Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
0475a327
Commit
0475a327
authored
Nov 04, 2024
by
dummycoderfe
Browse files
Merge branch 'ck_tile/layernorm2d_fwd_optimize' into ck_tile/ln_add_cache_clear
parents
c9b961ab
27ff3dec
Changes
267
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1789 additions
and
0 deletions
+1789
-0
include/ck_tile/ops/permute/pipeline/generic_petmute_problem.hpp
.../ck_tile/ops/permute/pipeline/generic_petmute_problem.hpp
+28
-0
include/ck_tile/ops/reduce.hpp
include/ck_tile/ops/reduce.hpp
+4
-0
include/ck_tile/ops/reduce/block/block_reduce.hpp
include/ck_tile/ops/reduce/block/block_reduce.hpp
+174
-0
include/ck_tile/ops/reduce/block/block_reduce2d.hpp
include/ck_tile/ops/reduce/block/block_reduce2d.hpp
+275
-0
include/ck_tile/ops/reduce/block/block_reduce2d_default_policy.hpp
...k_tile/ops/reduce/block/block_reduce2d_default_policy.hpp
+79
-0
include/ck_tile/ops/reduce/block/block_reduce2d_problem.hpp
include/ck_tile/ops/reduce/block/block_reduce2d_problem.hpp
+18
-0
include/ck_tile/ops/rmsnorm2d.hpp
include/ck_tile/ops/rmsnorm2d.hpp
+12
-0
include/ck_tile/ops/rmsnorm2d/kernel/rmsnorm2d_fwd_kernel.hpp
...ude/ck_tile/ops/rmsnorm2d/kernel/rmsnorm2d_fwd_kernel.hpp
+202
-0
include/ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_default_policy.hpp
...norm2d/pipeline/rmsnorm2d_fwd_pipeline_default_policy.hpp
+95
-0
include/ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_one_pass.hpp
...ps/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_one_pass.hpp
+101
-0
include/ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_problem.hpp
...ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_problem.hpp
+36
-0
include/ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_two_pass.hpp
...ps/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_two_pass.hpp
+131
-0
include/ck_tile/ops/smoothquant.hpp
include/ck_tile/ops/smoothquant.hpp
+12
-0
include/ck_tile/ops/smoothquant/kernel/smoothquant_kernel.hpp
...ude/ck_tile/ops/smoothquant/kernel/smoothquant_kernel.hpp
+176
-0
include/ck_tile/ops/smoothquant/pipeline/smoothquant_pipeline_default_policy.hpp
...othquant/pipeline/smoothquant_pipeline_default_policy.hpp
+95
-0
include/ck_tile/ops/smoothquant/pipeline/smoothquant_pipeline_one_pass.hpp
...ps/smoothquant/pipeline/smoothquant_pipeline_one_pass.hpp
+94
-0
include/ck_tile/ops/smoothquant/pipeline/smoothquant_pipeline_problem.hpp
...ops/smoothquant/pipeline/smoothquant_pipeline_problem.hpp
+35
-0
include/ck_tile/ops/smoothquant/pipeline/smoothquant_pipeline_two_pass.hpp
...ps/smoothquant/pipeline/smoothquant_pipeline_two_pass.hpp
+132
-0
include/ck_tile/ops/softmax.hpp
include/ck_tile/ops/softmax.hpp
+9
-0
include/ck_tile/ops/softmax/block/block_softmax_2d.hpp
include/ck_tile/ops/softmax/block/block_softmax_2d.hpp
+81
-0
No files found.
include/ck_tile/ops/permute/pipeline/generic_petmute_problem.hpp
0 → 100644
View file @
0475a327
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core/utility/type_traits.hpp"
namespace
ck_tile
{
template
<
typename
DataType_
,
index_t
kBlockSize_
=
256
,
index_t
kMaxRanks_
=
8
,
bool
KeepLastDim_
=
false
>
struct
GenericPermuteProblem
{
using
DataType
=
remove_cvref_t
<
DataType_
>
;
static
constexpr
index_t
kBlockSize
=
kBlockSize_
;
static
constexpr
index_t
kMaxRanks
=
kMaxRanks_
;
/* KeepLastDim:
* if last dim keep the same? this can help enable vector load
* permute(0, 2, 4, 1, 3, 5) -> true
* permute(0, 3, 2, 1) -> false
*/
static
constexpr
bool
KeepLastDim
=
KeepLastDim_
;
// TODO: not used(?)
};
}
// namespace ck_tile
include/ck_tile/ops/reduce.hpp
View file @
0475a327
...
...
@@ -4,4 +4,8 @@
#pragma once
#include "ck_tile/ops/reduce/block/block_reduce.hpp"
#include "ck_tile/ops/reduce/block/block_reduce2d.hpp"
#include "ck_tile/ops/reduce/block/block_reduce2d_default_policy.hpp"
#include "ck_tile/ops/reduce/block/block_reduce2d_problem.hpp"
#include "ck_tile/ops/common/generic_2d_block_shape.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
include/ck_tile/ops/reduce/block/block_reduce.hpp
View file @
0475a327
...
...
@@ -4,9 +4,15 @@
#pragma once
#include "ck_tile/core.hpp"
#include <tuple>
// This file is not support cross warp reduce
namespace
ck_tile
{
/*
* TODO: block_tile_reduce_sync() currently has a limitation
* Y dim must have at least one dim not been reduced
*/
// synchronize reduce result (cross lane reduction and broadcast on replicated dimension)
template
<
typename
AccDistributedTensor_
,
typename
ReduceFunc
,
bool
WithBroadcast
=
true
>
CK_TILE_DEVICE
void
block_tile_reduce_sync
(
AccDistributedTensor_
&
acc_tensor
,
...
...
@@ -104,6 +110,65 @@ CK_TILE_DEVICE void block_tile_reduce_sync(AccDistributedTensor_& acc_tensor,
});
}
/*
* this version is faster, using xor to do reduce, no need broadcast anymore
* TODO: the limitation is to-be-reduced P dim can only mapping to one R dim?
*/
template
<
typename
AccDistributedTensor_
,
typename
ReduceFunc
>
CK_TILE_DEVICE
void
block_tile_reduce_xor_sync
(
AccDistributedTensor_
&
acc_tensor
,
const
ReduceFunc
&
reduce_func
)
{
using
Dstr
=
typename
AccDistributedTensor_
::
StaticTileDistribution
;
using
DstrEncode
=
typename
Dstr
::
DstrEncode
;
using
DstrEncodeDetail
=
typename
DstrEncode
::
detail
;
constexpr
index_t
NDimP
=
Dstr
::
get_num_of_dimension_p
();
constexpr
index_t
NDimR
=
Dstr
::
get_num_of_dimension_r
();
constexpr
index_t
idim_p_lane
=
NDimP
-
1
;
constexpr
index_t
thread_buf_size
=
AccDistributedTensor_
::
get_thread_buffer_size
();
// loop over thread data
static_for
<
0
,
thread_buf_size
,
1
>
{}([
&
](
auto
i
)
{
auto
v_local
=
acc_tensor
.
get_thread_buffer
()[
i
];
// cross-lane reduce for replication
// only reduce on R dimension correspond to lane
// (lane id maps to this R dimension)
static_for
<
0
,
NDimR
,
1
>
{}([
&
](
auto
idim_r
)
{
// FIXME: nasty to use does_p_own_r_
if
constexpr
(
DstrEncodeDetail
::
does_p_own_r_
[
idim_p_lane
][
idim_r
])
{
constexpr
index_t
r_length
=
DstrEncode
::
rs_lengths_
[
idim_r
];
constexpr
index_t
lid_over_rid_derivative
=
DstrEncodeDetail
::
ps_over_rs_derivative_
[
idim_p_lane
][
idim_r
];
static_assert
(
is_power_of_two_integer
(
r_length
),
"wrong! only support power of 2 reduction"
);
constexpr
index_t
nstage
=
integer_log2_floor
(
r_length
);
// reduction sweep forward
static_for
<
0
,
nstage
,
1
>
{}([
&
](
auto
istage
)
{
// xor
index_t
src_lane
=
__lane_id
()
^
(
number
<
lid_over_rid_derivative
<<
istage
.
value
>
{}.
value
);
// pull data from remote lane
const
auto
v_remote
=
warp_shuffle
(
v_local
,
src_lane
);
// reduce
v_local
=
reduce_func
(
v_local
,
v_remote
);
});
}
});
acc_tensor
.
get_thread_buffer
()(
i
)
=
v_local
;
});
}
// FIXME: this is for 2D to 1D reduce only, need to support n-D
template
<
typename
AccDistributedTensor_
,
typename
InDistributedTensor_
,
...
...
@@ -175,6 +240,10 @@ CK_TILE_DEVICE void block_tile_reduce(AccDistributedTensor_& acc_tensor,
#endif
}
/*
* TODO: block_tile_reduce() currently has a limitation
* Y dim must have at least one dim not been reduced
*/
template
<
typename
AccDataType_
,
typename
InDistributedTensor_
,
index_t
...
InReduceDims
,
...
...
@@ -208,4 +277,109 @@ CK_TILE_DEVICE auto block_tile_reduce(const InDistributedTensor_& in_tensor,
return
acc_tensor
;
}
// this version only support 2D->1D reduce (reduce-dim=seq<0, 1>)
// this version only support in/acc/out datatypes are the same
// this version will call thread/warp+sync in one function call
//
template
<
typename
InDistributedTensor_
>
struct
BlockReduce2D
{
using
InDistributedTensor
=
remove_cvref_t
<
InDistributedTensor_
>
;
using
InDataType
=
typename
InDistributedTensor
::
DataType
;
CK_TILE_HOST_DEVICE
BlockReduce2D
(
const
InDistributedTensor
&
t_
,
const
InDataType
&
reduce_init_
)
:
t
(
t_
),
reduce_init
(
reduce_init_
)
{
}
CK_TILE_HOST_DEVICE
constexpr
auto
MakeDstBlockTile
()
const
{
using
ReduceDim
=
sequence
<
1
>
;
// hard coded
constexpr
auto
acc_dstr
=
make_static_tile_distribution
(
ck_tile
::
detail
::
make_reduce_tile_distribution_encoding
(
InDistributedTensor
::
get_tile_distribution
()
.
get_static_tile_distribution_encoding
(),
ReduceDim
{}));
auto
dst_
=
make_static_distributed_tensor
<
InDataType
>
(
acc_dstr
);
// init acc_tensor
tile_elementwise_inout
([
&
](
auto
&
x_
)
{
x_
=
type_convert
<
InDataType
>
(
reduce_init
);
},
dst_
);
return
dst_
;
}
// return number of pixels each lane need to reduce
CK_TILE_HOST_DEVICE
constexpr
auto
get_reduce_length_y
()
const
{
constexpr
auto
spans
=
InDistributedTensor
::
get_distributed_spans
();
}
// Here ReducePacksPerXDim is not the same meaning as that in static_uford/sweep_tile_uspan
// this is number of packs along the X-dim. We need to compute the Unpacks along the Y dim
// internally
// For simplicity, we just support along the row dimension, ReducePacksPerXDim is always 2
// element , and the first element is always ignored For simplicity, will always try from
// right-to-left to find alone which Y dim to split
template
<
typename
ReduceFunc
,
typename
ReduceSyncFunc
,
typename
ReducePacksPerXDim
=
uniform_sequence_gen_t
<
2
,
1
>
>
CK_TILE_HOST_DEVICE
auto
operator
()(
const
ReduceFunc
&
reduce_func
,
const
ReduceSyncFunc
&
reduce_sync_func
,
ReducePacksPerXDim
=
{})
const
{
constexpr
auto
spans
=
InDistributedTensor
::
get_distributed_spans
();
constexpr
auto
row_y_unpacks
=
[
&
]()
{
constexpr
auto
row_y_lengths
=
typename
decltype
(
spans
[
number
<
1
>
{}])
::
Impl
{};
constexpr
auto
row_y_size
=
reduce_on_sequence
(
row_y_lengths
,
multiplies
{},
number
<
1
>
{});
constexpr
auto
row_y_packs
=
ReducePacksPerXDim
{}.
at
(
number
<
1
>
{});
static_assert
(
row_y_size
%
row_y_packs
==
0
);
constexpr
auto
row_y_slice_size
=
row_y_size
/
row_y_packs
;
constexpr
auto
slice_info
=
slice_sequence
(
row_y_lengths
,
number
<
row_y_slice_size
>
{});
constexpr
auto
unpacks
=
slice_info
[
number
<
1
>
{}];
return
unpacks
;
}();
auto
acc_tensor
=
MakeDstBlockTile
();
// in-thread reduction
// FIXME: hard coded to be 2D to 1D reduction
sweep_tile_span
(
spans
[
number
<
0
>
{}],
[
&
](
auto
dstr_idx_i0
)
{
constexpr
auto
acc_dstr_idx
=
make_tuple
(
dstr_idx_i0
);
auto
acc
=
acc_tensor
[
acc_dstr_idx
];
sweep_tile_uspan
(
spans
[
number
<
1
>
{}],
[
&
](
auto
...
dstr_idx_i1
)
{
acc
=
reduce_func
(
acc
,
t
[
make_tuple
(
dstr_idx_i0
,
dstr_idx_i1
)]...);
},
row_y_unpacks
);
acc_tensor
(
acc_dstr_idx
)
=
acc
;
});
// TODO: always use xor to do cross-lane reduce
block_tile_reduce_xor_sync
(
acc_tensor
,
reduce_sync_func
);
return
acc_tensor
;
}
template
<
typename
ReduceFunc
>
CK_TILE_HOST_DEVICE
auto
operator
()(
const
ReduceFunc
&
reduce_func
)
const
{
return
operator
()(
reduce_func
,
reduce_func
);
}
InDistributedTensor
t
;
InDataType
reduce_init
;
};
// deduction guide
template
<
typename
T
>
CK_TILE_HOST_DEVICE_EXTERN
BlockReduce2D
(
const
T
&
,
const
typename
T
::
DataType
&
)
->
BlockReduce2D
<
T
>
;
}
// namespace ck_tile
include/ck_tile/ops/reduce/block/block_reduce2d.hpp
0 → 100644
View file @
0475a327
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace
ck_tile
{
template
<
typename
Problem_
,
typename
Policy_
=
void
>
struct
BlockReduce2d
{
// in-thread reduction
using
Problem
=
remove_cvref_t
<
Problem_
>
;
using
XDataType
=
typename
Problem
::
XDataType
;
using
ComputeDataType
=
typename
Problem
::
ComputeDataType
;
CK_TILE_DEVICE
constexpr
BlockReduce2d
()
{}
template
<
typename
XDistributedTensor_
,
typename
YDistributedTensor_
,
typename
ReduceFunc
,
typename
ReducePacksPerXDim
=
uniform_sequence_gen_t
<
2
,
1
>
>
CK_TILE_DEVICE
void
operator
()(
const
XDistributedTensor_
&
x_tensor
,
YDistributedTensor_
&
y_tensor
,
const
ReduceFunc
&
reduce_func
,
ReducePacksPerXDim
=
{})
{
sweep_tile
<
XDistributedTensor_
>
(
[
&
](
auto
...
idx_
)
{
constexpr
auto
idx_0
=
make_tuple
(
make_tuple
(
idx_
[
number
<
0
>
{}]...)[
number
<
0
>
{}]);
y_tensor
(
idx_0
)
=
reduce_func
(
y_tensor
(
idx_0
),
ck_tile
::
type_convert
<
ComputeDataType
>
(
x_tensor
[
idx_
])...);
},
ReducePacksPerXDim
{});
#if 0
constexpr auto I0 = number<0>{};
constexpr auto I1 = number<1>{};
constexpr auto spans = XDistributedTensor_::get_distributed_spans();
// FIXME: hard coded to reduce 2nd axis
sweep_tile_span(spans[I0], [&](auto dstr_idx_i0) {
constexpr auto y_dstr_idx = make_tuple(dstr_idx_i0);
auto y = y_tensor[y_dstr_idx];
sweep_tile_span(spans[I1], [&](auto dstr_idx_i1) {
constexpr auto in_dstr_idx = make_tuple(dstr_idx_i0, dstr_idx_i1);
const auto x = ck_tile::type_convert<ComputeDataType>(x_tensor[in_dstr_idx]);
y = reduce_func(y, x);
});
y_tensor(y_dstr_idx) = y;
});
#endif
}
template
<
typename
XDistributedTensor_
>
CK_TILE_DEVICE
static
auto
MakeYBlockTile
()
{
static_assert
(
std
::
is_same_v
<
XDataType
,
typename
XDistributedTensor_
::
DataType
>
,
"wrong!"
);
// FIXME: hard coded to reduce 2nd axis
constexpr
auto
reduce_dims
=
sequence
<
1
>
{};
constexpr
auto
dstr
=
make_static_tile_distribution
(
detail
::
make_reduce_tile_distribution_encoding
(
XDistributedTensor_
::
get_tile_distribution
()
.
get_static_tile_distribution_encoding
(),
reduce_dims
));
auto
tensor
=
make_static_distributed_tensor
<
ComputeDataType
>
(
dstr
);
return
tensor
;
}
template
<
typename
XDistributedTensor_
,
typename
ReduceFunc
,
typename
ReducePacksPerXDim
=
uniform_sequence_gen_t
<
2
,
1
>
>
CK_TILE_DEVICE
auto
operator
()(
const
XDistributedTensor_
&
x_tensor
,
const
ComputeDataType
&
reduce_init
,
const
ReduceFunc
&
reduce_func
,
ReducePacksPerXDim
=
{})
{
auto
y_tensor
=
MakeYBlockTile
<
XDistributedTensor_
>
();
set_tile
(
y_tensor
,
reduce_init
);
(
*
this
)(
x_tensor
,
y_tensor
,
reduce_func
,
ReducePacksPerXDim
{});
return
y_tensor
;
}
};
template
<
typename
Problem_
,
typename
Policy_
=
void
>
struct
BlockReduce2dSync
{
using
Problem
=
remove_cvref_t
<
Problem_
>
;
template
<
typename
YDistributedTensor_
,
typename
ReduceFunc
>
CK_TILE_DEVICE
void
operator
()(
YDistributedTensor_
&
y_tensor
,
const
ReduceFunc
&
reduce_func
)
{
using
Dstr
=
typename
YDistributedTensor_
::
StaticTileDistribution
;
using
DstrEncode
=
typename
Dstr
::
DstrEncode
;
using
DstrEncodeDetail
=
typename
DstrEncode
::
detail
;
constexpr
index_t
NDimP
=
Dstr
::
get_num_of_dimension_p
();
constexpr
index_t
NDimR
=
Dstr
::
get_num_of_dimension_r
();
constexpr
index_t
idim_p_lane
=
NDimP
-
1
;
// const auto ps_idx = make_array<index_t>(get_warp_id(), get_lane_id());
// const auto rs_idx =
// y_tensor.get_tile_distribution().calculate_rs_index_from_ps_index(ps_idx);
constexpr
index_t
thread_buf_size
=
YDistributedTensor_
::
get_thread_buffer_size
();
// loop over thread data
static_for
<
0
,
thread_buf_size
,
1
>
{}([
&
](
auto
i
)
{
auto
v_local
=
y_tensor
.
get_thread_buffer
()[
i
];
// cross-lane reduce for replication
// only reduce on R dimension correspond to lane
// (lane id maps to this R dimension)
static_for
<
0
,
NDimR
,
1
>
{}([
&
](
auto
idim_r
)
{
// FIXME: nasty to use does_p_own_r_
if
constexpr
(
DstrEncodeDetail
::
does_p_own_r_
[
idim_p_lane
][
idim_r
])
{
constexpr
index_t
r_length
=
DstrEncode
::
rs_lengths_
[
idim_r
];
constexpr
index_t
lid_over_rid_derivative
=
DstrEncodeDetail
::
ps_over_rs_derivative_
[
idim_p_lane
][
idim_r
];
static_assert
(
is_power_of_two_integer
(
r_length
),
"wrong! only support power of 2 reduction"
);
constexpr
index_t
nstage
=
integer_log2_floor
(
r_length
);
// reduction sweep forward
static_for
<
0
,
nstage
,
1
>
{}([
&
](
auto
istage
)
{
// xor
index_t
src_lane
=
(
__lane_id
())
^
(
number
<
lid_over_rid_derivative
<<
istage
.
value
>
{}.
value
);
// pull data from remote lane
const
auto
v_remote
=
warp_shuffle
(
v_local
,
src_lane
);
// reduce
v_local
=
reduce_func
(
v_local
,
v_remote
);
});
}
});
// TODO - Do we need to broadcast to other lane?
y_tensor
.
get_thread_buffer
()(
i
)
=
v_local
;
});
}
};
template
<
typename
Problem_
,
typename
Policy_
=
void
>
struct
BlockReduce2dCrossWarpSync
{
using
Problem
=
remove_cvref_t
<
Problem_
>
;
using
BlockShape
=
typename
Problem
::
BlockShape
;
template
<
typename
YDistributedTensor_
>
CK_TILE_DEVICE
static
constexpr
index_t
GetReduceWarps
()
{
constexpr
index_t
num_reduce_warps
=
[
&
]()
{
using
Dstr
=
typename
YDistributedTensor_
::
StaticTileDistribution
;
using
DstrEncode
=
typename
Dstr
::
DstrEncode
;
using
DstrEncodeDetail
=
typename
DstrEncode
::
detail
;
constexpr
index_t
NDimR
=
Dstr
::
get_num_of_dimension_r
();
constexpr
index_t
idim_p_warp
=
0
;
index_t
len_
=
1
;
static_for
<
0
,
NDimR
,
1
>
{}([
&
](
auto
idim_r
)
{
if
constexpr
(
DstrEncodeDetail
::
does_p_own_r_
[
idim_p_warp
][
idim_r
])
{
constexpr
index_t
r_length
=
DstrEncode
::
rs_lengths_
[
idim_r
];
len_
*=
r_length
;
}
});
return
len_
;
}();
return
num_reduce_warps
;
}
// return in byte
template
<
typename
YDistributedTensor_
>
CK_TILE_HOST_DEVICE
static
constexpr
index_t
GetSmemSize
()
{
using
DataType
=
typename
YDistributedTensor_
::
DataType
;
// constexpr auto num_reduce_warps = GetReduceWarps<YDistributedTensor_>();
constexpr
index_t
thread_buf_size
=
YDistributedTensor_
::
get_thread_buffer_size
();
// we need to store all data from every wave into smem
// e.g. 2x2 reduce along N
// -------------> reduce N
// | w0 | w1 | ___> | w01 |
// | w2 | w3 | | w23 |
//
// -> store data from every wave into LDS
//
//
// -------------> reduce N
// | w0 | w1 | w2 | w3 | -----> | w0123 |
//
// -> also store data from every wave into LDS
constexpr
index_t
num_warps
=
BlockShape
::
BlockSize
/
warpSize
;
return
num_warps
*
thread_buf_size
*
sizeof
(
DataType
);
}
template
<
typename
YDistributedTensor_
,
typename
ReduceFunc
>
CK_TILE_DEVICE
void
operator
()(
YDistributedTensor_
&
y_tensor
,
void
*
smem
,
const
ReduceFunc
&
reduce_func
)
{
using
DataType
=
typename
YDistributedTensor_
::
DataType
;
constexpr
index_t
thread_buf_size
=
YDistributedTensor_
::
get_thread_buffer_size
();
DataType
*
smem_ptr
=
reinterpret_cast
<
DataType
*>
(
smem
);
const
index_t
lane_id
=
get_lane_id
();
const
index_t
warp_id
=
get_warp_id
();
constexpr
auto
num_reduce_warps
=
GetReduceWarps
<
YDistributedTensor_
>
();
constexpr
index_t
num_warps
=
BlockShape
::
BlockSize
/
warpSize
;
const
index_t
smem_offset
=
warp_id
;
// skip if nonthing to do
if
constexpr
(
num_reduce_warps
==
1
)
return
;
// store into smem only for lane-0 within one warp
if
(
lane_id
==
0
)
{
static_for
<
0
,
thread_buf_size
,
1
>
{}([
&
](
auto
i
)
{
smem_ptr
[
smem_offset
+
i
*
num_warps
]
=
y_tensor
.
get_thread_buffer
()[
i
];
});
}
block_sync_lds
();
// load from smem. here we let everythread to do compute :)
index_t
local_warp_id
=
warp_id
/
num_reduce_warps
;
index_t
local_smem_os
=
local_warp_id
*
num_reduce_warps
;
DataType
all_scratch
[
thread_buf_size
*
num_reduce_warps
];
static_for
<
0
,
thread_buf_size
,
1
>
{}([
&
](
auto
i_0
)
{
static_for
<
0
,
num_reduce_warps
,
1
>
{}([
&
](
auto
i_1
)
{
all_scratch
[
i_0
*
num_reduce_warps
+
i_1
]
=
smem_ptr
[
i_0
*
num_warps
+
local_smem_os
+
i_1
];
});
});
block_sync_lds
();
// TODO: we don't need sync here
static_for
<
0
,
thread_buf_size
,
1
>
{}([
&
](
auto
i_0
)
{
// TODO: use descriptor for this
auto
v_local
=
all_scratch
[
i_0
*
num_reduce_warps
];
// further reduce mean/var
static_for
<
0
,
num_reduce_warps
-
1
,
1
>
{}([
&
](
auto
i_1_n1
)
{
constexpr
auto
i_1
=
number
<
i_1_n1
+
1
>
{};
const
DataType
v_remote
=
all_scratch
[
i_0
*
num_reduce_warps
+
i_1
];
// reduce
v_local
=
reduce_func
(
v_local
,
v_remote
);
});
y_tensor
.
get_thread_buffer
()(
i_0
)
=
v_local
;
});
}
};
}
// namespace ck_tile
include/ck_tile/ops/reduce/block/block_reduce2d_default_policy.hpp
0 → 100644
View file @
0475a327
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/reduce/block/block_reduce2d_problem.hpp"
#include "ck_tile/ops/reduce/block/block_reduce2d.hpp"
namespace
ck_tile
{
struct
BlockReduce2dDefaultPolicy
{
template
<
typename
Problem
>
CK_TILE_DEVICE
static
constexpr
auto
MakeXBlockTileDistribution
()
{
using
S
=
typename
Problem
::
BlockShape
;
return
make_static_tile_distribution
(
tile_distribution_encoding
<
sequence
<>
,
tuple
<
sequence
<
S
::
Repeat_M
,
S
::
WarpPerBlock_M
,
S
::
ThreadPerWarp_M
,
S
::
Vector_M
>
,
sequence
<
S
::
Repeat_N
,
S
::
WarpPerBlock_N
,
S
::
ThreadPerWarp_N
,
S
::
Vector_N
>>
,
tuple
<
sequence
<
1
,
2
>
,
sequence
<
1
,
2
>>
,
tuple
<
sequence
<
1
,
1
>
,
sequence
<
2
,
2
>>
,
sequence
<
1
,
1
,
2
,
2
>
,
sequence
<
0
,
3
,
0
,
3
>>
{});
}
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetBlockReduce2d
()
{
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
XDataType
,
typename
Problem
::
ComputeDataType
,
typename
Problem
::
BlockShape
>
;
return
BlockReduce2d
<
P_
>
{};
}
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetBlockReduce2dSync
()
{
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
XDataType
,
typename
Problem
::
ComputeDataType
,
typename
Problem
::
BlockShape
>
;
return
BlockReduce2dSync
<
P_
>
{};
}
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetBlockReduce2dCrossWarpSync
()
{
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
XDataType
,
typename
Problem
::
ComputeDataType
,
typename
Problem
::
BlockShape
>
;
return
BlockReduce2dCrossWarpSync
<
P_
>
{};
}
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
index_t
GetSmemSize
()
{
if
constexpr
(
Problem
::
kNeedCrossWarpSync
)
{
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
XDataType
,
typename
Problem
::
ComputeDataType
,
typename
Problem
::
BlockShape
>
;
using
block_reduce2d
=
BlockReduce2d
<
P_
>
;
using
x_block_tile
=
decltype
(
make_static_distributed_tensor
<
typename
Problem
::
XDataType
>
(
MakeXBlockTileDistribution
<
Problem
>
()));
using
y_block_tile
=
decltype
(
block_reduce2d
::
template
MakeYBlockTile
<
x_block_tile
>());
return
GetBlockReduce2dCrossWarpSync
<
Problem
>
().
template
GetSmemSize
<
y_block_tile
>();
}
else
{
return
1
;
// zero size arrays are an extension
}
}
};
}
// namespace ck_tile
include/ck_tile/ops/reduce/block/block_reduce2d_problem.hpp
0 → 100644
View file @
0475a327
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace
ck_tile
{
template
<
typename
XDataType_
,
typename
ComputeDataType_
,
typename
BlockShape_
>
struct
BlockReduce2dProblem
{
using
XDataType
=
remove_cvref_t
<
XDataType_
>
;
using
ComputeDataType
=
remove_cvref_t
<
ComputeDataType_
>
;
using
BlockShape
=
remove_cvref_t
<
BlockShape_
>
;
};
}
// namespace ck_tile
include/ck_tile/ops/rmsnorm2d.hpp
0 → 100644
View file @
0475a327
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/ops/rmsnorm2d/kernel/rmsnorm2d_fwd_kernel.hpp"
#include "ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_default_policy.hpp"
#include "ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_one_pass.hpp"
#include "ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_problem.hpp"
#include "ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_two_pass.hpp"
#include "ck_tile/ops/common/generic_2d_block_shape.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
include/ck_tile/ops/rmsnorm2d/kernel/rmsnorm2d_fwd_kernel.hpp
0 → 100644
View file @
0475a327
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
namespace
ck_tile
{
// host side args
struct
Rmsnorm2dFwdHostArgs
{
const
void
*
p_x
;
// [m ,n], input, fp16/bf16
const
void
*
p_gamma
;
// [1, n], gamma, prec same as input
void
*
p_y
;
// [m, n], output, fp16/bf16
void
*
p_invRms
;
// [m, 1], output inv-rms, prec same as input, nullptr if not used
float
epsilon
;
index_t
m
;
index_t
n
;
index_t
stride
;
// row_stride
};
// TODO: Extract some type to wrapper class
template
<
typename
Pipeline_
>
struct
Rmsnorm2dFwd
{
using
Pipeline
=
remove_cvref_t
<
Pipeline_
>
;
using
Problem
=
typename
Pipeline
::
Problem
;
using
XDataType
=
remove_cvref_t
<
typename
Problem
::
XDataType
>
;
using
GammaDataType
=
remove_cvref_t
<
typename
Problem
::
GammaDataType
>
;
using
ComputeDataType
=
remove_cvref_t
<
typename
Problem
::
ComputeDataType
>
;
using
YDataType
=
remove_cvref_t
<
typename
Problem
::
YDataType
>
;
using
InvRmsDataType
=
remove_cvref_t
<
typename
Problem
::
InvRmsDataType
>
;
static
constexpr
bool
kHasGamma
=
!
std
::
is_same_v
<
GammaDataType
,
null_type
>
;
static
constexpr
bool
kSaveInvRms
=
Problem
::
kSaveInvRms
;
static
constexpr
index_t
Block_M
=
Problem
::
BlockShape
::
Block_M
;
static
constexpr
index_t
Block_N
=
Problem
::
BlockShape
::
Block_N
;
static
constexpr
bool
kPadM
=
false
;
// always no need to pad along M
static
constexpr
bool
kPadN
=
Problem
::
kPadN
;
static
constexpr
bool
kTwoPass
=
Problem
::
kTwoPass
;
static
constexpr
index_t
ThreadPerWarp_N
=
Problem
::
BlockShape
::
ThreadPerWarp_N
;
static
constexpr
index_t
Vector_N
=
Problem
::
BlockShape
::
Vector_N
;
static
constexpr
index_t
Repeat_N
=
Problem
::
BlockShape
::
Repeat_N
;
static
constexpr
auto
I0
=
number
<
0
>
{};
static
constexpr
auto
I1
=
number
<
1
>
{};
struct
Kargs
{
const
void
*
p_x
;
const
void
*
p_gamma
;
void
*
p_y
;
void
*
p_invRms
;
float
epsilon
;
index_t
m
;
index_t
n
;
index_t
stride
;
// row_stride
};
using
Hargs
=
Rmsnorm2dFwdHostArgs
;
CK_TILE_HOST
static
constexpr
Kargs
MakeKargs
(
const
Hargs
&
hargs
)
{
return
Kargs
{
hargs
.
p_x
,
hargs
.
p_gamma
,
hargs
.
p_y
,
hargs
.
p_invRms
,
hargs
.
epsilon
,
hargs
.
m
,
hargs
.
n
,
hargs
.
stride
};
}
CK_TILE_HOST
static
constexpr
auto
GridSize
(
const
Hargs
&
hargs
)
{
return
dim3
(
integer_divide_ceil
(
hargs
.
m
,
Block_M
));
}
CK_TILE_HOST
static
constexpr
auto
BlockSize
()
{
return
Problem
::
BlockShape
::
BlockSize
;
}
// clang-format off
template
<
typename
T
>
struct
t2s
;
template
<
>
struct
t2s
<
float
>
{
static
constexpr
const
char
*
name
=
"fp32"
;
};
template
<
>
struct
t2s
<
ck_tile
::
fp16_t
>
{
static
constexpr
const
char
*
name
=
"fp16"
;
};
template
<
>
struct
t2s
<
ck_tile
::
bf16_t
>
{
static
constexpr
const
char
*
name
=
"bf16"
;
};
template
<
>
struct
t2s
<
ck_tile
::
fp8_t
>
{
static
constexpr
const
char
*
name
=
"fp8"
;
};
template
<
>
struct
t2s
<
ck_tile
::
bf8_t
>
{
static
constexpr
const
char
*
name
=
"bf8"
;
};
// clang-format on
// in byte
CK_TILE_HOST_DEVICE
static
constexpr
index_t
GetSmemSize
()
{
return
Pipeline
::
GetSmemSize
();
}
CK_TILE_HOST
static
std
::
string
GetName
()
{
// clang-format off
using
S_
=
typename
Problem
::
BlockShape
;
auto
surfix
=
[
&
]
()
{
std
::
string
n
;
if
(
kPadN
)
n
+=
"_pn"
;
if
(
kSaveInvRms
)
n
+=
"_rms"
;
if
(
kTwoPass
)
n
+=
"_2p"
;
return
n
;
}();
#define _SS_ std::string
#define _TS_ std::to_string
return
_SS_
(
"rmsnorm2d_fwd_"
)
+
_SS_
(
t2s
<
XDataType
>::
name
)
+
"_"
+
_TS_
(
S_
::
Block_M
)
+
"x"
+
_TS_
(
S_
::
Block_N
)
+
"_"
+
_TS_
(
S_
::
WarpPerBlock_M
)
+
"x"
+
_TS_
(
S_
::
WarpPerBlock_N
)
+
"_"
+
_TS_
(
S_
::
Warp_M
)
+
"x"
+
_TS_
(
S_
::
Warp_N
)
+
"_"
+
_TS_
(
S_
::
Vector_M
)
+
"x"
+
_TS_
(
S_
::
Vector_N
)
+
"_"
+
_SS_
(
Pipeline
::
name
)
+
surfix
;
#undef _SS_
#undef _TS_
// clang-format on
}
CK_TILE_DEVICE
void
operator
()(
Kargs
kargs
)
const
{
const
auto
iM
=
get_block_id
()
*
Block_M
;
const
auto
x_window
=
[
&
]()
{
const
auto
tmp_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
const
XDataType
*>
(
kargs
.
p_x
),
make_tuple
(
kargs
.
m
,
kargs
.
n
),
make_tuple
(
kargs
.
stride
,
1
),
number
<
Vector_N
>
{},
number
<
1
>
{});
const
auto
tmp2_
=
pad_tensor_view
(
tmp_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
sequence
<
kPadM
,
kPadN
>
{});
return
make_tile_window
(
tmp2_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
{
iM
,
0
});
}();
const
auto
gamma_window
=
[
&
]()
{
const
auto
tmp_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
const
GammaDataType
*>
(
kargs
.
p_gamma
),
make_tuple
(
kargs
.
n
),
make_tuple
(
1
),
number
<
Vector_N
>
{},
number
<
1
>
{});
const
auto
tmp2_
=
pad_tensor_view
(
tmp_
,
make_tuple
(
number
<
Block_N
>
{}),
sequence
<
kPadN
>
{});
return
make_tile_window
(
tmp2_
,
make_tuple
(
number
<
Block_N
>
{}),
{
0
});
}();
auto
y_window
=
[
&
]()
{
auto
tmp_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
YDataType
*>
(
kargs
.
p_y
),
make_tuple
(
kargs
.
m
,
kargs
.
n
),
make_tuple
(
kargs
.
stride
,
1
),
number
<
Vector_N
>
{},
number
<
1
>
{});
auto
tmp2_
=
pad_tensor_view
(
tmp_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
sequence
<
kPadM
,
kPadN
>
{});
return
make_tile_window
(
tmp2_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
{
iM
,
0
});
}();
auto
inv_rms_window
=
[
&
]()
{
if
constexpr
(
kSaveInvRms
)
{
const
auto
inv_rms_m
=
[
&
]()
{
const
auto
inv_rms_dram_naive
=
make_naive_tensor_view_packed
<
address_space_enum
::
global
>
(
static_cast
<
InvRmsDataType
*>
(
kargs
.
p_invRms
),
make_tuple
(
kargs
.
m
),
number
<
1
>
{});
return
pad_tensor_view
(
inv_rms_dram_naive
,
make_tuple
(
number
<
Block_M
>
{}),
sequence
<
kPadM
>
{});
}();
return
make_tile_window
(
inv_rms_m
,
make_tuple
(
number
<
Block_M
>
{}),
{
iM
});
}
else
return
make_null_tile_window
(
make_tuple
(
number
<
Block_M
>
{}));
}();
__shared__
char
smem
[
GetSmemSize
()];
Pipeline
{}(
x_window
,
gamma_window
,
y_window
,
inv_rms_window
,
static_cast
<
const
ComputeDataType
>
(
kargs
.
epsilon
),
kargs
.
n
,
smem
);
}
};
}
// namespace ck_tile
include/ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_default_policy.hpp
0 → 100644
View file @
0475a327
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/reduce/block/block_reduce2d_problem.hpp"
#include "ck_tile/ops/reduce/block/block_reduce2d.hpp"
namespace
ck_tile
{
struct
Rmsnorm2dFwdPipelineDefaultPolicy
{
template
<
typename
Problem
>
CK_TILE_DEVICE
static
constexpr
auto
MakeXBlockTileDistribution
()
{
using
S
=
typename
Problem
::
BlockShape
;
return
make_static_tile_distribution
(
tile_distribution_encoding
<
sequence
<>
,
tuple
<
sequence
<
S
::
Repeat_M
,
S
::
WarpPerBlock_M
,
S
::
ThreadPerWarp_M
,
S
::
Vector_M
>
,
sequence
<
S
::
Repeat_N
,
S
::
WarpPerBlock_N
,
S
::
ThreadPerWarp_N
,
S
::
Vector_N
>>
,
tuple
<
sequence
<
1
,
2
>
,
sequence
<
1
,
2
>>
,
tuple
<
sequence
<
1
,
1
>
,
sequence
<
2
,
2
>>
,
sequence
<
1
,
1
,
2
,
2
>
,
sequence
<
0
,
3
,
0
,
3
>>
{});
}
template
<
typename
Problem
>
CK_TILE_DEVICE
static
constexpr
auto
MakeGammaBlockTileDistribution
()
{
using
S
=
typename
Problem
::
BlockShape
;
return
make_static_tile_distribution
(
tile_distribution_encoding
<
sequence
<
S
::
WarpPerBlock_M
,
S
::
ThreadPerWarp_M
>
,
tuple
<
sequence
<
S
::
Repeat_N
,
S
::
WarpPerBlock_N
,
S
::
ThreadPerWarp_N
,
S
::
Vector_N
>>
,
tuple
<
sequence
<
0
,
1
>
,
sequence
<
0
,
1
>>
,
tuple
<
sequence
<
0
,
1
>
,
sequence
<
1
,
2
>>
,
sequence
<
1
,
1
>
,
sequence
<
0
,
3
>>
{});
}
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetBlockReduce2d
()
{
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
XDataType
,
typename
Problem
::
ComputeDataType
,
typename
Problem
::
BlockShape
>
;
return
BlockReduce2d
<
P_
>
{};
}
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetBlockReduce2dSync
()
{
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
XDataType
,
typename
Problem
::
ComputeDataType
,
typename
Problem
::
BlockShape
>
;
return
BlockReduce2dSync
<
P_
>
{};
}
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetBlockReduce2dCrossWarpSync
()
{
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
XDataType
,
typename
Problem
::
ComputeDataType
,
typename
Problem
::
BlockShape
>
;
return
BlockReduce2dCrossWarpSync
<
P_
>
{};
}
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
index_t
GetSmemSize
()
{
if
constexpr
(
Problem
::
kNeedCrossWarpSync
)
{
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
XDataType
,
typename
Problem
::
ComputeDataType
,
typename
Problem
::
BlockShape
>
;
using
block_reduce2d
=
BlockReduce2d
<
P_
>
;
using
x_block_tile
=
decltype
(
make_static_distributed_tensor
<
typename
Problem
::
XDataType
>
(
MakeXBlockTileDistribution
<
Problem
>
()));
using
y_block_tile
=
decltype
(
block_reduce2d
::
template
MakeYBlockTile
<
x_block_tile
>());
return
GetBlockReduce2dCrossWarpSync
<
Problem
>
().
template
GetSmemSize
<
y_block_tile
>();
}
else
{
return
1
;
// zero size arrays are an extension
}
}
};
}
// namespace ck_tile
include/ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_one_pass.hpp
0 → 100644
View file @
0475a327
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_default_policy.hpp"
#include <string>
#include <type_traits>
namespace
ck_tile
{
template
<
typename
Problem_
,
typename
Policy_
=
Rmsnorm2dFwdPipelineDefaultPolicy
>
struct
Rmsnorm2dFwdPipelineOnePass
{
using
Problem
=
ck_tile
::
remove_cvref_t
<
Problem_
>
;
using
Policy
=
ck_tile
::
remove_cvref_t
<
Policy_
>
;
using
XDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
XDataType
>
;
using
GammaDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
GammaDataType
>
;
using
ComputeDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
ComputeDataType
>
;
using
YDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
YDataType
>
;
using
InvRmsDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
InvRmsDataType
>
;
static
constexpr
bool
kHasGamma
=
!
std
::
is_same_v
<
GammaDataType
,
ck_tile
::
null_type
>
;
static
constexpr
bool
kSaveInvRms
=
Problem
::
kSaveInvRms
;
static
constexpr
bool
kNeedCrossWarpSync
=
Problem
::
kNeedCrossWarpSync
;
static
constexpr
bool
kPadM
=
false
;
// TODO - BlockRmsnorm2dFwdProblem::kPadM
static
constexpr
bool
kPadN
=
Problem
::
kPadN
;
static
constexpr
const
char
*
name
=
[]()
{
if
constexpr
(
kNeedCrossWarpSync
)
return
"bpr_op"
;
// block per row
else
return
"wpr_op"
;
// warp per row
}();
CK_TILE_HOST_DEVICE
static
constexpr
index_t
GetSmemSize
()
{
return
Policy
::
template
GetSmemSize
<
Problem
>();
}
template
<
typename
XWindow
,
typename
GammaWindow
,
typename
YWindow
,
typename
InvRmsWindow
>
CK_TILE_DEVICE
auto
operator
()(
const
XWindow
&
x_window_
,
const
GammaWindow
&
gamma_window_
,
YWindow
&
y_window
,
InvRmsWindow
&
inv_rms_window
,
ComputeDataType
epsilon
,
ck_tile
::
index_t
row_size
,
void
*
smem
)
const
{
const
auto
x_window
=
make_tile_window
(
x_window_
,
Policy
::
template
MakeXBlockTileDistribution
<
Problem
>());
const
auto
gamma_window
=
make_tile_window
(
gamma_window_
,
Policy
::
template
MakeGammaBlockTileDistribution
<
Problem
>());
auto
reduce_square_sum_func
=
ReduceOp
::
SquareAdd
{};
auto
reduce_sum_func
=
ReduceOp
::
Add
{};
auto
block_reduce2d
=
Policy
::
template
GetBlockReduce2d
<
Problem
>();
auto
block_reduce2d_sync
=
Policy
::
template
GetBlockReduce2dSync
<
Problem
>();
auto
block_reduce2d_cross_warp_sync
=
Policy
::
template
GetBlockReduce2dCrossWarpSync
<
Problem
>();
const
auto
x
=
load_tile
(
x_window
);
// load gamma (TODO: support no gamma?)
const
auto
gamma
=
load_tile
(
gamma_window
);
// compute mean square each-thread->cross-lane->cross-warp
auto
square_sum
=
block_reduce2d
(
x
,
reduce_square_sum_func
.
GetIdentityValue
<
ComputeDataType
>
(),
reduce_square_sum_func
);
block_reduce2d_sync
(
square_sum
,
reduce_sum_func
);
block_reduce2d_cross_warp_sync
(
square_sum
,
smem
,
reduce_sum_func
);
// compute inv-rms
auto
inv_rms
=
tile_elementwise_in
(
[
&
](
const
auto
&
v_
)
{
return
type_convert
<
ComputeDataType
>
(
1.0
f
)
/
(
sqrt
(
v_
/
row_size
+
epsilon
));
},
square_sum
);
if
constexpr
(
kSaveInvRms
)
store_tile
(
inv_rms_window
,
cast_tile
<
InvRmsDataType
>
(
inv_rms
));
// rmsnorm computation
auto
y
=
make_static_distributed_tensor
<
YDataType
>
(
x
.
get_tile_distribution
());
sweep_tile
(
y
,
[
&
,
inv_rms_
=
inv_rms
](
auto
idx
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx
[
number
<
0
>
{}]);
constexpr
auto
j_idx
=
make_tuple
(
idx
[
number
<
1
>
{}]);
const
auto
gamma_
=
type_convert
<
ComputeDataType
>
(
gamma
[
j_idx
]);
const
auto
x_
=
type_convert
<
ComputeDataType
>
(
x
[
idx
]);
auto
y_
=
x_
*
inv_rms_
[
i_idx
]
*
gamma_
;
y
(
idx
)
=
type_convert
<
YDataType
>
(
y_
);
});
store_tile
(
y_window
,
y
);
}
};
}
// namespace ck_tile
include/ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_problem.hpp
0 → 100644
View file @
0475a327
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core/utility/type_traits.hpp"
namespace
ck_tile
{
template
<
typename
XDataType_
,
typename
GammaDataType_
,
typename
ComputeDataType_
,
typename
YDataType_
,
typename
InvRmsDataType_
,
typename
BlockShape_
,
bool
kPadN_
,
bool
kSaveInvRms_
,
bool
kTwoPass_
>
struct
Rmsnorm2dFwdPipelineProblem
{
using
XDataType
=
remove_cvref_t
<
XDataType_
>
;
using
GammaDataType
=
remove_cvref_t
<
GammaDataType_
>
;
using
ComputeDataType
=
remove_cvref_t
<
ComputeDataType_
>
;
using
YDataType
=
remove_cvref_t
<
YDataType_
>
;
using
InvRmsDataType
=
remove_cvref_t
<
InvRmsDataType_
>
;
using
BlockShape
=
remove_cvref_t
<
BlockShape_
>
;
static
constexpr
bool
kNeedCrossLaneSync
=
BlockShape
::
ThreadPerWarp_N
>
1
;
static
constexpr
bool
kNeedCrossWarpSync
=
BlockShape
::
WarpPerBlock_N
>
1
;
static
constexpr
bool
kPadN
=
kPadN_
;
static
constexpr
bool
kSaveInvRms
=
kSaveInvRms_
;
static
constexpr
bool
kTwoPass
=
kTwoPass_
;
};
}
// namespace ck_tile
include/ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_two_pass.hpp
0 → 100644
View file @
0475a327
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_default_policy.hpp"
#include <string>
#include <type_traits>
namespace
ck_tile
{
template
<
typename
Problem_
,
typename
Policy_
=
Rmsnorm2dFwdPipelineDefaultPolicy
>
struct
Rmsnorm2dFwdPipelineTwoPass
{
using
Problem
=
ck_tile
::
remove_cvref_t
<
Problem_
>
;
using
Policy
=
ck_tile
::
remove_cvref_t
<
Policy_
>
;
using
XDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
XDataType
>
;
using
GammaDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
GammaDataType
>
;
using
ComputeDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
ComputeDataType
>
;
using
YDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
YDataType
>
;
using
InvRmsDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
InvRmsDataType
>
;
static
constexpr
bool
kHasGamma
=
!
std
::
is_same_v
<
GammaDataType
,
ck_tile
::
null_type
>
;
static
constexpr
bool
kSaveInvRms
=
Problem
::
kSaveInvRms
;
static
constexpr
bool
kNeedCrossWarpSync
=
Problem
::
kNeedCrossWarpSync
;
static
constexpr
bool
kPadM
=
false
;
// TODO - BlockRmsnorm2dFwdProblem::kPadM
static
constexpr
bool
kPadN
=
Problem
::
kPadN
;
static
constexpr
const
char
*
name
=
[]()
{
if
constexpr
(
kNeedCrossWarpSync
)
return
"bpr_tp"
;
// block per row
else
return
"wpr_tp"
;
// warp per row
}();
CK_TILE_HOST_DEVICE
static
constexpr
index_t
GetSmemSize
()
{
return
Policy
::
template
GetSmemSize
<
Problem
>();
}
template
<
typename
XWindow
,
typename
GammaWindow
,
typename
YWindow
,
typename
InvRmsWindow
>
CK_TILE_DEVICE
auto
operator
()(
const
XWindow
&
x_window_
,
const
GammaWindow
&
gamma_window_
,
YWindow
&
y_window
,
InvRmsWindow
&
inv_rms_window
,
ComputeDataType
epsilon
,
ck_tile
::
index_t
row_size
,
void
*
smem
)
const
{
auto
x_window
=
make_tile_window
(
x_window_
,
Policy
::
template
MakeXBlockTileDistribution
<
Problem
>());
auto
gamma_window
=
make_tile_window
(
gamma_window_
,
Policy
::
template
MakeGammaBlockTileDistribution
<
Problem
>());
// Problem::BlockShape
static
constexpr
index_t
Block_N
=
Problem
::
BlockShape
::
Block_N
;
index_t
num_n_tile_iteration
=
__builtin_amdgcn_readfirstlane
(
integer_divide_ceil
(
row_size
,
Block_N
));
auto
reduce_square_sum_func
=
ReduceOp
::
SquareAdd
{};
auto
reduce_sum_func
=
ReduceOp
::
Add
{};
auto
block_reduce2d
=
Policy
::
template
GetBlockReduce2d
<
Problem
>();
auto
block_reduce2d_sync
=
Policy
::
template
GetBlockReduce2dSync
<
Problem
>();
auto
block_reduce2d_cross_warp_sync
=
Policy
::
template
GetBlockReduce2dCrossWarpSync
<
Problem
>();
using
XTensorType
=
decltype
(
load_tile
(
x_window
));
auto
square_sum
=
block_reduce2d
.
template
MakeYBlockTile
<
XTensorType
>();
set_tile
(
square_sum
,
reduce_square_sum_func
.
GetIdentityValue
<
ComputeDataType
>
());
for
(
int
iN
=
__builtin_amdgcn_readfirstlane
(
0
);
iN
<
num_n_tile_iteration
;
++
iN
)
{
const
auto
x
=
load_tile
(
x_window
);
block_reduce2d
(
x
,
square_sum
,
reduce_square_sum_func
);
move_tile_window
(
x_window
,
{
0
,
Block_N
});
}
block_reduce2d_sync
(
square_sum
,
reduce_sum_func
);
block_reduce2d_cross_warp_sync
(
square_sum
,
smem
,
reduce_sum_func
);
// compute inv-rms
auto
inv_rms
=
tile_elementwise_in
(
[
&
](
const
auto
&
v_
)
{
return
type_convert
<
ComputeDataType
>
(
1.0
f
)
/
(
sqrt
(
v_
/
row_size
+
epsilon
));
},
square_sum
);
if
constexpr
(
kSaveInvRms
)
store_tile
(
inv_rms_window
,
cast_tile
<
InvRmsDataType
>
(
inv_rms
));
// reverse read x to reuse cache
ck_tile
::
index_t
stride_to_right_most_window
=
row_size
%
Block_N
==
0
?
row_size
-
Block_N
:
row_size
-
row_size
%
Block_N
;
move_tile_window
(
x_window
,
{
0
,
-
Block_N
});
move_tile_window
(
gamma_window
,
{
stride_to_right_most_window
});
move_tile_window
(
y_window
,
{
0
,
stride_to_right_most_window
});
// rmsnorm computation
for
(
int
iN
=
__builtin_amdgcn_readfirstlane
(
0
);
iN
<
num_n_tile_iteration
;
++
iN
)
{
const
auto
x
=
load_tile
(
x_window
);
// load gamma/beta (TODO: support no gamma/beta?)
const
auto
gamma
=
load_tile
(
gamma_window
);
auto
y
=
make_static_distributed_tensor
<
YDataType
>
(
x
.
get_tile_distribution
());
sweep_tile
(
y
,
[
&
,
inv_rms_
=
inv_rms
](
auto
idx
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx
[
number
<
0
>
{}]);
constexpr
auto
j_idx
=
make_tuple
(
idx
[
number
<
1
>
{}]);
const
auto
gamma_
=
type_convert
<
ComputeDataType
>
(
gamma
[
j_idx
]);
const
auto
x_
=
type_convert
<
ComputeDataType
>
(
x
[
idx
]);
auto
y_
=
x_
*
inv_rms_
[
i_idx
]
*
gamma_
;
y
(
idx
)
=
type_convert
<
YDataType
>
(
y_
);
});
store_tile
(
y_window
,
y
);
move_tile_window
(
x_window
,
{
0
,
-
Block_N
});
move_tile_window
(
gamma_window
,
{
-
Block_N
});
move_tile_window
(
y_window
,
{
0
,
-
Block_N
});
}
}
};
}
// namespace ck_tile
include/ck_tile/ops/smoothquant.hpp
0 → 100644
View file @
0475a327
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/ops/smoothquant/kernel/smoothquant_kernel.hpp"
#include "ck_tile/ops/smoothquant/pipeline/smoothquant_pipeline_default_policy.hpp"
#include "ck_tile/ops/smoothquant/pipeline/smoothquant_pipeline_one_pass.hpp"
#include "ck_tile/ops/smoothquant/pipeline/smoothquant_pipeline_problem.hpp"
#include "ck_tile/ops/smoothquant/pipeline/smoothquant_pipeline_two_pass.hpp"
#include "ck_tile/ops/common/generic_2d_block_shape.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
include/ck_tile/ops/smoothquant/kernel/smoothquant_kernel.hpp
0 → 100644
View file @
0475a327
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
namespace
ck_tile
{
// host side args
struct
SmoothquantHostArgs
{
const
void
*
p_x
;
// [m ,n], input, fp16/bf16
const
void
*
p_xscale
;
// [1, n], input, columnwise scale, fp32
void
*
p_yscale
;
// [m, 1], output, rowwise quant scale (amax / 127) of (p_x * p_xscale)
void
*
p_qy
;
// [m, n], output, p_x * p_xscale / p_yscale
index_t
m
;
index_t
n
;
index_t
stride
;
// row_stride
};
// TODO: Extract some type to wrapper class
template
<
typename
Pipeline_
>
struct
Smoothquant
{
using
Pipeline
=
remove_cvref_t
<
Pipeline_
>
;
using
Problem
=
typename
Pipeline
::
Problem
;
using
XDataType
=
remove_cvref_t
<
typename
Problem
::
XDataType
>
;
using
XScaleDataType
=
remove_cvref_t
<
typename
Problem
::
XScaleDataType
>
;
using
ComputeDataType
=
remove_cvref_t
<
typename
Problem
::
ComputeDataType
>
;
using
YScaleDataType
=
remove_cvref_t
<
typename
Problem
::
YScaleDataType
>
;
using
QYDataType
=
remove_cvref_t
<
typename
Problem
::
QYDataType
>
;
static
constexpr
index_t
Block_M
=
Problem
::
BlockShape
::
Block_M
;
static
constexpr
index_t
Block_N
=
Problem
::
BlockShape
::
Block_N
;
static
constexpr
bool
kPadM
=
false
;
// always no need to pad along M
static
constexpr
bool
kPadN
=
Problem
::
kPadN
;
static
constexpr
bool
kTwoPass
=
Problem
::
kTwoPass
;
static
constexpr
index_t
ThreadPerWarp_N
=
Problem
::
BlockShape
::
ThreadPerWarp_N
;
static
constexpr
index_t
Vector_N
=
Problem
::
BlockShape
::
Vector_N
;
static
constexpr
index_t
Repeat_N
=
Problem
::
BlockShape
::
Repeat_N
;
static
constexpr
auto
I0
=
number
<
0
>
{};
static
constexpr
auto
I1
=
number
<
1
>
{};
struct
Kargs
{
const
void
*
p_x
;
const
void
*
p_xscale
;
void
*
p_yscale
;
void
*
p_qy
;
index_t
m
;
index_t
n
;
index_t
stride
;
// row_stride
};
using
Hargs
=
SmoothquantHostArgs
;
CK_TILE_HOST
static
constexpr
Kargs
MakeKargs
(
const
Hargs
&
hargs
)
{
return
Kargs
{
hargs
.
p_x
,
hargs
.
p_xscale
,
hargs
.
p_yscale
,
hargs
.
p_qy
,
hargs
.
m
,
hargs
.
n
,
hargs
.
stride
};
}
CK_TILE_HOST
static
constexpr
auto
GridSize
(
const
Hargs
&
hargs
)
{
return
dim3
(
integer_divide_ceil
(
hargs
.
m
,
Block_M
));
}
CK_TILE_HOST
static
constexpr
auto
BlockSize
()
{
return
Problem
::
BlockShape
::
BlockSize
;
}
// clang-format off
template
<
typename
T
>
struct
t2s
;
template
<
>
struct
t2s
<
float
>
{
static
constexpr
const
char
*
name
=
"fp32"
;
};
template
<
>
struct
t2s
<
ck_tile
::
fp16_t
>
{
static
constexpr
const
char
*
name
=
"fp16"
;
};
template
<
>
struct
t2s
<
ck_tile
::
bf16_t
>
{
static
constexpr
const
char
*
name
=
"bf16"
;
};
template
<
>
struct
t2s
<
ck_tile
::
fp8_t
>
{
static
constexpr
const
char
*
name
=
"fp8"
;
};
template
<
>
struct
t2s
<
ck_tile
::
bf8_t
>
{
static
constexpr
const
char
*
name
=
"bf8"
;
};
// clang-format on
// in byte
CK_TILE_HOST_DEVICE
static
constexpr
index_t
GetSmemSize
()
{
return
Pipeline
::
GetSmemSize
();
}
CK_TILE_HOST
static
std
::
string
GetName
()
{
// clang-format off
using
S_
=
typename
Problem
::
BlockShape
;
auto
surfix
=
[
&
]
()
{
std
::
string
n
;
if
(
kPadN
)
n
+=
"_pn"
;
if
(
kTwoPass
)
n
+=
"_2p"
;
return
n
;
}();
#define _SS_ std::string
#define _TS_ std::to_string
return
_SS_
(
"smoothquant_fwd_"
)
+
_SS_
(
t2s
<
XDataType
>::
name
)
+
"_"
+
_TS_
(
S_
::
Block_M
)
+
"x"
+
_TS_
(
S_
::
Block_N
)
+
"_"
+
_TS_
(
S_
::
WarpPerBlock_M
)
+
"x"
+
_TS_
(
S_
::
WarpPerBlock_N
)
+
"_"
+
_TS_
(
S_
::
Warp_M
)
+
"x"
+
_TS_
(
S_
::
Warp_N
)
+
"_"
+
_TS_
(
S_
::
Vector_M
)
+
"x"
+
_TS_
(
S_
::
Vector_N
)
+
"_"
+
_SS_
(
Pipeline
::
name
)
+
surfix
;
#undef _SS_
#undef _TS_
// clang-format on
}
CK_TILE_DEVICE
void
operator
()(
Kargs
kargs
)
const
{
const
auto
iM
=
get_block_id
()
*
Block_M
;
const
auto
x_window
=
[
&
]()
{
const
auto
tmp_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
const
XDataType
*>
(
kargs
.
p_x
),
make_tuple
(
kargs
.
m
,
kargs
.
n
),
make_tuple
(
kargs
.
stride
,
1
),
number
<
Vector_N
>
{},
number
<
1
>
{});
const
auto
tmp2_
=
pad_tensor_view
(
tmp_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
sequence
<
kPadM
,
kPadN
>
{});
return
make_tile_window
(
tmp2_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
{
iM
,
0
});
}();
const
auto
xscale_window
=
[
&
]()
{
const
auto
tmp_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
const
XScaleDataType
*>
(
kargs
.
p_xscale
),
make_tuple
(
kargs
.
n
),
make_tuple
(
1
),
number
<
Vector_N
>
{},
number
<
1
>
{});
const
auto
tmp2_
=
pad_tensor_view
(
tmp_
,
make_tuple
(
number
<
Block_N
>
{}),
sequence
<
kPadN
>
{});
return
make_tile_window
(
tmp2_
,
make_tuple
(
number
<
Block_N
>
{}),
{
0
});
}();
auto
yscale_window
=
[
&
]()
{
const
auto
tmp_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
YScaleDataType
*>
(
kargs
.
p_yscale
),
make_tuple
(
kargs
.
m
),
make_tuple
(
1
),
number
<
1
>
{});
const
auto
tmp2_
=
pad_tensor_view
(
tmp_
,
make_tuple
(
number
<
Block_M
>
{}),
sequence
<
kPadM
>
{});
return
make_tile_window
(
tmp2_
,
make_tuple
(
number
<
Block_M
>
{}),
{
iM
});
}();
auto
qy_window
=
[
&
]()
{
auto
tmp_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
QYDataType
*>
(
kargs
.
p_qy
),
make_tuple
(
kargs
.
m
,
kargs
.
n
),
make_tuple
(
kargs
.
stride
,
1
),
number
<
Vector_N
>
{},
number
<
1
>
{});
auto
tmp2_
=
pad_tensor_view
(
tmp_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
sequence
<
kPadM
,
kPadN
>
{});
return
make_tile_window
(
tmp2_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
{
iM
,
0
});
}();
__shared__
char
smem
[
GetSmemSize
()];
Pipeline
{}(
x_window
,
xscale_window
,
yscale_window
,
qy_window
,
kargs
.
n
,
smem
);
}
};
}
// namespace ck_tile
include/ck_tile/ops/smoothquant/pipeline/smoothquant_pipeline_default_policy.hpp
0 → 100644
View file @
0475a327
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/reduce/block/block_reduce2d_problem.hpp"
#include "ck_tile/ops/reduce/block/block_reduce2d.hpp"
namespace
ck_tile
{
struct
SmoothquantPipelineDefaultPolicy
{
template
<
typename
Problem
>
CK_TILE_DEVICE
static
constexpr
auto
MakeXBlockTileDistribution
()
{
using
S
=
typename
Problem
::
BlockShape
;
return
make_static_tile_distribution
(
tile_distribution_encoding
<
sequence
<>
,
tuple
<
sequence
<
S
::
Repeat_M
,
S
::
WarpPerBlock_M
,
S
::
ThreadPerWarp_M
,
S
::
Vector_M
>
,
sequence
<
S
::
Repeat_N
,
S
::
WarpPerBlock_N
,
S
::
ThreadPerWarp_N
,
S
::
Vector_N
>>
,
tuple
<
sequence
<
1
,
2
>
,
sequence
<
1
,
2
>>
,
tuple
<
sequence
<
1
,
1
>
,
sequence
<
2
,
2
>>
,
sequence
<
1
,
1
,
2
,
2
>
,
sequence
<
0
,
3
,
0
,
3
>>
{});
}
template
<
typename
Problem
>
CK_TILE_DEVICE
static
constexpr
auto
MakeXScaleBlockTileDistribution
()
{
using
S
=
typename
Problem
::
BlockShape
;
return
make_static_tile_distribution
(
tile_distribution_encoding
<
sequence
<
S
::
WarpPerBlock_M
,
S
::
ThreadPerWarp_M
>
,
tuple
<
sequence
<
S
::
Repeat_N
,
S
::
WarpPerBlock_N
,
S
::
ThreadPerWarp_N
,
S
::
Vector_N
>>
,
tuple
<
sequence
<
0
,
1
>
,
sequence
<
0
,
1
>>
,
tuple
<
sequence
<
0
,
1
>
,
sequence
<
1
,
2
>>
,
sequence
<
1
,
1
>
,
sequence
<
0
,
3
>>
{});
}
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetBlockReduce2d
()
{
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
ComputeDataType
,
typename
Problem
::
ComputeDataType
,
typename
Problem
::
BlockShape
>
;
return
BlockReduce2d
<
P_
>
{};
}
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetBlockReduce2dSync
()
{
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
ComputeDataType
,
typename
Problem
::
ComputeDataType
,
typename
Problem
::
BlockShape
>
;
return
BlockReduce2dSync
<
P_
>
{};
}
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetBlockReduce2dCrossWarpSync
()
{
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
ComputeDataType
,
typename
Problem
::
ComputeDataType
,
typename
Problem
::
BlockShape
>
;
return
BlockReduce2dCrossWarpSync
<
P_
>
{};
}
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
index_t
GetSmemSize
()
{
if
constexpr
(
Problem
::
kNeedCrossWarpSync
)
{
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
XDataType
,
typename
Problem
::
ComputeDataType
,
typename
Problem
::
BlockShape
>
;
using
block_reduce2d
=
BlockReduce2d
<
P_
>
;
using
x_block_tile
=
decltype
(
make_static_distributed_tensor
<
typename
Problem
::
XDataType
>
(
MakeXBlockTileDistribution
<
Problem
>
()));
using
y_block_tile
=
decltype
(
block_reduce2d
::
template
MakeYBlockTile
<
x_block_tile
>());
return
GetBlockReduce2dCrossWarpSync
<
Problem
>
().
template
GetSmemSize
<
y_block_tile
>();
}
else
{
return
1
;
// zero size arrays are an extension
}
}
};
}
// namespace ck_tile
include/ck_tile/ops/smoothquant/pipeline/smoothquant_pipeline_one_pass.hpp
0 → 100644
View file @
0475a327
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_default_policy.hpp"
#include <string>
#include <type_traits>
namespace
ck_tile
{
template
<
typename
Problem_
,
typename
Policy_
=
SmoothquantPipelineDefaultPolicy
>
struct
SmoothquantPipelineOnePass
{
using
Problem
=
ck_tile
::
remove_cvref_t
<
Problem_
>
;
using
Policy
=
ck_tile
::
remove_cvref_t
<
Policy_
>
;
using
XDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
XDataType
>
;
using
XScaleDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
XScaleDataType
>
;
using
ComputeDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
ComputeDataType
>
;
using
QYDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
QYDataType
>
;
using
YScaleDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
YScaleDataType
>
;
static
constexpr
bool
kNeedCrossWarpSync
=
Problem
::
kNeedCrossWarpSync
;
static
constexpr
bool
kPadM
=
false
;
// TODO - BlockSmoothquantProblem::kPadM
static
constexpr
bool
kPadN
=
Problem
::
kPadN
;
static
constexpr
const
char
*
name
=
[]()
{
if
constexpr
(
kNeedCrossWarpSync
)
return
"bpr_op"
;
// block per row
else
return
"wpr_op"
;
// warp per row
}();
CK_TILE_HOST_DEVICE
static
constexpr
index_t
GetSmemSize
()
{
return
Policy
::
template
GetSmemSize
<
Problem
>();
}
template
<
typename
XWindow
,
typename
XScaleWindow
,
typename
QYWindow
,
typename
YScaleWindow
>
CK_TILE_DEVICE
auto
operator
()(
const
XWindow
&
x_window_
,
const
XScaleWindow
&
xscale_window_
,
YScaleWindow
&
yscale_window
,
QYWindow
&
qy_window
,
ck_tile
::
index_t
,
void
*
smem
)
const
{
auto
x_window
=
make_tile_window
(
x_window_
,
Policy
::
template
MakeXBlockTileDistribution
<
Problem
>());
auto
xscale_window
=
make_tile_window
(
xscale_window_
,
Policy
::
template
MakeXScaleBlockTileDistribution
<
Problem
>());
auto
reduce_absmax_func
=
ReduceOp
::
AbsMax
{};
auto
reduce_max_func
=
ReduceOp
::
Max
{};
auto
block_reduce2d
=
Policy
::
template
GetBlockReduce2d
<
Problem
>();
auto
block_reduce2d_sync
=
Policy
::
template
GetBlockReduce2dSync
<
Problem
>();
auto
block_reduce2d_cross_warp_sync
=
Policy
::
template
GetBlockReduce2dCrossWarpSync
<
Problem
>();
const
auto
x
=
load_tile
(
x_window
);
const
auto
xscale
=
load_tile
(
xscale_window
);
auto
y
=
tile_elementwise_in
(
[
&
](
const
auto
&
a
,
const
auto
&
b
)
{
return
type_convert
<
ComputeDataType
>
(
a
)
*
type_convert
<
ComputeDataType
>
(
b
);
},
x
,
xscale
);
// compute absmax, cross-lane->cross-warp
auto
absmax
=
block_reduce2d
(
y
,
reduce_absmax_func
.
GetIdentityValue
<
ComputeDataType
>
(),
reduce_absmax_func
);
block_reduce2d_sync
(
absmax
,
reduce_max_func
);
block_reduce2d_cross_warp_sync
(
absmax
,
smem
,
reduce_max_func
);
// ex: yscale = absmax / 127 if int8
auto
yscale
=
tile_elementwise_in
(
[
&
](
const
auto
&
v_
)
{
return
v_
/
type_convert
<
ComputeDataType
>
(
numeric
<
QYDataType
>::
max
());
},
absmax
);
store_tile
(
yscale_window
,
cast_tile
<
YScaleDataType
>
(
yscale
));
// quantize y to qy
auto
qy
=
make_static_distributed_tensor
<
QYDataType
>
(
y
.
get_tile_distribution
());
sweep_tile
(
qy
,
[
&
](
auto
idx
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx
[
number
<
0
>
{}]);
auto
qy_
=
y
[
idx
]
/
yscale
[
i_idx
];
qy
(
idx
)
=
saturates
<
QYDataType
>
{}(
qy_
);
});
store_tile
(
qy_window
,
qy
);
}
};
}
// namespace ck_tile
include/ck_tile/ops/smoothquant/pipeline/smoothquant_pipeline_problem.hpp
0 → 100644
View file @
0475a327
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core/utility/type_traits.hpp"
namespace
ck_tile
{
// Y = X * XScale, QY = RowwiseDynamicQuant(Y) = SaturateCast(Y / YScale)
template
<
typename
XDataType_
,
typename
XScaleDataType_
,
typename
ComputeDataType_
,
typename
YScaleDataType_
,
typename
QYDataType_
,
typename
BlockShape_
,
bool
kPadN_
,
bool
kTwoPass_
>
struct
SmoothquantPipelineProblem
{
using
XDataType
=
remove_cvref_t
<
XDataType_
>
;
using
XScaleDataType
=
remove_cvref_t
<
XScaleDataType_
>
;
using
ComputeDataType
=
remove_cvref_t
<
ComputeDataType_
>
;
using
YScaleDataType
=
remove_cvref_t
<
YScaleDataType_
>
;
using
QYDataType
=
remove_cvref_t
<
QYDataType_
>
;
using
BlockShape
=
remove_cvref_t
<
BlockShape_
>
;
static
constexpr
bool
kNeedCrossLaneSync
=
BlockShape
::
ThreadPerWarp_N
>
1
;
static
constexpr
bool
kNeedCrossWarpSync
=
BlockShape
::
WarpPerBlock_N
>
1
;
static
constexpr
bool
kPadN
=
kPadN_
;
static
constexpr
bool
kTwoPass
=
kTwoPass_
;
};
}
// namespace ck_tile
include/ck_tile/ops/smoothquant/pipeline/smoothquant_pipeline_two_pass.hpp
0 → 100644
View file @
0475a327
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_default_policy.hpp"
#include <string>
#include <type_traits>
namespace
ck_tile
{
template
<
typename
Problem_
,
typename
Policy_
=
SmoothquantPipelineDefaultPolicy
>
struct
SmoothquantPipelineTwoPass
{
using
Problem
=
ck_tile
::
remove_cvref_t
<
Problem_
>
;
using
Policy
=
ck_tile
::
remove_cvref_t
<
Policy_
>
;
using
XDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
XDataType
>
;
using
XScaleDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
XScaleDataType
>
;
using
ComputeDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
ComputeDataType
>
;
using
QYDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
QYDataType
>
;
using
YScaleDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
YScaleDataType
>
;
static
constexpr
bool
kNeedCrossWarpSync
=
Problem
::
kNeedCrossWarpSync
;
static
constexpr
bool
kPadM
=
false
;
// TODO - BlockSmoothquantProblem::kPadM
static
constexpr
bool
kPadN
=
Problem
::
kPadN
;
static
constexpr
const
char
*
name
=
[]()
{
if
constexpr
(
kNeedCrossWarpSync
)
return
"bpr_tp"
;
// block per row
else
return
"wpr_tp"
;
// warp per row
}();
CK_TILE_HOST_DEVICE
static
constexpr
index_t
GetSmemSize
()
{
return
Policy
::
template
GetSmemSize
<
Problem
>();
}
template
<
typename
XWindow
,
typename
XScaleWindow
,
typename
QYWindow
,
typename
YScaleWindow
>
CK_TILE_DEVICE
auto
operator
()(
const
XWindow
&
x_window_
,
const
XScaleWindow
&
xscale_window_
,
YScaleWindow
&
yscale_window
,
QYWindow
&
qy_window
,
ck_tile
::
index_t
row_size
,
void
*
smem
)
const
{
auto
x_window
=
make_tile_window
(
x_window_
,
Policy
::
template
MakeXBlockTileDistribution
<
Problem
>());
auto
xscale_window
=
make_tile_window
(
xscale_window_
,
Policy
::
template
MakeXScaleBlockTileDistribution
<
Problem
>());
static
constexpr
index_t
Block_N
=
Problem
::
BlockShape
::
Block_N
;
index_t
num_n_tile_iteration
=
__builtin_amdgcn_readfirstlane
(
integer_divide_ceil
(
row_size
,
Block_N
));
auto
reduce_absmax_func
=
ReduceOp
::
AbsMax
{};
auto
reduce_max_func
=
ReduceOp
::
Max
{};
auto
block_reduce2d
=
Policy
::
template
GetBlockReduce2d
<
Problem
>();
auto
block_reduce2d_sync
=
Policy
::
template
GetBlockReduce2dSync
<
Problem
>();
auto
block_reduce2d_cross_warp_sync
=
Policy
::
template
GetBlockReduce2dCrossWarpSync
<
Problem
>();
using
XTensorType
=
decltype
(
cast_tile
<
ComputeDataType
>
(
load_tile
(
x_window
)));
auto
absmax
=
block_reduce2d
.
template
MakeYBlockTile
<
XTensorType
>();
set_tile
(
absmax
,
reduce_absmax_func
.
GetIdentityValue
<
ComputeDataType
>
());
for
(
int
iN
=
__builtin_amdgcn_readfirstlane
(
0
);
iN
<
num_n_tile_iteration
;
++
iN
)
{
const
auto
x
=
load_tile
(
x_window
);
const
auto
xscale
=
load_tile
(
xscale_window
);
const
auto
y
=
tile_elementwise_in
(
[
&
](
const
auto
&
a
,
const
auto
&
b
)
{
return
type_convert
<
ComputeDataType
>
(
a
)
*
type_convert
<
ComputeDataType
>
(
b
);
},
x
,
xscale
);
block_reduce2d
(
y
,
absmax
,
reduce_absmax_func
);
move_tile_window
(
x_window
,
{
0
,
Block_N
});
move_tile_window
(
xscale_window
,
{
Block_N
});
}
// compute absmax, cross-lane->cross-warp
block_reduce2d_sync
(
absmax
,
reduce_max_func
);
block_reduce2d_cross_warp_sync
(
absmax
,
smem
,
reduce_max_func
);
// ex: yscale = absmax / 127 if int8
auto
yscale
=
tile_elementwise_in
(
[
&
](
const
auto
&
v_
)
{
return
v_
/
type_convert
<
ComputeDataType
>
(
numeric
<
QYDataType
>::
max
());
},
absmax
);
store_tile
(
yscale_window
,
cast_tile
<
YScaleDataType
>
(
yscale
));
// reverse read x to reuse cache
ck_tile
::
index_t
stride_to_right_most_window
=
row_size
%
Block_N
==
0
?
row_size
-
Block_N
:
row_size
-
row_size
%
Block_N
;
move_tile_window
(
x_window
,
{
0
,
-
Block_N
});
move_tile_window
(
xscale_window
,
{
-
Block_N
});
move_tile_window
(
qy_window
,
{
0
,
stride_to_right_most_window
});
// recompute y and quantize y to qy
for
(
int
iN
=
__builtin_amdgcn_readfirstlane
(
0
);
iN
<
num_n_tile_iteration
;
++
iN
)
{
const
auto
x
=
load_tile
(
x_window
);
const
auto
xscale
=
load_tile
(
xscale_window
);
const
auto
y
=
tile_elementwise_in
(
[
&
](
const
auto
&
a
,
const
auto
&
b
)
{
return
type_convert
<
ComputeDataType
>
(
a
)
*
type_convert
<
ComputeDataType
>
(
b
);
},
x
,
xscale
);
auto
qy
=
make_static_distributed_tensor
<
QYDataType
>
(
y
.
get_tile_distribution
());
sweep_tile
(
qy
,
[
&
](
auto
idx
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx
[
number
<
0
>
{}]);
auto
qy_
=
y
[
idx
]
/
yscale
[
i_idx
];
qy
(
idx
)
=
saturates
<
QYDataType
>
{}(
qy_
);
});
store_tile
(
qy_window
,
qy
);
move_tile_window
(
x_window
,
{
0
,
-
Block_N
});
move_tile_window
(
xscale_window
,
{
0
,
-
Block_N
});
move_tile_window
(
qy_window
,
{
0
,
-
Block_N
});
}
}
};
}
// namespace ck_tile
include/ck_tile/ops/softmax.hpp
0 → 100644
View file @
0475a327
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/ops/softmax/block/block_softmax_2d.hpp"
#include "ck_tile/ops/softmax/block/block_softmax_2d_problem.hpp"
#include "ck_tile/ops/common/generic_2d_block_shape.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
include/ck_tile/ops/softmax/block/block_softmax_2d.hpp
0 → 100644
View file @
0475a327
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/reduce.hpp"
#define _BLOCK_SOFTMAX_USE_UNPACK2 0
namespace
ck_tile
{
/*
simple 2d softmax implementation, along row (dim=1)
requirement:
1). each row is within a warp
2). data type must be a dword
*/
template
<
typename
Problem_
,
typename
Policy_
=
void
>
struct
BlockSoftmax2D
{
using
Problem
=
remove_cvref_t
<
Problem_
>
;
using
Policy
=
remove_cvref_t
<
Policy_
>
;
using
DataType
=
typename
Problem
::
DataType
;
template
<
typename
DistributedTensor
,
index_t
dim
=
1
>
CK_TILE_DEVICE
void
operator
()(
const
DistributedTensor
&
x
,
DistributedTensor
&
y
,
number
<
dim
>
=
{})
{
const
auto
f_max
=
[](
auto
e0
,
auto
e1
)
{
return
max
(
e0
,
e1
);
};
const
auto
f_sum
=
[](
auto
e0
,
auto
e1
)
{
return
e0
+
e1
;
};
#if _BLOCK_SOFTMAX_USE_UNPACK2
const
auto
f_max3
=
[](
auto
e0
,
auto
e1
,
auto
e2
)
{
float
rtn
;
asm
volatile
(
"v_max3_f32 %0, %1, %2, %3"
:
"=v"
(
rtn
)
:
"v"
(
e0
),
"v"
(
e1
),
"v"
(
e2
));
return
rtn
;
};
const
auto
f_sum3
=
[](
auto
e0
,
auto
e1
,
auto
e2
)
{
return
e0
+
e1
+
e2
;
};
#endif
// compute row max
auto
reduce_row_max
=
BlockReduce2D
{
x
,
-
numeric
<
DataType
>::
infinity
()};
#if _BLOCK_SOFTMAX_USE_UNPACK2
auto
row_max
=
reduce_row_max
(
f_max3
,
f_max
,
sequence
<
1
,
2
>
{});
#else
auto
row_max
=
reduce_row_max
(
f_max
);
#endif
sweep_tile
<
DistributedTensor
>
([
&
](
auto
idx
)
{
constexpr
auto
row_id
=
make_tuple
(
idx
[
number
<
0
>
{}]);
y
(
idx
)
=
exp
(
x
[
idx
]
-
row_max
[
row_id
]);
});
// compute row sum
auto
reduce_row_sum
=
BlockReduce2D
<
decltype
(
y
)
>
{
y
,
DataType
{
0
}};
#if _BLOCK_SOFTMAX_USE_UNPACK2
auto
row_sum
=
reduce_row_sum
(
f_sum3
,
f_sum
,
sequence
<
1
,
2
>
{});
#else
auto
row_sum
=
reduce_row_sum
(
f_sum
);
#endif
// reciprocal
auto
r
=
make_static_distributed_tensor
<
DataType
>
(
row_sum
.
get_tile_distribution
());
sweep_tile
(
row_sum
,
[
&
](
auto
idx
)
{
r
(
idx
)
=
DataType
{
1
}
/
row_sum
(
idx
);
});
// scale
sweep_tile
<
DistributedTensor
>
([
&
](
auto
idx
)
{
constexpr
auto
row_id
=
make_tuple
(
idx
[
number
<
0
>
{}]);
y
(
idx
)
=
y
(
idx
)
*
r
(
row_id
);
});
}
template
<
typename
DistributedTensor
,
index_t
dim
=
1
>
CK_TILE_DEVICE
decltype
(
auto
)
operator
()(
const
DistributedTensor
&
x
,
number
<
dim
>
=
{})
{
auto
y
=
DistributedTensor
{};
// distributed tensor
operator
()(
x
,
y
,
number
<
dim
>
{});
return
y
;
}
};
}
// namespace ck_tile
Prev
1
…
8
9
10
11
12
13
14
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment