 1, S<1, 16, 1, 4>, 2, BF8, F8>,
// instance for small conv.K
// for fp16 conv.K and conv.C must be divisible by 2
// since half_t atomic_add require scalar_per_x_vector % 2 == 0
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 2, 1, true, 1, 1, S<1, 32, 1, 4>, 2, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 2, 2, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 8>, 8, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 8>, 8, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 8, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 8, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 16, 1, 4>, 8, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8, BF8, F8>
#endif
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
......
......@@ -13,6 +13,10 @@ namespace tensor_operation {
namespace device {
namespace instance {
#ifdef CK_ENABLE_FP8
using F8 = ck::f8_t;
#endif
using BF16 = ck::bhalf_t;
using F16 = ck::half_t;
using F32 = float;
......@@ -174,6 +178,42 @@ using device_grouped_conv_fwd_xdl_int8_instances = std::tuple<
// clang-format on
>;
template <index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
ConvolutionForwardSpecialization ConvSpec>
using device_grouped_conv_fwd_xdl_f16_comp_f8_instances = std::tuple<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| ComputeType|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| |
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| |
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#ifdef CK_ENABLE_FP8
// generic instance
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, F8>,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, F8>
#endif
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
......
......@@ -426,13 +426,32 @@ void add_device_grouped_conv3d_bwd_data_wmma_ndhwgk_gkzyxc_ndhwgc_i8_1x1s1p0_ins
PassThrough,
PassThrough>>>& instances);
#endif
#if defined CK_ENABLE_FP16 && defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
void add_device_grouped_conv3d_bwd_data_xdl_ndhwgk_gkzyxc_ndhwgc_input_f16_comp_bf8f8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdDataMultipleD<3,
NDHWGK,
GKZYXC,
Empty_Tuple,
NDHWGC,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough,
BF8,
F8>>>& instances);
#endif
template <ck::index_t NumDimSpatial,
typename OutLayout,
typename WeiLayout,
typename InLayout,
typename OutDataType,
typename WeiDataType,
typename InDataType>
typename InDataType,
typename ComputeTypeA,
typename ComputeTypeB>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceGroupedConvBwdDataMultipleD<
NumDimSpatial,
......@@ -446,7 +465,9 @@ struct DeviceOperationInstanceFactory<
InDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
ck::tensor_operation::element_wise::PassThrough,
ComputeTypeA,
ComputeTypeB>>
{
using DeviceOp =
DeviceGroupedConvBwdDataMultipleD<NumDimSpatial,
......@@ -460,7 +481,9 @@ struct DeviceOperationInstanceFactory<
InDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
ck::tensor_operation::element_wise::PassThrough,
ComputeTypeA,
ComputeTypeB>;
static auto GetInstances()
{
......@@ -597,7 +620,8 @@ struct DeviceOperationInstanceFactory<
{
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, F16> && is_same_v<WeiDataType, F16> &&
is_same_v<OutDataType, F16>)
is_same_v<OutDataType, F16> && is_same_v<ComputeTypeA, F16> &&
is_same_v<ComputeTypeB, F16>)
{
add_device_grouped_conv3d_bwd_data_xdl_ndhwgk_gkzyxc_ndhwgc_f16_instances(
op_ptrs);
......@@ -607,6 +631,15 @@ struct DeviceOperationInstanceFactory<
op_ptrs);
}
#endif
#if defined CK_ENABLE_FP16 && defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
else if constexpr(is_same_v<InDataType, F16> && is_same_v<WeiDataType, F16> &&
is_same_v<OutDataType, F16> && is_same_v<ComputeTypeA, bf8_t> &&
is_same_v<ComputeTypeB, f8_t>)
{
add_device_grouped_conv3d_bwd_data_xdl_ndhwgk_gkzyxc_ndhwgc_input_f16_comp_bf8f8_instances(
op_ptrs);
}
#endif
#ifdef CK_ENABLE_FP32
else if constexpr(is_same_v<InDataType, F32> && is_same_v<WeiDataType, F32> &&
is_same_v<OutDataType, F32>)
......
......@@ -216,6 +216,21 @@ void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances
PassThrough,
PassThrough>>>& instances);
#endif
#if defined CK_ENABLE_FP16 && defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_f8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough,
BF8,
F8>>>& instances);
#endif
#ifdef DL_KERNELS
// dl
......@@ -464,7 +479,9 @@ template <ck::index_t NumDimSpatial,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType>
typename OutDataType,
typename ComputeTypeA,
typename ComputeTypeB>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedConvBwdWeight<
NumDimSpatial,
InLayout,
......@@ -475,7 +492,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
ck::tensor_operation::element_wise::PassThrough,
ComputeTypeA,
ComputeTypeB>>
{
using DeviceOp = DeviceGroupedConvBwdWeight<NumDimSpatial,
InLayout,
......@@ -486,7 +505,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
ck::tensor_operation::element_wise::PassThrough,
ComputeTypeA,
ComputeTypeB>;
static auto GetInstances()
{
......@@ -706,7 +727,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif
#ifdef CK_ENABLE_FP16
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
is_same_v<OutDataType, half_t> &&
is_same_v<ComputeTypeA, half_t> &&
is_same_v<ComputeTypeB, half_t>)
{
#ifdef DL_KERNELS
add_device_grouped_conv3d_bwd_weight_dl_ndhwgc_gkzyxc_ndhwgk_f16_instances(
......@@ -728,6 +751,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instances(
op_ptrs);
}
#endif
#if defined CK_ENABLE_FP16 && defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t> &&
is_same_v<ComputeTypeA, bf8_t> && is_same_v<ComputeTypeB, f8_t>)
{
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_f8_instances(
op_ptrs);
}
#endif
}
}
......
......@@ -16,6 +16,7 @@ namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
#ifdef CK_ENABLE_BF16
// grouped conv1d forward, GNWC/GKXC/GNWK
void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_bf16_instances(
......@@ -32,6 +33,7 @@ void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_bf16_instances(
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<1,
......@@ -47,6 +49,7 @@ void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f16_instances(
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP32
void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<1,
......@@ -62,6 +65,7 @@ void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f32_instances(
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_INT8
void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<1,
......@@ -77,100 +81,90 @@ void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_int8_instances(
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_BF16
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
void add_device_grouped_conv1d_fwd_xdl_gnhwc_gkyxc_gnhwk_bf16_instances(
#ifdef CK_ENABLE_INT8
void add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
BF16,
BF16,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
BF16,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f16_instances(
#ifdef CK_ENABLE_INT8
void add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_1x1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
F16,
F16,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
F16,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP32
void add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f32_instances(
#ifdef CK_ENABLE_INT8
void add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_1x1s1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
F32,
F32,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
F32,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef DL_KERNELS
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances(
#ifdef CK_ENABLE_INT8
void add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_oddc_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
F16,
F16,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
F16,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP32
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances(
#ifdef CK_ENABLE_BF16
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
void add_device_grouped_conv1d_fwd_xdl_gnhwc_gkyxc_gnhwk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
F32,
F32,
BF16,
BF16,
Empty_Tuple,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_1x1p0_instances(
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
......@@ -183,22 +177,26 @@ void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_1x1p0_instances(
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_1x1s1p0_instances(
#ifdef CK_ENABLE_FP32
void add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
F16,
F16,
F32,
F32,
Empty_Tuple,
F16,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_oddc_instances(
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
......@@ -211,23 +209,8 @@ void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_oddc_instances(
PassThrough,
PassThrough,
PassThrough>>>& instances);
#ifdef DL_KERNELS
void add_device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#endif
#ifdef CK_ENABLE_INT8
void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
......@@ -285,22 +268,7 @@ void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_oddc_instances(
PassThrough,
PassThrough>>>& instances);
#endif
#if(defined(CK_ENABLE_FP32) && defined(DL_KERNELS))
void add_device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
// grouped conv2d forward, NHWGC/GKYXC/NHWGK
#ifdef CK_ENABLE_BF16
void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_bf16_instances(
......@@ -317,6 +285,7 @@ void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_bf16_instances(
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
......@@ -388,63 +357,7 @@ void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instances(
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_INT8
void add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_1x1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_1x1s1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_oddc_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP32
void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
......@@ -460,6 +373,7 @@ void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instances(
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_BF16
// grouped conv3d forward, GNDHWC/GKZYXC/GNDHWK
void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_bf16_instances(
......@@ -476,6 +390,7 @@ void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_bf16_instances(
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
......@@ -547,6 +462,7 @@ void add_device_grouped_conv3d_fwd_wmma_gndhwc_gkzyxc_gndhwk_f16_oddc_instances(
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP32
void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
......@@ -562,6 +478,7 @@ void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f32_instances(
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_INT8
void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
......@@ -633,6 +550,7 @@ void add_device_grouped_conv3d_fwd_wmma_gndhwc_gkzyxc_gndhwk_i8_oddc_instances(
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_BF16
// grouped conv3d forward, NDHWGC/GKZYXC/NDHWGK
void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instances(
......@@ -649,6 +567,7 @@ void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instances(
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
......@@ -663,7 +582,9 @@ void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instances(
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
......@@ -677,7 +598,9 @@ void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_instances(
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_1x1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
......@@ -691,7 +614,9 @@ void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_1x1p0_instances
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_1x1s1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
......@@ -705,7 +630,9 @@ void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_1x1s1p0_instanc
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_oddc_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
......@@ -720,6 +647,88 @@ void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_oddc_instances(
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_1x1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_1x1s1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_oddc_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP8
void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_f8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
GKZYXC,
Empty_Tuple,
NDHWGK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough,
F8>>>& instances);
#endif
#ifdef CK_ENABLE_FP32
void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
......@@ -735,6 +744,7 @@ void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances(
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_INT8
void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
......@@ -807,13 +817,79 @@ void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_i8_oddc_instances(
PassThrough>>>& instances);
#endif
#if(defined(CK_ENABLE_FP32) && defined(DL_KERNELS))
void add_device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#if(defined(CK_ENABLE_FP16) && defined(DL_KERNELS))
void add_device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#if(defined(CK_ENABLE_FP16) && defined(DL_KERNELS))
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#if(defined(CK_ENABLE_FP32) && defined(DL_KERNELS))
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType>
typename OutDataType,
typename ComputeType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<
NumDimSpatial,
InLayout,
......@@ -826,7 +902,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
ck::tensor_operation::element_wise::PassThrough,
ComputeType>>
{
using DeviceOp = DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
......@@ -839,7 +916,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
ck::tensor_operation::element_wise::PassThrough,
ComputeType>;
static auto GetInstances()
{
......@@ -877,33 +955,46 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
}
#endif
}
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, GNHWK>)
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, GNHWK>)
{
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f32_instances(op_ptrs);
#ifdef DL_KERNELS
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances(op_ptrs);
}
#endif
#if(defined(CK_ENABLE_FP32) && defined(DL_KERNELS))
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs);
#ifdef DL_KERNELS
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs);
#endif
add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs);
add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_1x1p0_instances(op_ptrs);
add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_1x1s1p0_instances(op_ptrs);
add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_oddc_instances(op_ptrs);
}
#endif
#if(defined(CK_ENABLE_FP16) && defined(DL_KERNELS))
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_BF16
if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> && is_same_v<OutDataType, ck::bhalf_t>)
......@@ -911,9 +1002,10 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
add_device_grouped_conv1d_fwd_xdl_gnhwc_gkyxc_gnhwk_bf16_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_INT8
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_instances(op_ptrs);
add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_1x1p0_instances(op_ptrs);
......@@ -922,33 +1014,43 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
}
#endif
}
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, NHWGK>)
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, NHWGK>)
{
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instances(op_ptrs);
#ifdef DL_KERNELS
add_device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f32_instances(op_ptrs);
}
#endif
#if(defined(CK_ENABLE_FP32) && defined(DL_KERNELS))
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f32_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instances(op_ptrs);
#ifdef DL_KERNELS
add_device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f16_instances(op_ptrs);
}
#endif
add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_instances(op_ptrs);
add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_1x1p0_instances(op_ptrs);
add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_1x1s1p0_instances(op_ptrs);
add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_oddc_instances(op_ptrs);
#if(defined(CK_ENABLE_FP16) && defined(DL_KERNELS))
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f16_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_BF16
if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> && is_same_v<OutDataType, ck::bhalf_t>)
......@@ -967,8 +1069,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
}
#endif
}
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, GNDHWC> &&
is_same_v<WeiLayout, GKZYXC> && is_same_v<OutLayout, GNDHWK>)
if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, GNDHWC> &&
is_same_v<WeiLayout, GKZYXC> && is_same_v<OutLayout, GNDHWK>)
{
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
......@@ -1010,8 +1113,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
}
#endif
}
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWGC> &&
is_same_v<WeiLayout, GKZYXC> && is_same_v<OutLayout, NDHWGK>)
if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWGC> &&
is_same_v<WeiLayout, GKZYXC> && is_same_v<OutLayout, NDHWGK>)
{
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
......@@ -1020,9 +1124,18 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_FP8
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t> && is_same_v<ComputeType, ck::f8_t>)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_f8_instances(
op_ptrs);
}
#endif
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
is_same_v<OutDataType, half_t> && is_same_v<ComputeType, half_t>)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instances(op_ptrs);
add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_instances(op_ptrs);
......
......@@ -111,6 +111,22 @@ struct GeneratorTensor_2<ck::f8_t>
};
#endif
#if defined CK_ENABLE_BF8
template <>
struct GeneratorTensor_2<ck::bf8_t>
{
int min_value = 0;
int max_value = 1;
template <typename... Is>
ck::bf8_t operator()(Is...)
{
float tmp = (std::rand() % (max_value - min_value)) + min_value;
return ck::type_convert<ck::bf8_t>(tmp);
}
};
#endif
template <typename T>
struct GeneratorTensor_3
{
......@@ -162,6 +178,25 @@ struct GeneratorTensor_3<ck::f8_t>
};
#endif
#if defined CK_ENABLE_BF8
template <>
struct GeneratorTensor_3<ck::bf8_t>
{
float min_value = 0;
float max_value = 1;
template <typename... Is>
ck::bf8_t operator()(Is...)
{
float tmp = float(std::rand()) / float(RAND_MAX);
float fp32_tmp = min_value + tmp * (max_value - min_value);
return ck::type_convert<ck::bf8_t>(fp32_tmp);
}
};
#endif
template <typename T>
struct GeneratorTensor_4
{
......
......@@ -24,7 +24,7 @@ function(add_instance_library INSTANCE_NAME)
set(test 0)
break()
elseif((source MATCHES "fp8" OR source MATCHES "fp32" OR source MATCHES "fp64" OR source MATCHES "bf16" OR source MATCHES "int8" OR source MATCHES "fp16" OR
source MATCHES "_f8" OR source MATCHES "_f32" OR source MATCHES "_f64" OR source MATCHES "_i8" OR source MATCHES "_f16" OR source MATCHES "_b16") AND
source MATCHES "_f8" OR source MATCHES "_f32" OR source MATCHES "_f64" OR source MATCHES "_i8" OR source MATCHES "_f16" OR source MATCHES "_b16") AND
NOT(source MATCHES type OR source MATCHES type1))
#if filename contains a type which doesn't match any selected type, mark it for removal
set(test 1)
......@@ -51,7 +51,7 @@ function(add_instance_library INSTANCE_NAME)
set(result 0)
endif()
#message("add_instance_library returns ${result}")
return(PROPAGATE result)
set(result ${result} PARENT_SCOPE)
endfunction(add_instance_library INSTANCE_NAME)
......
set(DEVICE_CONTRACTION_BILINEAR_INSTANCES)
# FP32
#float
list(APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mnnn_instance.cpp)
list(APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_mnnn_instance.cpp)
list(APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mnnn_instance.cpp)
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mnnn_instance.cpp)
# FP64
#double
list(APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance.cpp)
list(APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_mnnn_instance.cpp)
# FP16
list(APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mnnn_instance.cpp)
# BF16
list(APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mnnn_instance.cpp)
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance.cpp)
add_instance_library(device_contraction_bilinear_instance ${DEVICE_CONTRACTION_BILINEAR_INSTANCES})
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment