Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
057140b1
Commit
057140b1
authored
Dec 19, 2023
by
Adam Osewski
Browse files
Merge remote-tracking branch 'origin/develop' into aosewski/ggemm_multi_d2
parents
134fc2e7
12a8883c
Changes
209
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2607 additions
and
181 deletions
+2607
-181
include/ck/tensor_operation/gpu/device/impl/device_batchnorm_forward_impl_obsolete.hpp
...pu/device/impl/device_batchnorm_forward_impl_obsolete.hpp
+3
-1
include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp
...ice/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp
+69
-66
include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp
...evice/impl/device_contraction_multiple_d_xdl_cshuffle.hpp
+66
-77
include/ck/tensor_operation/gpu/device/impl/device_contraction_utils.hpp
...or_operation/gpu/device/impl/device_contraction_utils.hpp
+87
-0
include/ck/tensor_operation/gpu/device/impl/device_elementwise_3d_impl.hpp
..._operation/gpu/device/impl/device_elementwise_3d_impl.hpp
+7
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_layernorm_xdl_cshuffle.hpp
...ce/impl/device_gemm_multiple_d_layernorm_xdl_cshuffle.hpp
+3
-1
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_lds_direct_load.hpp
...l/device_gemm_multiple_d_xdl_cshuffle_lds_direct_load.hpp
+414
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_lds_direct_load.hpp
.../device/impl/device_gemm_xdl_cshuffle_lds_direct_load.hpp
+394
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_streamk.hpp
...sor_operation/gpu/device/impl/device_gemm_xdl_streamk.hpp
+3
-1
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp
...mpl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp
+30
-7
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_multiple_r_xdl_cshuffle.hpp
...e_grouped_conv_fwd_multiple_d_multiple_r_xdl_cshuffle.hpp
+2
-2
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_wmma_cshuffle.hpp
...impl/device_grouped_conv_fwd_multiple_d_wmma_cshuffle.hpp
+1
-2
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp
...tion/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp
+5
-2
include/ck/tensor_operation/gpu/device/impl/device_normalization_bwd_data_impl.hpp
...on/gpu/device/impl/device_normalization_bwd_data_impl.hpp
+465
-0
include/ck/tensor_operation/gpu/device/impl/device_normalization_bwd_gamma_beta_impl.hpp
.../device/impl/device_normalization_bwd_gamma_beta_impl.hpp
+23
-9
include/ck/tensor_operation/gpu/device/impl/device_normalization_fwd_impl.hpp
...eration/gpu/device/impl/device_normalization_fwd_impl.hpp
+2
-4
include/ck/tensor_operation/gpu/device/impl/device_normalization_fwd_splitk_impl.hpp
.../gpu/device/impl/device_normalization_fwd_splitk_impl.hpp
+5
-3
include/ck/tensor_operation/gpu/device/tensor_layout.hpp
include/ck/tensor_operation/gpu/device/tensor_layout.hpp
+0
-6
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
...or_operation/gpu/element/unary_element_wise_operation.hpp
+18
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle_lds_direct_load.hpp
...gridwise_gemm_multiple_d_xdl_cshuffle_lds_direct_load.hpp
+1010
-0
No files found.
include/ck/tensor_operation/gpu/device/impl/device_batchnorm_forward_impl_obsolete.hpp
View file @
057140b1
...
@@ -345,7 +345,9 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType,
...
@@ -345,7 +345,9 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType,
return
(
workspace_size
);
return
(
workspace_size
);
};
};
void
SetWorkSpacePointer
(
BaseArgument
*
pArg
,
void
*
p_workspace
)
const
override
void
SetWorkSpacePointer
(
BaseArgument
*
pArg
,
void
*
p_workspace
,
const
StreamConfig
&
=
StreamConfig
{})
const
override
{
{
Argument
*
pArg_
=
dynamic_cast
<
Argument
*>
(
pArg
);
Argument
*
pArg_
=
dynamic_cast
<
Argument
*>
(
pArg
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp
View file @
057140b1
...
@@ -14,6 +14,7 @@
...
@@ -14,6 +14,7 @@
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_utils.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/kernel_launch.hpp"
...
@@ -500,22 +501,29 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
...
@@ -500,22 +501,29 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
// for sanity check of vector memory access
// for sanity check of vector memory access
for
(
index_t
i
=
0
;
i
<
NumATensor
;
++
i
)
for
(
index_t
i
=
0
;
i
<
NumATensor
;
++
i
)
{
{
a_mz_stride_
[
i
]
=
a_ms_ks_strides
[
i
][
NumDimM
-
1
];
as_mz_consecutive_
[
i
]
=
a_ms_ks_strides
[
i
][
NumDimM
-
1
]
==
1
;
a_kz_stride_
[
i
]
=
a_ms_ks_strides
[
i
][
NumDimM
+
NumDimK
-
1
];
as_kz_consecutive_
[
i
]
=
a_ms_ks_strides
[
i
][
NumDimM
+
NumDimK
-
1
]
==
1
;
as_max_read_elems_
[
i
]
=
CalculateMaxRead
<
NumDimM
,
NumDimK
>
(
a_ms_ks_lengths
[
i
],
a_ms_ks_strides
[
i
]);
}
}
for
(
index_t
i
=
0
;
i
<
NumBTensor
;
++
i
)
for
(
index_t
i
=
0
;
i
<
NumBTensor
;
++
i
)
{
{
b_nz_stride_
[
i
]
=
b_ns_ks_strides
[
i
][
NumDimN
-
1
];
bs_nz_consecutive_
[
i
]
=
b_ns_ks_strides
[
i
][
NumDimN
-
1
]
==
1
;
b_kz_stride_
[
i
]
=
b_ns_ks_strides
[
i
][
NumDimN
+
NumDimK
-
1
];
bs_kz_consecutive_
[
i
]
=
b_ns_ks_strides
[
i
][
NumDimN
+
NumDimK
-
1
]
==
1
;
bs_max_read_elems_
[
i
]
=
CalculateMaxRead
<
NumDimN
,
NumDimK
>
(
b_ns_ks_lengths
[
i
],
b_ns_ks_strides
[
i
]);
}
}
for
(
index_t
i
=
0
;
i
<
NumDTensor
;
++
i
)
for
(
index_t
i
=
0
;
i
<
NumDTensor
;
++
i
)
{
{
ds_nz_stride_
[
i
]
=
d_ms_ns_strides
[
i
][
NumDimM
+
NumDimN
-
1
];
ds_nz_consecutive_
[
i
]
=
d_ms_ns_strides
[
i
][
NumDimM
+
NumDimN
-
1
]
==
1
;
ds_max_read_elems_
[
i
]
=
CalculateMaxRead
<
NumDimM
,
NumDimN
>
(
d_ms_ns_lengths
[
i
],
d_ms_ns_strides
[
i
]);
}
}
e_nz_stride_
=
e_ms_ns_stride
[
NumDimM
+
NumDimN
-
1
];
e_nz_consecutive_
=
e_ms_ns_stride
[
NumDimM
+
NumDimN
-
1
]
==
1
;
e_max_write_elems_
=
CalculateMaxRead
<
NumDimM
,
NumDimN
>
(
e_ms_ns_length
,
e_ms_ns_stride
);
}
}
// pointers
// pointers
...
@@ -545,16 +553,19 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
...
@@ -545,16 +553,19 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
BElementwiseOperation
b_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
// Strides for the last M/N/K dimensions of A/B/Ds/E
// Describe whether the last part of a given dimension of A/B/D/E is consecutive
// for sanity check of vector load/store
// in the memory or not.
std
::
array
<
index_t
,
NumATensor
>
a_mz_stride_
;
std
::
array
<
bool
,
NumATensor
>
as_mz_consecutive_
;
std
::
array
<
index_t
,
NumATensor
>
a_kz_stride_
;
std
::
array
<
bool
,
NumATensor
>
as_kz_consecutive_
;
std
::
array
<
bool
,
NumBTensor
>
bs_nz_consecutive_
;
std
::
array
<
index_t
,
NumBTensor
>
b_nz_stride_
;
std
::
array
<
bool
,
NumBTensor
>
bs_kz_consecutive_
;
std
::
array
<
index_t
,
NumBTensor
>
b_kz_stride_
;
std
::
array
<
bool
,
NumDTensor
>
ds_nz_consecutive_
;
bool
e_nz_consecutive_
;
std
::
array
<
index_t
,
NumDTensor
>
ds_nz_stride_
;
index_t
e_nz_stride_
;
std
::
array
<
index_t
,
NumATensor
>
as_max_read_elems_
;
std
::
array
<
index_t
,
NumBTensor
>
bs_max_read_elems_
;
std
::
array
<
index_t
,
NumDTensor
>
ds_max_read_elems_
;
index_t
e_max_write_elems_
;
};
};
// Invoker
// Invoker
...
@@ -643,73 +654,65 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
...
@@ -643,73 +654,65 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
// check vector load/store
// check vector load/store
{
{
bool
all_valid
=
true
;
bool
valid_as_access
=
true
;
static_for
<
0
,
NumATensor
,
1
>
{}([
&
](
auto
i
)
{
static_for
<
0
,
NumATensor
,
1
>
{}([
&
](
auto
i
)
{
// vector memory access of A: could be on M or AK1 dimension
const
bool
valid_a_vector_size
=
if
constexpr
(
ABlockTransferSrcVectorDim
==
1
)
arg
.
as_max_read_elems_
[
i
]
%
ABlockTransferSrcScalarPerVector
==
0
;
{
const
bool
valid_a_access_dim_m
=
if
(
!
(
arg
.
a_mz_stride_
[
i
]
==
1
&&
arg
.
as_grid_desc_ak0_m_ak1_
[
i
].
GetLength
(
I1
)
%
ABlockTransferSrcVectorDim
==
1
&&
arg
.
as_mz_consecutive_
[
i
];
ABlockTransferSrcScalarPerVector
==
const
bool
valid_a_access_dim_k
=
0
))
ABlockTransferSrcVectorDim
==
2
&&
arg
.
as_kz_consecutive_
[
i
];
{
const
bool
valid_a_access_dim
=
valid_a_access_dim_m
||
valid_a_access_dim_k
;
all_valid
=
false
;
if
(
!
(
valid_a_vector_size
&&
valid_a_access_dim
))
}
}
else
{
{
if
(
!
(
arg
.
a_kz_stride_
[
i
]
==
1
&&
arg
.
as_grid_desc_ak0_m_ak1_
[
i
].
GetLength
(
I2
)
%
valid_as_access
=
false
;
ABlockTransferSrcScalarPerVector
==
0
))
{
all_valid
=
false
;
}
}
}
});
});
if
(
!
valid_as_access
)
{
return
false
;
}
// vector memory access of B: could be on N or BK1 dimension
bool
valid_bs_access
=
true
;
static_for
<
0
,
NumBTensor
,
1
>
{}([
&
](
auto
i
)
{
static_for
<
0
,
NumBTensor
,
1
>
{}([
&
](
auto
i
)
{
if
constexpr
(
BBlockTransferSrcVectorDim
==
1
)
const
bool
valid_b_vector_size
=
arg
.
bs_max_read_elems_
[
i
]
%
BBlockTransferSrcScalarPerVector
==
0
;
const
bool
valid_b_access_dim_n
=
BBlockTransferSrcVectorDim
==
1
&&
arg
.
bs_nz_consecutive_
[
i
];
const
bool
valid_b_access_dim_k
=
BBlockTransferSrcVectorDim
==
2
&&
arg
.
bs_kz_consecutive_
[
i
];
const
bool
valid_b_access_dim
=
valid_b_access_dim_n
||
valid_b_access_dim_k
;
if
(
!
(
valid_b_vector_size
&&
valid_b_access_dim
))
{
{
if
(
!
(
arg
.
b_nz_stride_
[
i
]
==
1
&&
arg
.
bs_grid_desc_bk0_n_bk1_
[
i
].
GetLength
(
I1
)
%
valid_bs_access
=
false
;
BBlockTransferSrcScalarPerVector
==
0
))
{
all_valid
=
false
;
}
}
else
{
if
(
!
(
arg
.
b_kz_stride_
[
i
]
==
1
&&
arg
.
bs_grid_desc_bk0_n_bk1_
[
i
].
GetLength
(
I2
)
%
BBlockTransferSrcScalarPerVector
==
0
))
{
all_valid
=
false
;
}
}
}
});
});
if
(
!
valid_bs_access
)
{
return
false
;
}
// check vector load of Ds
bool
valid_ds_access
=
true
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
if
(
!
(
arg
.
ds_nz_stride_
[
i
]
==
1
&&
const
bool
valid_d_vector_size
=
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
[
i
].
GetLength
(
I3
)
%
arg
.
ds_max_read_elems_
[
i
]
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
;
CDEBlockTransferScalarPerVector_NPerBlock
==
// Vector read of Ds is always on N dimension.
0
))
const
bool
valid_d_access_dim
=
arg
.
ds_nz_consecutive_
[
i
];
if
(
!
(
valid_d_vector_size
&&
valid_d_access_dim
))
{
{
all_
valid
=
false
;
valid
_ds_access
=
false
;
}
}
});
});
if
(
!
valid_ds_access
)
// vector memory access of E: always on NPerBlock dimension
if
(
!
(
arg
.
e_nz_stride_
==
1
&&
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
.
GetLength
(
I3
)
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
))
{
{
all_valid
=
false
;
return
false
;
}
}
if
(
!
all_valid
)
const
bool
valid_e_vector_size
=
arg
.
e_max_write_elems_
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
;
// Vector write of E is always on N dimension.
const
bool
valid_e_access_dim
=
arg
.
e_nz_consecutive_
;
if
(
!
(
valid_e_vector_size
&&
valid_e_access_dim
))
{
{
return
false
;
return
false
;
}
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp
View file @
057140b1
...
@@ -13,6 +13,7 @@
...
@@ -13,6 +13,7 @@
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_utils.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/kernel_launch.hpp"
...
@@ -183,7 +184,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -183,7 +184,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
i
];
},
num
);
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
i
];
},
num
);
};
};
const
auto
a_ms_
n
s_lengths
=
to_tuple
(
a_ms_ks_lengths_vec
,
Number
<
NumDimM
+
NumDimK
>
{});
const
auto
a_ms_
k
s_lengths
=
to_tuple
(
a_ms_ks_lengths_vec
,
Number
<
NumDimM
+
NumDimK
>
{});
const
auto
a_ms_ks_strides
=
to_tuple
(
a_ms_ks_strides_vec
,
Number
<
NumDimM
+
NumDimK
>
{});
const
auto
a_ms_ks_strides
=
to_tuple
(
a_ms_ks_strides_vec
,
Number
<
NumDimM
+
NumDimK
>
{});
// dimension Ids for M0, M1, ...
// dimension Ids for M0, M1, ...
...
@@ -194,14 +195,14 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -194,14 +195,14 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
typename
arithmetic_sequence_gen
<
NumDimM
,
NumDimM
+
NumDimK
,
1
>::
type
{};
typename
arithmetic_sequence_gen
<
NumDimM
,
NumDimM
+
NumDimK
,
1
>::
type
{};
// lengths for M0, M1, ...
// lengths for M0, M1, ...
const
auto
mLengths
=
get_container_subset
(
a_ms_
n
s_lengths
,
mDimIds
);
const
auto
mLengths
=
get_container_subset
(
a_ms_
k
s_lengths
,
mDimIds
);
// lengths for K0, K1, ...
// lengths for K0, K1, ...
const
auto
kLengths
=
get_container_subset
(
a_ms_
n
s_lengths
,
kDimIds
);
const
auto
kLengths
=
get_container_subset
(
a_ms_
k
s_lengths
,
kDimIds
);
// naive tensor A[M0, M1, M2, ..., K0, K1, K2...]
// naive tensor A[M0, M1, M2, ..., K0, K1, K2...]
const
auto
a_grid_desc_ms_ks
=
const
auto
a_grid_desc_ms_ks
=
make_naive_tensor_descriptor
(
a_ms_
n
s_lengths
,
a_ms_ks_strides
);
make_naive_tensor_descriptor
(
a_ms_
k
s_lengths
,
a_ms_ks_strides
);
// transformed tensor A[MRaw = M0 * M1 * M2 * ... , KRaw = K0 * K1 * K2 * ...]
// transformed tensor A[MRaw = M0 * M1 * M2 * ... , KRaw = K0 * K1 * K2 * ...]
const
auto
a_grid_desc_mraw_kraw
=
transform_tensor_descriptor
(
const
auto
a_grid_desc_mraw_kraw
=
transform_tensor_descriptor
(
...
@@ -383,7 +384,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -383,7 +384,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
const
void
*
p_b_grid
,
const
void
*
p_b_grid
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
,
void
*
p_e_grid
,
void
*
p_e_grid
,
const
std
::
vector
<
index_t
>&
a_ms_
n
s_lengths
,
const
std
::
vector
<
index_t
>&
a_ms_
k
s_lengths
,
const
std
::
vector
<
index_t
>&
a_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
a_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_ns_ks_strides
,
const
std
::
vector
<
index_t
>&
b_ns_ks_strides
,
...
@@ -398,7 +399,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -398,7 +399,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
p_b_grid_
{
static_cast
<
const
BDataType
*>
(
p_b_grid
)},
p_b_grid_
{
static_cast
<
const
BDataType
*>
(
p_b_grid
)},
p_ds_grid_
{},
p_ds_grid_
{},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e_grid
)},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e_grid
)},
a_grid_desc_m_k_
{
DeviceOp
::
MakeAGridDescriptor_M_K
(
a_ms_
n
s_lengths
,
a_ms_ks_strides
)},
a_grid_desc_m_k_
{
DeviceOp
::
MakeAGridDescriptor_M_K
(
a_ms_
k
s_lengths
,
a_ms_ks_strides
)},
b_grid_desc_n_k_
{
DeviceOp
::
MakeBGridDescriptor_N_K
(
b_ns_ks_lengths
,
b_ns_ks_strides
)},
b_grid_desc_n_k_
{
DeviceOp
::
MakeBGridDescriptor_N_K
(
b_ns_ks_lengths
,
b_ns_ks_strides
)},
ds_grid_desc_m_n_
{},
ds_grid_desc_m_n_
{},
e_grid_desc_m_n_
{
DeviceOp
::
MakeEGridDescriptor_M_N
(
e_ms_ns_lengths
,
e_ms_ns_strides
)},
e_grid_desc_m_n_
{
DeviceOp
::
MakeEGridDescriptor_M_N
(
e_ms_ns_lengths
,
e_ms_ns_strides
)},
...
@@ -411,13 +412,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -411,13 +412,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
block_2_etile_map_
{
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
e_grid_desc_m_n_
)},
block_2_etile_map_
{
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
e_grid_desc_m_n_
)},
a_element_op_
{
a_element_op
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
},
cde_element_op_
{
cde_element_op
}
a_mz_stride_
{},
a_kz_stride_
{},
b_nz_stride_
{},
b_kz_stride_
{},
ds_nz_stride_
{},
e_nz_stride_
{}
{
{
// populate pointer, batch stride, desc for Ds
// populate pointer, batch stride, desc for Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
...
@@ -448,18 +443,26 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -448,18 +443,26 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
}
}
// for sanity check of vector memory access
// for sanity check of vector memory access
a_mz_stride_
=
a_ms_ks_strides
[
NumDimM
-
1
];
a_mz_consecutive_
=
a_ms_ks_strides
[
NumDimM
-
1
]
==
1
;
a_kz_stride_
=
a_ms_ks_strides
[
NumDimM
+
NumDimK
-
1
];
a_kz_consecutive_
=
a_ms_ks_strides
[
NumDimM
+
NumDimK
-
1
]
==
1
;
a_max_read_elems_
=
CalculateMaxRead
<
NumDimM
,
NumDimK
>
(
a_ms_ks_lengths
,
a_ms_ks_strides
);
b_nz_stride_
=
b_ns_ks_strides
[
NumDimN
-
1
];
b_nz_consecutive_
=
b_ns_ks_strides
[
NumDimN
-
1
]
==
1
;
b_kz_stride_
=
b_ns_ks_strides
[
NumDimN
+
NumDimK
-
1
];
b_kz_consecutive_
=
b_ns_ks_strides
[
NumDimN
+
NumDimK
-
1
]
==
1
;
b_max_read_elems_
=
CalculateMaxRead
<
NumDimN
,
NumDimK
>
(
b_ns_ks_lengths
,
b_ns_ks_strides
);
for
(
index_t
i
=
0
;
i
<
NumDTensor
;
++
i
)
for
(
index_t
i
=
0
;
i
<
NumDTensor
;
++
i
)
{
{
ds_nz_stride_
[
i
]
=
ds_ms_ns_strides
[
i
][
NumDimM
+
NumDimN
-
1
];
ds_nz_consecutive_
[
i
]
=
ds_ms_ns_strides
[
i
][
NumDimM
+
NumDimN
-
1
]
==
1
;
ds_max_read_elems_
[
i
]
=
CalculateMaxRead
<
NumDimM
,
NumDimN
>
(
ds_ms_ns_lengths
[
i
],
ds_ms_ns_strides
[
i
]);
}
}
e_nz_stride_
=
e_ms_ns_strides
[
NumDimM
+
NumDimN
-
1
];
e_nz_consecutive_
=
e_ms_ns_strides
[
NumDimM
+
NumDimN
-
1
]
==
1
;
e_max_write_elems_
=
CalculateMaxRead
<
NumDimM
,
NumDimN
>
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
}
}
void
Print
()
const
void
Print
()
const
...
@@ -499,15 +502,19 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -499,15 +502,19 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
BElementwiseOperation
b_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
// Strides for the last M/N/K dimensions of A/B/Ds/E
// Describe whether the last part of a given dimension of A/B/D/E is consecutive
// for sanity check of vector load/store
// in the memory or not.
index_t
a_mz_stride_
;
bool
a_mz_consecutive_
;
index_t
a_kz_stride_
;
bool
a_kz_consecutive_
;
index_t
b_nz_stride_
;
bool
b_nz_consecutive_
;
index_t
b_kz_stride_
;
bool
b_kz_consecutive_
;
std
::
array
<
index_t
,
NumDTensor
>
ds_nz_stride_
;
std
::
array
<
bool
,
NumDTensor
>
ds_nz_consecutive_
;
index_t
e_mz_stride_
;
bool
e_nz_consecutive_
;
index_t
e_nz_stride_
;
index_t
a_max_read_elems_
;
index_t
b_max_read_elems_
;
std
::
array
<
index_t
,
NumDTensor
>
ds_max_read_elems_
;
index_t
e_max_write_elems_
;
};
};
// Invoker
// Invoker
...
@@ -616,65 +623,47 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -616,65 +623,47 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
(
BBlockTransferSrcVectorDim
==
1
||
BBlockTransferSrcVectorDim
==
2
),
(
BBlockTransferSrcVectorDim
==
1
||
BBlockTransferSrcVectorDim
==
2
),
"wrong!"
);
"wrong!"
);
// vector memory access of A: could be on M or AK1 dimension
const
bool
valid_a_vector_size
=
if
constexpr
(
ABlockTransferSrcVectorDim
==
1
)
arg
.
a_max_read_elems_
%
ABlockTransferSrcScalarPerVector
==
0
;
const
bool
valid_a_access_dim_m
=
ABlockTransferSrcVectorDim
==
1
&&
arg
.
a_mz_consecutive_
;
const
bool
valid_a_access_dim_k
=
ABlockTransferSrcVectorDim
==
2
&&
arg
.
a_kz_consecutive_
;
const
bool
valid_a_access_dim
=
valid_a_access_dim_m
||
valid_a_access_dim_k
;
if
(
!
(
valid_a_vector_size
&&
valid_a_access_dim
))
{
{
if
(
!
(
arg
.
a_mz_stride_
==
1
&&
return
false
;
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I1
)
%
ABlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
else
{
if
(
!
(
arg
.
a_kz_stride_
==
1
&&
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
)
%
ABlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
}
// vector memory access of B: could be on N or BK1 dimension
const
bool
valid_b_vector_size
=
if
constexpr
(
BBlockTransferSrcVectorDim
==
1
)
arg
.
b_max_read_elems_
%
BBlockTransferSrcScalarPerVector
==
0
;
{
const
bool
valid_b_access_dim_n
=
BBlockTransferSrcVectorDim
==
1
&&
arg
.
b_nz_consecutive_
;
if
(
!
(
arg
.
b_nz_stride_
==
1
&&
const
bool
valid_b_access_dim_k
=
BBlockTransferSrcVectorDim
==
2
&&
arg
.
b_kz_consecutive_
;
arg
.
b_grid_desc_bk0_n_bk1_
.
GetLength
(
I1
)
%
BBlockTransferSrcScalarPerVector
==
0
))
const
bool
valid_b_access_dim
=
valid_b_access_dim_n
||
valid_b_access_dim_k
;
{
if
(
!
(
valid_b_vector_size
&&
valid_b_access_dim
))
return
false
;
}
}
else
{
{
if
(
!
(
arg
.
b_kz_stride_
==
1
&&
return
false
;
arg
.
b_grid_desc_bk0_n_bk1_
.
GetLength
(
I2
)
%
BBlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
}
// vector memory access of Ds: always on NPerBlock dimension
bool
valid_ds_access
=
true
;
bool
valid_d_access
=
true
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
if
(
!
(
arg
.
ds_nz_stride_
[
i
]
==
1
&&
const
bool
valid_d_vector_size
=
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
[
i
].
GetLength
(
I3
)
%
arg
.
ds_max_read_elems_
[
i
]
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
;
CDEBlockTransferScalarPerVector_NPerBlock
==
// Vector read of Ds is always on N dimension.
0
))
const
bool
valid_d_access_dim
=
arg
.
ds_nz_consecutive_
[
i
];
if
(
!
(
valid_d_vector_size
&&
valid_d_access_dim
))
{
{
valid_d_access
=
false
;
valid_d
s
_access
=
false
;
}
}
});
});
if
(
!
valid_ds_access
)
if
(
valid_d_access
==
false
)
{
{
return
false
;
return
false
;
}
}
// vector memory access of E: always on NPerBlock dimension
const
bool
valid_e_vector_size
=
if
(
!
(
arg
.
e_
nz_stride_
==
1
&&
arg
.
e_
max_write_elems_
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
;
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
.
GetLength
(
I3
)
%
// Vector write of E is always on N dimension.
CDEBlockTransferScalarPerVector_NPerBlock
==
const
bool
valid_e_access_dim
=
arg
.
e_nz_consecutive_
;
0
))
if
(
!
(
valid_e_vector_size
&&
valid_e_access_dim
))
{
{
return
false
;
return
false
;
}
}
...
@@ -692,7 +681,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -692,7 +681,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
const
void
*
p_b
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
void
*
p_e
,
const
std
::
vector
<
index_t
>&
a_ms_
n
s_lengths
,
const
std
::
vector
<
index_t
>&
a_ms_
k
s_lengths
,
const
std
::
vector
<
index_t
>&
a_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
a_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_ns_ks_strides
,
const
std
::
vector
<
index_t
>&
b_ns_ks_strides
,
...
@@ -708,7 +697,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -708,7 +697,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
p_b
,
p_b
,
p_ds
,
p_ds
,
p_e
,
p_e
,
a_ms_
n
s_lengths
,
a_ms_
k
s_lengths
,
a_ms_ks_strides
,
a_ms_ks_strides
,
b_ns_ks_lengths
,
b_ns_ks_lengths
,
b_ns_ks_strides
,
b_ns_ks_strides
,
...
@@ -729,7 +718,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -729,7 +718,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
const
void
*
p_b
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
void
*
p_e
,
const
std
::
vector
<
index_t
>&
a_ms_
n
s_lengths
,
const
std
::
vector
<
index_t
>&
a_ms_
k
s_lengths
,
const
std
::
vector
<
index_t
>&
a_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
a_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_ns_ks_strides
,
const
std
::
vector
<
index_t
>&
b_ns_ks_strides
,
...
@@ -745,7 +734,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -745,7 +734,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
p_b
,
p_b
,
p_ds
,
p_ds
,
p_e
,
p_e
,
a_ms_
n
s_lengths
,
a_ms_
k
s_lengths
,
a_ms_ks_strides
,
a_ms_ks_strides
,
b_ns_ks_lengths
,
b_ns_ks_lengths
,
b_ns_ks_strides
,
b_ns_ks_strides
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_contraction_utils.hpp
0 → 100644
View file @
057140b1
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cassert>
#include <sstream>
#include <vector>
#include "ck/ck.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
/**
* Calculates the maximum number of subsequent elements of the fast changing dimension
* that are consecutive in memory.
*
* Example:
* NumDimM = 2, NumDimK = 3
* A shape = [ 2, 3, 4, 5, 6]
* A strides = [360, 120, 30, 6, 1]
* | M | | K |
* It follows from strides that K is FCD and all the subsequent elements of K are consecutive
* in memory.
* But if strides were [360, 120, 6, 24, 1], then only 6 subsequent elements of K would be
* consecutive in memory.
*
* Assumes that the dimensions are split into two groups of `NumDim1` and `NumDim2` dimensions.
*/
template
<
index_t
NumDim1
,
index_t
NumDim2
>
auto
CalculateMaxRead
(
const
std
::
vector
<
index_t
>&
lengths
,
const
std
::
vector
<
index_t
>&
strides
)
{
if
(
lengths
.
size
()
!=
NumDim1
+
NumDim2
)
{
std
::
ostringstream
err
;
err
<<
"Incorrect number of lengths in "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
;
throw
std
::
runtime_error
(
err
.
str
());
}
if
(
strides
.
size
()
!=
NumDim1
+
NumDim2
)
{
std
::
ostringstream
err
;
err
<<
"Incorrect number of strides in "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
;
throw
std
::
runtime_error
(
err
.
str
());
}
// Determine the beginning and end idx of the group representing the FCD.
index_t
begin_idx
,
end_idx
;
if
(
strides
[
NumDim1
-
1
]
==
1
)
{
begin_idx
=
0
;
end_idx
=
NumDim1
-
1
;
}
else
if
(
strides
[
NumDim1
+
NumDim2
-
1
]
==
1
)
{
begin_idx
=
NumDim1
;
end_idx
=
NumDim1
+
NumDim2
-
1
;
}
else
{
// The dimension consecutive in memory is not the last dimension of any group, so only
// one element can be read/written at once.
return
1
;
}
index_t
consecutive_stride
=
1
;
for
(
index_t
dim_idx
=
end_idx
;
dim_idx
>=
begin_idx
;
--
dim_idx
)
{
if
(
strides
[
dim_idx
]
==
consecutive_stride
)
{
consecutive_stride
*=
lengths
[
dim_idx
];
}
else
{
break
;
}
}
const
index_t
max_subsequent_elems
=
consecutive_stride
;
return
max_subsequent_elems
;
}
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_elementwise_3d_impl.hpp
View file @
057140b1
...
@@ -13,6 +13,7 @@
...
@@ -13,6 +13,7 @@
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/stream_utility.hpp"
#include "ck/host_utility/stream_utility.hpp"
namespace
ck
{
namespace
ck
{
...
@@ -292,6 +293,12 @@ struct DeviceElementwise3dImpl : public DeviceElementwise<InDataTypeTuple,
...
@@ -292,6 +293,12 @@ struct DeviceElementwise3dImpl : public DeviceElementwise<InDataTypeTuple,
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
{
if
((
ck
::
get_device_name
()
==
"gfx940"
||
ck
::
get_device_name
()
==
"gfx941"
||
ck
::
get_device_name
()
==
"gfx942"
))
{
return
false
;
}
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
(
pArg
==
nullptr
)
if
(
pArg
==
nullptr
)
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_layernorm_xdl_cshuffle.hpp
View file @
057140b1
...
@@ -821,7 +821,9 @@ struct DeviceGemmMultipleDLayernorm_Xdl_CShuffle
...
@@ -821,7 +821,9 @@ struct DeviceGemmMultipleDLayernorm_Xdl_CShuffle
return
(
workspace_size
);
return
(
workspace_size
);
};
};
void
SetWorkSpacePointer
(
BaseArgument
*
pArg
,
void
*
p_workspace
)
const
override
void
SetWorkSpacePointer
(
BaseArgument
*
pArg
,
void
*
p_workspace
,
const
StreamConfig
&
=
StreamConfig
{})
const
override
{
{
Argument
*
pArg_
=
dynamic_cast
<
Argument
*>
(
pArg
);
Argument
*
pArg_
=
dynamic_cast
<
Argument
*>
(
pArg
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_lds_direct_load.hpp
0 → 100644
View file @
057140b1
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle_lds_direct_load.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferScalarPerVector
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferScalarPerVector
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
(),
PipelineVersion
PipelineVer
=
PipelineVersion
::
v4
,
typename
ComputeDataType
=
EDataType
>
struct
DeviceGemmMultipleD_Xdl_CShuffle_LdsDirectLoad
:
public
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
using
GridwiseGemm
=
GridwiseGemmMultipleD_Xdl_CShuffle_LdsDirectLoad
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
ComputeDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
GemmSpec
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferScalarPerVector
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferScalarPerVector
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
,
PipelineVer
>
;
using
Argument
=
typename
GridwiseGemm
::
Argument
;
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_n_k_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
const
index_t
grid_size
=
arg
.
block_2_etile_map_
.
CalculateGridSize
(
arg
.
e_grid_desc_m_n_
);
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop
)
{
constexpr
bool
has_main_loop
=
has_main_k_block_loop
.
value
;
const
auto
kernel
=
kernel_gemm_multiple_d_xdl_cshuffle_lds_direct_load
<
GridwiseGemm
,
ADataType
,
BDataType
,
typename
GridwiseGemm
::
DsGridPointer
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
typename
GridwiseGemm
::
AGridDesc_AK0_M_AK1
,
typename
GridwiseGemm
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
Block2ETileMap
,
has_main_loop
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_ds_grid_
,
arg
.
p_e_grid_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
block_2_etile_map_
);
};
const
auto
K
=
arg
.
a_grid_desc_m_k_
.
GetLength
(
I1
);
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
))
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
if
(
!
ck
::
is_lds_direct_load_supported
())
{
return
false
;
}
// Check vector load/store.
{
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
// Check vector load of A.
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
ABlockTransferSrcVectorDim
==
2
)
{
if
(
arg
.
KRaw_
%
ABlockTransferScalarPerVector
!=
0
)
{
return
false
;
}
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
ABlockTransferSrcVectorDim
==
1
)
{
if
(
arg
.
MRaw_
%
ABlockTransferScalarPerVector
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
// Check vector load of B.
if
constexpr
(
is_same_v
<
BLayout
,
Col
>
&&
BBlockTransferSrcVectorDim
==
2
)
{
if
(
arg
.
KRaw_
%
BBlockTransferScalarPerVector
!=
0
)
{
return
false
;
}
}
else
if
constexpr
(
is_same_v
<
BLayout
,
Row
>
&&
BBlockTransferSrcVectorDim
==
1
)
{
if
(
arg
.
NRaw_
%
BBlockTransferScalarPerVector
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
// Check vector load of Ds.
// For now, only the RowMajor layout is supported.
bool
all_valid
=
true
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
if
constexpr
(
!
is_same_v
<
DLayout
,
Row
>
)
{
all_valid
=
false
;
}
});
if
(
!
all_valid
)
{
return
false
;
}
// Check vector load of E.
// For now, only the RowMajor layout is supported.
if
constexpr
(
is_same_v
<
ELayout
,
Row
>
)
{
if
(
arg
.
NRaw_
%
CDEBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
}
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_n_k_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
);
}
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideE
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_ds
,
p_e
,
MRaw
,
NRaw
,
KRaw
,
StrideA
,
StrideB
,
StrideDs
,
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideE
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_a
,
p_b
,
p_ds
,
p_e
,
MRaw
,
NRaw
,
KRaw
,
StrideA
,
StrideB
,
StrideDs
,
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
std
::
map
<
LoopScheduler
,
std
::
string
>
LoopSchedToString
{
{
LoopScheduler
::
Default
,
"Default"
},
{
LoopScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
PipelineVersion
,
std
::
string
>
PipelineVersionToString
{
{
PipelineVersion
::
v1
,
"v1"
},
{
PipelineVersion
::
v2
,
"v2"
},
{
PipelineVersion
::
v4
,
"v4"
}};
// clang-format off
str
<<
"DeviceGemmMultipleD_Xdl_CShuffle_LdsDirectLoad"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
MPerXDL
<<
", "
<<
NPerXDL
<<
", "
<<
MXdlPerWave
<<
", "
<<
NXdlPerWave
<<
", "
<<
ABlockTransferScalarPerVector
<<
", "
<<
BBlockTransferScalarPerVector
<<
", "
<<
CShuffleMXdlPerWavePerShuffle
<<
", "
<<
CShuffleNXdlPerWavePerShuffle
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
">"
<<
" LoopScheduler: "
<<
LoopSchedToString
[
LoopSched
]
<<
", "
<<
"PipelineVersion: "
<<
PipelineVersionToString
[
PipelineVer
];
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_lds_direct_load.hpp
0 → 100644
View file @
057140b1
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle_lds_direct_load.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferScalarPerVector
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferScalarPerVector
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
(),
PipelineVersion
PipelineVer
=
PipelineVersion
::
v4
,
typename
ComputeDataType
=
EDataType
>
struct
DeviceGemm_Xdl_CShuffle_LdsDirectLoad
:
public
DeviceGemm
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
static
constexpr
auto
I1
=
Number
<
1
>
{};
using
GridwiseGemm
=
GridwiseGemmMultipleD_Xdl_CShuffle_LdsDirectLoad
<
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ADataType
,
BDataType
,
ComputeDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<>
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
GemmSpec
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferScalarPerVector
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferScalarPerVector
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
,
PipelineVer
>
;
using
Argument
=
typename
GridwiseGemm
::
Argument
;
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_n_k_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
const
index_t
grid_size
=
arg
.
block_2_etile_map_
.
CalculateGridSize
(
arg
.
e_grid_desc_m_n_
);
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop
)
{
constexpr
bool
has_main_loop
=
has_main_k_block_loop
.
value
;
const
auto
kernel
=
kernel_gemm_multiple_d_xdl_cshuffle_lds_direct_load
<
GridwiseGemm
,
ADataType
,
BDataType
,
typename
GridwiseGemm
::
DsGridPointer
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
typename
GridwiseGemm
::
AGridDesc_AK0_M_AK1
,
typename
GridwiseGemm
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
Block2ETileMap
,
has_main_loop
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
// arg.p_ds_grid_,
ck
::
Tuple
<>
{},
arg
.
p_e_grid_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
block_2_etile_map_
);
};
const
auto
K
=
arg
.
a_grid_desc_m_k_
.
GetLength
(
I1
);
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
))
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
if
(
!
ck
::
is_lds_direct_load_supported
())
{
return
false
;
}
// Check vector load/store.
{
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
// Check vector load of A.
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
ABlockTransferSrcVectorDim
==
2
)
{
if
(
arg
.
KRaw_
%
ABlockTransferScalarPerVector
!=
0
)
{
return
false
;
}
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
ABlockTransferSrcVectorDim
==
1
)
{
if
(
arg
.
MRaw_
%
ABlockTransferScalarPerVector
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
// Check vector load of B.
if
constexpr
(
is_same_v
<
BLayout
,
Col
>
&&
BBlockTransferSrcVectorDim
==
2
)
{
if
(
arg
.
KRaw_
%
BBlockTransferScalarPerVector
!=
0
)
{
return
false
;
}
}
else
if
constexpr
(
is_same_v
<
BLayout
,
Row
>
&&
BBlockTransferSrcVectorDim
==
1
)
{
if
(
arg
.
NRaw_
%
BBlockTransferScalarPerVector
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
// Check vector load of E.
// For now, only the RowMajor layout is supported.
if
constexpr
(
is_same_v
<
ELayout
,
Row
>
)
{
if
(
arg
.
NRaw_
%
CDEBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
}
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_n_k_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
);
}
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_e
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideE
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
using
EmptyDsPointers
=
std
::
array
<
const
void
*
,
0
>
;
using
EmptyDsStrides
=
std
::
array
<
ck
::
index_t
,
0
>
;
return
Argument
{
p_a
,
p_b
,
EmptyDsPointers
{},
p_e
,
MRaw
,
NRaw
,
KRaw
,
StrideA
,
StrideB
,
EmptyDsStrides
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_e
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideE
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
override
{
using
EmptyDsPointers
=
std
::
array
<
const
void
*
,
0
>
;
using
EmptyDsStrides
=
std
::
array
<
ck
::
index_t
,
0
>
;
return
std
::
make_unique
<
Argument
>
(
p_a
,
p_b
,
EmptyDsPointers
{},
p_e
,
MRaw
,
NRaw
,
KRaw
,
StrideA
,
StrideB
,
EmptyDsStrides
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
std
::
map
<
LoopScheduler
,
std
::
string
>
LoopSchedToString
{
{
LoopScheduler
::
Default
,
"Default"
},
{
LoopScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
PipelineVersion
,
std
::
string
>
PipelineVersionToString
{
{
PipelineVersion
::
v1
,
"v1"
},
{
PipelineVersion
::
v2
,
"v2"
},
{
PipelineVersion
::
v4
,
"v4"
}};
// clang-format off
str
<<
"DeviceGemm_Xdl_CShuffle_LdsDirectLoad"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
MPerXDL
<<
", "
<<
NPerXDL
<<
", "
<<
MXdlPerWave
<<
", "
<<
NXdlPerWave
<<
", "
<<
ABlockTransferScalarPerVector
<<
", "
<<
BBlockTransferScalarPerVector
<<
", "
<<
CShuffleMXdlPerWavePerShuffle
<<
", "
<<
CShuffleNXdlPerWavePerShuffle
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
">"
<<
" LoopScheduler: "
<<
LoopSchedToString
[
LoopSched
]
<<
", "
<<
"PipelineVersion: "
<<
PipelineVersionToString
[
PipelineVer
]
<<
", "
<<
"Prefetch: "
<<
NumGemmKPrefetchStage
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_streamk.hpp
View file @
057140b1
...
@@ -226,7 +226,9 @@ struct DeviceGemmXdlStreamK : public DeviceGemmStreamK<ALayout,
...
@@ -226,7 +226,9 @@ struct DeviceGemmXdlStreamK : public DeviceGemmStreamK<ALayout,
}
}
}
}
void
SetWorkSpacePointer
(
BaseArgument
*
pArg
,
void
*
p_workspace
)
const
override
void
SetWorkSpacePointer
(
BaseArgument
*
pArg
,
void
*
p_workspace
,
const
StreamConfig
&
=
StreamConfig
{})
const
override
{
{
Argument
*
pArg_
=
dynamic_cast
<
Argument
*>
(
pArg
);
Argument
*
pArg_
=
dynamic_cast
<
Argument
*>
(
pArg
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp
View file @
057140b1
...
@@ -357,15 +357,17 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
...
@@ -357,15 +357,17 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
return
out_gemmm_gemmn_desc
;
return
out_gemmm_gemmn_desc
;
}
}
// Shape of Ds and E must be aligned. Strides can be different.
// Pass e_g_n_k_wos_lengths for logical broadcast.
static
auto
MakeDsGridDescriptor_M_N
(
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds
_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>
&
e
_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
)
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
)
{
{
return
generate_tuple
(
return
generate_tuple
(
[
&
](
auto
i
)
{
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
ds
_g_n_k_wos_lengths
[
i
]
,
return
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
e
_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
[
i
]);
ds_g_n_k_wos_strides
[
i
]);
},
},
Number
<
NumDTensor
>
{});
Number
<
NumDTensor
>
{});
...
@@ -569,7 +571,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
...
@@ -569,7 +571,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
// D desc
// D desc
ds_grid_desc_m_n_
(
i
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
ds_grid_desc_m_n_
(
i
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
ds
_g_n_k_wos_lengths
[
i
]
,
ds_g_n_k_wos_strides
[
i
]);
e
_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
[
i
]);
});
});
compute_ptr_offset_of_batch_
.
BatchStrideE_
=
e_g_n_k_wos_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideE_
=
e_g_n_k_wos_strides
[
0
];
...
@@ -836,7 +838,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
...
@@ -836,7 +838,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
// check if it's 1x1, stride=1 conv
// check if it's 1x1, stride=1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
2
];
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
3
];
const
index_t
ConvStride
=
arg
.
conv_filter_strides_
[
i
];
const
index_t
ConvStride
=
arg
.
conv_filter_strides_
[
i
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
...
@@ -853,7 +855,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
...
@@ -853,7 +855,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
// check if it's 1x1 conv
// check if it's 1x1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
2
];
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
3
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
...
@@ -916,8 +918,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
...
@@ -916,8 +918,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
is_same_v
<
DLayout
,
ctc
::
G_NDHW_K
>
||
is_same_v
<
DLayout
,
ctc
::
GNWK
>
||
is_same_v
<
DLayout
,
ctc
::
G_NDHW_K
>
||
is_same_v
<
DLayout
,
ctc
::
GNWK
>
||
is_same_v
<
DLayout
,
ctc
::
GNHWK
>
||
is_same_v
<
DLayout
,
ctc
::
GNDHWK
>
||
is_same_v
<
DLayout
,
ctc
::
GNHWK
>
||
is_same_v
<
DLayout
,
ctc
::
GNDHWK
>
||
is_same_v
<
DLayout
,
ctc
::
NWGK
>
||
is_same_v
<
DLayout
,
ctc
::
NHWGK
>
||
is_same_v
<
DLayout
,
ctc
::
NWGK
>
||
is_same_v
<
DLayout
,
ctc
::
NHWGK
>
||
is_same_v
<
DLayout
,
ctc
::
NDHWGK
>
||
is_same_v
<
DLayout
,
ctc
::
GK
>
||
is_same_v
<
DLayout
,
ctc
::
NDHWGK
>
||
is_same_v
<
DLayout
,
ctc
::
G_K
>
)
is_same_v
<
DLayout
,
ctc
::
G_K
>
)
{
{
const
index_t
K
=
arg
.
ds_g_n_k_wos_lengths_
[
i
][
2
];
const
index_t
K
=
arg
.
ds_g_n_k_wos_lengths_
[
i
][
2
];
...
@@ -925,6 +926,27 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
...
@@ -925,6 +926,27 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
{
{
valid
=
false
;
valid
=
false
;
}
}
if
constexpr
(
is_same_v
<
DLayout
,
ctc
::
G_K
>
)
{
// G and K must be the same
if
(
arg
.
ds_g_n_k_wos_lengths_
[
i
][
0
]
!=
arg
.
e_g_n_k_wos_lengths_
[
0
]
||
arg
.
ds_g_n_k_wos_lengths_
[
i
][
2
]
!=
arg
.
e_g_n_k_wos_lengths_
[
2
])
{
valid
=
false
;
}
}
else
{
// E and D must have the same shape
for
(
index_t
d
=
0
;
d
<
NDimSpatial
+
3
;
d
++
)
{
if
(
arg
.
ds_g_n_k_wos_lengths_
[
i
][
d
]
!=
arg
.
e_g_n_k_wos_lengths_
[
d
])
{
valid
=
false
;
}
}
}
}
}
else
else
{
{
...
@@ -1094,6 +1116,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
...
@@ -1094,6 +1116,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<<
NXdlPerWave
<<
", "
<<
NXdlPerWave
<<
", "
<<
ABlockTransferSrcScalarPerVector
<<
", "
<<
ABlockTransferSrcScalarPerVector
<<
", "
<<
BBlockTransferSrcScalarPerVector
<<
", "
<<
BBlockTransferSrcScalarPerVector
<<
", "
<<
CDEBlockTransferScalarPerVector_NPerBlock
<<
", "
<<
CShuffleMXdlPerWavePerShuffle
<<
", "
<<
CShuffleMXdlPerWavePerShuffle
<<
", "
<<
CShuffleNXdlPerWavePerShuffle
<<
CShuffleNXdlPerWavePerShuffle
<<
">"
;
<<
">"
;
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_multiple_r_xdl_cshuffle.hpp
View file @
057140b1
...
@@ -834,7 +834,7 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
...
@@ -834,7 +834,7 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
// check if it's 1x1, stride=1 conv
// check if it's 1x1, stride=1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
2
];
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
3
];
const
index_t
ConvStride
=
arg
.
conv_filter_strides_
[
i
];
const
index_t
ConvStride
=
arg
.
conv_filter_strides_
[
i
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
...
@@ -851,7 +851,7 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
...
@@ -851,7 +851,7 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
// check if it's 1x1 conv
// check if it's 1x1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
2
];
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
3
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_wmma_cshuffle.hpp
View file @
057140b1
...
@@ -631,8 +631,7 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
...
@@ -631,8 +631,7 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
is_same_v
<
DLayout
,
ctc
::
G_NDHW_K
>
||
is_same_v
<
DLayout
,
ctc
::
GNWK
>
||
is_same_v
<
DLayout
,
ctc
::
G_NDHW_K
>
||
is_same_v
<
DLayout
,
ctc
::
GNWK
>
||
is_same_v
<
DLayout
,
ctc
::
GNHWK
>
||
is_same_v
<
DLayout
,
ctc
::
GNDHWK
>
||
is_same_v
<
DLayout
,
ctc
::
GNHWK
>
||
is_same_v
<
DLayout
,
ctc
::
GNDHWK
>
||
is_same_v
<
DLayout
,
ctc
::
NWGK
>
||
is_same_v
<
DLayout
,
ctc
::
NHWGK
>
||
is_same_v
<
DLayout
,
ctc
::
NWGK
>
||
is_same_v
<
DLayout
,
ctc
::
NHWGK
>
||
is_same_v
<
DLayout
,
ctc
::
NDHWGK
>
||
is_same_v
<
DLayout
,
ctc
::
GK
>
||
is_same_v
<
DLayout
,
ctc
::
NDHWGK
>
||
is_same_v
<
DLayout
,
ctc
::
G_K
>
)
is_same_v
<
DLayout
,
ctc
::
G_K
>
)
{
{
const
index_t
K
=
arg
.
ds_g_n_k_wos_lengths_
[
i
][
2
];
const
index_t
K
=
arg
.
ds_g_n_k_wos_lengths_
[
i
][
2
];
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp
View file @
057140b1
...
@@ -817,12 +817,15 @@ struct DeviceGroupedGemm_Xdl_Fixed_NK : public DeviceGroupedGemmFixedNK<ALayout,
...
@@ -817,12 +817,15 @@ struct DeviceGroupedGemm_Xdl_Fixed_NK : public DeviceGroupedGemmFixedNK<ALayout,
return
arg
.
group_count_
*
sizeof
(
GroupedGemmKernelArgument
<
NumDTensor
>
);
return
arg
.
group_count_
*
sizeof
(
GroupedGemmKernelArgument
<
NumDTensor
>
);
}
}
void
SetWorkSpacePointer
(
BaseArgument
*
p_arg
,
void
*
p_workspace
)
const
override
void
SetWorkSpacePointer
(
BaseArgument
*
p_arg
,
void
*
p_workspace
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
const
override
{
{
auto
p_arg_
=
dynamic_cast
<
Argument
*>
(
p_arg
);
auto
p_arg_
=
dynamic_cast
<
Argument
*>
(
p_arg
);
p_arg_
->
p_workspace_
=
p_workspace
;
p_arg_
->
p_workspace_
=
p_workspace
;
hip_check_error
(
hipMemset
(
p_workspace
,
0
,
GetWorkSpaceSize
(
p_arg
)));
hip_check_error
(
hipMemsetAsync
(
p_workspace
,
0
,
GetWorkSpaceSize
(
p_arg
),
stream_config
.
stream_id_
));
}
}
static
void
SetKBatch
(
Argument
&
arg
,
index_t
k_batch
)
{
arg
.
UpdateKBatch
(
k_batch
);
}
static
void
SetKBatch
(
Argument
&
arg
,
index_t
k_batch
)
{
arg
.
UpdateKBatch
(
k_batch
);
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_normalization_bwd_data_impl.hpp
0 → 100644
View file @
057140b1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "ck/tensor_operation/gpu/device/device_normalization_bwd_data.hpp"
#include "ck/tensor_operation/gpu/grid/normalization/gridwise_normalization_bwd_data.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_common.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
// M is Invariant dimension, K is reduced dimension
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
GridwiseNormalizationBwd
,
typename
DYDataType
,
typename
XDataType
,
typename
GammaDataType
,
typename
MeanInvStdDataType
,
typename
DXDataType
,
typename
GridDesc_M_K
>
__global__
void
kernel_normalization_bwd_data
(
const
GridDesc_M_K
dy_grid_desc_m_k
,
const
GridDesc_M_K
x_grid_desc_m_k
,
const
GridDesc_M_K
gamma_grid_desc_m_k
,
const
GridDesc_M_K
mean_grid_desc_m_k
,
const
GridDesc_M_K
inv_std_grid_desc_m_k
,
const
GridDesc_M_K
dx_grid_desc_m_k
,
index_t
num_k_block_tile_iteration
,
const
DYDataType
*
const
__restrict__
p_dy_global
,
const
XDataType
*
const
__restrict__
p_x_global
,
const
GammaDataType
*
const
__restrict__
p_gamma_global
,
const
MeanInvStdDataType
*
const
__restrict__
p_mean_global
,
const
MeanInvStdDataType
*
const
__restrict__
p_inv_std_global
,
DXDataType
*
const
__restrict__
p_dx_global
)
{
GridwiseNormalizationBwd
::
Run
(
dy_grid_desc_m_k
,
x_grid_desc_m_k
,
gamma_grid_desc_m_k
,
mean_grid_desc_m_k
,
inv_std_grid_desc_m_k
,
dx_grid_desc_m_k
,
num_k_block_tile_iteration
,
p_dy_global
,
p_x_global
,
p_gamma_global
,
p_mean_global
,
p_inv_std_global
,
p_dx_global
);
};
template
<
typename
DYDataType
,
typename
XDataType
,
typename
GammaDataType
,
typename
MeanInvStdDataType
,
typename
ComputeDataType
,
typename
DXDataType
,
index_t
Rank
,
index_t
NumReduceDim
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
index_t
KThreadClusterSize
,
index_t
MThreadSliceSize
,
index_t
KThreadSliceSize
,
bool
IsDYFastestDimReduced
,
index_t
DYSrcVectorSize
,
bool
IsXFastestDimReduced
,
index_t
XSrcVectorSize
,
bool
IsGammaFastestDimReduced
,
index_t
GammaSrcVectorSize
,
bool
IsMeanInvStdFastestDimReduced
,
index_t
MeanInvStdSrcVectorSize
,
bool
IsDxFastestDimReduced
,
index_t
DXDstVectorSize
>
struct
DeviceNormalizationBwdDataImpl
:
public
DeviceNormalizationBwdData
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
DXDataType
,
Rank
,
NumReduceDim
>
{
static
constexpr
index_t
DYSrcVectorDim
=
IsDYFastestDimReduced
?
1
:
0
;
static
constexpr
index_t
XSrcVectorDim
=
IsXFastestDimReduced
?
1
:
0
;
static
constexpr
index_t
GammaSrcVectorDim
=
IsGammaFastestDimReduced
?
1
:
0
;
static
constexpr
index_t
MeanInvStdSrcVectorDim
=
IsMeanInvStdFastestDimReduced
?
1
:
0
;
static
constexpr
index_t
DXDstVectorDim
=
IsDxFastestDimReduced
?
1
:
0
;
static_assert
(
BlockSize
==
MThreadClusterSize
*
KThreadClusterSize
);
static_assert
(((
DYSrcVectorDim
==
0
&&
MThreadSliceSize
%
DYSrcVectorSize
==
0
)
||
(
DYSrcVectorDim
==
1
&&
KThreadSliceSize
%
DYSrcVectorSize
==
0
)),
"Invalid thread slice sizes and/or dy vector sizes configuration, please check!"
);
static_assert
(((
XSrcVectorDim
==
0
&&
MThreadSliceSize
%
XSrcVectorSize
==
0
)
||
(
XSrcVectorDim
==
1
&&
KThreadSliceSize
%
XSrcVectorSize
==
0
)),
"Invalid thread slice sizes and/or x vector sizes configuration, please check!"
);
static_assert
(
((
GammaSrcVectorDim
==
0
&&
MThreadSliceSize
%
GammaSrcVectorSize
==
0
)
||
(
GammaSrcVectorDim
==
1
&&
KThreadSliceSize
%
GammaSrcVectorSize
==
0
)),
"Invalid thread slice sizes and/or gamma vector sizes configuration, please check!"
);
static_assert
(
(
MeanInvStdSrcVectorDim
==
0
&&
MThreadSliceSize
%
MeanInvStdSrcVectorSize
==
0
)
||
(
MeanInvStdSrcVectorDim
==
1
&&
KThreadSliceSize
%
MeanInvStdSrcVectorSize
==
0
),
"Invalid thread slice sizes and/or mean and inverse std vector sizes configuration, please "
"check!"
);
static_assert
(((
DXDstVectorDim
==
0
&&
MThreadSliceSize
%
DXDstVectorSize
==
0
)
||
(
DXDstVectorDim
==
1
&&
KThreadSliceSize
%
DXDstVectorSize
==
0
)),
"Invalid thread slice sizes and/or dx vector sizes configuration, please check!"
);
static
constexpr
index_t
NumInvariantDim
=
Rank
-
NumReduceDim
;
static
constexpr
index_t
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
index_t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
static
constexpr
bool
reduceAllDim
=
(
NumInvariantDim
==
0
);
static_assert
(
!
reduceAllDim
);
static
auto
Make2dDescriptor
(
const
std
::
vector
<
index_t
>&
lengths
,
const
std
::
vector
<
index_t
>&
strides
,
int
numBlockTileIteration
)
{
const
auto
tupleLengths
=
make_tuple_from_array
(
lengths
,
Number
<
Rank
>
{});
const
auto
tupleStrides
=
make_tuple_from_array
(
strides
,
Number
<
Rank
>
{});
const
auto
desc
=
make_naive_tensor_descriptor
(
tupleLengths
,
tupleStrides
);
const
auto
grid_desc_m_k
=
[
&
]()
{
using
InvariantDims
=
typename
arithmetic_sequence_gen
<
0
,
NumInvariantDim
,
1
>::
type
;
using
ReduceDims
=
typename
arithmetic_sequence_gen
<
NumInvariantDim
,
Rank
,
1
>::
type
;
const
auto
reduceDimLengths
=
make_tuple_from_array_and_index_seq
(
lengths
,
ReduceDims
{});
const
auto
invariantDimLengths
=
make_tuple_from_array_and_index_seq
(
lengths
,
InvariantDims
{});
return
transform_tensor_descriptor
(
desc
,
make_tuple
(
make_merge_transform
(
invariantDimLengths
),
make_merge_transform
(
reduceDimLengths
)),
make_tuple
(
InvariantDims
{},
ReduceDims
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}();
const
auto
invariantLength
=
grid_desc_m_k
.
GetLength
(
Number
<
0
>
{});
const
auto
reduceLength
=
grid_desc_m_k
.
GetLength
(
Number
<
1
>
{});
const
auto
pad_M
=
math
::
integer_least_multiple
(
invariantLength
,
M_BlockTileSize
)
-
invariantLength
;
const
auto
pad_K
=
K_BlockTileSize
*
numBlockTileIteration
-
reduceLength
;
auto
grid_desc_m_k_padded
=
transform_tensor_descriptor
(
grid_desc_m_k
,
make_tuple
(
make_right_pad_transform
(
invariantLength
,
pad_M
),
make_right_pad_transform
(
reduceLength
,
pad_K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
grid_desc_m_k_padded
;
}
using
GridDesc_M_K
=
decltype
(
Make2dDescriptor
({
1
},
{
1
},
1
));
using
GridwiseNormalizationBwdDataGeneric
=
GridwiseNormalizationBwdData_mk_to_mk
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
ComputeDataType
,
DXDataType
,
GridDesc_M_K
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
DYSrcVectorDim
,
DYSrcVectorSize
,
XSrcVectorDim
,
XSrcVectorSize
,
GammaSrcVectorDim
,
GammaSrcVectorSize
,
MeanInvStdSrcVectorDim
,
MeanInvStdSrcVectorSize
,
DXDstVectorDim
,
DXDstVectorSize
,
false
>
;
using
GridwiseNormalizationBwdDataSweepOnce
=
GridwiseNormalizationBwdData_mk_to_mk
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
ComputeDataType
,
DXDataType
,
GridDesc_M_K
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
DYSrcVectorDim
,
DYSrcVectorSize
,
XSrcVectorDim
,
XSrcVectorSize
,
GammaSrcVectorDim
,
GammaSrcVectorSize
,
MeanInvStdSrcVectorDim
,
MeanInvStdSrcVectorSize
,
DXDstVectorDim
,
DXDstVectorSize
,
true
>
;
struct
Argument
:
public
BaseArgument
{
Argument
(
const
std
::
vector
<
index_t
>
lengths
,
const
std
::
vector
<
index_t
>
dyStrides
,
const
std
::
vector
<
index_t
>
xStrides
,
const
std
::
vector
<
index_t
>
gammaStrides
,
const
std
::
vector
<
index_t
>
meanStrides
,
const
std
::
vector
<
index_t
>
invStdStrides
,
const
std
::
vector
<
index_t
>
dxStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
const
DYDataType
*
p_dy
,
const
XDataType
*
p_x
,
const
GammaDataType
*
p_gamma
,
const
MeanInvStdDataType
*
p_mean
,
const
MeanInvStdDataType
*
p_invStd
,
DXDataType
*
p_dx
)
:
p_dy_
(
p_dy
),
p_x_
(
p_x
),
p_gamma_
(
p_gamma
),
p_mean_
(
p_mean
),
p_invStd_
(
p_invStd
),
p_dx_
(
p_dx
)
{
lengths_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
lengths
,
reduceDims
);
dyStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
dyStrides
,
reduceDims
);
xStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
xStrides
,
reduceDims
);
gammaStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
gammaStrides
,
reduceDims
);
meanStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
meanStrides
,
reduceDims
);
invStdStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
invStdStrides
,
reduceDims
);
dxStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
dxStrides
,
reduceDims
);
std
::
tie
(
MRaw_
,
KRaw_
)
=
get_2d_lengths
<
Rank
,
NumReduceDim
>
(
lengths_
);
numBlockTileIteration_
=
math
::
integer_divide_ceil
(
KRaw_
,
K_BlockTileSize
);
gridSize_
=
math
::
integer_divide_ceil
(
MRaw_
,
M_BlockTileSize
);
dy_grid_desc_m_k_
=
Make2dDescriptor
(
lengths_
,
dyStrides_
,
numBlockTileIteration_
);
x_grid_desc_m_k_
=
Make2dDescriptor
(
lengths_
,
xStrides_
,
numBlockTileIteration_
);
gamma_grid_desc_m_k_
=
Make2dDescriptor
(
lengths_
,
gammaStrides_
,
numBlockTileIteration_
);
mean_grid_desc_m_k_
=
Make2dDescriptor
(
lengths_
,
meanStrides_
,
numBlockTileIteration_
);
inv_std_grid_desc_m_k_
=
Make2dDescriptor
(
lengths_
,
invStdStrides_
,
numBlockTileIteration_
);
dx_grid_desc_m_k_
=
Make2dDescriptor
(
lengths_
,
dxStrides_
,
numBlockTileIteration_
);
isSweeponce_
=
dy_grid_desc_m_k_
.
GetLength
(
Number
<
1
>
{})
<=
K_BlockTileSize
;
}
const
DYDataType
*
p_dy_
;
const
XDataType
*
p_x_
;
const
GammaDataType
*
p_gamma_
;
const
MeanInvStdDataType
*
p_mean_
;
const
MeanInvStdDataType
*
p_invStd_
;
DXDataType
*
p_dx_
;
std
::
vector
<
index_t
>
lengths_
;
std
::
vector
<
index_t
>
dyStrides_
;
std
::
vector
<
index_t
>
xStrides_
;
std
::
vector
<
index_t
>
gammaStrides_
;
std
::
vector
<
index_t
>
meanStrides_
;
std
::
vector
<
index_t
>
invStdStrides_
;
std
::
vector
<
index_t
>
dxStrides_
;
int
numBlockTileIteration_
;
size_t
gridSize_
;
// tensor descriptor
GridDesc_M_K
dy_grid_desc_m_k_
;
GridDesc_M_K
x_grid_desc_m_k_
;
GridDesc_M_K
gamma_grid_desc_m_k_
;
GridDesc_M_K
mean_grid_desc_m_k_
;
GridDesc_M_K
inv_std_grid_desc_m_k_
;
GridDesc_M_K
dx_grid_desc_m_k_
;
bool
isSweeponce_
;
index_t
MRaw_
;
// Invariant length
index_t
KRaw_
;
// reduce length
};
struct
Invoker
:
public
BaseInvoker
{
auto
KernelSelector
(
bool
isSweepOnce
)
{
return
isSweepOnce
?
kernel_normalization_bwd_data
<
GridwiseNormalizationBwdDataSweepOnce
,
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
DXDataType
,
GridDesc_M_K
>
:
kernel_normalization_bwd_data
<
GridwiseNormalizationBwdDataGeneric
,
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
DXDataType
,
GridDesc_M_K
>
;
}
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
const
auto
kernel_main
=
KernelSelector
(
arg
.
isSweeponce_
);
return
launch_and_time_kernel
(
stream_config
,
kernel_main
,
dim3
(
arg
.
gridSize_
),
dim3
(
BlockSize
),
0
,
arg
.
dy_grid_desc_m_k_
,
arg
.
x_grid_desc_m_k_
,
arg
.
gamma_grid_desc_m_k_
,
arg
.
mean_grid_desc_m_k_
,
arg
.
inv_std_grid_desc_m_k_
,
arg
.
dx_grid_desc_m_k_
,
arg
.
numBlockTileIteration_
,
arg
.
p_dy_
,
arg
.
p_x_
,
arg
.
p_gamma_
,
arg
.
p_mean_
,
arg
.
p_invStd_
,
arg
.
p_dx_
);
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
template
<
index_t
SrcVectorDim
,
index_t
SrcVectorSize
>
bool
IsVectorDimSizeValid
(
const
std
::
vector
<
index_t
>&
lengths
,
const
std
::
vector
<
index_t
>&
strides
)
{
if
constexpr
(
SrcVectorSize
==
1
)
return
true
;
// Fastest dimension is not reduced
if
constexpr
(
SrcVectorDim
==
0
)
{
if
constexpr
(
NumInvariantDim
==
0
)
return
false
;
if
(
strides
[
NumInvariantDim
-
1
]
!=
1
)
return
false
;
if
(
lengths
[
NumInvariantDim
-
1
]
%
SrcVectorSize
!=
0
)
return
false
;
}
else
// Fastest dimension is reduced
{
if
(
strides
[
Rank
-
1
]
!=
1
)
return
false
;
if
(
lengths
[
Rank
-
1
]
%
SrcVectorSize
!=
0
)
return
false
;
};
return
true
;
}
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
const
Argument
*
p_arg_
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
bool
pass
=
true
;
pass
&=
IsVectorDimSizeValid
<
DYSrcVectorDim
,
DYSrcVectorSize
>
(
p_arg_
->
lengths_
,
p_arg_
->
dyStrides_
);
pass
&=
IsVectorDimSizeValid
<
XSrcVectorDim
,
XSrcVectorSize
>
(
p_arg_
->
lengths_
,
p_arg_
->
xStrides_
);
pass
&=
IsVectorDimSizeValid
<
GammaSrcVectorDim
,
GammaSrcVectorSize
>
(
p_arg_
->
lengths_
,
p_arg_
->
gammaStrides_
);
pass
&=
IsVectorDimSizeValid
<
MeanInvStdSrcVectorDim
,
MeanInvStdSrcVectorSize
>
(
p_arg_
->
lengths_
,
p_arg_
->
meanStrides_
);
pass
&=
IsVectorDimSizeValid
<
MeanInvStdSrcVectorDim
,
MeanInvStdSrcVectorSize
>
(
p_arg_
->
lengths_
,
p_arg_
->
invStdStrides_
);
pass
&=
IsVectorDimSizeValid
<
DXDstVectorDim
,
DXDstVectorSize
>
(
p_arg_
->
lengths_
,
p_arg_
->
dxStrides_
);
return
pass
;
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
index_t
>
lengths
,
const
std
::
vector
<
index_t
>
dyStrides
,
const
std
::
vector
<
index_t
>
xStrides
,
const
std
::
vector
<
index_t
>
gammaStrides
,
const
std
::
vector
<
index_t
>
meanStrides
,
const
std
::
vector
<
index_t
>
invStdStrides
,
const
std
::
vector
<
index_t
>
dxStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
const
void
*
p_dy
,
const
void
*
p_x
,
const
void
*
p_gamma
,
const
void
*
p_mean
,
const
void
*
p_invStd
,
void
*
p_dx
)
override
{
if
(
lengths
.
size
()
!=
Rank
||
dyStrides
.
size
()
!=
Rank
||
xStrides
.
size
()
!=
Rank
||
gammaStrides
.
size
()
!=
Rank
||
meanStrides
.
size
()
!=
Rank
||
invStdStrides
.
size
()
!=
Rank
||
dxStrides
.
size
()
!=
Rank
)
throw
std
::
runtime_error
(
"dimension is incorrect"
);
return
std
::
make_unique
<
Argument
>
(
lengths
,
dyStrides
,
xStrides
,
gammaStrides
,
meanStrides
,
invStdStrides
,
dxStrides
,
reduceDims
,
static_cast
<
const
DYDataType
*>
(
p_dy
),
static_cast
<
const
XDataType
*>
(
p_x
),
static_cast
<
const
GammaDataType
*>
(
p_gamma
),
static_cast
<
const
MeanInvStdDataType
*>
(
p_mean
),
static_cast
<
const
MeanInvStdDataType
*>
(
p_invStd
),
static_cast
<
DXDataType
*>
(
p_dx
));
}
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
();
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceNormalizationBwdDataImpl<"
<<
BlockSize
<<
","
;
str
<<
"Cluster_MK_"
<<
MThreadClusterSize
<<
"_"
<<
KThreadClusterSize
<<
","
;
str
<<
"Slice_MK_"
<<
MThreadSliceSize
<<
"_"
<<
KThreadSliceSize
<<
","
;
str
<<
"DYSrcVectorSize"
<<
DYSrcVectorSize
<<
"_X"
<<
XSrcVectorSize
<<
"_Gamma"
<<
GammaSrcVectorSize
<<
"_MeanRstd"
<<
MeanInvStdSrcVectorSize
<<
"_Dx"
<<
DXDstVectorSize
;
str
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_normalization_bwd_gamma_beta_impl.hpp
View file @
057140b1
...
@@ -14,7 +14,7 @@
...
@@ -14,7 +14,7 @@
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/kernel_launch.hpp"
// M is
i
nvari
e
nt dimension, K is reduced dimension
// M is
I
nvari
a
nt dimension, K is reduced dimension
namespace
ck
{
namespace
ck
{
namespace
tensor_operation
{
namespace
tensor_operation
{
namespace
device
{
namespace
device
{
...
@@ -87,7 +87,6 @@ struct DeviceNormalizationBwdGammaBetaImpl
...
@@ -87,7 +87,6 @@ struct DeviceNormalizationBwdGammaBetaImpl
Rank
,
Rank
,
NumReduceDim
>
NumReduceDim
>
{
{
static
constexpr
index_t
DYSrcVectorDim
=
IsDYFastestDimReduced
?
1
:
0
;
static
constexpr
index_t
DYSrcVectorDim
=
IsDYFastestDimReduced
?
1
:
0
;
static
constexpr
index_t
XSrcVectorDim
=
IsXFastestDimReduced
?
1
:
0
;
static
constexpr
index_t
XSrcVectorDim
=
IsXFastestDimReduced
?
1
:
0
;
static
constexpr
index_t
MeanInvStdSrcVectorDim
=
IsMeanInvStdFastestDimReduced
?
1
:
0
;
static
constexpr
index_t
MeanInvStdSrcVectorDim
=
IsMeanInvStdFastestDimReduced
?
1
:
0
;
...
@@ -102,18 +101,18 @@ struct DeviceNormalizationBwdGammaBetaImpl
...
@@ -102,18 +101,18 @@ struct DeviceNormalizationBwdGammaBetaImpl
(
XSrcVectorDim
==
1
&&
KThreadSliceSize
%
XSrcVectorSize
==
0
)),
(
XSrcVectorDim
==
1
&&
KThreadSliceSize
%
XSrcVectorSize
==
0
)),
"Invalid thread slice sizes and/or x vector sizes configuration, please check!"
);
"Invalid thread slice sizes and/or x vector sizes configuration, please check!"
);
static_assert
(
((
MThreadSliceSize
%
DGammaDstVectorSize
==
0
)
||
(
MThreadSliceSize
%
DBetaDstVectorSize
==
0
)),
"Invalid thread slice sizes and/or Gamma and beta vector sizes configuration, please "
"check!"
);
static_assert
(
static_assert
(
(
MeanInvStdSrcVectorDim
==
0
&&
MThreadSliceSize
%
MeanInvStdSrcVectorSize
==
0
)
||
(
MeanInvStdSrcVectorDim
==
0
&&
MThreadSliceSize
%
MeanInvStdSrcVectorSize
==
0
)
||
(
MeanInvStdSrcVectorDim
==
1
&&
KThreadSliceSize
%
MeanInvStdSrcVectorSize
==
0
),
(
MeanInvStdSrcVectorDim
==
1
&&
KThreadSliceSize
%
MeanInvStdSrcVectorSize
==
0
),
"Invalid thread slice sizes and/or mean and inverse std vector sizes configuration, please "
"Invalid thread slice sizes and/or mean and inverse std vector sizes configuration, please "
"check!"
);
"check!"
);
static_assert
(
((
MThreadSliceSize
%
DGammaDstVectorSize
==
0
)
||
(
MThreadSliceSize
%
DBetaDstVectorSize
==
0
)),
"Invalid thread slice sizes and/or Gamma and beta vector sizes configuration, please "
"check!"
);
static
constexpr
index_t
NumInvariantDim
=
Rank
-
NumReduceDim
;
static
constexpr
index_t
NumInvariantDim
=
Rank
-
NumReduceDim
;
static
constexpr
index_t
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
index_t
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
index_t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
static
constexpr
index_t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
...
@@ -298,7 +297,7 @@ struct DeviceNormalizationBwdGammaBetaImpl
...
@@ -298,7 +297,7 @@ struct DeviceNormalizationBwdGammaBetaImpl
GridDesc_M
dgamma_grid_desc_m_
;
GridDesc_M
dgamma_grid_desc_m_
;
GridDesc_M
dbeta_grid_desc_m_
;
GridDesc_M
dbeta_grid_desc_m_
;
index_t
MRaw_
;
//
i
nvari
e
nt length
index_t
MRaw_
;
//
I
nvari
a
nt length
index_t
KRaw_
;
// reduce length
index_t
KRaw_
;
// reduce length
};
};
...
@@ -457,6 +456,21 @@ struct DeviceNormalizationBwdGammaBetaImpl
...
@@ -457,6 +456,21 @@ struct DeviceNormalizationBwdGammaBetaImpl
{
{
return
std
::
make_unique
<
Invoker
>
();
return
std
::
make_unique
<
Invoker
>
();
}
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceNormalizationBwdGammaBetaImpl<"
<<
BlockSize
<<
","
;
str
<<
"Cluster_MK_"
<<
MThreadClusterSize
<<
"_"
<<
KThreadClusterSize
<<
","
;
str
<<
"Slice_MK_"
<<
MThreadSliceSize
<<
"_"
<<
KThreadSliceSize
<<
","
;
str
<<
"VectorSize_DY"
<<
DYSrcVectorSize
<<
"_X"
<<
XSrcVectorSize
;
str
<<
"_DGamma"
<<
DGammaDstVectorSize
<<
"_DBeta"
<<
DBetaDstVectorSize
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
};
}
// namespace device
}
// namespace device
...
...
include/ck/tensor_operation/gpu/device/impl/device_normalization_fwd_impl.hpp
View file @
057140b1
...
@@ -19,7 +19,7 @@ namespace tensor_operation {
...
@@ -19,7 +19,7 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
// Y = Normalization(X, Beta, Gamma)
// Y = Normalization(X, Beta, Gamma)
// M: Invari
e
nt length
// M: Invari
a
nt length
// K: Reduce length (Calculate mean and variance along K dimension)
// K: Reduce length (Calculate mean and variance along K dimension)
// eg. Length = [N, C, H, W], reduce dim = [C, H, W]
// eg. Length = [N, C, H, W], reduce dim = [C, H, W]
// Then, M = N, K = C * H * W
// Then, M = N, K = C * H * W
...
@@ -263,7 +263,7 @@ struct DeviceNormalizationFwdImpl : public DeviceNormalizationFwd<XDataType,
...
@@ -263,7 +263,7 @@ struct DeviceNormalizationFwdImpl : public DeviceNormalizationFwd<XDataType,
GridDesc_M
save_inv_std_grid_desc_m_
;
GridDesc_M
save_inv_std_grid_desc_m_
;
bool
isSweeponce_
;
bool
isSweeponce_
;
index_t
MRaw_
;
//
i
nvari
e
nt length
index_t
MRaw_
;
//
I
nvari
a
nt length
index_t
KRaw_
;
// reduce length
index_t
KRaw_
;
// reduce length
index_t
invariant_lowest_length_
;
index_t
invariant_lowest_length_
;
...
@@ -342,8 +342,6 @@ struct DeviceNormalizationFwdImpl : public DeviceNormalizationFwd<XDataType,
...
@@ -342,8 +342,6 @@ struct DeviceNormalizationFwdImpl : public DeviceNormalizationFwd<XDataType,
}
}
else
else
{
{
printf
(
"!!!! %d
\n
"
,
p_arg_
->
invariant_lowest_length_
);
if
(
p_arg_
->
xStrides_
[
NumInvariantDim
-
1
]
!=
1
)
if
(
p_arg_
->
xStrides_
[
NumInvariantDim
-
1
]
!=
1
)
return
false
;
return
false
;
...
...
include/ck/tensor_operation/gpu/device/impl/device_normalization_fwd_splitk_impl.hpp
View file @
057140b1
...
@@ -108,7 +108,7 @@ namespace tensor_operation {
...
@@ -108,7 +108,7 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
// Y = Normalization(X, Beta, Gamma)
// Y = Normalization(X, Beta, Gamma)
// M: Invari
e
nt length
// M: Invari
a
nt length
// K: Reduce length (Calculate mean and variance along K dimension)
// K: Reduce length (Calculate mean and variance along K dimension)
// eg. Length = [N, C, H, W], reduce dim = [C, H, W]
// eg. Length = [N, C, H, W], reduce dim = [C, H, W]
// Then, M = N, K = C * H * W
// Then, M = N, K = C * H * W
...
@@ -468,7 +468,7 @@ struct DeviceNormalizationFwdSplitKImpl : public DeviceNormalizationFwd<XDataTyp
...
@@ -468,7 +468,7 @@ struct DeviceNormalizationFwdSplitKImpl : public DeviceNormalizationFwd<XDataTyp
Kernel2MeanVarGridDesc_M_KBlock
kernel2_mean_var_grid_desc_m_kblock_
;
Kernel2MeanVarGridDesc_M_KBlock
kernel2_mean_var_grid_desc_m_kblock_
;
Kernel2CountGridDesc_M_KBlock
kernel2_count_grid_desc_m_kblock_
;
Kernel2CountGridDesc_M_KBlock
kernel2_count_grid_desc_m_kblock_
;
index_t
MRaw_
;
//
i
nvari
e
nt length
index_t
MRaw_
;
//
I
nvari
a
nt length
index_t
KRaw_
;
// reduce length
index_t
KRaw_
;
// reduce length
index_t
invariant_lowest_length_
;
index_t
invariant_lowest_length_
;
...
@@ -577,7 +577,9 @@ struct DeviceNormalizationFwdSplitKImpl : public DeviceNormalizationFwd<XDataTyp
...
@@ -577,7 +577,9 @@ struct DeviceNormalizationFwdSplitKImpl : public DeviceNormalizationFwd<XDataTyp
return
(
workspace_size
);
return
(
workspace_size
);
};
};
void
SetWorkSpacePointer
(
BaseArgument
*
pArg
,
void
*
p_workspace
)
const
override
void
SetWorkSpacePointer
(
BaseArgument
*
pArg
,
void
*
p_workspace
,
const
StreamConfig
&
=
StreamConfig
{})
const
override
{
{
Argument
*
pArg_
=
dynamic_cast
<
Argument
*>
(
pArg
);
Argument
*
pArg_
=
dynamic_cast
<
Argument
*>
(
pArg
);
...
...
include/ck/tensor_operation/gpu/device/tensor_layout.hpp
View file @
057140b1
...
@@ -308,12 +308,6 @@ struct GNDHWK : public BaseTensorLayout
...
@@ -308,12 +308,6 @@ struct GNDHWK : public BaseTensorLayout
static
constexpr
const
char
*
name
=
"GNDHWK"
;
static
constexpr
const
char
*
name
=
"GNDHWK"
;
};
};
// for output bias
struct
GK
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"GK"
;
};
// output tensor
// output tensor
// packed NWGK/NHWGK/NDHWGK
// packed NWGK/NHWGK/NDHWGK
struct
NWGK
:
public
BaseTensorLayout
struct
NWGK
:
public
BaseTensorLayout
...
...
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
View file @
057140b1
...
@@ -281,6 +281,24 @@ struct ConvertF8SR
...
@@ -281,6 +281,24 @@ struct ConvertF8SR
}
}
};
};
struct
ConvertF8RNE
{
// convert to fp8 using rounding to nearest even
template
<
typename
Y
,
typename
X
>
__host__
__device__
void
operator
()(
Y
&
y
,
const
X
&
x
)
const
{
// check Y datatype
static_assert
(
is_same
<
Y
,
f8_t
>::
value
||
is_same
<
Y
,
bf8_t
>::
value
,
"Data type is not supported by this operation!"
);
// check X datatype
static_assert
(
is_same
<
X
,
float
>::
value
||
is_same
<
X
,
half_t
>::
value
,
"Data type is not supported by this operation!"
);
y
=
f8_convert_rne
<
Y
>
(
x
);
}
};
struct
Scale
struct
Scale
{
{
__host__
__device__
Scale
(
float
scale
)
:
scale_
(
scale
)
{}
__host__
__device__
Scale
(
float
scale
)
:
scale_
(
scale
)
{}
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle_lds_direct_load.hpp
0 → 100644
View file @
057140b1
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_direct_load.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
namespace
ck
{
template
<
typename
GridwiseGemm
,
typename
ADataType
,
typename
BDataType
,
typename
DsPointer
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
Block2ETileMap
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_gemm_multiple_d_xdl_cshuffle_lds_direct_load
(
const
ADataType
*
__restrict__
p_a_grid
,
const
BDataType
*
__restrict__
p_b_grid
,
DsPointer
p_ds_grid
,
EDataType
*
__restrict__
p_e_grid
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
cde_element_op
,
const
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1
,
const
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
const
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock
,
const
Block2ETileMap
block_2_etile_map
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx90a__) || defined(__gfx940__) || \
defined(__gfx941__) || defined(__gfx942__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
,
p_b_grid
,
p_ds_grid
,
p_e_grid
,
p_shared
,
a_element_op
,
b_element_op
,
cde_element_op
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
block_2_etile_map
);
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_ds_grid
;
ignore
=
p_e_grid
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
cde_element_op
;
ignore
=
a_grid_desc_ak0_m_ak1
;
ignore
=
b_grid_desc_bk0_n_bk1
;
ignore
=
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
e_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
block_2_etile_map
;
#endif
}
// GEMM:
// input : A[M, K]
// input : B[N, K]
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// D0, D1, ... and E have the same layout
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
AComputeDataType_
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
InMemoryDataOperationEnum
EGlobalMemoryDataOperation
,
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1Value
,
index_t
BK1Value
,
index_t
MPerXdl
,
index_t
NPerXdl
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferScalarPerVector
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferScalarPerVector
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
,
PipelineVersion
PipelineVer
=
PipelineVersion
::
v4
,
typename
BComputeDataType
=
AComputeDataType_
>
struct
GridwiseGemmMultipleD_Xdl_CShuffle_LdsDirectLoad
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
static
constexpr
auto
AK1
=
Number
<
AK1Value
>
{};
static
constexpr
auto
BK1
=
Number
<
BK1Value
>
{};
static
constexpr
auto
AK0PerBlock
=
Number
<
KPerBlock
/
AK1Value
>
{};
static
constexpr
auto
BK0PerBlock
=
Number
<
KPerBlock
/
BK1Value
>
{};
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
using
GridwiseGemmPipe
=
remove_cvref_t
<
decltype
(
GridwiseGemmPipeline_Selector
<
PipelineVer
,
NumGemmKPrefetchStage
,
LoopSched
>
())
>
;
#if CK_WORKAROUND_DENORM_FIX
using
AComputeDataType
=
conditional_t
<
is_same_v
<
AComputeDataType_
,
ck
::
half_t
>
,
ck
::
bhalf_t
,
AComputeDataType_
>
;
#else
using
AComputeDataType
=
AComputeDataType_
;
#endif
__host__
__device__
static
constexpr
auto
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()
{
// A matrix in LDS memory, destination of blockwise copy.
return
make_naive_tensor_descriptor
(
make_tuple
(
AK0PerBlock
,
Number
<
MPerBlock
>
{},
AK1
),
make_tuple
(
Number
<
MPerBlock
+
ABlockLdsExtraM
>
{}
*
AK1
,
AK1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()
{
// B matrix in LDS memory, destination of blockwise copy.
return
make_naive_tensor_descriptor
(
make_tuple
(
BK0PerBlock
,
Number
<
NPerBlock
>
{},
BK1
),
make_tuple
(
Number
<
NPerBlock
+
BBlockLdsExtraN
>
{}
*
BK1
,
BK1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
()
{
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
>
{},
I1
,
Number
<
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
{}));
return
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
;
}
// ck::Tuple<const D0DataType*, const D1DataType*, ...>
static
constexpr
auto
MakeDsGridPointer
()
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
return
static_cast
<
const
DDataType
*>
(
nullptr
);
},
Number
<
NumDTensor
>
{});
}
__host__
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
// LDS allocation for A and B: be careful of alignment.
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1
,
BK1
);
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
constexpr
auto
b_block_space_size_aligned
=
math
::
integer_least_multiple
(
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
(),
max_lds_align
);
// LDS allocation for C shuffle.
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
constexpr
auto
c_block_size
=
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
();
return
math
::
max
(
NumGemmKPrefetchStage
*
a_block_space_size_aligned
*
sizeof
(
AComputeDataType
)
+
NumGemmKPrefetchStage
*
b_block_space_size_aligned
*
sizeof
(
BComputeDataType
),
c_block_size
*
sizeof
(
CShuffleDataType
));
}
__host__
__device__
static
auto
MakeAGridDescriptor_M_K
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
{
constexpr
auto
matrix_padder
=
ck
::
tensor_operation
::
device
::
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
I1
,
StrideA
));
}
}();
return
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
}
__host__
__device__
static
auto
MakeBGridDescriptor_N_K
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
constexpr
auto
matrix_padder
=
ck
::
tensor_operation
::
device
::
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
}();
return
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
}
__host__
__device__
static
auto
MakeEGridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
StrideE
)
{
constexpr
auto
matrix_padder
=
ck
::
tensor_operation
::
device
::
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
const
auto
e_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
StrideE
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
I1
,
StrideE
));
}
}();
return
matrix_padder
.
PadCDescriptor_M_N
(
e_grid_desc_mraw_nraw
);
}
__host__
__device__
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NumDTensor
>&
MRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
NRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
DsStride
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
return
MakeEGridDescriptor_M_N
(
MRaws
[
i
],
NRaws
[
i
],
DsStride
[
i
]);
},
Number
<
NumDTensor
>
{});
}
using
AGridDesc_M_K
=
decltype
(
MakeAGridDescriptor_M_K
(
1
,
1
,
1
));
using
BGridDesc_N_K
=
decltype
(
MakeBGridDescriptor_N_K
(
1
,
1
,
1
));
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({},
{},
{}))
>
;
using
EGridDesc_M_N
=
decltype
(
MakeEGridDescriptor_M_N
(
1
,
1
,
1
));
// A desc for source in blockwise copy.
__host__
__device__
static
constexpr
auto
MakeDefaultAGridDescriptor_AK0_M_AK1
(
const
AGridDesc_M_K
&
a_grid_desc_m_k
)
{
const
auto
M
=
a_grid_desc_m_k
.
GetLength
(
I0
);
const
auto
K
=
a_grid_desc_m_k
.
GetLength
(
I1
);
const
auto
AK0
=
K
/
AK1
;
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
// B desc for source in blockwise copy.
__host__
__device__
static
constexpr
auto
MakeDefaultBGridDescriptor_BK0_N_BK1
(
const
BGridDesc_N_K
&
b_grid_desc_n_k
)
{
const
auto
N
=
b_grid_desc_n_k
.
GetLength
(
I0
);
const
auto
K
=
b_grid_desc_n_k
.
GetLength
(
I1
);
const
auto
BK0
=
K
/
BK1
;
return
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
// E desc for destination in blockwise copy.
__host__
__device__
static
constexpr
auto
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
EGridDesc_M_N
&
e_grid_desc_m_n
)
{
const
auto
M
=
e_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
e_grid_desc_m_n
.
GetLength
(
I1
);
const
auto
MBlock
=
M
/
MPerBlock
;
const
auto
NBlock
=
N
/
NPerBlock
;
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock
=
transform_tensor_descriptor
(
e_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{})),
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
return
e_grid_desc_mblock_mperblock_nblock_nperblock
;
}
// Ds desc for source in blockwise copy.
__host__
__device__
static
constexpr
auto
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
DsGridDesc_M_N
&
ds_grid_desc_m_n
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
return
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
[
i
]);
},
Number
<
NumDTensor
>
{});
}
__host__
__device__
static
constexpr
auto
MakeDefaultBlock2ETileMap
(
const
EGridDesc_M_N
&
e_grid_desc_m_n
)
{
return
BlockToCTileMap_M00_N0_M01Adapt
<
MPerBlock
,
NPerBlock
,
EGridDesc_M_N
>
(
e_grid_desc_m_n
);
}
using
AGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
MakeDefaultAGridDescriptor_AK0_M_AK1
(
AGridDesc_M_K
{}))
>
;
using
BGridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
MakeDefaultBGridDescriptor_BK0_N_BK1
(
BGridDesc_N_K
{}))
>
;
using
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
DsGridDesc_M_N
{}))
>
;
using
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
EGridDesc_M_N
{}))
>
;
using
Block2ETileMap
=
remove_cvref_t
<
decltype
(
MakeDefaultBlock2ETileMap
(
EGridDesc_M_N
{}))
>
;
__host__
__device__
static
constexpr
bool
CheckValidity
(
const
AGridDesc_M_K
&
a_grid_desc_m_k
,
const
BGridDesc_N_K
&
b_grid_desc_n_k
,
const
DsGridDesc_M_N
&
ds_grid_desc_m_n
,
const
EGridDesc_M_N
&
e_grid_desc_m_n
,
const
Block2ETileMap
&
block_2_etile_map
)
{
static_assert
((
MPerBlock
%
(
MPerXdl
*
MXdlPerWave
)
==
0
)
&&
(
NPerBlock
%
(
NXdlPerWave
*
NPerXdl
))
==
0
,
"Invalid tuning param!"
);
static_assert
(
KPerBlock
%
AK1Value
==
0
&&
KPerBlock
%
BK1Value
==
0
,
"KPerBlock must be divisible by AK1Value and BK1Value!"
);
static_assert
(
std
::
is_same_v
<
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
&&
std
::
is_same_v
<
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
,
"Direct load transfers do not support elementwise operations other than passthrough."
);
const
auto
M
=
a_grid_desc_m_k
.
GetLength
(
I0
);
const
auto
N
=
b_grid_desc_n_k
.
GetLength
(
I0
);
const
auto
AK
=
a_grid_desc_m_k
.
GetLength
(
I1
);
const
auto
BK
=
b_grid_desc_n_k
.
GetLength
(
I1
);
// Check the consistency of descriptors.
if
(
!
(
M
==
e_grid_desc_m_n
.
GetLength
(
I0
)
&&
N
==
e_grid_desc_m_n
.
GetLength
(
I1
)
&&
AK
==
BK
))
{
return
false
;
}
bool
valid
=
true
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
valid
=
valid
&&
(
M
==
ds_grid_desc_m_n
[
i
].
GetLength
(
I0
)
&&
N
==
ds_grid_desc_m_n
[
i
].
GetLength
(
I1
));
});
if
(
!
valid
)
{
return
false
;
}
// Check the tile size.
if
(
!
(
M
%
MPerBlock
==
0
&&
N
%
NPerBlock
==
0
&&
AK
%
KPerBlock
==
0
))
{
return
false
;
}
// Check gridwise gemm pipeline.
const
auto
num_k_loop
=
AK
/
KPerBlock
;
if
(
!
GridwiseGemmPipe
::
IsSupported
(
num_k_loop
))
{
return
false
;
}
// Check block-to-E-tile.
if
(
!
block_2_etile_map
.
CheckValidity
(
e_grid_desc_m_n
))
{
return
false
;
}
// Check tensor size: cannot exceed 2GB.
constexpr
long_index_t
TwoGB
=
(
long_index_t
{
1
}
<<
31
);
if
(
!
(
a_grid_desc_m_k
.
GetElementSpaceSize
()
*
sizeof
(
ADataType
)
<=
TwoGB
&&
b_grid_desc_n_k
.
GetElementSpaceSize
()
*
sizeof
(
BDataType
)
<=
TwoGB
&&
e_grid_desc_m_n
.
GetElementSpaceSize
()
*
sizeof
(
EDataType
)
<=
TwoGB
))
{
return
false
;
}
return
true
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainKBlockLoop
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
GridwiseGemmPipe
::
CalculateHasMainLoop
(
num_loop
);
}
using
DsGridPointer
=
decltype
(
MakeDsGridPointer
());
__device__
__host__
static
constexpr
auto
GetMPerBlock
()
{
return
MPerBlock
;
}
template
<
typename
DataType
>
__device__
static
auto
AllocateBlockBuffers
(
void
*
p_shared
,
int32_t
num_elems
,
int32_t
offset_elems
,
int32_t
max_lds_align
)
{
const
int32_t
single_buffer_offset
=
math
::
integer_least_multiple
(
num_elems
,
max_lds_align
);
return
generate_tuple
(
[
&
](
auto
i
)
{
const
int32_t
local_offset
=
i
*
single_buffer_offset
;
return
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
DataType
*>
(
p_shared
)
+
local_offset
+
offset_elems
,
num_elems
);
},
Number
<
NumGemmKPrefetchStage
>
{});
}
template
<
bool
HasMainKBlockLoop
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
>
__device__
static
void
Run
(
const
ADataType
*
__restrict__
p_a_grid
,
const
BDataType
*
__restrict__
p_b_grid
,
DsGridPointer
p_ds_grid
,
EDataType
*
__restrict__
p_e_grid
,
void
*
__restrict__
p_shared
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
,
const
AGridDesc_AK0_M_AK1
&
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
&
b_grid_desc_bk0_n_bk1
,
const
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
&
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
const
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
&
e_grid_desc_mblock_mperblock_nblock_nperblock
,
const
Block2ETileMap
&
block_2_etile_map
)
{
// Elementwise operations are not supported for A and B, arguments left only for the API
// consistency.
(
void
)
a_element_op
;
(
void
)
b_element_op
;
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_ak0_m_ak1
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
,
b_grid_desc_bk0_n_bk1
.
GetElementSpaceSize
());
const
auto
ds_grid_buf
=
generate_tuple
(
[
&
](
auto
i
)
{
return
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_ds_grid
[
i
],
ds_grid_desc_mblock_mperblock_nblock_nperblock
[
i
].
GetElementSpaceSize
());
},
Number
<
NumDTensor
>
{});
auto
e_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_e_grid
,
e_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
// Divide block work by [M, N].
const
auto
block_work_idx
=
block_2_etile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
if
(
!
block_2_etile_map
.
ValidCTileIndex
(
block_work_idx
,
make_tuple
(
e_grid_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I0
),
e_grid_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I2
))))
{
return
;
}
// This forces m/n_block_data_idx_on_grid into SGPR.
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]
*
MPerBlock
);
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I1
]
*
NPerBlock
);
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1
,
BK1
);
// A matrix in LDS memory, destination of blockwise copy.
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, destination of blockwise copy.
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_DirectLoad
<
ThisThreadBlock
,
Sequence
<
AK0PerBlock
,
MPerBlock
,
AK1
>
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ADataType
,
AComputeDataType
,
decltype
(
a_grid_desc_ak0_m_ak1
),
decltype
(
a_block_desc_ak0_m_ak1
),
ABlockTransferSrcVectorDim
,
2
,
ABlockTransferScalarPerVector
>
(
a_grid_desc_ak0_m_ak1
,
make_multi_index
(
0
,
m_block_data_idx_on_grid
,
0
),
a_block_desc_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
));
auto
b_blockwise_copy
=
ThreadGroupTensorSliceTransfer_DirectLoad
<
ThisThreadBlock
,
Sequence
<
BK0PerBlock
,
NPerBlock
,
BK1
>
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BDataType
,
BComputeDataType
,
decltype
(
b_grid_desc_bk0_n_bk1
),
decltype
(
b_block_desc_bk0_n_bk1
),
BBlockTransferSrcVectorDim
,
2
,
BBlockTransferScalarPerVector
>
(
b_grid_desc_bk0_n_bk1
,
make_multi_index
(
0
,
n_block_data_idx_on_grid
,
0
),
b_block_desc_bk0_n_bk1
,
make_multi_index
(
0
,
0
,
0
));
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[K0PerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1
,
BK1
),
MfmaSelector
<
AComputeDataType
,
MPerXdl
,
NPerXdl
,
BComputeDataType
>::
selected_mfma
.
k_per_blk
);
auto
blockwise_gemm
=
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector
<
BlockSize
,
AComputeDataType
,
BComputeDataType
,
AccDataType
,
decltype
(
a_block_desc_ak0_m_ak1
),
decltype
(
b_block_desc_bk0_n_bk1
),
MPerXdl
,
NPerXdl
,
MXdlPerWave
,
NXdlPerWave
,
KPack
,
LoopSched
>
();
auto
c_thread_buf
=
blockwise_gemm
.
GetCThreadBuffer
();
// LDS allocation for A and B: be careful of alignment.
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
auto
a_block_buffers
=
AllocateBlockBuffers
<
AComputeDataType
>
(
p_shared
,
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
0
,
max_lds_align
);
const
auto
b_buffers_offset
=
a_block_space_size_aligned
*
NumGemmKPrefetchStage
;
auto
b_block_buffers
=
AllocateBlockBuffers
<
BComputeDataType
>
(
p_shared
,
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
(),
b_buffers_offset
,
max_lds_align
);
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
AK1
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
BK1
,
0
,
0
);
const
auto
gridwise_gemm_pipeline
=
GridwiseGemmPipeline_Selector
<
PipelineVer
,
NumGemmKPrefetchStage
,
LoopSched
>
();
const
index_t
num_k_block_main_loop
=
__builtin_amdgcn_readfirstlane
(
(
a_grid_desc_ak0_m_ak1
.
GetLength
(
I0
)
*
a_grid_desc_ak0_m_ak1
.
GetLength
(
I2
))
/
KPerBlock
);
gridwise_gemm_pipeline
.
template
Run
<
HasMainKBlockLoop
>(
a_grid_desc_ak0_m_ak1
,
a_block_desc_ak0_m_ak1
,
a_blockwise_copy
,
a_grid_buf
,
a_block_buffers
,
a_block_slice_copy_step
,
b_grid_desc_bk0_n_bk1
,
b_block_desc_bk0_n_bk1
,
b_blockwise_copy
,
b_grid_buf
,
b_block_buffers
,
b_block_slice_copy_step
,
blockwise_gemm
,
c_thread_buf
,
num_k_block_main_loop
);
// Shuffle C and write out.
{
static_assert
(
MXdlPerWave
%
CShuffleMXdlPerWavePerShuffle
==
0
&&
NXdlPerWave
%
CShuffleNXdlPerWavePerShuffle
==
0
,
"wrong!"
);
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
blockwise_gemm
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
=
blockwise_gemm
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I4
);
constexpr
auto
M3
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I5
);
constexpr
auto
M4
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I6
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I7
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
auto
c_shuffle_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
CShuffleDataType
*>
(
p_shared
),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleMXdlPerWavePerShuffle
>
{},
// M0 (MXdlPerWave) per shuffle
M1
,
// M1 = MWave
M2
,
// M2 * M3 * M4 = MPerXdl
M3
,
M4
)),
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleNXdlPerWavePerShuffle
>
{},
// N0 (NXdlPerWave) per shuffle
N1
,
// N1 = NWave
N2
))),
// N2 = NPerXdl
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
,
2
,
4
,
5
,
6
>
{},
Sequence
<>
{},
Sequence
<
1
,
3
,
7
>
{}));
// Calculate the origin of thread output tensor on global memory.
const
auto
c_thread_mtx_on_block
=
blockwise_gemm
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
,
M3
,
M4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_to_n0_n1_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_n0_n1_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// Shuffle: threadwise copy C from VGPR to LDS.
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
CShuffleDataType
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
I1
,
I1
,
M2
,
I1
,
M4
,
I1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_multi_index
(
0
,
0
,
m_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
m_thread_data_on_block_idx
[
I3
],
m_thread_data_on_block_idx
[
I4
],
n_thread_data_on_block_idx
[
I2
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
// A tuple of reference to C/Ds tensor descriptors.
const
auto
c_ds_desc_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_desc_mblock_mperblock_nblock_nperblock
[
i
];
},
Number
<
NumDTensor
>
{}));
// A tuple of reference to C/Ds grid buffers.
const
auto
c_ds_buf_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_buf
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_buf
[
i
];
},
Number
<
NumDTensor
>
{}));
// A tuple of starting index of C/Ds blockwise copy.
const
auto
idx_c_ds_block_begin
=
container_concat
(
make_tuple
(
make_multi_index
(
0
,
0
,
0
,
0
)),
generate_tuple
(
[
&
](
auto
)
{
return
make_multi_index
(
block_work_idx
[
I0
],
0
,
block_work_idx
[
I1
],
0
);
},
Number
<
NumDTensor
>
{}));
// Blockwise copy C/D/E between LDS and global.
auto
cde_block_copy_lds_and_global
=
ThreadGroupTensorSliceTransfer_v7
<
ThisThreadBlock
,
decltype
(
container_concat
(
make_tuple
(
CShuffleDataType
{}),
DsDataType
{})),
Tuple
<
EDataType
>
,
decltype
(
c_ds_desc_refs
),
decltype
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
)),
CDEElementwiseOperation
,
Sequence
<
static_cast
<
index_t
>
(
EGlobalMemoryDataOperation
)
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
,
// BlockSliceLengths,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename ThreadClusterArrangeOrder,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename DimAccessOrder,
3
,
// index_t VectorDim,
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
sequence_merge_t
<
Sequence
<
true
>
,
uniform_sequence_gen_t
<
NumDTensor
,
false
>>
,
// ThreadTransferSrcResetCoordinateAfterRunFlags
Sequence
<
false
>>
// ThreadTransferDstResetCoordinateAfterRunFlags
{
c_ds_desc_refs
,
idx_c_ds_block_begin
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
make_tuple
(
make_multi_index
(
block_work_idx
[
I0
],
0
,
block_work_idx
[
I1
],
0
)),
cde_element_op
};
// Space filling curve for threadwise C in VGPR before shuffle.
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MXdlPerWave
,
NXdlPerWave
,
1
,
1
,
M2
,
1
,
M4
,
1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
1
,
1
,
M2
,
1
,
M4
,
1
>>
{};
// Space filling curve for shuffled blockwise C/D/E.
constexpr
auto
sfc_cde_block
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>>
{};
constexpr
index_t
num_access
=
sfc_c_vgpr
.
GetNumOfAccess
();
static_assert
(
num_access
==
sfc_cde_block
.
GetNumOfAccess
(),
"wrong!"
);
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
access_id
)
{
// Make sure it's safe to write to LDS.
block_sync_lds
();
// Each thread write its data from VGPR to LDS.
c_thread_copy_vgpr_to_lds
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
sfc_c_vgpr
.
GetIndexTupleOfNumber
(
access_id
),
c_thread_buf
,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
c_shuffle_block_buf
);
// Make sure it's safe to read from LDS.
block_sync_lds
();
// Each block copy its data from LDS to global.
cde_block_copy_lds_and_global
.
Run
(
c_ds_desc_refs
,
c_ds_buf_refs
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
tie
(
e_grid_buf
));
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
cde_lds_and_global_step
=
sfc_cde_block
.
GetForwardStep
(
access_id
);
// Move on Ds.
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
cde_block_copy_lds_and_global
.
MoveSrcSliceWindow
(
c_ds_desc_refs
,
i
+
I1
,
cde_lds_and_global_step
);
});
// Move on E.
cde_block_copy_lds_and_global
.
MoveDstSliceWindow
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
I0
,
cde_lds_and_global_step
);
}
});
}
}
struct
Argument
:
public
tensor_operation
::
device
::
BaseArgument
{
Argument
(
const
void
*
p_a_grid
,
const
void
*
p_b_grid
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
,
void
*
p_e_grid
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideE
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
p_a_grid_
{
static_cast
<
const
ADataType
*>
(
p_a_grid
)},
p_b_grid_
{
static_cast
<
const
BDataType
*>
(
p_b_grid
)},
p_ds_grid_
{},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e_grid
)},
a_grid_desc_m_k_
{
MakeAGridDescriptor_M_K
(
MRaw
,
KRaw
,
StrideA
)},
b_grid_desc_n_k_
{
MakeBGridDescriptor_N_K
(
KRaw
,
NRaw
,
StrideB
)},
ds_grid_desc_m_n_
{},
e_grid_desc_m_n_
{
MakeEGridDescriptor_M_N
(
MRaw
,
NRaw
,
StrideE
)},
a_grid_desc_ak0_m_ak1_
{
MakeDefaultAGridDescriptor_AK0_M_AK1
(
a_grid_desc_m_k_
)},
b_grid_desc_bk0_n_bk1_
{
MakeDefaultBGridDescriptor_BK0_N_BK1
(
b_grid_desc_n_k_
)},
ds_grid_desc_mblock_mperblock_nblock_nperblock_
{},
e_grid_desc_mblock_mperblock_nblock_nperblock_
{},
block_2_etile_map_
{
MakeDefaultBlock2ETileMap
(
e_grid_desc_m_n_
)},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
},
MRaw_
{
MRaw
},
NRaw_
{
NRaw
},
KRaw_
{
KRaw
}
{
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
p_ds_grid
[
i
]);
ds_grid_desc_m_n_
(
i
)
=
MakeEGridDescriptor_M_N
(
MRaw
,
NRaw
,
StrideDs
[
i
]);
});
if
(
CheckValidity
(
a_grid_desc_m_k_
,
b_grid_desc_n_k_
,
ds_grid_desc_m_n_
,
e_grid_desc_m_n_
,
block_2_etile_map_
))
{
ds_grid_desc_mblock_mperblock_nblock_nperblock_
=
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n_
);
e_grid_desc_mblock_mperblock_nblock_nperblock_
=
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n_
);
}
}
void
Print
()
const
{
std
::
cout
<<
"A[M, K]: "
<<
a_grid_desc_m_k_
<<
std
::
endl
;
std
::
cout
<<
"B[N, K]: "
<<
b_grid_desc_n_k_
<<
std
::
endl
;
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
std
::
cout
<<
"Ds[M, N]: "
<<
ds_grid_desc_m_n_
[
i
]
<<
std
::
endl
;
});
std
::
cout
<<
"E[M, N]: "
<<
e_grid_desc_m_n_
<<
std
::
endl
;
}
// Pointers
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
DsGridPointer
p_ds_grid_
;
EDataType
*
p_e_grid_
;
// Tensor descriptors for problem definiton
AGridDesc_M_K
a_grid_desc_m_k_
;
BGridDesc_N_K
b_grid_desc_n_k_
;
DsGridDesc_M_N
ds_grid_desc_m_n_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
// Tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
// block-to-e-tile map
Block2ETileMap
block_2_etile_map_
;
// element-wise ops
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
// For checking vector load/store
index_t
MRaw_
;
index_t
NRaw_
;
index_t
KRaw_
;
};
};
}
// namespace ck
Prev
1
2
3
4
5
6
7
8
9
10
11
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment