"...csrc/git@developer.sourcefind.cn:zhaoyu6/sglang.git" did not exist on "95191ebdca6684c3bd28ea566bb268a3bf63469c"
Commit 0475a327 authored by dummycoderfe's avatar dummycoderfe
Browse files

Merge branch 'ck_tile/layernorm2d_fwd_optimize' into ck_tile/ln_add_cache_clear

parents c9b961ab 27ff3dec
...@@ -9,26 +9,30 @@ namespace ck_tile { ...@@ -9,26 +9,30 @@ namespace ck_tile {
template <typename BlockGemmShape_> template <typename BlockGemmShape_>
struct GemmTilePartitioner struct GemmTilePartitioner
{ {
using BlockGemmShape = ck_tile::remove_cvref_t<BlockGemmShape_>; using BlockGemmShape = remove_cvref_t<BlockGemmShape_>;
static constexpr ck_tile::index_t kM = BlockGemmShape::kM; static constexpr index_t kM = BlockGemmShape::kM;
static constexpr ck_tile::index_t kN = BlockGemmShape::kN; static constexpr index_t kN = BlockGemmShape::kN;
static constexpr ck_tile::index_t kK = BlockGemmShape::kK; static constexpr index_t kK = BlockGemmShape::kK;
CK_TILE_HOST static constexpr auto CK_TILE_HOST static constexpr auto GridSize(index_t M, index_t N, index_t batch_size)
GridSize(ck_tile::index_t M, ck_tile::index_t N, ck_tile::index_t batch_size)
{ {
ck_tile::index_t GridDimX = (M + kM - 1) / kM; index_t GridDimX = (M + kM - 1) / kM;
ck_tile::index_t GridDimY = (N + kN - 1) / kN; index_t GridDimY = (N + kN - 1) / kN;
ck_tile::index_t GridDimZ = batch_size; index_t GridDimZ = batch_size;
return dim3(GridDimX, GridDimY, GridDimZ); return dim3(GridDimX, GridDimY, GridDimZ);
} }
CK_TILE_HOST_DEVICE static constexpr auto GetLoopNum(index_t K)
{
return integer_divide_ceil(K, kK);
}
CK_TILE_DEVICE auto operator()() CK_TILE_DEVICE auto operator()()
{ {
const index_t iM = __builtin_amdgcn_readfirstlane(blockIdx.x * kM); const index_t iM = __builtin_amdgcn_readfirstlane(blockIdx.x * kM);
const index_t iN = __builtin_amdgcn_readfirstlane(blockIdx.y * kN); const index_t iN = __builtin_amdgcn_readfirstlane(blockIdx.y * kN);
return ck_tile::make_tuple(iM, iN); return make_tuple(iM, iN);
} }
}; };
} // namespace ck_tile } // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_agmem_bgmem_creg_v1_default_policy.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_scheduler.hpp"
namespace ck_tile {
// A Tile Window: global memory
// B Tile Window: global memory
// C Distributed tensor: register
template <typename Problem>
struct BaseGemmPipelineAgBgCrMem
{
using ADataType = remove_cvref_t<typename Problem::ADataType>;
using BDataType = remove_cvref_t<typename Problem::BDataType>;
using BlockGemmShape = remove_cvref_t<typename Problem::BlockGemmShape>;
static constexpr index_t BlockSize = Problem::kBlockSize;
static constexpr index_t MPerBlock = BlockGemmShape::kM;
static constexpr index_t NPerBlock = BlockGemmShape::kN;
static constexpr index_t KPerBlock = BlockGemmShape::kK;
// TODO: Is this 32K value gfx9 arch specific?
static constexpr index_t MinMemInFlyBytes = 32768;
static constexpr index_t WgpPerCU =
(4 * get_warp_size() / BlockSize) >= 1 ? 4 * get_warp_size() / BlockSize : 1;
static constexpr index_t FullMemBandPrefetchStages = integer_divide_ceil(
MinMemInFlyBytes / WgpPerCU,
(MPerBlock * sizeof(ADataType) + NPerBlock * sizeof(BDataType)) * KPerBlock);
static constexpr index_t PrefetchStages =
FullMemBandPrefetchStages >= 2
? FullMemBandPrefetchStages <= 8 ? FullMemBandPrefetchStages : 8
: 2;
static constexpr index_t LocalPrefillStages = 1;
static constexpr index_t GlobalBufferNum = PrefetchStages;
CK_TILE_HOST static constexpr bool BlockHasHotloop(index_t num_loop)
{
return num_loop > PrefetchStages;
}
CK_TILE_HOST static constexpr TailNumber GetBlockLoopTailNum(index_t num_loop)
{
if(num_loop % PrefetchStages == 1)
{
return TailNumber::One;
}
else if(num_loop % PrefetchStages == 2)
{
return TailNumber::Two;
}
else if(num_loop % PrefetchStages == 3)
{
return TailNumber::Three;
}
else if(num_loop % PrefetchStages == 4)
{
return TailNumber::Four;
}
else if(num_loop % PrefetchStages == 5)
{
return TailNumber::Five;
}
else if(num_loop % PrefetchStages == 6)
{
return TailNumber::Six;
}
else if(num_loop % PrefetchStages == 7)
{
return TailNumber::Seven;
}
else
{
return TailNumber::Full;
}
}
};
// Maximum Global Memory throughput pipeline with >=32KB data in fly
// GlobalPrefetchStages: >=2
// LocalPreFillStages: 1
// LocalPreFetchStages: 0
// LocalSharedMemoryBuffer: 1
template <typename Problem, typename Policy = GemmPipelineAGmemBGmemCRegV1DefaultPolicy>
struct GemmPipelineAgBgCrMem : public BaseGemmPipelineAgBgCrMem<Problem>
{
using Base = BaseGemmPipelineAgBgCrMem<Problem>;
using ADataType = remove_cvref_t<typename Problem::ADataType>;
using BDataType = remove_cvref_t<typename Problem::BDataType>;
using CDataType = remove_cvref_t<typename Problem::CDataType>;
using BlockGemmShape = remove_cvref_t<typename Problem::BlockGemmShape>;
using ALayout = remove_cvref_t<typename Problem::ALayout>;
using BLayout = remove_cvref_t<typename Problem::BLayout>;
using CLayout = remove_cvref_t<typename Problem::CLayout>;
using BlockGemm = remove_cvref_t<decltype(Policy::template GetBlockGemm<Problem>())>;
using I0 = number<0>;
static constexpr index_t BlockSize = Problem::kBlockSize;
static constexpr index_t MPerBlock = BlockGemmShape::kM;
static constexpr index_t NPerBlock = BlockGemmShape::kN;
static constexpr index_t KPerBlock = BlockGemmShape::kK;
static constexpr index_t VectorSizeA = Problem::VectorSizeA;
static constexpr index_t VectorSizeB = Problem::VectorSizeB;
static constexpr index_t VectorSizeC = Problem::VectorSizeC;
static constexpr bool kPadA = Problem::kPadA;
static constexpr bool kPadB = Problem::kPadB;
static constexpr bool kPadC = Problem::kPadC;
// Where is the right place for HasHotLoop and TailNum ???
static constexpr bool HasHotLoop = Problem::HasHotLoop;
static constexpr auto TailNum = Problem::TailNum;
static constexpr auto Scheduler = Problem::Scheduler;
using Base::PrefetchStages;
CK_TILE_HOST_DEVICE constexpr index_t GetStaticLdsSize()
{
return integer_divide_ceil(
sizeof(ADataType) *
Policy::template MakeALdsBlockDescriptor<Problem>().get_element_space_size(),
16) *
16 +
sizeof(BDataType) *
Policy::template MakeBLdsBlockDescriptor<Problem>().get_element_space_size();
}
CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSize()
{
return Policy::template GetSmemSize<Problem>();
}
template <GemmPipelineScheduler Scheduler>
struct PipelineImpl
{
};
template <>
struct PipelineImpl<GemmPipelineScheduler::Intrawave>
{
template <typename DstBlockTile, typename SrcTileWindow>
CK_TILE_DEVICE void GlobalPrefetch(DstBlockTile& dst_block_tile,
SrcTileWindow& dram_tile_window) const
{
load_tile(dst_block_tile, dram_tile_window);
move_tile_window(dram_tile_window, {0, KPerBlock});
}
template <typename DstTileWindow, typename SrcBlockTile, typename ElementFunction>
CK_TILE_DEVICE void LocalPrefill(DstTileWindow& lds_tile_window,
const SrcBlockTile& src_block_tile,
const ElementFunction& element_func) const
{
const auto block_tile_tmp = tile_elementwise_in(element_func, src_block_tile);
store_tile(lds_tile_window, block_tile_tmp);
}
template <bool HasHotLoop,
TailNumber TailNum,
typename ADramBlockWindowTmp,
typename BDramBlockWindowTmp,
typename AElementFunction,
typename BElementFunction>
CK_TILE_DEVICE auto operator()(const ADramBlockWindowTmp& a_dram_block_window_tmp,
const AElementFunction& a_element_func,
const BDramBlockWindowTmp& b_dram_block_window_tmp,
const BElementFunction& b_element_func,
index_t num_loop,
void* p_smem) const
{
static_assert(
std::is_same_v<ADataType, remove_cvref_t<typename ADramBlockWindowTmp::DataType>> &&
std::is_same_v<BDataType,
remove_cvref_t<typename BDramBlockWindowTmp::DataType>>,
"A/B Dram block window should have the same data type as appropriate "
"([A|B]DataType) defined in Problem definition!");
static_assert(MPerBlock == ADramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
NPerBlock ==
BDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
KPerBlock == ADramBlockWindowTmp{}.get_window_lengths()[number<1>{}],
"A/B block window appropriate sizes must be equal to MPerBlock/NPerblock"
" or KPerBlock!");
// ------------------------------------------------------------------------------------
// Definitions of all needed tiles
// A tile in LDS
ADataType* p_a_lds = static_cast<ADataType*>(p_smem);
constexpr auto a_lds_block_desc = Policy::template MakeALdsBlockDescriptor<Problem>();
auto a_lds_block = make_tensor_view<address_space_enum::lds>(p_a_lds, a_lds_block_desc);
// TODO: LDS alignment should come from Policy!
constexpr index_t a_lds_block_space_size_aligned =
integer_divide_ceil(sizeof(ADataType) * a_lds_block_desc.get_element_space_size(),
16) *
16;
// B tile in LDS
BDataType* p_b_lds = static_cast<BDataType*>(
static_cast<void*>(static_cast<char*>(p_smem) + a_lds_block_space_size_aligned));
constexpr auto b_lds_block_desc = Policy::template MakeBLdsBlockDescriptor<Problem>();
auto b_lds_block = make_tensor_view<address_space_enum::lds>(p_b_lds, b_lds_block_desc);
// A DRAM tile window for load
auto a_copy_dram_window =
make_tile_window(a_dram_block_window_tmp.get_bottom_tensor_view(),
make_tuple(number<MPerBlock>{}, number<KPerBlock>{}),
a_dram_block_window_tmp.get_window_origin(),
Policy::template MakeADramTileDistribution<Problem>());
// A LDS tile window for store
auto a_copy_lds_window =
make_tile_window(a_lds_block,
make_tuple(number<MPerBlock>{}, number<KPerBlock>{}),
{0, 0},
a_copy_dram_window.get_tile_distribution());
// B DRAM tile window for load
auto b_copy_dram_window =
make_tile_window(b_dram_block_window_tmp.get_bottom_tensor_view(),
make_tuple(number<NPerBlock>{}, number<KPerBlock>{}),
b_dram_block_window_tmp.get_window_origin(),
Policy::template MakeBDramTileDistribution<Problem>());
// B LDS tile window for store
auto b_copy_lds_window =
make_tile_window(b_lds_block,
make_tuple(number<NPerBlock>{}, number<KPerBlock>{}),
{0, 0},
b_copy_dram_window.get_tile_distribution());
// A LDS tile for block GEMM
auto a_lds_gemm_window = make_tile_window(
a_lds_block, make_tuple(number<MPerBlock>{}, number<KPerBlock>{}), {0, 0});
// B LDS tile for block GEMM
auto b_lds_gemm_window = make_tile_window(
b_lds_block, make_tuple(number<NPerBlock>{}, number<KPerBlock>{}), {0, 0});
// Block GEMM
constexpr auto block_gemm = BlockGemm();
auto c_block_tile = block_gemm.MakeCBlockTile();
using ABlockTileDistr = decltype(a_copy_dram_window.get_tile_distribution());
using BBlockTileDistr = decltype(b_copy_dram_window.get_tile_distribution());
using ABlockTile =
decltype(make_static_distributed_tensor<ADataType>(ABlockTileDistr{}));
using BBlockTile =
decltype(make_static_distributed_tensor<BDataType>(BBlockTileDistr{}));
tuple_array<ABlockTile, PrefetchStages> a_block_tiles;
tuple_array<BBlockTile, PrefetchStages> b_block_tiles;
// -----------------------------------------------------------------------------------------
// Gemm pipeline start
// prefetch
// global read 0
GlobalPrefetch(a_block_tiles.get(I0{}), a_copy_dram_window);
GlobalPrefetch(b_block_tiles.get(I0{}), b_copy_dram_window);
// initialize C
tile_elementwise_inout([](auto& c) { c = 0; }, c_block_tile);
// LDS write 0
LocalPrefill(a_copy_lds_window, a_block_tiles.get(I0{}), a_element_func);
LocalPrefill(b_copy_lds_window, b_block_tiles.get(I0{}), b_element_func);
// Global prefetch [1, PrefetchStages]
static_for<1, PrefetchStages, 1>{}([&](auto prefetch_idx) {
GlobalPrefetch(a_block_tiles.get(number<prefetch_idx>{}), a_copy_dram_window);
GlobalPrefetch(b_block_tiles.get(number<prefetch_idx>{}), b_copy_dram_window);
});
// main body
if constexpr(HasHotLoop)
{
index_t i = 0;
do
{
static_for<0, PrefetchStages, 1>{}([&](auto prefetch_idx) {
block_sync_lds();
// block_gemm.LocalPrefetch();
block_gemm(c_block_tile, a_lds_gemm_window, b_lds_gemm_window);
block_sync_lds();
LocalPrefill(
a_copy_lds_window,
a_block_tiles.get(number<(prefetch_idx + 1) % PrefetchStages>{}),
a_element_func);
LocalPrefill(
b_copy_lds_window,
b_block_tiles.get(number<(prefetch_idx + 1) % PrefetchStages>{}),
b_element_func);
GlobalPrefetch(a_block_tiles.get(number<prefetch_idx>{}),
a_copy_dram_window);
GlobalPrefetch(b_block_tiles.get(number<prefetch_idx>{}),
b_copy_dram_window);
});
i += PrefetchStages;
} while(i < (num_loop - PrefetchStages));
}
auto HotLoopTail = [&](auto tail_num) {
static_for<1, tail_num, 1>{}([&](auto prefetch_idx) {
block_sync_lds();
// block_gemm.LocalPrefetch();
block_gemm(c_block_tile, a_lds_gemm_window, b_lds_gemm_window);
block_sync_lds();
LocalPrefill(a_copy_lds_window,
a_block_tiles.get(number<prefetch_idx>{}),
a_element_func);
LocalPrefill(b_copy_lds_window,
b_block_tiles.get(number<prefetch_idx>{}),
b_element_func);
});
block_sync_lds();
// block_gemm.LocalPrefetch();
block_gemm(c_block_tile, a_lds_gemm_window, b_lds_gemm_window);
};
if constexpr(TailNum == TailNumber::One)
{
block_sync_lds();
// block_gemm.LocalPrefetch();
block_gemm(c_block_tile, a_lds_gemm_window, b_lds_gemm_window);
}
else if constexpr(TailNum == TailNumber::Two)
{
HotLoopTail(number<2>{});
}
else if constexpr(TailNum == TailNumber::Three)
{
HotLoopTail(number<3>{});
}
else if constexpr(TailNum == TailNumber::Four)
{
HotLoopTail(number<4>{});
}
else if constexpr(TailNum == TailNumber::Five)
{
HotLoopTail(number<5>{});
}
else if constexpr(TailNum == TailNumber::Six)
{
HotLoopTail(number<6>{});
}
else if constexpr(TailNum == TailNumber::Seven)
{
HotLoopTail(number<7>{});
}
else if constexpr(TailNum == TailNumber::Full)
{
HotLoopTail(number<PrefetchStages>{});
}
return c_block_tile;
}
};
template <typename ADramBlockWindowTmp,
typename BDramBlockWindowTmp,
typename AElementFunction,
typename BElementFunction>
CK_TILE_DEVICE auto operator()(const ADramBlockWindowTmp& a_dram_block_window_tmp,
const AElementFunction& a_element_func,
const BDramBlockWindowTmp& b_dram_block_window_tmp,
const BElementFunction& b_element_func,
index_t num_loop,
void* p_smem) const
{
return PipelineImpl<Scheduler>{}.template operator()<HasHotLoop, TailNum>(
a_dram_block_window_tmp,
a_element_func,
b_dram_block_window_tmp,
b_element_func,
num_loop,
p_smem);
}
template <typename ADramBlockWindowTmp, typename BDramBlockWindowTmp>
CK_TILE_DEVICE auto operator()(const ADramBlockWindowTmp& a_dram_block_window_tmp,
const BDramBlockWindowTmp& b_dram_block_window_tmp,
index_t num_loop,
void* p_smem) const
{
return PipelineImpl<Scheduler>{}.template operator()<HasHotLoop, TailNum>(
a_dram_block_window_tmp,
[](const ADataType& a) { return a; },
b_dram_block_window_tmp,
[](const BDataType& b) { return b; },
num_loop,
p_smem);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <ostream>
#include "ck_tile/core.hpp"
namespace ck_tile {
enum struct GemmPipelineScheduler
{
Intrawave,
Interwave,
};
enum struct TailNumber
{
// Single / Double buffer pipeline
Odd,
Even,
// Long prefetch pipeline, up to 8
One,
Two,
Three,
Four,
Five,
Six,
Seven,
// Unroll stages > Prefetch stages, number of loop is multiple of unroll stages
Empty,
// Unroll stages <= Prefetch stages, number of loop is multiple of unroll stages add
// prefetchstages
Full,
};
} // namespace ck_tile
inline std::ostream& operator<<(std::ostream& os, const ck_tile::GemmPipelineScheduler& s)
{
switch(s)
{
case ck_tile::GemmPipelineScheduler::Intrawave: os << "Intrawave"; break;
case ck_tile::GemmPipelineScheduler::Interwave: os << "Interwave"; break;
default: os << "";
}
return os;
}
inline std::ostream& operator<<(std::ostream& os, const ck_tile::TailNumber& s)
{
switch(s)
{
case ck_tile::TailNumber::Odd: os << "Odd"; break;
case ck_tile::TailNumber::Even: os << "Even"; break;
case ck_tile::TailNumber::One: os << "One"; break;
case ck_tile::TailNumber::Two: os << "Two"; break;
case ck_tile::TailNumber::Three: os << "Three"; break;
case ck_tile::TailNumber::Four: os << "Four"; break;
case ck_tile::TailNumber::Five: os << "Five"; break;
case ck_tile::TailNumber::Six: os << "Six"; break;
case ck_tile::TailNumber::Seven: os << "Seven"; break;
case ck_tile::TailNumber::Empty: os << "Empty"; break;
case ck_tile::TailNumber::Full: os << "Full"; break;
default: os << "";
}
return os;
}
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -19,27 +19,27 @@ struct GemmPipelineAGmemBGmemCRegV1 ...@@ -19,27 +19,27 @@ struct GemmPipelineAGmemBGmemCRegV1
using CDataType = remove_cvref_t<typename Problem::CDataType>; using CDataType = remove_cvref_t<typename Problem::CDataType>;
using BlockGemmShape = remove_cvref_t<typename Problem::BlockGemmShape>; using BlockGemmShape = remove_cvref_t<typename Problem::BlockGemmShape>;
static constexpr index_t kBlockSize = Problem::kBlockSize; using ALayout = remove_cvref_t<typename Problem::ALayout>;
using BLayout = remove_cvref_t<typename Problem::BLayout>;
using CLayout = remove_cvref_t<typename Problem::CLayout>;
static constexpr index_t BlockSize = Problem::kBlockSize;
static constexpr index_t kMPerBlock = BlockGemmShape::kM; static constexpr index_t kMPerBlock = BlockGemmShape::kM;
static constexpr index_t kNPerBlock = BlockGemmShape::kN; static constexpr index_t kNPerBlock = BlockGemmShape::kN;
static constexpr index_t kKPerBlock = BlockGemmShape::kK; static constexpr index_t kKPerBlock = BlockGemmShape::kK;
static constexpr index_t AlignmentA = Problem::AlignmentA; static constexpr index_t VectorSizeA = Problem::VectorSizeA;
static constexpr index_t AlignmentB = Problem::AlignmentB; static constexpr index_t VectorSizeB = Problem::VectorSizeB;
static constexpr index_t AlignmentC = Problem::AlignmentC; static constexpr index_t VectorSizeC = Problem::VectorSizeC;
static constexpr bool kPadA = Problem::kPadA; static constexpr bool kPadA = Problem::kPadA;
static constexpr bool kPadB = Problem::kPadB; static constexpr bool kPadB = Problem::kPadB;
static constexpr bool kPadC = Problem::kPadC; static constexpr bool kPadC = Problem::kPadC;
using LayoutA = remove_cvref_t<typename Problem::LayoutA>; CK_TILE_HOST_DEVICE static constexpr index_t GetStaticLdsSize()
using LayoutB = remove_cvref_t<typename Problem::LayoutB>;
using LayoutC = remove_cvref_t<typename Problem::LayoutC>;
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetStaticLdsSize()
{ {
return ck_tile::integer_divide_ceil( return integer_divide_ceil(
sizeof(ADataType) * sizeof(ADataType) *
Policy::template MakeALdsBlockDescriptor<Problem>().get_element_space_size(), Policy::template MakeALdsBlockDescriptor<Problem>().get_element_space_size(),
16) * 16) *
...@@ -48,7 +48,7 @@ struct GemmPipelineAGmemBGmemCRegV1 ...@@ -48,7 +48,7 @@ struct GemmPipelineAGmemBGmemCRegV1
Policy::template MakeBLdsBlockDescriptor<Problem>().get_element_space_size(); Policy::template MakeBLdsBlockDescriptor<Problem>().get_element_space_size();
} }
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize() CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSize()
{ {
return Policy::template GetSmemSize<Problem>(); return Policy::template GetSmemSize<Problem>();
} }
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -71,8 +71,6 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy ...@@ -71,8 +71,6 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
template <typename Problem> template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeBLdsBlockDescriptor() CK_TILE_HOST_DEVICE static constexpr auto MakeBLdsBlockDescriptor()
{ {
using namespace ck_tile;
constexpr index_t kNPerBlock = Problem::BlockGemmShape::kN; constexpr index_t kNPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK; constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
...@@ -93,7 +91,7 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy ...@@ -93,7 +91,7 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
} }
template <typename Problem> template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeA() CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSizeA()
{ {
constexpr index_t smem_size_a = sizeof(typename Problem::ADataType) * constexpr index_t smem_size_a = sizeof(typename Problem::ADataType) *
MakeALdsBlockDescriptor<Problem>().get_element_space_size(); MakeALdsBlockDescriptor<Problem>().get_element_space_size();
...@@ -101,7 +99,7 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy ...@@ -101,7 +99,7 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
} }
template <typename Problem> template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeB() CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSizeB()
{ {
constexpr index_t smem_size_b = sizeof(typename Problem::BDataType) * constexpr index_t smem_size_b = sizeof(typename Problem::BDataType) *
MakeBLdsBlockDescriptor<Problem>().get_element_space_size(); MakeBLdsBlockDescriptor<Problem>().get_element_space_size();
...@@ -109,7 +107,7 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy ...@@ -109,7 +107,7 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
} }
template <typename Problem> template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize() CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSize()
{ {
constexpr index_t smem_size_a = GetSmemSizeA<Problem>(); constexpr index_t smem_size_a = GetSmemSizeA<Problem>();
constexpr index_t smem_size_b = GetSmemSizeB<Problem>(); constexpr index_t smem_size_b = GetSmemSizeB<Problem>();
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -25,9 +25,9 @@ struct GemmPipelineAGmemBGmemCRegV2 ...@@ -25,9 +25,9 @@ struct GemmPipelineAGmemBGmemCRegV2
static constexpr index_t kNPerBlock = BlockGemmShape::kN; static constexpr index_t kNPerBlock = BlockGemmShape::kN;
static constexpr index_t kKPerBlock = BlockGemmShape::kK; static constexpr index_t kKPerBlock = BlockGemmShape::kK;
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetStaticLdsSize() CK_TILE_HOST_DEVICE static constexpr index_t GetStaticLdsSize()
{ {
return ck_tile::integer_divide_ceil( return integer_divide_ceil(
sizeof(ADataType) * sizeof(ADataType) *
Policy::template MakeALdsBlockDescriptor<Problem>().get_element_space_size(), Policy::template MakeALdsBlockDescriptor<Problem>().get_element_space_size(),
16) * 16) *
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
#include "ck_tile/core.hpp" #include "ck_tile/core.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_scheduler.hpp"
#define VectorLoadSize 16
namespace ck_tile { namespace ck_tile {
static constexpr int _VectorSize = 16;
template <typename ADataType_, template <typename ADataType_,
typename BDataType_, typename BDataType_,
typename CDataType_, typename CDataType_,
...@@ -22,18 +23,52 @@ struct GemmPipelineProblem ...@@ -22,18 +23,52 @@ struct GemmPipelineProblem
using BlockGemmShape = remove_cvref_t<BlockGemmShape_>; using BlockGemmShape = remove_cvref_t<BlockGemmShape_>;
using GemmTraits = remove_cvref_t<TileGemmTraits_>; using GemmTraits = remove_cvref_t<TileGemmTraits_>;
using ALayout = remove_cvref_t<typename GemmTraits::ALayout>;
using BLayout = remove_cvref_t<typename GemmTraits::BLayout>;
using CLayout = remove_cvref_t<typename GemmTraits::CLayout>;
static constexpr index_t kBlockSize = BlockGemmShape::NumWarps * get_warp_size(); static constexpr index_t kBlockSize = BlockGemmShape::NumWarps * get_warp_size();
static constexpr bool kPadA = GemmTraits::kPadA; static constexpr bool kPadA = GemmTraits::kPadA;
static constexpr bool kPadB = GemmTraits::kPadB; static constexpr bool kPadB = GemmTraits::kPadB;
static constexpr bool kPadC = GemmTraits::kPadC; static constexpr bool kPadC = GemmTraits::kPadC;
using LayoutA = remove_cvref_t<typename GemmTraits::LayoutA>; static constexpr index_t VectorSizeA = kPadA ? 1 : _VectorSize / sizeof(ADataType);
using LayoutB = remove_cvref_t<typename GemmTraits::LayoutB>; static constexpr index_t VectorSizeB = kPadB ? 1 : _VectorSize / sizeof(BDataType);
using LayoutC = remove_cvref_t<typename GemmTraits::LayoutC>; static constexpr index_t VectorSizeC = kPadC ? 1 : _VectorSize / sizeof(CDataType);
};
template <typename ADataType_,
typename BDataType_,
typename CDataType_,
typename BlockGemmShape_,
typename TileGemmTraits_,
GemmPipelineScheduler Scheduler_ = GemmPipelineScheduler::Intrawave,
bool HasHotLoop_ = true,
TailNumber TailNum_ = TailNumber::Full>
struct UniversalGemmPipelineProblem
{
using ADataType = remove_cvref_t<ADataType_>;
using BDataType = remove_cvref_t<BDataType_>;
using CDataType = remove_cvref_t<CDataType_>;
using BlockGemmShape = remove_cvref_t<BlockGemmShape_>;
using GemmTraits = remove_cvref_t<TileGemmTraits_>;
using ALayout = remove_cvref_t<typename GemmTraits::ALayout>;
using BLayout = remove_cvref_t<typename GemmTraits::BLayout>;
using CLayout = remove_cvref_t<typename GemmTraits::CLayout>;
static constexpr auto Scheduler = Scheduler_;
static constexpr auto HasHotLoop = HasHotLoop_;
static constexpr auto TailNum = TailNum_;
static constexpr index_t kBlockSize = BlockGemmShape::NumWarps * get_warp_size();
static constexpr bool kPadA = GemmTraits::kPadA;
static constexpr bool kPadB = GemmTraits::kPadB;
static constexpr bool kPadC = GemmTraits::kPadC;
static constexpr index_t AlignmentA = kPadA ? 1 : VectorLoadSize / sizeof(ADataType); static constexpr index_t VectorSizeA = kPadA ? _VectorSize / sizeof(ADataType) : 1;
static constexpr index_t AlignmentB = kPadB ? 1 : VectorLoadSize / sizeof(BDataType); static constexpr index_t VectorSizeB = kPadB ? _VectorSize / sizeof(BDataType) : 1;
static constexpr index_t AlignmentC = kPadC ? 1 : VectorLoadSize / sizeof(CDataType); static constexpr index_t VectorSizeC = kPadC ? _VectorSize / sizeof(CDataType) : 1;
}; };
} // namespace ck_tile } // namespace ck_tile
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
#include "ck_tile/core.hpp"
namespace ck_tile { namespace ck_tile {
template <bool kPadA_, template <bool kPadA_,
bool kPadB_, bool kPadB_,
bool kPadC_, bool kPadC_,
typename LayoutA_, typename ALayout_,
typename LayoutB_, typename BLayout_,
typename LayoutC_> typename CLayout_>
struct TileGemmTraits struct TileGemmTraits
{ {
static constexpr bool kPadA = kPadA_; static constexpr bool kPadA = kPadA_;
static constexpr bool kPadB = kPadB_; static constexpr bool kPadB = kPadB_;
static constexpr bool kPadC = kPadC_; static constexpr bool kPadC = kPadC_;
using LayoutA = LayoutA_; using ALayout = ALayout_;
using LayoutB = LayoutB_; using BLayout = BLayout_;
using LayoutC = LayoutC_; using CLayout = CLayout_;
}; };
} // namespace ck_tile } // namespace ck_tile
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -39,9 +39,9 @@ struct WarpGemmAttributeMfmaImplF16F16F32M32N32K8 ...@@ -39,9 +39,9 @@ struct WarpGemmAttributeMfmaImplF16F16F32M32N32K8
#if defined(__gfx9__) #if defined(__gfx9__)
c_vec = __builtin_amdgcn_mfma_f32_32x32x8f16(a_vec, b_vec, c_vec, 0, 0, 0); c_vec = __builtin_amdgcn_mfma_f32_32x32x8f16(a_vec, b_vec, c_vec, 0, 0, 0);
#else #else
ck_tile::ignore = c_vec; ignore = c_vec;
ck_tile::ignore = a_vec; ignore = a_vec;
ck_tile::ignore = b_vec; ignore = b_vec;
#endif #endif
} }
...@@ -52,8 +52,8 @@ struct WarpGemmAttributeMfmaImplF16F16F32M32N32K8 ...@@ -52,8 +52,8 @@ struct WarpGemmAttributeMfmaImplF16F16F32M32N32K8
return bit_cast<CVecType>( return bit_cast<CVecType>(
__builtin_amdgcn_mfma_f32_32x32x8f16(a_vec, b_vec, fp32x16_t{0.f}, 0, 0, 0)); __builtin_amdgcn_mfma_f32_32x32x8f16(a_vec, b_vec, fp32x16_t{0.f}, 0, 0, 0));
#else #else
ck_tile::ignore = a_vec; ignore = a_vec;
ck_tile::ignore = b_vec; ignore = b_vec;
return CVecType{0.f}; return CVecType{0.f};
#endif #endif
} }
...@@ -90,9 +90,9 @@ struct WarpGemmAttributeMfmaImplF16F16F32M16N16K16 ...@@ -90,9 +90,9 @@ struct WarpGemmAttributeMfmaImplF16F16F32M16N16K16
#if defined(__gfx9__) #if defined(__gfx9__)
c_vec = __builtin_amdgcn_mfma_f32_16x16x16f16(a_vec, b_vec, c_vec, 0, 0, 0); c_vec = __builtin_amdgcn_mfma_f32_16x16x16f16(a_vec, b_vec, c_vec, 0, 0, 0);
#else #else
ck_tile::ignore = c_vec; ignore = c_vec;
ck_tile::ignore = a_vec; ignore = a_vec;
ck_tile::ignore = b_vec; ignore = b_vec;
#endif #endif
} }
...@@ -103,8 +103,8 @@ struct WarpGemmAttributeMfmaImplF16F16F32M16N16K16 ...@@ -103,8 +103,8 @@ struct WarpGemmAttributeMfmaImplF16F16F32M16N16K16
return bit_cast<CVecType>( return bit_cast<CVecType>(
__builtin_amdgcn_mfma_f32_16x16x16f16(a_vec, b_vec, fp32x4_t{0.f}, 0, 0, 0)); __builtin_amdgcn_mfma_f32_16x16x16f16(a_vec, b_vec, fp32x4_t{0.f}, 0, 0, 0));
#else #else
ck_tile::ignore = a_vec; ignore = a_vec;
ck_tile::ignore = b_vec; ignore = b_vec;
return CVecType{0.f}; return CVecType{0.f};
#endif #endif
} }
...@@ -154,9 +154,9 @@ struct WarpGemmAttributeMfmaImplBf16Bf16F32M32N32K8 ...@@ -154,9 +154,9 @@ struct WarpGemmAttributeMfmaImplBf16Bf16F32M32N32K8
0); 0);
}); });
#else #else
ck_tile::ignore = c_vec; ignore = c_vec;
ck_tile::ignore = a_vec; ignore = a_vec;
ck_tile::ignore = b_vec; ignore = b_vec;
#endif #endif
} }
...@@ -181,8 +181,8 @@ struct WarpGemmAttributeMfmaImplBf16Bf16F32M32N32K8 ...@@ -181,8 +181,8 @@ struct WarpGemmAttributeMfmaImplBf16Bf16F32M32N32K8
}); });
return c_vec; return c_vec;
#else #else
ck_tile::ignore = a_vec; ignore = a_vec;
ck_tile::ignore = b_vec; ignore = b_vec;
return CVecType{0.f}; return CVecType{0.f};
#endif #endif
} }
...@@ -231,9 +231,9 @@ struct WarpGemmAttributeMfmaImplBf16Bf16F32M16N16K16 ...@@ -231,9 +231,9 @@ struct WarpGemmAttributeMfmaImplBf16Bf16F32M16N16K16
0); 0);
}); });
#else #else
ck_tile::ignore = c_vec; ignore = c_vec;
ck_tile::ignore = a_vec; ignore = a_vec;
ck_tile::ignore = b_vec; ignore = b_vec;
#endif #endif
} }
...@@ -258,8 +258,8 @@ struct WarpGemmAttributeMfmaImplBf16Bf16F32M16N16K16 ...@@ -258,8 +258,8 @@ struct WarpGemmAttributeMfmaImplBf16Bf16F32M16N16K16
}); });
return c_vec; return c_vec;
#else #else
ck_tile::ignore = a_vec; ignore = a_vec;
ck_tile::ignore = b_vec; ignore = b_vec;
return CVecType{0.f}; return CVecType{0.f};
#endif #endif
} }
...@@ -320,9 +320,9 @@ struct WarpGemmAttributeMfmaImpl_f32_32x32x16_f8_base ...@@ -320,9 +320,9 @@ struct WarpGemmAttributeMfmaImpl_f32_32x32x16_f8_base
c_vec = __builtin_amdgcn_mfma_f32_32x32x2f32(a_f32, b_f32, c_vec, 0, 0, 0); c_vec = __builtin_amdgcn_mfma_f32_32x32x2f32(a_f32, b_f32, c_vec, 0, 0, 0);
}); });
#else #else
ck_tile::ignore = c_vec; ignore = c_vec;
ck_tile::ignore = a_vec; ignore = a_vec;
ck_tile::ignore = b_vec; ignore = b_vec;
#endif #endif
} }
...@@ -356,8 +356,8 @@ struct WarpGemmAttributeMfmaImpl_f32_32x32x16_f8_base ...@@ -356,8 +356,8 @@ struct WarpGemmAttributeMfmaImpl_f32_32x32x16_f8_base
}); });
return c_vec; return c_vec;
#else #else
ck_tile::ignore = a_vec; ignore = a_vec;
ck_tile::ignore = b_vec; ignore = b_vec;
return CVecType{0.f}; return CVecType{0.f};
#endif #endif
} }
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -21,40 +21,40 @@ struct WarpGemmMfmaDispatcher; ...@@ -21,40 +21,40 @@ struct WarpGemmMfmaDispatcher;
// clang-format off // clang-format off
// fp16 // fp16
template<> struct WarpGemmMfmaDispatcher<ck_tile::half_t, ck_tile::half_t, float, 32, 32, 8, false> { using Type = WarpGemmMfmaF16F16F32M32N32K8; }; template<> struct WarpGemmMfmaDispatcher<half_t, half_t, float, 32, 32, 8, false> { using Type = WarpGemmMfmaF16F16F32M32N32K8; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::half_t, ck_tile::half_t, float, 32, 32, 8, true> { using Type = WarpGemmMfmaF16F16F32M32N32K8TransposedCDistribution; }; template<> struct WarpGemmMfmaDispatcher<half_t, half_t, float, 32, 32, 8, true> { using Type = WarpGemmMfmaF16F16F32M32N32K8TransposedCDistribution; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::half_t, ck_tile::half_t, float, 32, 32, 16, false> { using Type = WarpGemmMfmaF16F16F32M32N32K16; }; template<> struct WarpGemmMfmaDispatcher<half_t, half_t, float, 32, 32, 16, false> { using Type = WarpGemmMfmaF16F16F32M32N32K16; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::half_t, ck_tile::half_t, float, 32, 32, 16, true> { using Type = WarpGemmMfmaF16F16F32M32N32K16TransposedCDistribution; }; template<> struct WarpGemmMfmaDispatcher<half_t, half_t, float, 32, 32, 16, true> { using Type = WarpGemmMfmaF16F16F32M32N32K16TransposedCDistribution; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::half_t, ck_tile::half_t, float, 16, 16, 16, false> { using Type = WarpGemmMfmaF16F16F32M16N16K16; }; template<> struct WarpGemmMfmaDispatcher<half_t, half_t, float, 16, 16, 16, false> { using Type = WarpGemmMfmaF16F16F32M16N16K16; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::half_t, ck_tile::half_t, float, 16, 16, 16, true> { using Type = WarpGemmMfmaF16F16F32M16N16K16TransposedCDistribution; }; template<> struct WarpGemmMfmaDispatcher<half_t, half_t, float, 16, 16, 16, true> { using Type = WarpGemmMfmaF16F16F32M16N16K16TransposedCDistribution; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::half_t, ck_tile::half_t, float, 16, 16, 32, false> { using Type = WarpGemmMfmaF16F16F32M16N16K32; }; template<> struct WarpGemmMfmaDispatcher<half_t, half_t, float, 16, 16, 32, false> { using Type = WarpGemmMfmaF16F16F32M16N16K32; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::half_t, ck_tile::half_t, float, 16, 16, 32, true> { using Type = WarpGemmMfmaF16F16F32M16N16K32TransposedCDistribution; }; template<> struct WarpGemmMfmaDispatcher<half_t, half_t, float, 16, 16, 32, true> { using Type = WarpGemmMfmaF16F16F32M16N16K32TransposedCDistribution; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::half_t, ck_tile::half_t, float, 32, 32, 8, false, true> { using Type = WarpGemmMfmaF16F16F32M32N32K8SwizzleA; }; template<> struct WarpGemmMfmaDispatcher<half_t, half_t, float, 32, 32, 8, false, true> { using Type = WarpGemmMfmaF16F16F32M32N32K8SwizzleA; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::half_t, ck_tile::half_t, float, 32, 32, 16, false, true> { using Type = WarpGemmMfmaF16F16F32M32N32K16SwizzleA; }; template<> struct WarpGemmMfmaDispatcher<half_t, half_t, float, 32, 32, 16, false, true> { using Type = WarpGemmMfmaF16F16F32M32N32K16SwizzleA; };
// bf16 // bf16
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf16_t, ck_tile::bf16_t, float, 32, 32, 8, false> { using Type = WarpGemmMfmaBf16Bf16F32M32N32K8; }; template<> struct WarpGemmMfmaDispatcher<bf16_t, bf16_t, float, 32, 32, 8, false> { using Type = WarpGemmMfmaBf16Bf16F32M32N32K8; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf16_t, ck_tile::bf16_t, float, 32, 32, 8, true> { using Type = WarpGemmMfmaBf16Bf16F32M32N32K8TransposedCDistribution; }; template<> struct WarpGemmMfmaDispatcher<bf16_t, bf16_t, float, 32, 32, 8, true> { using Type = WarpGemmMfmaBf16Bf16F32M32N32K8TransposedCDistribution; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf16_t, ck_tile::bf16_t, float, 32, 32, 16, false> { using Type = WarpGemmMfmaBf16Bf16F32M32N32K16; }; template<> struct WarpGemmMfmaDispatcher<bf16_t, bf16_t, float, 32, 32, 16, false> { using Type = WarpGemmMfmaBf16Bf16F32M32N32K16; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf16_t, ck_tile::bf16_t, float, 32, 32, 16, true> { using Type = WarpGemmMfmaBf16Bf16F32M32N32K16TransposedCDistribution; }; template<> struct WarpGemmMfmaDispatcher<bf16_t, bf16_t, float, 32, 32, 16, true> { using Type = WarpGemmMfmaBf16Bf16F32M32N32K16TransposedCDistribution; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf16_t, ck_tile::bf16_t, float, 16, 16, 16, false> { using Type = WarpGemmMfmaBf16Bf16F32M16N16K16; }; template<> struct WarpGemmMfmaDispatcher<bf16_t, bf16_t, float, 16, 16, 16, false> { using Type = WarpGemmMfmaBf16Bf16F32M16N16K16; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf16_t, ck_tile::bf16_t, float, 16, 16, 16, true> { using Type = WarpGemmMfmaBf16Bf16F32M16N16K16TransposedCDistribution; }; template<> struct WarpGemmMfmaDispatcher<bf16_t, bf16_t, float, 16, 16, 16, true> { using Type = WarpGemmMfmaBf16Bf16F32M16N16K16TransposedCDistribution; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf16_t, ck_tile::bf16_t, float, 16, 16, 32, false> { using Type = WarpGemmMfmaBf16Bf16F32M16N16K32; }; template<> struct WarpGemmMfmaDispatcher<bf16_t, bf16_t, float, 16, 16, 32, false> { using Type = WarpGemmMfmaBf16Bf16F32M16N16K32; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf16_t, ck_tile::bf16_t, float, 16, 16, 32, true> { using Type = WarpGemmMfmaBf16Bf16F32M16N16K32TransposedCDistribution; }; template<> struct WarpGemmMfmaDispatcher<bf16_t, bf16_t, float, 16, 16, 32, true> { using Type = WarpGemmMfmaBf16Bf16F32M16N16K32TransposedCDistribution; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf16_t, ck_tile::bf16_t, float, 32, 32, 8, false, true> { using Type = WarpGemmMfmaBf16Bf16F32M32N32K8SwizzleA; }; template<> struct WarpGemmMfmaDispatcher<bf16_t, bf16_t, float, 32, 32, 8, false, true> { using Type = WarpGemmMfmaBf16Bf16F32M32N32K8SwizzleA; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf16_t, ck_tile::bf16_t, float, 32, 32, 16, false, true> { using Type = WarpGemmMfmaBf16Bf16F32M32N32K16SwizzleA; }; template<> struct WarpGemmMfmaDispatcher<bf16_t, bf16_t, float, 32, 32, 16, false, true> { using Type = WarpGemmMfmaBf16Bf16F32M32N32K16SwizzleA; };
// fp8 // fp8
template<> struct WarpGemmMfmaDispatcher<ck_tile::fp8_t, ck_tile::fp8_t, float, 32, 32, 16, false> { using Type = WarpGemmMfma_f32_32x32x16_fp8_fp8; }; template<> struct WarpGemmMfmaDispatcher<fp8_t, fp8_t, float, 32, 32, 16, false> { using Type = WarpGemmMfma_f32_32x32x16_fp8_fp8; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::fp8_t, ck_tile::fp8_t, float, 32, 32, 16, true> { using Type = WarpGemmMfma_f32_32x32x16_fp8_fp8_CTransposed; }; template<> struct WarpGemmMfmaDispatcher<fp8_t, fp8_t, float, 32, 32, 16, true> { using Type = WarpGemmMfma_f32_32x32x16_fp8_fp8_CTransposed; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::fp8_t, ck_tile::bf8_t, float, 32, 32, 16, false> { using Type = WarpGemmMfma_f32_32x32x16_fp8_bf8; }; template<> struct WarpGemmMfmaDispatcher<fp8_t, bf8_t, float, 32, 32, 16, false> { using Type = WarpGemmMfma_f32_32x32x16_fp8_bf8; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::fp8_t, ck_tile::bf8_t, float, 32, 32, 16, true> { using Type = WarpGemmMfma_f32_32x32x16_fp8_bf8_CTransposed; }; template<> struct WarpGemmMfmaDispatcher<fp8_t, bf8_t, float, 32, 32, 16, true> { using Type = WarpGemmMfma_f32_32x32x16_fp8_bf8_CTransposed; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf8_t, ck_tile::fp8_t, float, 32, 32, 16, false> { using Type = WarpGemmMfma_f32_32x32x16_bf8_fp8; }; template<> struct WarpGemmMfmaDispatcher<bf8_t, fp8_t, float, 32, 32, 16, false> { using Type = WarpGemmMfma_f32_32x32x16_bf8_fp8; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf8_t, ck_tile::fp8_t, float, 32, 32, 16, true> { using Type = WarpGemmMfma_f32_32x32x16_bf8_fp8_CTransposed; }; template<> struct WarpGemmMfmaDispatcher<bf8_t, fp8_t, float, 32, 32, 16, true> { using Type = WarpGemmMfma_f32_32x32x16_bf8_fp8_CTransposed; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf8_t, ck_tile::bf8_t, float, 32, 32, 16, false> { using Type = WarpGemmMfma_f32_32x32x16_bf8_bf8; }; template<> struct WarpGemmMfmaDispatcher<bf8_t, bf8_t, float, 32, 32, 16, false> { using Type = WarpGemmMfma_f32_32x32x16_bf8_bf8; };
template<> struct WarpGemmMfmaDispatcher<ck_tile::bf8_t, ck_tile::bf8_t, float, 32, 32, 16, true> { using Type = WarpGemmMfma_f32_32x32x16_bf8_bf8_CTransposed; }; template<> struct WarpGemmMfmaDispatcher<bf8_t, bf8_t, float, 32, 32, 16, true> { using Type = WarpGemmMfma_f32_32x32x16_bf8_bf8_CTransposed; };
// clang-format on // clang-format on
} // namespace impl } // namespace impl
......
...@@ -6,4 +6,5 @@ ...@@ -6,4 +6,5 @@
#include "ck_tile/ops/image_to_column/kernel/image_to_column_kernel.hpp" #include "ck_tile/ops/image_to_column/kernel/image_to_column_kernel.hpp"
#include "ck_tile/ops/image_to_column/pipeline/block_image_to_column_problem.hpp" #include "ck_tile/ops/image_to_column/pipeline/block_image_to_column_problem.hpp"
#include "ck_tile/ops/image_to_column/pipeline/tile_image_to_column_shape.hpp" #include "ck_tile/ops/image_to_column/pipeline/tile_image_to_column_shape.hpp"
#include "ck_tile/ops/common/generic_2d_block_shape.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp" #include "ck_tile/ops/common/tensor_layout.hpp"
...@@ -4,9 +4,10 @@ ...@@ -4,9 +4,10 @@
#pragma once #pragma once
#include "ck_tile/ops/layernorm2d/kernel/layernorm2d_fwd_kernel.hpp" #include "ck_tile/ops/layernorm2d/kernel/layernorm2d_fwd_kernel.hpp"
#include "ck_tile/ops/layernorm2d/kernel/layernorm2d_fwd_shape.hpp"
#include "ck_tile/ops/layernorm2d/pipeline/layernorm2d_fwd_pipeline_default_policy.hpp" #include "ck_tile/ops/layernorm2d/pipeline/layernorm2d_fwd_pipeline_default_policy.hpp"
#include "ck_tile/ops/layernorm2d/pipeline/layernorm2d_fwd_pipeline_one_pass.hpp" #include "ck_tile/ops/layernorm2d/pipeline/layernorm2d_fwd_pipeline_one_pass.hpp"
#include "ck_tile/ops/layernorm2d/pipeline/layernorm2d_fwd_pipeline_problem.hpp" #include "ck_tile/ops/layernorm2d/pipeline/layernorm2d_fwd_pipeline_problem.hpp"
#include "ck_tile/ops/layernorm2d/pipeline/layernorm2d_fwd_pipeline_two_pass.hpp" #include "ck_tile/ops/layernorm2d/pipeline/layernorm2d_fwd_pipeline_two_pass.hpp"
#include "ck_tile/ops/layernorm2d/pipeline/layernorm2d_fwd_traits.hpp"
#include "ck_tile/ops/common/generic_2d_block_shape.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp" #include "ck_tile/ops/common/tensor_layout.hpp"
...@@ -5,19 +5,24 @@ ...@@ -5,19 +5,24 @@
#include "ck_tile/core.hpp" #include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp" #include "ck_tile/ops/common.hpp"
#include "ck_tile/ops/layernorm2d/pipeline/layernorm2d_fwd_traits.hpp"
namespace ck_tile { namespace ck_tile {
// host side args // host side args
struct Layernorm2dFwdHostArgs struct Layernorm2dFwdHostArgs
{ {
const void* p_x; const void* p_x; // [m ,n], input, fp16/bf16
const void* p_gamma; const void* p_x_residual; // [m ,n], shortcut input, prec same as input, nullptr if not used
const void* p_beta; const void* p_x_scale; // [1 ,n], smooth scale input, fp32, nullptr if not used
const void* p_gamma; // [1, n], gamma, prec same as input
void* p_y; const void* p_beta; // [1, n], beta, prec same as input
void* p_mean;
void* p_invStd; void* p_y; // [m, n], output, fp16/bf16
void* p_y_residual; // [m, n], shortcut output, prec same as input, nullptr if not used
void* p_y_scale; // [m, 1], output a dynamic quant per row, nullptr if not used
void* p_mean; // [m, 1], output mean, prec same as input, nullptr if not used
void* p_invStd; // [m, 1], output inv-stdvariance, prec same as input, nullptr if not used
float epsilon; float epsilon;
...@@ -27,10 +32,11 @@ struct Layernorm2dFwdHostArgs ...@@ -27,10 +32,11 @@ struct Layernorm2dFwdHostArgs
}; };
// TODO: Extract some type to wrapper class // TODO: Extract some type to wrapper class
template <typename Pipeline_> template <typename Pipeline_, typename Epilogue_>
struct Layernorm2dFwd struct Layernorm2dFwd
{ {
using Pipeline = remove_cvref_t<Pipeline_>; using Pipeline = remove_cvref_t<Pipeline_>;
using Epilogue = remove_cvref_t<Epilogue_>;
using Problem = typename Pipeline::Problem; using Problem = typename Pipeline::Problem;
using XDataType = remove_cvref_t<typename Problem::XDataType>; using XDataType = remove_cvref_t<typename Problem::XDataType>;
...@@ -40,18 +46,26 @@ struct Layernorm2dFwd ...@@ -40,18 +46,26 @@ struct Layernorm2dFwd
using YDataType = remove_cvref_t<typename Problem::YDataType>; using YDataType = remove_cvref_t<typename Problem::YDataType>;
using MeanDataType = remove_cvref_t<typename Problem::MeanDataType>; using MeanDataType = remove_cvref_t<typename Problem::MeanDataType>;
using InvStdDataType = remove_cvref_t<typename Problem::InvStdDataType>; using InvStdDataType = remove_cvref_t<typename Problem::InvStdDataType>;
using XScaleDataType = remove_cvref_t<typename Problem::XScaleDataType>;
using YScaleDataType = remove_cvref_t<typename Problem::YScaleDataType>;
// for simplicity, shortcut input/output type is same as X
using XResidualDataType = XDataType;
using YResidualDataType = XDataType;
static constexpr bool kHasGamma = !std::is_same_v<GammaDataType, null_type>; static constexpr bool kHasGamma = !std::is_same_v<GammaDataType, null_type>;
static constexpr bool kHasBeta = !std::is_same_v<BetaDataType, null_type>; static constexpr bool kHasBeta = !std::is_same_v<BetaDataType, null_type>;
static constexpr bool kSaveMeanInvStd = Problem::kSaveMeanInvStd; static constexpr bool kSaveMeanInvStd = Problem::Traits::kSaveMeanInvStd;
static constexpr bool kSaveMean = Problem::kSaveMeanInvStd; static constexpr bool kSaveMean = Problem::Traits::kSaveMeanInvStd;
static constexpr bool kSaveInvStd = Problem::kSaveMeanInvStd; static constexpr bool kSaveInvStd = Problem::Traits::kSaveMeanInvStd;
static constexpr index_t Block_M = Problem::BlockShape::Block_M; static constexpr index_t Block_M = Problem::BlockShape::Block_M;
static constexpr index_t Block_N = Problem::BlockShape::Block_N; static constexpr index_t Block_N = Problem::BlockShape::Block_N;
static constexpr bool kPadM = false; // always no need to pad along M static constexpr bool kPadM = false; // always no need to pad along M
static constexpr bool kPadN = Problem::kPadN; static constexpr bool kPadN = Problem::Traits::kPadN;
static constexpr bool kTwoPass = Problem::kTwoPass; static constexpr bool kTwoPass = Problem::Traits::kTwoPass;
static constexpr auto kFusedAdd = Problem::Traits::kFusedAdd;
static constexpr auto kFusedQuant = Problem::Traits::kFusedQuant;
static constexpr index_t ThreadPerWarp_N = Problem::BlockShape::ThreadPerWarp_N; static constexpr index_t ThreadPerWarp_N = Problem::BlockShape::ThreadPerWarp_N;
static constexpr index_t Vector_N = Problem::BlockShape::Vector_N; static constexpr index_t Vector_N = Problem::BlockShape::Vector_N;
...@@ -62,13 +76,18 @@ struct Layernorm2dFwd ...@@ -62,13 +76,18 @@ struct Layernorm2dFwd
struct Kargs struct Kargs
{ {
const void* p_x; const void* p_x; // [m ,n], input, fp16/bf16
const void* p_gamma; const void* p_x_residual; // [m ,n], shortcut input, prec same as input, nullptr if not used
const void* p_beta; const void* p_x_scale; // [1 ,n], smooth scale input, fp32, nullptr if not used
const void* p_gamma; // [1, n], gamma, prec same as input
const void* p_beta; // [1, n], beta, prec same as input
void* p_y; void* p_y; // [m, n], output, fp16/bf16
void* p_mean; void* p_y_residual; // [m, n], shortcut output, prec same as input, nullptr if not used
void* p_invStd; void* p_y_scale; // [m, 1], output a dynamic quant per row, nullptr if not used
void* p_mean; // [m, 1], output mean, prec same as input, nullptr if not used
void* p_invStd; // [m, 1], output inv-stdvariance, prec same as input, nullptr if not used
float epsilon; float epsilon;
...@@ -81,9 +100,13 @@ struct Layernorm2dFwd ...@@ -81,9 +100,13 @@ struct Layernorm2dFwd
CK_TILE_HOST static constexpr Kargs MakeKargs(const Hargs& hargs) CK_TILE_HOST static constexpr Kargs MakeKargs(const Hargs& hargs)
{ {
return Kargs{hargs.p_x, return Kargs{hargs.p_x,
hargs.p_x_residual,
hargs.p_x_scale,
hargs.p_gamma, hargs.p_gamma,
hargs.p_beta, hargs.p_beta,
hargs.p_y, hargs.p_y,
hargs.p_y_residual,
hargs.p_y_scale,
hargs.p_mean, hargs.p_mean,
hargs.p_invStd, hargs.p_invStd,
hargs.epsilon, hargs.epsilon,
...@@ -94,7 +117,7 @@ struct Layernorm2dFwd ...@@ -94,7 +117,7 @@ struct Layernorm2dFwd
CK_TILE_HOST static constexpr auto GridSize(const Hargs& hargs) CK_TILE_HOST static constexpr auto GridSize(const Hargs& hargs)
{ {
return (hargs.m + Block_M - 1) / Block_M; return dim3(integer_divide_ceil(hargs.m, Block_M));
} }
CK_TILE_HOST static constexpr auto BlockSize() { return Problem::BlockShape::BlockSize; } CK_TILE_HOST static constexpr auto BlockSize() { return Problem::BlockShape::BlockSize; }
...@@ -106,6 +129,7 @@ struct Layernorm2dFwd ...@@ -106,6 +129,7 @@ struct Layernorm2dFwd
template <> struct t2s<ck_tile::bf16_t> { static constexpr const char * name = "bf16"; }; template <> struct t2s<ck_tile::bf16_t> { static constexpr const char * name = "bf16"; };
template <> struct t2s<ck_tile::fp8_t> { static constexpr const char * name = "fp8"; }; template <> struct t2s<ck_tile::fp8_t> { static constexpr const char * name = "fp8"; };
template <> struct t2s<ck_tile::bf8_t> { static constexpr const char * name = "bf8"; }; template <> struct t2s<ck_tile::bf8_t> { static constexpr const char * name = "bf8"; };
template <> struct t2s<ck_tile::int8_t> { static constexpr const char * name = "int8"; };
// clang-format on // clang-format on
// in byte // in byte
...@@ -113,24 +137,41 @@ struct Layernorm2dFwd ...@@ -113,24 +137,41 @@ struct Layernorm2dFwd
CK_TILE_HOST static std::string GetName() CK_TILE_HOST static std::string GetName()
{ {
#define _SS_ std::string
#define _TS_ std::to_string
// clang-format off // clang-format off
using S_ = typename Problem::BlockShape; using S_ = typename Problem::BlockShape;
auto surfix = [&] () { auto surfix = [&] () {
std::string n; std::string n;
if (kFusedAdd != Layernorm2dFusedAddEnum::NO_ADD) n += _SS_("_") + Layernorm2dFusedAddEnumName<kFusedAdd>::name;
if (kFusedQuant != Layernorm2dFusedQuantEnum::NO_SWEEP) n += _SS_("_") + Layernorm2dFusedQuantEnumName<kFusedQuant>::name;
if (kPadN) n += "_pn"; if (kPadN) n += "_pn";
if (kSaveMeanInvStd) n += "_mv"; if (kSaveMeanInvStd) n += "_mv";
if (kTwoPass) n += "_2p"; // if (kTwoPass) n += "_2p";
return n; }(); return n; }();
#define _SS_ std::string auto prec_str = [&] () {
#define _TS_ std::to_string std::string base_str = _SS_(t2s<XDataType>::name);
return _SS_("layernorm2d_fwd_") + _SS_(t2s<XDataType>::name) + "_" + if (!std::is_same_v<XDataType, YDataType>) {
base_str += _SS_("_") + _SS_(t2s<YDataType>::name);
}
if (kFusedQuant == Layernorm2dFusedQuantEnum::SMOOTH_DYNAMIC_QUANT) {
base_str += _SS_("_sx") + _SS_(t2s<XScaleDataType>::name);
base_str += _SS_("_sy") + _SS_(t2s<YScaleDataType>::name);
}
if (kFusedQuant == Layernorm2dFusedQuantEnum::DYNAMIC_QUANT) {
base_str += _SS_("_sy") + _SS_(t2s<YScaleDataType>::name);
}
return base_str;
}();
return _SS_("layernorm2d_fwd_") + _SS_(prec_str) + "_" +
_TS_(S_::Block_M) + "x" + _TS_(S_::Block_N) + "_" + _TS_(S_::WarpPerBlock_M) + "x" + _TS_(S_::WarpPerBlock_N) + "_" + _TS_(S_::Block_M) + "x" + _TS_(S_::Block_N) + "_" + _TS_(S_::WarpPerBlock_M) + "x" + _TS_(S_::WarpPerBlock_N) + "_" +
_TS_(S_::Warp_M) + "x" + _TS_(S_::Warp_N) + "_" + _TS_(S_::Vector_M) + "x" + _TS_(S_::Vector_N) + "_" + _TS_(S_::Warp_M) + "x" + _TS_(S_::Warp_N) + "_" + _TS_(S_::Vector_M) + "x" + _TS_(S_::Vector_N) + "_" +
_SS_(Pipeline::name) + surfix; _SS_(Pipeline::name) + surfix;
#undef _SS_
#undef _TS_
// clang-format on // clang-format on
#undef _SS_
#undef _TS_
} }
CK_TILE_DEVICE void operator()(Kargs kargs) const CK_TILE_DEVICE void operator()(Kargs kargs) const
...@@ -153,6 +194,31 @@ struct Layernorm2dFwd ...@@ -153,6 +194,31 @@ struct Layernorm2dFwd
tmp2_, make_tuple(number<Block_M>{}, number<Block_N>{}), {iM, 0}); tmp2_, make_tuple(number<Block_M>{}, number<Block_N>{}), {iM, 0});
}(); }();
const auto x_residual_window = [&]() {
if constexpr(kFusedAdd == Layernorm2dFusedAddEnum::PRE_ADD_STORE ||
kFusedAdd == Layernorm2dFusedAddEnum::PRE_ADD)
{
const auto tmp_ = make_naive_tensor_view<address_space_enum::global>(
static_cast<const XResidualDataType*>(kargs.p_x_residual),
make_tuple(kargs.m, kargs.n),
make_tuple(kargs.stride, 1),
number<Vector_N>{},
number<1>{});
// NOTE: we don't do any pad in this kernel for loading, assume that inside kernel
// will check the max count dynamically
const auto tmp2_ = pad_tensor_view(tmp_,
make_tuple(number<Block_M>{}, number<Block_N>{}),
sequence<false, false>{});
return make_tile_window(
tmp2_, make_tuple(number<Block_M>{}, number<Block_N>{}), {iM, 0});
}
else
{
return make_null_tile_window(make_tuple(number<Block_M>{}, number<Block_N>{}));
}
}();
const auto gamma_window = [&]() { const auto gamma_window = [&]() {
const auto tmp_ = make_naive_tensor_view<address_space_enum::global>( const auto tmp_ = make_naive_tensor_view<address_space_enum::global>(
static_cast<const GammaDataType*>(kargs.p_gamma), static_cast<const GammaDataType*>(kargs.p_gamma),
...@@ -194,6 +260,28 @@ struct Layernorm2dFwd ...@@ -194,6 +260,28 @@ struct Layernorm2dFwd
tmp2_, make_tuple(number<Block_M>{}, number<Block_N>{}), {iM, 0}); tmp2_, make_tuple(number<Block_M>{}, number<Block_N>{}), {iM, 0});
}(); }();
auto y_residual_window = [&]() {
if constexpr(kFusedAdd == Layernorm2dFusedAddEnum::PRE_ADD_STORE)
{
auto tmp_ = make_naive_tensor_view<address_space_enum::global>(
static_cast<YResidualDataType*>(kargs.p_y_residual),
make_tuple(kargs.m, kargs.n),
make_tuple(kargs.stride, 1),
number<Vector_N>{},
number<1>{});
auto tmp2_ = pad_tensor_view(tmp_,
make_tuple(number<Block_M>{}, number<Block_N>{}),
sequence<kPadM, kPadN>{});
return make_tile_window(
tmp2_, make_tuple(number<Block_M>{}, number<Block_N>{}), {iM, 0});
}
else
{
return make_null_tile_window(make_tuple(number<Block_M>{}, number<Block_N>{}));
}
}();
auto mean_window = [&]() { auto mean_window = [&]() {
if constexpr(kSaveMean) if constexpr(kSaveMean)
{ {
...@@ -232,17 +320,60 @@ struct Layernorm2dFwd ...@@ -232,17 +320,60 @@ struct Layernorm2dFwd
return make_null_tile_window(make_tuple(number<Block_M>{})); return make_null_tile_window(make_tuple(number<Block_M>{}));
}(); }();
auto x_scale_window = [&]() {
if constexpr(kFusedQuant == Layernorm2dFusedQuantEnum::SMOOTH_DYNAMIC_QUANT)
{
const auto win_ = [&]() {
const auto tmp_0_ = make_naive_tensor_view_packed<address_space_enum::global>(
static_cast<const XScaleDataType*>(kargs.p_x_scale),
make_tuple(kargs.n),
number<Vector_N>{});
return pad_tensor_view(tmp_0_,
make_tuple(number<Block_N>{}),
sequence<false>{}); // x_scale no need pad
}();
return make_tile_window(win_, make_tuple(number<Block_N>{}), {0});
}
else
return make_null_tile_window(make_tuple(number<Block_N>{}));
}();
auto y_scale_window = [&]() {
if constexpr(kFusedQuant == Layernorm2dFusedQuantEnum::SMOOTH_DYNAMIC_QUANT ||
kFusedQuant == Layernorm2dFusedQuantEnum::DYNAMIC_QUANT)
{
const auto win_ = [&]() {
const auto tmp_0_ = make_naive_tensor_view_packed<address_space_enum::global>(
static_cast<YScaleDataType*>(kargs.p_y_scale),
make_tuple(kargs.m),
number<1>{});
return pad_tensor_view(
tmp_0_, make_tuple(number<Block_M>{}), sequence<kPadM>{});
}();
return make_tile_window(win_, make_tuple(number<Block_M>{}), {iM});
}
else
return make_null_tile_window(make_tuple(number<Block_M>{}));
}();
__shared__ char smem[GetSmemSize()]; __shared__ char smem[GetSmemSize()];
Pipeline{}(x_window, Pipeline{}(x_window,
x_residual_window,
gamma_window, gamma_window,
beta_window, beta_window,
y_window, y_window,
y_residual_window,
mean_window, mean_window,
inv_std_window, inv_std_window,
x_scale_window,
y_scale_window,
static_cast<const ComputeDataType>(kargs.epsilon), static_cast<const ComputeDataType>(kargs.epsilon),
kargs.n, kargs.n,
smem); smem,
Epilogue{});
} }
}; };
......
...@@ -26,6 +26,7 @@ struct Layernorm2dFwdPipelineDefaultPolicy ...@@ -26,6 +26,7 @@ struct Layernorm2dFwdPipelineDefaultPolicy
sequence<1, 1, 2, 2>, sequence<1, 1, 2, 2>,
sequence<0, 3, 0, 3>>{}); sequence<0, 3, 0, 3>>{});
} }
template <typename Problem> template <typename Problem>
CK_TILE_DEVICE static constexpr auto MakeGammaBetaBlockTileDistribution() CK_TILE_DEVICE static constexpr auto MakeGammaBetaBlockTileDistribution()
{ {
...@@ -44,7 +45,7 @@ struct Layernorm2dFwdPipelineDefaultPolicy ...@@ -44,7 +45,7 @@ struct Layernorm2dFwdPipelineDefaultPolicy
template <typename Problem> template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetBlockWelford() CK_TILE_HOST_DEVICE static constexpr auto GetBlockWelford()
{ {
using P_ = BlockWelfordProblem<typename Problem::XDataType, using P_ = BlockWelfordProblem<typename Problem::ComputeDataType,
typename Problem::ComputeDataType, typename Problem::ComputeDataType,
typename Problem::BlockShape>; typename Problem::BlockShape>;
...@@ -54,7 +55,7 @@ struct Layernorm2dFwdPipelineDefaultPolicy ...@@ -54,7 +55,7 @@ struct Layernorm2dFwdPipelineDefaultPolicy
template <typename Problem> template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetBlockWelfordSync() CK_TILE_HOST_DEVICE static constexpr auto GetBlockWelfordSync()
{ {
using P_ = BlockWelfordProblem<typename Problem::XDataType, using P_ = BlockWelfordProblem<typename Problem::ComputeDataType,
typename Problem::ComputeDataType, typename Problem::ComputeDataType,
typename Problem::BlockShape>; typename Problem::BlockShape>;
...@@ -64,7 +65,7 @@ struct Layernorm2dFwdPipelineDefaultPolicy ...@@ -64,7 +65,7 @@ struct Layernorm2dFwdPipelineDefaultPolicy
template <typename Problem> template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetBlockWelfordCrossWarpSync() CK_TILE_HOST_DEVICE static constexpr auto GetBlockWelfordCrossWarpSync()
{ {
using P_ = BlockWelfordProblem<typename Problem::XDataType, using P_ = BlockWelfordProblem<typename Problem::ComputeDataType,
typename Problem::ComputeDataType, typename Problem::ComputeDataType,
typename Problem::BlockShape>; typename Problem::BlockShape>;
...@@ -76,13 +77,13 @@ struct Layernorm2dFwdPipelineDefaultPolicy ...@@ -76,13 +77,13 @@ struct Layernorm2dFwdPipelineDefaultPolicy
{ {
if constexpr(Problem::kNeedCrossWarpSync) if constexpr(Problem::kNeedCrossWarpSync)
{ {
using P_ = BlockWelfordProblem<typename Problem::XDataType, using P_ = BlockWelfordProblem<typename Problem::ComputeDataType,
typename Problem::ComputeDataType, typename Problem::ComputeDataType,
typename Problem::BlockShape>; typename Problem::BlockShape>;
using block_welford = BlockWelford<P_>; using block_welford = BlockWelford<P_>;
using x_block_tile = using x_block_tile =
decltype(make_static_distributed_tensor<typename Problem::XDataType>( decltype(make_static_distributed_tensor<typename Problem::ComputeDataType>(
MakeXBlockTileDistribution<Problem>())); MakeXBlockTileDistribution<Problem>()));
using mean_var_block_tile = using mean_var_block_tile =
decltype(block_welford::template MakeMeanVarBlockTile<x_block_tile>()); decltype(block_welford::template MakeMeanVarBlockTile<x_block_tile>());
......
...@@ -5,6 +5,7 @@ ...@@ -5,6 +5,7 @@
#include "ck_tile/core.hpp" #include "ck_tile/core.hpp"
#include "ck_tile/ops/layernorm2d/pipeline/layernorm2d_fwd_pipeline_default_policy.hpp" #include "ck_tile/ops/layernorm2d/pipeline/layernorm2d_fwd_pipeline_default_policy.hpp"
#include "ck_tile/ops/layernorm2d/pipeline/layernorm2d_fwd_traits.hpp"
#include <string> #include <string>
#include <type_traits> #include <type_traits>
...@@ -24,14 +25,19 @@ struct Layernorm2dFwdPipelineOnePass ...@@ -24,14 +25,19 @@ struct Layernorm2dFwdPipelineOnePass
using MeanDataType = ck_tile::remove_cvref_t<typename Problem::MeanDataType>; using MeanDataType = ck_tile::remove_cvref_t<typename Problem::MeanDataType>;
using InvStdDataType = ck_tile::remove_cvref_t<typename Problem::InvStdDataType>; using InvStdDataType = ck_tile::remove_cvref_t<typename Problem::InvStdDataType>;
using XResidualDataType = XDataType;
using YResidualDataType = XDataType;
static constexpr bool kHasGamma = !std::is_same_v<GammaDataType, ck_tile::null_type>; static constexpr bool kHasGamma = !std::is_same_v<GammaDataType, ck_tile::null_type>;
static constexpr bool kHasBeta = !std::is_same_v<BetaDataType, ck_tile::null_type>; static constexpr bool kHasBeta = !std::is_same_v<BetaDataType, ck_tile::null_type>;
static constexpr bool kSaveMean = Problem::kSaveMeanInvStd; static constexpr bool kSaveMean = Problem::Traits::kSaveMeanInvStd;
static constexpr bool kSaveInvStd = Problem::kSaveMeanInvStd; static constexpr bool kSaveInvStd = Problem::Traits::kSaveMeanInvStd;
static constexpr bool kNeedCrossWarpSync = Problem::kNeedCrossWarpSync; static constexpr bool kNeedCrossWarpSync = Problem::kNeedCrossWarpSync;
static constexpr bool kPadM = false; // TODO - BlockLayernorm2dFwdProblem::kPadM static constexpr bool kPadM = false; // TODO - BlockLayernorm2dFwdProblem::kPadM
static constexpr bool kPadN = Problem::kPadN; static constexpr bool kPadN = Problem::Traits::kPadN;
static constexpr auto kFusedAdd = Problem::Traits::kFusedAdd;
static constexpr auto kFusedQuant = Problem::Traits::kFusedQuant;
static constexpr const char* name = []() { static constexpr const char* name = []() {
if constexpr(kNeedCrossWarpSync) if constexpr(kNeedCrossWarpSync)
...@@ -46,20 +52,30 @@ struct Layernorm2dFwdPipelineOnePass ...@@ -46,20 +52,30 @@ struct Layernorm2dFwdPipelineOnePass
} }
template <typename XWindow, template <typename XWindow,
typename XResidualWindow,
typename GammaWindow, typename GammaWindow,
typename BetaWindow, typename BetaWindow,
typename YWindow, typename YWindow,
typename YResidualWindow,
typename MeanWindow, typename MeanWindow,
typename InvStdWindow> typename InvStdWindow,
typename XScaleWindow,
typename YScaleWindow,
typename Epilogue>
CK_TILE_DEVICE auto operator()(const XWindow& x_window_, CK_TILE_DEVICE auto operator()(const XWindow& x_window_,
const XResidualWindow& x_residual_window_,
const GammaWindow& gamma_window_, const GammaWindow& gamma_window_,
const BetaWindow& beta_window_, const BetaWindow& beta_window_,
YWindow& y_window, YWindow& y_window_,
const YResidualWindow& y_residual_window_,
MeanWindow& mean_window, MeanWindow& mean_window,
InvStdWindow& inv_std_window, InvStdWindow& inv_std_window,
const XScaleWindow& x_scale_window_,
YScaleWindow& y_scale_window,
ComputeDataType epsilon, ComputeDataType epsilon,
ck_tile::index_t row_size, ck_tile::index_t row_size,
void* smem) const void* smem,
Epilogue) const
{ {
const auto x_window = const auto x_window =
make_tile_window(x_window_, Policy::template MakeXBlockTileDistribution<Problem>()); make_tile_window(x_window_, Policy::template MakeXBlockTileDistribution<Problem>());
...@@ -67,8 +83,14 @@ struct Layernorm2dFwdPipelineOnePass ...@@ -67,8 +83,14 @@ struct Layernorm2dFwdPipelineOnePass
gamma_window_, Policy::template MakeGammaBetaBlockTileDistribution<Problem>()); gamma_window_, Policy::template MakeGammaBetaBlockTileDistribution<Problem>());
const auto beta_window = make_tile_window( const auto beta_window = make_tile_window(
beta_window_, Policy::template MakeGammaBetaBlockTileDistribution<Problem>()); beta_window_, Policy::template MakeGammaBetaBlockTileDistribution<Problem>());
const auto x_residual_window = make_tile_window(
x_residual_window_, Policy::template MakeXBlockTileDistribution<Problem>());
auto y_residual_window = make_tile_window(
y_residual_window_, Policy::template MakeXBlockTileDistribution<Problem>());
auto x = load_tile(x_window);
auto x_resi = load_tile(x_residual_window);
const auto x = load_tile(x_window);
int cur_count = 0; int cur_count = 0;
int max_count = int max_count =
block_tile_welford_calculate_max_count<typename Problem::BlockShape>(row_size); block_tile_welford_calculate_max_count<typename Problem::BlockShape>(row_size);
...@@ -81,8 +103,21 @@ struct Layernorm2dFwdPipelineOnePass ...@@ -81,8 +103,21 @@ struct Layernorm2dFwdPipelineOnePass
const auto gamma = load_tile(gamma_window); const auto gamma = load_tile(gamma_window);
const auto beta = load_tile(beta_window); const auto beta = load_tile(beta_window);
auto acc = cast_tile<ComputeDataType>(x);
if constexpr(kFusedAdd == Layernorm2dFusedAddEnum::PRE_ADD_STORE ||
kFusedAdd == Layernorm2dFusedAddEnum::PRE_ADD)
{
sweep_tile(x_resi, [&](auto idx) {
// compute x = x_resi + x
acc(idx) = type_convert<ComputeDataType>(x_resi(idx)) + acc(idx);
});
if constexpr(kFusedAdd == Layernorm2dFusedAddEnum::PRE_ADD_STORE)
store_tile(y_residual_window, cast_tile<YResidualDataType>(acc));
}
// compute welford each-thread->cross-lane->cross-warp // compute welford each-thread->cross-lane->cross-warp
auto [mean, var] = block_welford(x, cur_count, max_count); auto [mean, var] = block_welford(acc, cur_count, max_count);
block_welford_sync(mean, var, cur_count); block_welford_sync(mean, var, cur_count);
block_welford_cross_warp_sync(mean, var, cur_count, smem); block_welford_cross_warp_sync(mean, var, cur_count, smem);
block_tile_welford_post_scale_var(var, cur_count); block_tile_welford_post_scale_var(var, cur_count);
...@@ -90,7 +125,8 @@ struct Layernorm2dFwdPipelineOnePass ...@@ -90,7 +125,8 @@ struct Layernorm2dFwdPipelineOnePass
// compute inv-std // compute inv-std
auto inv_std = tile_elementwise_in( auto inv_std = tile_elementwise_in(
[&](const auto& v_) { [&](const auto& v_) {
return type_convert<ComputeDataType>(1.0f) / (sqrt(v_ + epsilon)); return type_convert<ComputeDataType>(1.0f) *
__builtin_amdgcn_rcpf(sqrt(v_ + epsilon));
}, },
var); var);
...@@ -100,20 +136,26 @@ struct Layernorm2dFwdPipelineOnePass ...@@ -100,20 +136,26 @@ struct Layernorm2dFwdPipelineOnePass
store_tile(inv_std_window, cast_tile<InvStdDataType>(inv_std)); store_tile(inv_std_window, cast_tile<InvStdDataType>(inv_std));
// layernorm computation // layernorm computation
auto y = make_static_distributed_tensor<YDataType>(x.get_tile_distribution()); auto ln = make_static_distributed_tensor<ComputeDataType>(acc.get_tile_distribution());
sweep_tile(y, [&, mean_ = mean](auto idx) { sweep_tile(ln, [&, mean_ = mean](auto idx) {
constexpr auto i_idx = make_tuple(idx[number<0>{}]); constexpr auto i_idx = make_tuple(idx[number<0>{}]);
constexpr auto j_idx = make_tuple(idx[number<1>{}]); constexpr auto j_idx = make_tuple(idx[number<1>{}]);
const auto gamma_ = type_convert<ComputeDataType>(gamma[j_idx]); const auto gamma_ = type_convert<ComputeDataType>(gamma[j_idx]);
const auto beta_ = type_convert<ComputeDataType>(beta[j_idx]); const auto beta_ = type_convert<ComputeDataType>(beta[j_idx]);
const auto x_ = type_convert<ComputeDataType>(x[idx]); auto ln_ = (acc[idx] - mean_[i_idx]) * inv_std[i_idx] * gamma_ + beta_;
auto y_ = (x_ - mean_[i_idx]) * inv_std[i_idx] * gamma_ + beta_;
y(idx) = type_convert<YDataType>(y_); ln(idx) = ln_;
}); });
store_tile(y_window, y);
if constexpr(kFusedQuant == Layernorm2dFusedQuantEnum::DYNAMIC_QUANT ||
kFusedQuant == Layernorm2dFusedQuantEnum::SMOOTH_DYNAMIC_QUANT)
{
Epilogue{}(y_window_, x_scale_window_, y_scale_window, ln, smem);
}
else
Epilogue{}(y_window_, ln);
} }
}; };
} // namespace ck_tile } // namespace ck_tile
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -14,10 +14,10 @@ template <typename XDataType_, ...@@ -14,10 +14,10 @@ template <typename XDataType_,
typename YDataType_, typename YDataType_,
typename MeanDataType_, typename MeanDataType_,
typename InvStdDataType_, typename InvStdDataType_,
typename XScaleDataType_,
typename YScaleDataType_,
typename BlockShape_, typename BlockShape_,
bool kPadN_, typename Traits_>
bool kSaveMeanInvStd_,
bool kTwoPass_>
struct Layernorm2dFwdPipelineProblem struct Layernorm2dFwdPipelineProblem
{ {
using XDataType = remove_cvref_t<XDataType_>; using XDataType = remove_cvref_t<XDataType_>;
...@@ -27,14 +27,14 @@ struct Layernorm2dFwdPipelineProblem ...@@ -27,14 +27,14 @@ struct Layernorm2dFwdPipelineProblem
using YDataType = remove_cvref_t<YDataType_>; using YDataType = remove_cvref_t<YDataType_>;
using MeanDataType = remove_cvref_t<MeanDataType_>; using MeanDataType = remove_cvref_t<MeanDataType_>;
using InvStdDataType = remove_cvref_t<InvStdDataType_>; using InvStdDataType = remove_cvref_t<InvStdDataType_>;
using XScaleDataType = remove_cvref_t<XScaleDataType_>;
using YScaleDataType = remove_cvref_t<YScaleDataType_>;
using BlockShape = remove_cvref_t<BlockShape_>; using BlockShape = remove_cvref_t<BlockShape_>;
static constexpr bool kNeedCrossLaneSync = BlockShape::ThreadPerWarp_N > 1; static constexpr bool kNeedCrossLaneSync = BlockShape::ThreadPerWarp_N > 1;
static constexpr bool kNeedCrossWarpSync = BlockShape::WarpPerBlock_N > 1; static constexpr bool kNeedCrossWarpSync = BlockShape::WarpPerBlock_N > 1;
static constexpr bool kPadN = kPadN_; using Traits = remove_cvref_t<Traits_>;
static constexpr bool kSaveMeanInvStd = kSaveMeanInvStd_;
static constexpr bool kTwoPass = kTwoPass_;
}; };
} // namespace ck_tile } // namespace ck_tile
...@@ -24,20 +24,25 @@ struct Layernorm2dFwdPipelineTwoPass ...@@ -24,20 +24,25 @@ struct Layernorm2dFwdPipelineTwoPass
using MeanDataType = ck_tile::remove_cvref_t<typename Problem::MeanDataType>; using MeanDataType = ck_tile::remove_cvref_t<typename Problem::MeanDataType>;
using InvStdDataType = ck_tile::remove_cvref_t<typename Problem::InvStdDataType>; using InvStdDataType = ck_tile::remove_cvref_t<typename Problem::InvStdDataType>;
using XResidualDataType = XDataType;
using YResidualDataType = XDataType;
static constexpr bool kHasGamma = !std::is_same_v<GammaDataType, ck_tile::null_type>; static constexpr bool kHasGamma = !std::is_same_v<GammaDataType, ck_tile::null_type>;
static constexpr bool kHasBeta = !std::is_same_v<BetaDataType, ck_tile::null_type>; static constexpr bool kHasBeta = !std::is_same_v<BetaDataType, ck_tile::null_type>;
static constexpr bool kSaveMean = Problem::kSaveMeanInvStd; static constexpr bool kSaveMean = Problem::Traits::kSaveMeanInvStd;
static constexpr bool kSaveInvStd = Problem::kSaveMeanInvStd; static constexpr bool kSaveInvStd = Problem::Traits::kSaveMeanInvStd;
static constexpr bool kNeedCrossWarpSync = Problem::kNeedCrossWarpSync; static constexpr bool kNeedCrossWarpSync = Problem::kNeedCrossWarpSync;
static constexpr bool kPadM = false; // TODO - BlockLayernorm2dFwdProblem::kPadM static constexpr bool kPadM = false; // TODO - BlockLayernorm2dFwdProblem::kPadM
static constexpr bool kPadN = Problem::kPadN; static constexpr bool kPadN = Problem::Traits::kPadN;
static constexpr auto kFusedAdd = Problem::Traits::kFusedAdd;
static constexpr auto kFusedQuant = Problem::Traits::kFusedQuant;
static constexpr const char* name = []() { static constexpr const char* name = []() {
if constexpr(kNeedCrossWarpSync) if constexpr(kNeedCrossWarpSync)
return "bpr"; // block per row return "bpr_2p"; // block per row
else else
return "wpr"; // warp per row return "wpr_2p"; // warp per row
}(); }();
CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSize() CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSize()
...@@ -46,20 +51,30 @@ struct Layernorm2dFwdPipelineTwoPass ...@@ -46,20 +51,30 @@ struct Layernorm2dFwdPipelineTwoPass
} }
template <typename XWindow, template <typename XWindow,
typename XResidualWindow,
typename GammaWindow, typename GammaWindow,
typename BetaWindow, typename BetaWindow,
typename YWindow, typename YWindow,
typename YResidualWindow,
typename MeanWindow, typename MeanWindow,
typename InvStdWindow> typename InvStdWindow,
typename XScaleWindow,
typename YScaleWindow,
typename Epilogue>
CK_TILE_DEVICE auto operator()(const XWindow& x_window_, CK_TILE_DEVICE auto operator()(const XWindow& x_window_,
const XResidualWindow& x_residual_window_,
const GammaWindow& gamma_window_, const GammaWindow& gamma_window_,
const BetaWindow& beta_window_, const BetaWindow& beta_window_,
YWindow& y_window, YWindow& y_window,
const YResidualWindow& y_residual_window_,
MeanWindow& mean_window, MeanWindow& mean_window,
InvStdWindow& inv_std_window, InvStdWindow& inv_std_window,
const XScaleWindow& /*x_scale_window*/,
YScaleWindow& /*y_scale_window*/,
ComputeDataType epsilon, ComputeDataType epsilon,
ck_tile::index_t row_size, ck_tile::index_t row_size,
void* smem) const void* smem,
Epilogue) const
{ {
auto x_window = auto x_window =
make_tile_window(x_window_, Policy::template MakeXBlockTileDistribution<Problem>()); make_tile_window(x_window_, Policy::template MakeXBlockTileDistribution<Problem>());
...@@ -67,6 +82,10 @@ struct Layernorm2dFwdPipelineTwoPass ...@@ -67,6 +82,10 @@ struct Layernorm2dFwdPipelineTwoPass
gamma_window_, Policy::template MakeGammaBetaBlockTileDistribution<Problem>()); gamma_window_, Policy::template MakeGammaBetaBlockTileDistribution<Problem>());
auto beta_window = make_tile_window( auto beta_window = make_tile_window(
beta_window_, Policy::template MakeGammaBetaBlockTileDistribution<Problem>()); beta_window_, Policy::template MakeGammaBetaBlockTileDistribution<Problem>());
auto x_residual_window = make_tile_window(
x_residual_window_, Policy::template MakeXBlockTileDistribution<Problem>());
auto y_residual_window = make_tile_window(
y_residual_window_, Policy::template MakeXBlockTileDistribution<Problem>());
// Problem::BlockShape // Problem::BlockShape
static constexpr index_t Block_N = Problem::BlockShape::Block_N; static constexpr index_t Block_N = Problem::BlockShape::Block_N;
...@@ -87,15 +106,33 @@ struct Layernorm2dFwdPipelineTwoPass ...@@ -87,15 +106,33 @@ struct Layernorm2dFwdPipelineTwoPass
auto block_welford_cross_warp_sync = auto block_welford_cross_warp_sync =
Policy::template GetBlockWelfordCrossWarpSync<Problem>(); Policy::template GetBlockWelfordCrossWarpSync<Problem>();
using XTensorType = decltype(load_tile(x_window)); using XTensorType = decltype(cast_tile<ComputeDataType>(load_tile(x_window)));
auto mean = block_welford.template MakeMeanVarBlockTile<XTensorType>(); auto mean = block_welford.template MakeMeanVarBlockTile<XTensorType>();
auto var = block_welford.template MakeMeanVarBlockTile<XTensorType>(); auto var = block_welford.template MakeMeanVarBlockTile<XTensorType>();
for(int iN = __builtin_amdgcn_readfirstlane(0); iN < num_n_tile_iteration; ++iN) for(int iN = __builtin_amdgcn_readfirstlane(0); iN < num_n_tile_iteration; ++iN)
{ {
const auto x = load_tile(x_window); auto x = load_tile(x_window);
block_welford(x, mean, var, cur_count, max_count); auto x_resi = load_tile(x_residual_window);
move_tile_window(x_window, {0, Block_N}); move_tile_window(x_window, {0, Block_N});
move_tile_window(x_residual_window, {0, Block_N});
auto acc = cast_tile<ComputeDataType>(x);
if constexpr(kFusedAdd == Layernorm2dFusedAddEnum::PRE_ADD_STORE ||
kFusedAdd == Layernorm2dFusedAddEnum::PRE_ADD)
{
sweep_tile(x_resi, [&](auto idx) {
// compute x = x_resi + x
acc(idx) = type_convert<ComputeDataType>(x_resi(idx)) + acc(idx);
});
if constexpr(kFusedAdd == Layernorm2dFusedAddEnum::PRE_ADD_STORE)
{
store_tile(y_residual_window, cast_tile<YResidualDataType>(acc));
move_tile_window(y_residual_window, {0, Block_N});
}
}
block_welford(acc, mean, var, cur_count, max_count);
} }
block_welford_sync(mean, var, cur_count); block_welford_sync(mean, var, cur_count);
...@@ -118,9 +155,8 @@ struct Layernorm2dFwdPipelineTwoPass ...@@ -118,9 +155,8 @@ struct Layernorm2dFwdPipelineTwoPass
ck_tile::index_t stride_to_right_most_window = ck_tile::index_t stride_to_right_most_window =
row_size % Block_N == 0 ? row_size - Block_N : row_size - row_size % Block_N; row_size % Block_N == 0 ? row_size - Block_N : row_size - row_size % Block_N;
// x_window.foo();
// gamma_window.foo();
move_tile_window(x_window, {0, -Block_N}); move_tile_window(x_window, {0, -Block_N});
move_tile_window(x_residual_window, {0, -Block_N});
move_tile_window(gamma_window, {stride_to_right_most_window}); move_tile_window(gamma_window, {stride_to_right_most_window});
move_tile_window(beta_window, {stride_to_right_most_window}); move_tile_window(beta_window, {stride_to_right_most_window});
move_tile_window(y_window, {0, stride_to_right_most_window}); move_tile_window(y_window, {0, stride_to_right_most_window});
...@@ -128,29 +164,41 @@ struct Layernorm2dFwdPipelineTwoPass ...@@ -128,29 +164,41 @@ struct Layernorm2dFwdPipelineTwoPass
// layernorm computation // layernorm computation
for(int iN = __builtin_amdgcn_readfirstlane(0); iN < num_n_tile_iteration; ++iN) for(int iN = __builtin_amdgcn_readfirstlane(0); iN < num_n_tile_iteration; ++iN)
{ {
const auto x = load_tile(x_window); auto x = load_tile(x_window);
auto x_resi = load_tile(x_residual_window);
auto acc = cast_tile<ComputeDataType>(x);
if constexpr(kFusedAdd == Layernorm2dFusedAddEnum::PRE_ADD_STORE ||
kFusedAdd == Layernorm2dFusedAddEnum::PRE_ADD)
{
sweep_tile(x_resi, [&](auto idx) {
// compute x = x_resi + x
acc(idx) = type_convert<ComputeDataType>(x_resi(idx)) + acc(idx);
});
}
// load gamma/beta (TODO: support no gamma/beta?) // load gamma/beta (TODO: support no gamma/beta?)
const auto gamma = load_tile(gamma_window); const auto gamma = load_tile(gamma_window);
const auto beta = load_tile(beta_window); const auto beta = load_tile(beta_window);
auto y = make_static_distributed_tensor<YDataType>(x.get_tile_distribution()); auto ln = make_static_distributed_tensor<ComputeDataType>(acc.get_tile_distribution());
sweep_tile(y, [&, mean_ = mean](auto idx) { sweep_tile(ln, [&, mean_ = mean](auto idx) {
constexpr auto i_idx = make_tuple(idx[number<0>{}]); constexpr auto i_idx = make_tuple(idx[number<0>{}]);
constexpr auto j_idx = make_tuple(idx[number<1>{}]); constexpr auto j_idx = make_tuple(idx[number<1>{}]);
const auto gamma_ = type_convert<ComputeDataType>(gamma[j_idx]); const auto gamma_ = type_convert<ComputeDataType>(gamma[j_idx]);
const auto beta_ = type_convert<ComputeDataType>(beta[j_idx]); const auto beta_ = type_convert<ComputeDataType>(beta[j_idx]);
const auto x_ = type_convert<ComputeDataType>(x[idx]); auto ln_ = (acc(idx) - mean_[i_idx]) * inv_std[i_idx] * gamma_ + beta_;
auto y_ = (x_ - mean_[i_idx]) * inv_std[i_idx] * gamma_ + beta_;
y(idx) = type_convert<YDataType>(y_); ln(idx) = ln_;
}); });
store_tile(y_window, y); static_assert(kFusedQuant != Layernorm2dFusedQuantEnum::DYNAMIC_QUANT);
Epilogue{}(y_window, ln);
move_tile_window(x_window, {0, -Block_N}); move_tile_window(x_window, {0, -Block_N});
move_tile_window(x_residual_window, {0, -Block_N});
move_tile_window(gamma_window, {-Block_N}); move_tile_window(gamma_window, {-Block_N});
move_tile_window(beta_window, {-Block_N}); move_tile_window(beta_window, {-Block_N});
move_tile_window(y_window, {0, -Block_N}); move_tile_window(y_window, {0, -Block_N});
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core/utility/type_traits.hpp"
namespace ck_tile {
enum class Layernorm2dFusedAddEnum
{
NO_ADD = 0,
// fused add before layernorm and store result to global
PRE_ADD_STORE = 1,
// fused add before layernorm, but not store result
PRE_ADD = 2,
};
// clang-format off
template<Layernorm2dFusedAddEnum> struct Layernorm2dFusedAddEnumName;
template<> struct Layernorm2dFusedAddEnumName<Layernorm2dFusedAddEnum::NO_ADD> { static constexpr const char * name = "no"; };
template<> struct Layernorm2dFusedAddEnumName<Layernorm2dFusedAddEnum::PRE_ADD_STORE> { static constexpr const char * name = "pras"; };
template<> struct Layernorm2dFusedAddEnumName<Layernorm2dFusedAddEnum::PRE_ADD> { static constexpr const char * name = "pra"; };
// clang-format on
enum class Layernorm2dFusedQuantEnum
{
NO_SWEEP = 0,
SMOOTH_DYNAMIC_QUANT = 1, // smooth oulier + rowwise quant, need input x-scale and store y_scale
DYNAMIC_QUANT = 2, // rowwise quant, store out a y-scale
};
// clang-format off
template<Layernorm2dFusedQuantEnum> struct Layernorm2dFusedQuantEnumName;
template<> struct Layernorm2dFusedQuantEnumName<Layernorm2dFusedQuantEnum::NO_SWEEP> { static constexpr const char * name = "no"; };
template<> struct Layernorm2dFusedQuantEnumName<Layernorm2dFusedQuantEnum::DYNAMIC_QUANT> { static constexpr const char * name = "dqt"; };
template<> struct Layernorm2dFusedQuantEnumName<Layernorm2dFusedQuantEnum::SMOOTH_DYNAMIC_QUANT> { static constexpr const char * name = "smdqt"; };
// clang-format on
template <bool kPadN_,
bool kSaveMeanInvStd_,
bool kTwoPass_,
Layernorm2dFusedAddEnum kFusedAdd_,
Layernorm2dFusedQuantEnum kFusedQuant_>
struct Layernorm2dFwdTraits
{
static constexpr bool kPadN = kPadN_;
static constexpr bool kSaveMeanInvStd = kSaveMeanInvStd_;
static constexpr bool kTwoPass = kTwoPass_;
static constexpr Layernorm2dFusedAddEnum kFusedAdd = kFusedAdd_;
static constexpr Layernorm2dFusedQuantEnum kFusedQuant = kFusedQuant_;
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/ops/permute/kernel/generic_permute_kernel.hpp"
#include "ck_tile/ops/permute/pipeline/generic_petmute_problem.hpp"
#include "ck_tile/ops/common/generic_2d_block_shape.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
// #include "ck_tile/ops/permute/pipeline/generic_petmute_problem.hpp"
namespace ck_tile {
/* independent host side argument, no template
*/
struct GenericPermuteHostArgs
{
static constexpr index_t kMaxRanks = 8; // TODO: hardcoded
const void* p_src;
void* p_dst;
index_t rank;
index_t shape[kMaxRanks]; // input shape
index_t perm[kMaxRanks]; // permute index
};
/*
simulate torch.permute:
x_ = x_.view(x.shape[0],
x.shape[1]//16, 16,
x.shape[2]//32, 4, 8)
x_ = x_.permute(0,1,3,4,2,5)
x_ = x_.contiguous()
x_ = x_.view(x.shape[0], x.shape[1], x.shape[2]);//
this kernel is supposed not to be performant(just OK), with functional support up to kMaxRanks
dim of permutation, with a single kernel
*/
template <typename Problem_>
struct GenericPermute
{
using Problem = ck_tile::remove_cvref_t<Problem_>;
using DataType = remove_cvref_t<typename Problem::DataType>;
static constexpr index_t kBlockSize = Problem::kBlockSize;
static constexpr index_t kMaxRanks = Problem::kMaxRanks;
static constexpr bool KeepLastDim = Problem::KeepLastDim;
struct __attribute__((packed)) Kargs
{
const void* p_src;
void* p_dst;
// index_t rank;
index_t num_elements;
index_t perm_length[kMaxRanks]; // tensor length after permutation
index_t perm_stride[kMaxRanks]; // tensor stride after permutation
};
CK_TILE_HOST static constexpr index_t TotalElements(const GenericPermuteHostArgs& h)
{
index_t n = 1;
for(auto i = 0; i < h.rank; i++)
{
n *= h.shape[i];
}
return n;
}
CK_TILE_HOST static constexpr Kargs MakeKargs(const GenericPermuteHostArgs& h)
{
Kargs a;
a.p_src = h.p_src;
a.p_dst = h.p_dst;
// assert rank <= kMaxRanks
index_t i = 0;
index_t perm[kMaxRanks];
index_t x_shape[kMaxRanks];
index_t x_stride[kMaxRanks];
// index_t perm_length[kMaxRanks];
for(; i < h.rank; i++)
{
x_shape[i] = h.shape[i];
perm[i] = h.perm[i];
}
for(; i < kMaxRanks; i++)
{
x_shape[i] = 1;
perm[i] = i; // will index to len = 1
}
index_t stride = 1;
for(index_t j = kMaxRanks - 1; j >= 0; j--)
{
x_stride[j] = stride;
stride *= x_shape[j];
}
for(index_t j = 0; j < kMaxRanks; j++)
{
a.perm_length[j] = x_shape[perm[j]];
a.perm_stride[j] = x_stride[perm[j]];
}
a.num_elements = TotalElements(h);
return a;
}
CK_TILE_HOST static constexpr auto GridSize(GenericPermuteHostArgs h)
{
auto total = TotalElements(h);
auto grids = dim3((total + BlockSize() - 1) / BlockSize());
// printf("### total:%d, grids:%dx%dx%d\n", total, );
return grids;
}
CK_TILE_HOST_DEVICE static constexpr auto BlockSize() { return Problem::kBlockSize; }
CK_TILE_DEVICE void operator()(Kargs kargs) const
{
index_t id = blockIdx.x * BlockSize() + threadIdx.x;
if(id >= kargs.num_elements)
return;
const auto perm_length =
generate_tuple([&](auto I) { return kargs.perm_length[I]; }, number<kMaxRanks>{});
const auto perm_stride =
generate_tuple([&](auto I) { return kargs.perm_stride[I]; }, number<kMaxRanks>{});
const DataType* p_src = reinterpret_cast<const DataType*>(kargs.p_src);
DataType* p_dst = reinterpret_cast<DataType*>(kargs.p_dst);
const auto src_view_0 = make_naive_tensor_view<address_space_enum::global>(
p_src, perm_length, perm_stride, number<1>{}, number<1>{});
const auto src_view = transform_tensor_view(
src_view_0,
make_tuple(make_merge_transform(perm_length)),
make_tuple(typename arithmetic_sequence_gen<0, kMaxRanks, 1>::type{}),
make_tuple(sequence<0>{}));
auto dst_view_0 = make_naive_tensor_view_packed<address_space_enum::global>(
p_dst, perm_length, number<1>{});
auto dst_view = transform_tensor_view(
dst_view_0,
make_tuple(make_merge_transform(perm_length)),
make_tuple(typename arithmetic_sequence_gen<0, kMaxRanks, 1>::type{}),
make_tuple(sequence<0>{}));
// TODO: hard code to vector 1
using vector_t = thread_buffer<DataType, 1>;
const auto src_coord =
make_tensor_coordinate(src_view.get_tensor_descriptor(), array<index_t, 1>{id});
const auto dst_coord =
make_tensor_coordinate(dst_view.get_tensor_descriptor(), array<index_t, 1>{id});
// printf("src id:%d, os:%d\n", id, src_coord.get_offset());
// printf("dst id:%d, os:%d\n", id, dst_coord.get_offset());
const vector_t x = src_view.template get_vectorized_elements<vector_t>(src_coord, 0);
dst_view.template set_vectorized_elements<vector_t>(dst_coord, 0, x);
}
};
} // namespace ck_tile
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment