Unverified Commit 06701e70 authored by Rostyslav Geyyer's avatar Rostyslav Geyyer Committed by GitHub
Browse files

Merge branch 'develop' into lwpck-1815

parents 5800d24e da42a889
......@@ -36,30 +36,37 @@ template <typename T,
typename WindowLengths_,
typename TileDistribution_,
index_t NumCoord,
bool oob_conditional_check = true>
bool oob_conditional_check = true,
bool pre_nop = false>
CK_TILE_DEVICE auto load_tile_raw(T& tile,
const tile_window_with_static_distribution<BottomTensorView_,
WindowLengths_,
TileDistribution_,
NumCoord>& tile_window,
bool_constant<oob_conditional_check> = {})
bool_constant<oob_conditional_check> = {},
bool_constant<pre_nop> = {})
{
tile_window.load_raw(tile, bool_constant<oob_conditional_check>{});
tile_window.load_raw(tile, bool_constant<oob_conditional_check>{}, bool_constant<pre_nop>{});
}
template <typename LdsTileWindow_,
typename BottomTensorView_,
typename WindowLengths_,
typename TileDistribution_,
index_t NumCoord>
index_t NumCoord,
bool oob_conditional_check = true,
bool pre_nop = false>
CK_TILE_DEVICE auto
async_load_tile_raw(LdsTileWindow_&& lds_tile,
const tile_window_with_static_distribution<BottomTensorView_,
WindowLengths_,
TileDistribution_,
NumCoord>& tile_window)
NumCoord>& tile_window,
bool_constant<oob_conditional_check> = {},
bool_constant<pre_nop> = {})
{
return tile_window.async_load(lds_tile);
return tile_window.async_load_raw(
lds_tile, bool_constant<oob_conditional_check>{}, bool_constant<pre_nop>{});
}
CK_TILE_DEVICE auto async_load_fence(index_t cnt = 0)
......
......@@ -35,6 +35,8 @@ struct null_tile_window
CK_TILE_DEVICE constexpr auto get_window_origin() const { return BottomTensorIndex{}; }
CK_TILE_DEVICE void init_raw() {}
WindowLengths window_lengths_;
};
......
......@@ -36,6 +36,8 @@ struct tensor_view
{
}
CK_TILE_HOST_DEVICE void init_raw() { buf_.init_raw(); }
CK_TILE_HOST_DEVICE constexpr auto& get_tensor_descriptor() const { return desc_; }
CK_TILE_HOST_DEVICE static constexpr index_t get_num_of_dimension()
......@@ -85,30 +87,34 @@ struct tensor_view
// "coord" is coordinate of DataType, not X. "coord" should be aligned to X
template <typename X,
bool oob_conditional_check = true,
bool pre_nop = false,
typename std::enable_if<
std::is_same_v<typename vector_traits<remove_cvref_t<X>>::scalar_type,
typename vector_traits<remove_cvref_t<DataType>>::scalar_type>,
bool>::type = false>
CK_TILE_HOST_DEVICE void
get_vectorized_elements_raw(remove_cvref_t<X>& dst,
const TensorCoord& coord,
bool_constant<oob_conditional_check> = {}) const
CK_TILE_HOST_DEVICE void get_vectorized_elements_raw(remove_cvref_t<X>& dst,
const TensorCoord& coord,
bool_constant<oob_conditional_check> = {},
bool_constant<pre_nop> = {}) const
{
return buf_.template get_raw<X, oob_conditional_check>(
return buf_.template get_raw<X, oob_conditional_check, pre_nop>(
dst,
coord.get_offset(),
coordinate_has_valid_offset_assuming_top_index_is_valid(desc_, coord));
coordinate_has_valid_offset_assuming_top_index_is_valid(desc_, coord),
bool_constant<pre_nop>{});
}
template <typename X,
bool pre_nop = false,
typename std::enable_if<
std::is_same_v<typename vector_traits<remove_cvref_t<X>>::scalar_type,
typename vector_traits<remove_cvref_t<DataType>>::scalar_type>,
bool>::type = false>
CK_TILE_HOST_DEVICE constexpr void async_get_vectorized_elements(remove_cvref_t<DataType>* smem,
const TensorCoord& coord) const
CK_TILE_HOST_DEVICE constexpr void async_get_vectorized_elements_raw(
remove_cvref_t<DataType>* smem, const TensorCoord& coord, bool_constant<pre_nop> = {}) const
{
return buf_.template async_get<X>(smem, coord.get_offset(), true /*not used*/);
return buf_.template async_get_raw<X>(
smem, coord.get_offset(), true /*not used*/, bool_constant<pre_nop>{});
}
// X is vector of DataType.
......
......@@ -76,23 +76,63 @@ CK_TILE_DEVICE void set_tile(null_tensor&, const T&)
// TODO: prefer to use per-dword value to set a tensor, in case compiler not doing well with
// sub-dword tensor...
template <typename DstrTensors, index_t v>
CK_TILE_DEVICE void set_tile(DstrTensors& dstr_tensor, number<v>)
template <typename DstrTensors, index_t v, bool skip_subdword_opt = false>
CK_TILE_DEVICE void
set_tile(DstrTensors& dstr_tensor, number<v>, bool_constant<skip_subdword_opt> = {})
{
constexpr index_t tensor_bytes =
DstrTensors::get_thread_buffer_size() * sizeof(typename DstrTensors::DataType);
if constexpr(v == 0 && tensor_bytes % 4 == 0)
using elem_type = typename DstrTensors::DataType;
constexpr index_t elem_size = sizeof(elem_type);
constexpr index_t tensor_bytes = DstrTensors::get_thread_buffer_size() * elem_size;
// # bytes per write = 4
if constexpr(v == 0 && tensor_bytes % 4 == 0 && !skip_subdword_opt)
{
#if CK_TILE_WORKAROUND_ROCM_6_1_SCRATCH_MEMORY_ISSUE
auto& buffer = dstr_tensor.get_thread_buffer();
static_for<0, tensor_bytes / 4, 1>{}([&](auto i_write) {
if constexpr(elem_size == 1)
{
// # elements per write = 4
constexpr auto values = ext_vector_t<elem_type, 4>{0, 0, 0, 0};
buffer[i_write * 4 + 0] = values.x;
buffer[i_write * 4 + 1] = values.y;
buffer[i_write * 4 + 2] = values.z;
buffer[i_write * 4 + 3] = values.w;
}
else if constexpr(elem_size == 2)
{
// # elements per write = 2
constexpr auto values = ext_vector_t<elem_type, 2>{0, 0};
buffer[i_write * 2 + 0] = values.x;
buffer[i_write * 2 + 1] = values.y;
}
else if constexpr(elem_size == 4)
{
// # elements per write = 1
constexpr elem_type value = 0;
buffer[i_write] = value;
}
else
{
static_assert(false, "type not supported");
}
});
#else
using dvec_t = array<index_t, tensor_bytes / 4>;
auto& tensor = reinterpret_cast<dvec_t&>(dstr_tensor.get_thread_buffer());
for(auto i = 0; i < tensor.size(); i++)
tensor.get(i) = v;
#endif
}
else
{
tile_elementwise_inout(
[](auto& x) { x = type_convert<typename DstrTensors::DataType, index_t>(v); },
dstr_tensor);
tile_elementwise_inout([](auto& x) { x = type_convert<elem_type, index_t>(v); },
dstr_tensor);
}
}
......
......@@ -344,9 +344,10 @@ struct tile_window_with_static_distribution
return dst_tensor;
}
template <typename DstTile, bool oob_conditional_check = true>
template <typename DstTile, bool oob_conditional_check = true, bool pre_nop = false>
CK_TILE_DEVICE void load_raw(DstTile& dst_tensor,
bool_constant<oob_conditional_check> = {}) const
bool_constant<oob_conditional_check> = {},
bool_constant<pre_nop> = {}) const
{
using Traits = load_store_traits;
......@@ -373,7 +374,13 @@ struct tile_window_with_static_distribution
auto bottom_tensor_thread_coord = pre_computed_coords_[iCoord][I1];
static_for<0, NumAccessPerCoord, 1>{}([&](auto iCoordAccess) {
constexpr auto iAccess = number<iCoord * NumAccessPerCoord + iCoordAccess>{};
constexpr auto iAccess = number<iCoord * NumAccessPerCoord + iCoordAccess>{};
constexpr auto pre_nop_ = [&]() {
if constexpr(pre_nop && iCoord == 0 && iCoordAccess == 0)
return bool_constant<true>{};
else
return bool_constant<false>{};
}();
// data index [y0, y1, ...]
constexpr auto idx_ys_start = SFC_Ys::get_index(iAccess);
......@@ -384,7 +391,8 @@ struct tile_window_with_static_distribution
get_bottom_tensor_view().template get_vectorized_elements_raw<vector_t>(
dst_vec_tbuf.template at<d / Traits::ScalarPerVector>(),
bottom_tensor_thread_coord,
bool_constant<oob_conditional_check>{});
bool_constant<oob_conditional_check>{},
pre_nop_);
// move thread coordinate
if constexpr(iCoordAccess != (NumAccessPerCoord - 1))
......@@ -399,12 +407,17 @@ struct tile_window_with_static_distribution
}
});
});
#if CK_TILE_WORKAROUND_ROCM_6_1_SCRATCH_MEMORY_ISSUE
asm volatile("; this inline asm is workaround to prevent compiler from using too much "
"scratch memory" ::);
#endif
}
// TODO: currently async load only implemented in inline asm
template <typename LdsTileWindow_, bool oob_conditional_check = true>
CK_TILE_DEVICE auto async_load(LdsTileWindow_&& lds_tile,
bool_constant<oob_conditional_check> = {}) const
template <typename LdsTileWindow_, bool oob_conditional_check = true, bool pre_nop = false>
CK_TILE_DEVICE auto async_load_raw(LdsTileWindow_&& lds_tile,
bool_constant<oob_conditional_check> = {},
bool_constant<pre_nop> = {}) const
{
using LdsTileWindow = remove_cvref_t<LdsTileWindow_>;
// using LdsTensorView = typename LdsTileWindow::BottomTensorView;
......@@ -449,11 +462,17 @@ struct tile_window_with_static_distribution
auto bottom_tensor_thread_coord = pre_computed_coords_[iCoord][I1];
static_for<0, NumAccessPerCoord, 1>{}([&](auto iCoordAccess) {
constexpr auto iAccess = number<iCoord * NumAccessPerCoord + iCoordAccess>{};
constexpr auto iAccess = number<iCoord * NumAccessPerCoord + iCoordAccess>{};
constexpr auto pre_nop_ = [&]() {
if constexpr(pre_nop && iCoord == 0 && iCoordAccess == 0)
return bool_constant<true>{};
else
return bool_constant<false>{};
}();
// read from bottom tensor
get_bottom_tensor_view().template async_get_vectorized_elements<vector_t>(
smem, bottom_tensor_thread_coord);
get_bottom_tensor_view().template async_get_vectorized_elements_raw<vector_t>(
smem, bottom_tensor_thread_coord, pre_nop_);
// move thread coordinate
if constexpr(iCoordAccess != (NumAccessPerCoord - 1))
......@@ -668,6 +687,67 @@ struct tile_window_with_static_distribution
});
}
CK_TILE_DEVICE void set_window_origin(const BottomTensorIndex& new_window_origin)
{
window_origin_ = new_window_origin;
#if 0 // debug
// TODO: this use more register for FA, but less register for GEMM
// need investigation
// only support warp-tile and block-tile
static_assert(NDimP == 1 or NDimP == 2, "wrong!");
WindowAdaptorCoord window_adaptor_thread_coord_tmp;
if constexpr(NDimP == 1)
{
window_adaptor_thread_coord_tmp = make_tensor_adaptor_coordinate(
tile_dstr_.get_ps_ys_to_xs_adaptor(), AdaptorTopIndex{get_lane_id(), 0});
}
else if constexpr(NDimP == 2)
{
window_adaptor_thread_coord_tmp =
make_tensor_adaptor_coordinate(tile_dstr_.get_ps_ys_to_xs_adaptor(),
AdaptorTopIndex{get_warp_id(), get_lane_id(), 0});
}
#else
// TODO: this use less register for FA, but more register for GEMM
// need investigation
const auto window_adaptor_thread_coord_tmp = make_tensor_adaptor_coordinate(
tile_dstr_.get_ps_ys_to_xs_adaptor(),
container_concat(detail::get_partition_index(tile_dstr_), array<index_t, NDimY>{0}));
#endif
BottomTensorIndex bottom_tensor_thread_origin_idx_tmp =
window_origin_ + window_adaptor_thread_coord_tmp.get_bottom_index();
const auto bottom_tensor_thread_coord_tmp = make_tensor_coordinate(
bottom_tensor_view_.get_tensor_descriptor(), bottom_tensor_thread_origin_idx_tmp);
// pre-compute NumCoord (WindowAdaptorCoord, BottomTensorCoord) bundles to speed up
// future load/store() calls (might allocate more registers)
using Traits = load_store_traits;
using SFC_Ys = typename Traits::SFC_Ys;
static_for<0, NumCoord, 1>{}([&](auto iCoord) {
auto window_adaptor_thread_coord = window_adaptor_thread_coord_tmp;
auto bottom_tensor_thread_coord = bottom_tensor_thread_coord_tmp;
constexpr auto idx_diff_ys =
SFC_Ys::get_step_between(number<0>{}, number<iCoord * NumAccessPerCoord>{});
constexpr auto idx_diff_ps_ys = container_concat(array<index_t, NDimP>{0}, idx_diff_ys);
move_window_adaptor_and_bottom_tensor_thread_coordinate(
window_adaptor_thread_coord, bottom_tensor_thread_coord, idx_diff_ps_ys);
pre_computed_coords_(iCoord) =
make_tuple(window_adaptor_thread_coord, bottom_tensor_thread_coord);
});
}
CK_TILE_HOST_DEVICE void init_raw() { bottom_tensor_view_.init_raw(); }
// this is the bottom tensor view
// [x0', x1', ...] ==> [offset]
BottomTensorView bottom_tensor_view_;
......
......@@ -81,6 +81,12 @@ struct BlockFmhaPipelineQRKSVSAsync
return Problem::kBlockPerCu;
else
{
// minimize occupancy
if constexpr(BiasEnum != BlockAttentionBiasEnum::NO_BIAS && kHasDropout)
{
return 1;
}
if constexpr(kK0BlockLength <= 32)
{
if constexpr(kPadSeqLenK && BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS &&
......@@ -220,6 +226,7 @@ struct BlockFmhaPipelineQRKSVSAsync
q_dram_block_window_tmp.get_window_lengths(),
q_dram_block_window_tmp.get_window_origin(),
Policy::template MakeQDramTileDistribution<Problem, decltype(gemm_0)>());
q_dram_window.init_raw();
// TODO: we use async Copy for K, which is inline asm
// a side effect is we have to use inline asm for q as well
......@@ -293,6 +300,17 @@ struct BlockFmhaPipelineQRKSVSAsync
k_dram_block_window.get_window_origin(),
Policy::template MakeKDramTileDistribution<Problem>()); // K DRAM tile window for
// load
k_dram_window.init_raw();
constexpr auto k_oob_ck = bool_constant<true>{};
constexpr auto k_pre_np = [&]() {
if constexpr(kPadSeqLenK &&
(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS ||
(BiasEnum != BlockAttentionBiasEnum::NO_BIAS && kHasDropout)))
return bool_constant<true>{};
else
return bool_constant<false>{};
}();
const auto bias_origin = bias_dram_block_window_tmp.get_window_origin();
auto bias_dram_window = make_tile_window(
bias_dram_block_window_tmp.get_bottom_tensor_view(),
......@@ -310,7 +328,7 @@ struct BlockFmhaPipelineQRKSVSAsync
Policy::template MakeVDramTileDistribution<Problem>());
// prefetch K tile
async_load_tile_raw(k_lds_store(LdsSeq.at(number<0>{})), k_dram_window);
async_load_tile_raw(k_lds_store(LdsSeq.at(number<0>{})), k_dram_window, k_oob_ck, k_pre_np);
move_tile_window(k_dram_window, {0, kK0});
__builtin_amdgcn_sched_barrier(0);
......@@ -333,7 +351,9 @@ struct BlockFmhaPipelineQRKSVSAsync
{
static_for<0, k0_loops - 1, 1>{}([&](auto i_k0) {
async_load_tile_raw(k_lds_store(number<LdsSeq.at(number<i_k0 + 1>{})>{}),
k_dram_window);
k_dram_window,
k_oob_ck,
k_pre_np);
if constexpr(i_k0 < k0_loops - 1)
move_tile_window(k_dram_window, {0, kK0});
......@@ -637,16 +657,13 @@ struct BlockFmhaPipelineQRKSVSAsync
{
// move K tile windows
move_tile_window(k_dram_block_window, {kN0, 0});
k_dram_window =
make_tile_window(k_dram_block_window.get_bottom_tensor_view(),
k_dram_block_window.get_window_lengths(),
k_dram_block_window.get_window_origin(),
Policy::template MakeKDramTileDistribution<Problem>());
k_dram_window.set_window_origin(k_dram_block_window.get_window_origin());
if constexpr(k1_loops >= 2 &&
LdsSeq.at(number<0>{}) == LdsSeq.at(number<k0_loops + k1_loops - 2>{}))
__builtin_amdgcn_s_barrier();
async_load_tile_raw(k_lds_store(LdsSeq.at(number<0>{})), k_dram_window);
async_load_tile_raw(
k_lds_store(LdsSeq.at(number<0>{})), k_dram_window, k_oob_ck, k_pre_np);
move_tile_window(k_dram_window, {0, kK0});
}
// tail
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
#ifdef CK_ENABLE_FP16
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_default_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Row,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_kpadding_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Row,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_mnpadding_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Row,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_mnkpadding_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Row,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_default_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Row,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_kpadding_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Row,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_mnkpadding_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Row,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_default_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Row,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_kpadding_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Row,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_mnkpadding_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Row,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_default_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Col,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_kpadding_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Col,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_mnpadding_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Col,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_mnkpadding_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Col,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v1_default_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Col,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v1_kpadding_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Col,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v1_mnkpadding_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Col,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_default_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Col,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_kpadding_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Col,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_mnkpadding_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Col,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
template <typename ADataType,
typename BDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemm_Streamk_V2<
ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceGemm_Streamk_V2<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<CDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_default_instances(
op_ptrs);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_kpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_mnpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_mnkpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_default_instances(
op_ptrs);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_kpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_mnkpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_default_instances(
op_ptrs);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_kpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_mnkpadding_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_default_instances(
op_ptrs);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_kpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_mnpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_mnkpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v1_default_instances(
op_ptrs);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v1_kpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v1_mnkpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_default_instances(
op_ptrs);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_kpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_mnkpadding_instances(
op_ptrs);
}
}
#endif
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -133,5 +133,40 @@ struct FillConstant
}
};
template <typename T>
struct TransformIntoStructuralSparsity
{
// clang-format off
static constexpr T valid_sequences[] = {
0, 0, 1, 1,
0, 1, 0, 1,
0, 1, 1, 0,
1, 0, 0, 1,
1, 0, 1, 0,
1, 1, 0, 0,
};
// clang-format on
template <typename ForwardIter>
void operator()(ForwardIter first, ForwardIter last) const
{
std::for_each(first, last, [=, idx = 0](T& elem) mutable {
auto tmp_idx = idx;
idx += 1;
return elem *= valid_sequences[tmp_idx % (sizeof(valid_sequences) / sizeof(T))];
});
}
template <typename ForwardRange>
auto operator()(ForwardRange&& range) const
-> std::void_t<decltype(std::declval<const TransformIntoStructuralSparsity&>()(
std::begin(std::forward<ForwardRange>(range)),
std::end(std::forward<ForwardRange>(range))))>
{
(*this)(std::begin(std::forward<ForwardRange>(range)),
std::end(std::forward<ForwardRange>(range)));
}
};
} // namespace utils
} // namespace ck
......@@ -43,7 +43,15 @@ std::ostream& LogRangeAsType(std::ostream& os, Range&& range, std::string delim)
first = false;
else
os << delim;
os << static_cast<T>(v);
if constexpr(std::is_same_v<T, ck::f8_t> || std::is_same_v<T, ck::bf8_t>)
{
os << ck::type_convert<float>(v);
}
else
{
os << static_cast<T>(v);
}
}
return os;
}
......
......@@ -59,7 +59,7 @@ function(add_instance_library INSTANCE_NAME)
endforeach()
# Do not build WMMA instances if gfx11 targets are not on the target list
foreach(source IN LISTS ARGN)
if(NOT INST_TARGETS MATCHES "gfx11" AND source MATCHES "_wmma")
if(NOT INST_TARGETS MATCHES "gfx11" AND NOT INST_TARGETS MATCHES "gfx12" AND source MATCHES "_wmma")
message("removing wmma instance ${source} ")
list(REMOVE_ITEM ARGN "${source}")
endif()
......@@ -177,7 +177,7 @@ FOREACH(subdir_path ${dir_list})
message("Found only xdl instances, but gfx9 is not on the targets list. Skipping.")
set(add_inst 0)
endif()
if(("${cmake_instance}" MATCHES "ONLY WMMA_KERNELS") AND (NOT INST_TARGETS MATCHES "gfx11"))
if(("${cmake_instance}" MATCHES "ONLY WMMA_KERNELS") AND (NOT INST_TARGETS MATCHES "gfx11") AND (NOT INST_TARGETS MATCHES "gfx12"))
message("Found only wmma instances, but gfx11 is not on the targets list. Skipping.")
set(add_inst 0)
endif()
......@@ -185,11 +185,11 @@ FOREACH(subdir_path ${dir_list})
message("Found only xdl and dl instances, but gfx9 is not on the targets listand DL_KERNELS is not set. Skipping.")
set(add_inst 0)
endif()
if(("${cmake_instance}" MATCHES "ONLY XDL_AND_WMMA_KERNELS") AND (NOT INST_TARGETS MATCHES "gfx11") AND (NOT INST_TARGETS MATCHES "gfx9"))
if(("${cmake_instance}" MATCHES "ONLY XDL_AND_WMMA_KERNELS") AND (NOT INST_TARGETS MATCHES "gfx11") AND (NOT INST_TARGETS MATCHES "gfx12") AND (NOT INST_TARGETS MATCHES "gfx9"))
message("Found only xdl and wmma instances, but gfx11 and gfx9 are not on the targets list. Skipping.")
set(add_inst 0)
endif()
if(("${cmake_instance}" MATCHES "XDL_DL_WMMA_KERNELS") AND (NOT INST_TARGETS MATCHES "gfx11") AND (NOT INST_TARGETS MATCHES "gfx9") AND (NOT DEFINED DL_KERNELS))
if(("${cmake_instance}" MATCHES "XDL_DL_WMMA_KERNELS") AND (NOT INST_TARGETS MATCHES "gfx11") AND (NOT INST_TARGETS MATCHES "gfx12") AND (NOT INST_TARGETS MATCHES "gfx9") AND (NOT DEFINED DL_KERNELS))
message("Found xdl, dl, and wmma instances, but none of those meet the target list. Skipping.")
set(add_inst 0)
endif()
......
# ONLY XDL_KERNELS
set(GEMM_UNIVERSAL_STREAMK_INSTANCES)
list(APPEND GEMM_UNIVERSAL_STREAMK_INSTANCES
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_default_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_kpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_mnpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_mnkpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_default_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_kpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_mnkpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_default_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_kpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_mnkpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_default_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_kpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_mnpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_mnkpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v1_default_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v1_kpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v1_mnkpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_default_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_kpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_mnkpadding_instance.cpp)
add_instance_library(device_gemm_universal_streamk_instance ${GEMM_UNIVERSAL_STREAMK_INSTANCES})
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = half_t;
using F32 = float;
using Row = tensor_layout::gemm::RowMajor;
using Col = tensor_layout::gemm::ColumnMajor;
template <index_t... Is>
using S = Sequence<Is...>;
using PassThrough = element_wise::PassThrough;
static constexpr auto GemmDefault = GemmSpecialization::Default;
static constexpr auto GemmKPadding = GemmSpecialization::KPadding;
static constexpr auto GemmMNPadding = GemmSpecialization::MNPadding;
static constexpr auto GemmMNKPadding = GemmSpecialization::MNKPadding;
static constexpr auto Intrawave = BlockGemmPipelineScheduler::Intrawave;
static constexpr auto Interwave = BlockGemmPipelineScheduler::Interwave;
template <GemmSpecialization GemmSpec>
using device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_instances = std::tuple<
// clang-format off
//#########################| ALayout| BLayout| CLayout|AData| BData| CData| AccData| Cshuffle| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1|MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Block-wiseGemm| Block-wiseGemm|
//#########################| | | | Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//#########################| | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 224, 256, 64, 8, 8, 16, 16, 7, 8, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 0, 1, 2, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 256, 32, 8, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 128, 32, 8, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>
// clang-format on
>;
template <BlockGemmPipelineScheduler BlkGemmPipeSched, GemmSpecialization GemmSpec>
using device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_instances = std::tuple<
// clang-format off
//#########################| ALayout| BLayout| CLayout|AData| BData| CData| AccData| Cshuffle| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1|MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Block-wiseGemm| Block-wiseGemm|
//#########################| | | | Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//#########################| | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// Latency friendly
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 32, 16, 64, 8, 4, 16, 16, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 0, 1, 1, S<1, 16, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v1>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 16, 16, 128, 8, 4, 16, 16, 1, 1, S<16, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 16, 1, 4>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v1>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 16, 16, 64, 8, 4, 16, 16, 1, 1, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 16, 1, 4>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v1>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 32, 64, 8, 4, 16, 16, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v1>,
// Memory friendly
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 32, 64, 8, 2, 32, 32, 2, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<32, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 16, 64, 8, 2, 16, 16, 4, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<32, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, 0, 1, 1, S<1, 32, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 128, 32, 64, 8, 4, 32, 32, 2, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 128, 16, 64, 8, 4, 16, 16, 4, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 0, 1, 1, S<1, 16, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 64, 32, 64, 8, 4, 32, 32, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 64, 16, 64, 8, 4, 16, 16, 2, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 0, 1, 1, S<1, 16, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 32, 16, 64, 8, 4, 16, 16, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 0, 1, 1, S<1, 16, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 16, 16, 128, 8, 4, 16, 16, 1, 1, S<16, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 16, 1, 4>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 16, 16, 64, 8, 4, 16, 16, 1, 1, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 16, 1, 4>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 32, 64, 8, 4, 16, 16, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 64, 64, 8, 4, 16, 16, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 32, 64, 64, 8, 4, 32, 32, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 8>, 8, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 128, 64, 8, 4, 16, 16, 1, 4, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 32, 128, 64, 8, 4, 32, 32, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 8>, 8, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 16, 256, 64, 8, 4, 16, 16, 1, 4, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 16>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffle_Streamk_V3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 32, 256, 64, 8, 4, 32, 32, 1, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 16>, 8, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_default_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Row,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_instances<GemmDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_kpadding_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Row,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_instances<GemmKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_mnkpadding_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Row,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_instances<GemmMNKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_mnpadding_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Row,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_instances<GemmMNPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_default_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Row,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_instances<Intrawave,
GemmDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_kpadding_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Row,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_instances<Intrawave,
GemmKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_mnkpadding_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Row,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_instances<Intrawave,
GemmMNKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_default_instances(
std::vector<std::unique_ptr<DeviceGemm_Streamk_V2<Row,
Row,
Row,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_instances<Interwave,
GemmDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment