Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
017fb2eb
"src/scanscalar.cpp" did not exist on "fb9176a0543e5bb704356e5469cb0a9ac8c9e03a"
Commit
017fb2eb
authored
Dec 14, 2023
by
muozturk
Browse files
cmake list
parents
7abb7439
3a3b98ef
Changes
119
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
668 additions
and
37 deletions
+668
-37
client_example/25_tensor_transforms/tensor_transform.cpp
client_example/25_tensor_transforms/tensor_transform.cpp
+150
-0
client_example/25_tensor_transforms/tensor_transform_using_wrapper.cpp
...e/25_tensor_transforms/tensor_transform_using_wrapper.cpp
+114
-0
client_example/CMakeLists.txt
client_example/CMakeLists.txt
+1
-1
dev-requirements.txt
dev-requirements.txt
+2
-2
docs/conf.py
docs/conf.py
+19
-8
docs/doxygen/Doxyfile
docs/doxygen/Doxyfile
+4
-2
docs/index.rst
docs/index.rst
+2
-0
docs/sphinx/_toc.yml.in
docs/sphinx/_toc.yml.in
+3
-3
docs/sphinx/requirements.in
docs/sphinx/requirements.in
+1
-1
docs/sphinx/requirements.txt
docs/sphinx/requirements.txt
+9
-9
docs/wrapper.rst
docs/wrapper.rst
+54
-0
example/01_gemm/gemm_xdl_fp16.cpp
example/01_gemm/gemm_xdl_fp16.cpp
+1
-1
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16.cpp
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16.cpp
+2
-2
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp8.cpp
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp8.cpp
+2
-2
example/27_layernorm2d_fwd/run_layernorm_example.inc
example/27_layernorm2d_fwd/run_layernorm_example.inc
+2
-2
example/42_groupnorm_fwd/run_groupnorm_fwd_example.inc
example/42_groupnorm_fwd/run_groupnorm_fwd_example.inc
+2
-2
example/44_elementwise_permute/CMakeLists.txt
example/44_elementwise_permute/CMakeLists.txt
+3
-1
example/62_conv_fwd_activ/CMakeLists.txt
example/62_conv_fwd_activ/CMakeLists.txt
+2
-0
example/62_conv_fwd_activ/convnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16.cpp
...nvnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16.cpp
+294
-0
example/62_conv_fwd_activ/run_convnd_fwd_activ_example.inc
example/62_conv_fwd_activ/run_convnd_fwd_activ_example.inc
+1
-1
No files found.
client_example/25_tensor_transforms/tensor_transform.cpp
0 → 100644
View file @
017fb2eb
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/number.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
static
constexpr
auto
I0
=
ck
::
Number
<
0
>
{};
static
constexpr
auto
I1
=
ck
::
Number
<
1
>
{};
static
constexpr
auto
I2
=
ck
::
Number
<
2
>
{};
using
DataType
=
int
;
template
<
typename
Desc
>
void
Print1d
(
const
Desc
&
desc
)
{
std
::
cout
<<
"Print1d"
<<
std
::
endl
;
for
(
ck
::
index_t
w
=
0
;
w
<
desc
.
GetLength
(
I0
);
w
++
)
{
std
::
cout
<<
desc
.
CalculateOffset
(
ck
::
make_tuple
(
w
))
<<
" "
;
}
std
::
cout
<<
std
::
endl
;
}
template
<
typename
Desc
>
void
Print2d
(
const
Desc
&
desc
)
{
std
::
cout
<<
"Print2d"
<<
std
::
endl
;
for
(
ck
::
index_t
h
=
0
;
h
<
desc
.
GetLength
(
I0
);
h
++
)
{
for
(
ck
::
index_t
w
=
0
;
w
<
desc
.
GetLength
(
I1
);
w
++
)
{
std
::
cout
<<
desc
.
CalculateOffset
(
ck
::
make_tuple
(
h
,
w
))
<<
" "
;
}
std
::
cout
<<
std
::
endl
;
}
}
template
<
typename
Desc
>
void
Print3dCustom
(
const
Desc
&
desc
)
{
std
::
cout
<<
"Print3dCustom"
<<
std
::
endl
;
for
(
ck
::
index_t
d
=
0
;
d
<
desc
.
GetLength
(
I0
);
d
++
)
{
for
(
ck
::
index_t
h
=
0
;
h
<
desc
.
GetLength
(
I1
);
h
++
)
{
for
(
ck
::
index_t
w
=
0
;
w
<
desc
.
GetLength
(
I2
);
w
++
)
{
std
::
cout
<<
desc
.
CalculateOffset
(
ck
::
make_tuple
(
d
,
h
,
w
))
<<
" "
;
}
std
::
cout
<<
std
::
endl
;
}
std
::
cout
<<
std
::
endl
;
}
}
int
main
()
{
// Tensor descriptor traverse in row-major (need to reverse dims)
std
::
cout
<<
"Note: Tensor descriptor traverse in row-major"
<<
std
::
endl
;
// Basic descriptor 0, 1, 2, ... 30, 31
// (dims:4,8 strides:1,4)
const
auto
desc_4x8_s1x4
=
ck
::
make_naive_tensor_descriptor
(
ck
::
make_tuple
(
ck
::
Number
<
4
>
{},
ck
::
Number
<
8
>
{}),
ck
::
make_tuple
(
ck
::
Number
<
1
>
{},
ck
::
Number
<
4
>
{}));
std
::
cout
<<
"dims:4,8 strides:1,4"
<<
std
::
endl
;
Print2d
(
desc_4x8_s1x4
);
using
Cord1x1Type
=
ck
::
Tuple
<
ck
::
Number
<
1
>
,
ck
::
Number
<
1
>>
;
constexpr
ck
::
index_t
offset_1x1
=
desc_4x8_s1x4
.
CalculateOffset
(
Cord1x1Type
{});
std
::
cout
<<
"Constexpr calculated [1, 1] offset:"
<<
offset_1x1
<<
std
::
endl
;
// Basic descriptor 0, 1, 8, 9, 16, 17, ... 30, 31 (compile-time descriptor)
// dims:4,(2,4) strides:2,(1,8)
const
auto
desc_4x2x4_s2x1x8
=
ck
::
make_naive_tensor_descriptor
(
ck
::
make_tuple
(
4
,
2
,
4
),
ck
::
make_tuple
(
2
,
1
,
8
));
// Transform to 2d (column-major, need to to reverse dims)
const
auto
desc_4x2x4_s2x1x8_merged
=
ck
::
transform_tensor_descriptor
(
desc_4x2x4_s2x1x8
,
ck
::
make_tuple
(
ck
::
make_pass_through_transform
(
4
),
ck
::
make_merge_transform
(
ck
::
make_tuple
(
4
,
2
))),
ck
::
make_tuple
(
ck
::
Sequence
<
0
>
{},
ck
::
Sequence
<
2
,
1
>
{}),
ck
::
make_tuple
(
ck
::
Sequence
<
0
>
{},
ck
::
Sequence
<
1
>
{}));
std
::
cout
<<
"dims:4,(2,4) strides:2,(1,8)"
<<
std
::
endl
;
Print2d
(
desc_4x2x4_s2x1x8_merged
);
// Basic descriptor 0, 1, 8, 9, 16, 17, ... 30, 31 (compile-time descriptor)
// dims:(2,2),(2,4) strides:((1,4),(2,8)
const
auto
desc_2x2x2x4_s1x4x2x8
=
ck
::
make_naive_tensor_descriptor
(
ck
::
make_tuple
(
2
,
2
,
2
,
4
),
ck
::
make_tuple
(
1
,
4
,
2
,
8
));
// Transform to 2d
const
auto
desc_2x2x2x4_s1x4x2x8_double_merged_2d
=
ck
::
transform_tensor_descriptor
(
desc_2x2x2x4_s1x4x2x8
,
ck
::
make_tuple
(
ck
::
make_merge_transform
(
ck
::
make_tuple
(
2
,
2
)),
ck
::
make_merge_transform
(
ck
::
make_tuple
(
4
,
2
))),
ck
::
make_tuple
(
ck
::
Sequence
<
1
,
0
>
{},
ck
::
Sequence
<
3
,
2
>
{}),
ck
::
make_tuple
(
ck
::
Sequence
<
0
>
{},
ck
::
Sequence
<
1
>
{}));
// Transform to 3d
const
auto
desc_2x2x2x4_s1x4x2x8_double_merged_3d
=
ck
::
transform_tensor_descriptor
(
desc_2x2x2x4_s1x4x2x8
,
ck
::
make_tuple
(
ck
::
make_pass_through_transform
(
2
),
ck
::
make_pass_through_transform
(
2
),
ck
::
make_merge_transform
(
ck
::
make_tuple
(
4
,
2
))),
ck
::
make_tuple
(
ck
::
Sequence
<
0
>
{},
ck
::
Sequence
<
1
>
{},
ck
::
Sequence
<
3
,
2
>
{}),
ck
::
make_tuple
(
ck
::
Sequence
<
0
>
{},
ck
::
Sequence
<
1
>
{},
ck
::
Sequence
<
2
>
{}));
std
::
cout
<<
"dims:(2,2),(2,4) strides:(1,4),(2,8)"
<<
std
::
endl
;
Print2d
(
desc_2x2x2x4_s1x4x2x8_double_merged_2d
);
Print3dCustom
(
desc_2x2x2x4_s1x4x2x8_double_merged_3d
);
// Basic descriptor 0, 1, 8, 9, 16, 17, ... 30, 31 (compile-time descriptor)
// dims:((2,2),2),4 strides:((1,4),2),8
// Transform to 2d
const
auto
desc_2x2x2x4_s1x4x2x8_nested
=
ck
::
make_naive_tensor_descriptor
(
ck
::
make_tuple
(
2
,
2
,
2
,
4
),
ck
::
make_tuple
(
1
,
4
,
2
,
8
));
const
auto
desc_2x2x2x4_s1x4x2x8_nested_merged_3d
=
ck
::
transform_tensor_descriptor
(
desc_2x2x2x4_s1x4x2x8_nested
,
ck
::
make_tuple
(
ck
::
make_merge_transform
(
ck
::
make_tuple
(
2
,
2
)),
ck
::
make_pass_through_transform
(
2
),
ck
::
make_pass_through_transform
(
4
)),
ck
::
make_tuple
(
ck
::
Sequence
<
1
,
0
>
{},
ck
::
Sequence
<
2
>
{},
ck
::
Sequence
<
3
>
{}),
ck
::
make_tuple
(
ck
::
Sequence
<
0
>
{},
ck
::
Sequence
<
1
>
{},
ck
::
Sequence
<
2
>
{}));
const
auto
desc_2x2x2x4_s1x4x2x8_nested_merged_1d
=
ck
::
transform_tensor_descriptor
(
desc_2x2x2x4_s1x4x2x8_nested
,
ck
::
make_tuple
(
ck
::
make_merge_transform
(
ck
::
make_tuple
(
4
,
2
,
2
,
2
))),
ck
::
make_tuple
(
ck
::
Sequence
<
3
,
2
,
1
,
0
>
{}),
ck
::
make_tuple
(
ck
::
Sequence
<
0
>
{}));
const
auto
desc_2x2x2x4_s1x4x2x8_nested_merged_2d
=
ck
::
transform_tensor_descriptor
(
desc_2x2x2x4_s1x4x2x8_nested_merged_3d
,
ck
::
make_tuple
(
ck
::
make_merge_transform
(
ck
::
make_tuple
(
2
,
4
)),
ck
::
make_pass_through_transform
(
4
)),
ck
::
make_tuple
(
ck
::
Sequence
<
1
,
0
>
{},
ck
::
Sequence
<
2
>
{}),
ck
::
make_tuple
(
ck
::
Sequence
<
0
>
{},
ck
::
Sequence
<
1
>
{}));
std
::
cout
<<
"dims:((2,2),2),4 strides:((1,4),2),8"
<<
std
::
endl
;
Print1d
(
desc_2x2x2x4_s1x4x2x8_nested_merged_1d
);
Print2d
(
desc_2x2x2x4_s1x4x2x8_nested_merged_2d
);
Print3dCustom
(
desc_2x2x2x4_s1x4x2x8_nested_merged_3d
);
return
0
;
}
client_example/25_tensor_transforms/tensor_transform_using_wrapper.cpp
0 → 100644
View file @
017fb2eb
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/number.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/wrapper/layout.hpp"
using
DataType
=
int
;
template
<
typename
Layout
>
void
Print1d
(
const
Layout
&
layout
)
{
std
::
cout
<<
"Print1d"
<<
std
::
endl
;
for
(
ck
::
index_t
w
=
0
;
w
<
ck
::
wrapper
::
size
(
layout
);
w
++
)
{
std
::
cout
<<
layout
(
ck
::
make_tuple
(
w
))
<<
" "
;
}
std
::
cout
<<
std
::
endl
;
}
template
<
typename
Layout
>
void
Print2d
(
const
Layout
&
layout
)
{
std
::
cout
<<
"Print2d"
<<
std
::
endl
;
for
(
ck
::
index_t
h
=
0
;
h
<
ck
::
wrapper
::
size
<
0
>
(
layout
);
h
++
)
{
for
(
ck
::
index_t
w
=
0
;
w
<
ck
::
wrapper
::
size
<
1
>
(
layout
);
w
++
)
{
std
::
cout
<<
layout
(
ck
::
make_tuple
(
h
,
w
))
<<
" "
;
}
std
::
cout
<<
std
::
endl
;
}
}
// Print in (x,y),z pattern
template
<
typename
Layout
>
void
Print3dCustom
(
const
Layout
&
layout
)
{
std
::
cout
<<
"Print3dCustom"
<<
std
::
endl
;
for
(
ck
::
index_t
d
=
0
;
d
<
ck
::
wrapper
::
size
<
0
>
(
ck
::
wrapper
::
get
<
0
>
(
layout
));
d
++
)
{
for
(
ck
::
index_t
h
=
0
;
h
<
ck
::
wrapper
::
size
<
1
>
(
ck
::
wrapper
::
get
<
0
>
(
layout
));
h
++
)
{
for
(
ck
::
index_t
w
=
0
;
w
<
ck
::
wrapper
::
size
<
1
>
(
layout
);
w
++
)
{
std
::
cout
<<
layout
(
ck
::
make_tuple
(
ck
::
make_tuple
(
d
,
h
),
w
))
<<
" "
;
}
std
::
cout
<<
std
::
endl
;
}
std
::
cout
<<
std
::
endl
;
}
}
int
main
()
{
// Layout traverse in row-major
std
::
cout
<<
"Note: Layout traverse in column-major"
<<
std
::
endl
;
// Basic descriptor 0, 1, 2, ... 30, 31 (compile-time descriptor)
// (dims:4,8 strides:1,4)
const
auto
shape_4x8
=
ck
::
make_tuple
(
ck
::
Number
<
4
>
{},
ck
::
Number
<
8
>
{});
const
auto
layout_4x8_s1x4
=
ck
::
wrapper
::
make_layout
(
shape_4x8
);
std
::
cout
<<
"dims:4,8 strides:1,4"
<<
std
::
endl
;
Print2d
(
layout_4x8_s1x4
);
using
Cord1x1Type
=
ck
::
Tuple
<
ck
::
Number
<
1
>
,
ck
::
Number
<
1
>>
;
constexpr
ck
::
index_t
offset_1x1
=
layout_4x8_s1x4
.
template
operator
()
<
Cord1x1Type
>();
std
::
cout
<<
"Constexpr calculated [1, 1] offset:"
<<
offset_1x1
<<
std
::
endl
;
// Basic descriptor 0, 1, 8, 9, 16, 17, ... 30, 31 (runtime descriptor)
// dims:4,(2,4) strides:2,(1,8)
const
auto
shape_4x2x4
=
ck
::
make_tuple
(
4
,
ck
::
make_tuple
(
2
,
4
));
const
auto
strides_s2x1x8
=
ck
::
make_tuple
(
2
,
ck
::
make_tuple
(
1
,
8
));
const
auto
layout_4x2x4_s2x1x8
=
ck
::
wrapper
::
make_layout
(
shape_4x2x4
,
strides_s2x1x8
);
std
::
cout
<<
"dims:4,(2,4) strides:2,(1,8)"
<<
std
::
endl
;
Print2d
(
layout_4x2x4_s2x1x8
);
// Basic descriptor 0, 1, 8, 9, 16, 17, ... 30, 31 (compile-time descriptor)
// dims:(2,2),(2,4) strides:((1,4),(2,8)
const
auto
shape_2x2x2x4
=
ck
::
make_tuple
(
ck
::
make_tuple
(
ck
::
Number
<
2
>
{},
ck
::
Number
<
2
>
{}),
ck
::
make_tuple
(
ck
::
Number
<
2
>
{},
ck
::
Number
<
4
>
{}));
const
auto
strides_s1x4x2x8
=
ck
::
make_tuple
(
ck
::
make_tuple
(
ck
::
Number
<
1
>
{},
ck
::
Number
<
4
>
{}),
ck
::
make_tuple
(
ck
::
Number
<
2
>
{},
ck
::
Number
<
8
>
{}));
static
const
auto
layout_2x2x2x4_s1x4x2x8
=
ck
::
wrapper
::
make_layout
(
shape_2x2x2x4
,
strides_s1x4x2x8
);
std
::
cout
<<
"dims:(2,2),(2,4) strides:(1,4),(2,8)"
<<
std
::
endl
;
Print2d
(
layout_2x2x2x4_s1x4x2x8
);
Print3dCustom
(
layout_2x2x2x4_s1x4x2x8
);
// Basic descriptor 0, 1, 8, 9, 16, 17, ... 30, 31 (compile-time descriptor)
// dims:((2,2),2),4 strides:((1,4),2),8
// Transform to 2d
const
auto
shape_2x2x2x4_nested
=
ck
::
make_tuple
(
ck
::
make_tuple
(
ck
::
make_tuple
(
ck
::
Number
<
2
>
{},
ck
::
Number
<
2
>
{}),
ck
::
Number
<
2
>
{}),
ck
::
Number
<
4
>
{});
const
auto
strides_s1x4x2x8_nested
=
ck
::
make_tuple
(
ck
::
make_tuple
(
ck
::
make_tuple
(
ck
::
Number
<
1
>
{},
ck
::
Number
<
4
>
{}),
ck
::
Number
<
2
>
{}),
ck
::
Number
<
8
>
{});
static
const
auto
layout_2x2x2x4_s1x4x2x8_nested
=
ck
::
wrapper
::
make_layout
(
shape_2x2x2x4_nested
,
strides_s1x4x2x8_nested
);
std
::
cout
<<
"dims:((2,2),2),4 strides:((1,4),2),8"
<<
std
::
endl
;
Print1d
(
layout_2x2x2x4_s1x4x2x8_nested
);
Print2d
(
layout_2x2x2x4_s1x4x2x8_nested
);
Print3dCustom
(
layout_2x2x2x4_s1x4x2x8_nested
);
return
0
;
}
client_example/CMakeLists.txt
View file @
017fb2eb
...
@@ -48,7 +48,7 @@ else()
...
@@ -48,7 +48,7 @@ else()
endif
()
endif
()
endif
()
endif
()
find_package
(
composable_kernel COMPONENTS device_operations
)
find_package
(
composable_kernel COMPONENTS device_
other_operations device_gemm_operations device_conv_operations device_contraction_operations device_reduction_
operations
)
find_package
(
hip REQUIRED PATHS /opt/rocm
)
find_package
(
hip REQUIRED PATHS /opt/rocm
)
message
(
STATUS
"Build with HIP
${
hip_VERSION
}
"
)
message
(
STATUS
"Build with HIP
${
hip_VERSION
}
"
)
...
...
dev-requirements.txt
View file @
017fb2eb
ROCm
SoftwarePlatform
/rocm-recipes
ROCm/rocm-recipes
RadeonOpenCompute/rocm-cmake@04f694df2a8dc9d7e35fa4dee4ba5fa407ec04f8
--build
RadeonOpenCompute/rocm-cmake@04f694df2a8dc9d7e35fa4dee4ba5fa407ec04f8
--build
danmar/cppcheck@2.9
danmar/cppcheck@2.9
docs/conf.py
View file @
017fb2eb
...
@@ -4,23 +4,34 @@
...
@@ -4,23 +4,34 @@
# list see the documentation:
# list see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# https://www.sphinx-doc.org/en/master/usage/configuration.html
import
subprocess
import
re
from
rocm_docs
import
ROCmDocs
from
rocm_docs
import
ROCmDocs
html_theme_options
=
{
"flavor"
:
"list"
}
name
=
"Composable Kernel"
with
open
(
'../CMakeLists.txt'
,
encoding
=
'utf-8'
)
as
f
:
get_version
=
r
'sed -n -e "s/^rocm_setup_version(.* \([0-9\.]\{1,\}\).*/\1/p" ../CMakeLists.txt'
match
=
re
.
search
(
r
'.*set\(version ([0-9.]+)[^0-9.]+'
,
f
.
read
())
version
=
subprocess
.
getoutput
(
get_version
)
if
not
match
:
if
len
(
version
)
>
0
:
raise
ValueError
(
"VERSION not found!"
)
name
=
f
"
{
name
}
{
version
}
"
version_number
=
match
[
1
]
left_nav_title
=
f
"Composable Kernel
{
version_number
}
Documentation"
# for PDF output on Read the Docs
project
=
"Composable Kernel Documentation"
author
=
"Advanced Micro Devices, Inc."
copyright
=
"Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved."
version
=
version_number
release
=
version_number
external_toc_path
=
"./sphinx/_toc.yml"
external_toc_path
=
"./sphinx/_toc.yml"
docs_core
=
ROCmDocs
(
f
"
{
name
}
Documentation"
)
docs_core
=
ROCmDocs
(
left_nav_title
)
docs_core
.
run_doxygen
(
doxygen_root
=
"doxygen"
,
doxygen_path
=
"doxygen/
docBin/
xml"
)
docs_core
.
run_doxygen
(
doxygen_root
=
"doxygen"
,
doxygen_path
=
"doxygen/xml"
)
docs_core
.
setup
()
docs_core
.
setup
()
external_projects_current_project
=
"composable_kernel"
mathjax3_config
=
{
mathjax3_config
=
{
'tex'
:
{
'tex'
:
{
'macros'
:
{
'macros'
:
{
...
...
docs/doxygen/Doxyfile
View file @
017fb2eb
...
@@ -58,7 +58,7 @@ PROJECT_LOGO =
...
@@ -58,7 +58,7 @@ PROJECT_LOGO =
# entered, it will be relative to the location where doxygen was started. If
# entered, it will be relative to the location where doxygen was started. If
# left blank the current directory will be used.
# left blank the current directory will be used.
OUTPUT_DIRECTORY =
docBin
OUTPUT_DIRECTORY =
.
# If the CREATE_SUBDIRS tag is set to YES then doxygen will create 4096 sub-
# If the CREATE_SUBDIRS tag is set to YES then doxygen will create 4096 sub-
# directories (in 2 levels) under the output directory of each output format and
# directories (in 2 levels) under the output directory of each output format and
...
@@ -778,7 +778,9 @@ WARN_LOGFILE =
...
@@ -778,7 +778,9 @@ WARN_LOGFILE =
INPUT = ../../include/ck/tensor_operation/gpu/grid \
INPUT = ../../include/ck/tensor_operation/gpu/grid \
../../include/ck/tensor_operation/gpu/block \
../../include/ck/tensor_operation/gpu/block \
../../include/ck/tensor_operation/gpu/thread \
../../include/ck/tensor_operation/gpu/thread \
../../library/include/ck/library/utility
../../library/include/ck/library/utility \
../../include/ck/wrapper
# This tag can be used to specify the character encoding of the source files
# This tag can be used to specify the character encoding of the source files
# that doxygen parses. Internally doxygen uses the UTF-8 encoding. Doxygen uses
# that doxygen parses. Internally doxygen uses the UTF-8 encoding. Doxygen uses
...
...
docs/index.rst
View file @
017fb2eb
...
@@ -34,6 +34,7 @@ Current CK library are structured into 4 layers:
...
@@ -34,6 +34,7 @@ Current CK library are structured into 4 layers:
* "Templated Tile Operators" layer
* "Templated Tile Operators" layer
* "Templated Kernel and Invoker" layer
* "Templated Kernel and Invoker" layer
* "Instantiated Kernel and Invoker" layer
* "Instantiated Kernel and Invoker" layer
* "Wrapper for tensor transform operations"
* "Client API" layer
* "Client API" layer
.. image:: data/ck_layer.png
.. image:: data/ck_layer.png
...
@@ -50,6 +51,7 @@ The following is a list of CK documents in the suggested reading order:
...
@@ -50,6 +51,7 @@ The following is a list of CK documents in the suggested reading order:
tutorial_hello_world
tutorial_hello_world
dockerhub
dockerhub
wrapper
Supported_Primitives_Guide
Supported_Primitives_Guide
API_Reference_Guide
API_Reference_Guide
Contributors_Guide
Contributors_Guide
docs/sphinx/_toc.yml.in
View file @
017fb2eb
...
@@ -5,6 +5,6 @@ defaults:
...
@@ -5,6 +5,6 @@ defaults:
maxdepth: 6
maxdepth: 6
root: index
root: index
subtrees:
subtrees:
- caption: About
- caption: About
entries:
entries:
- file: license
- file: license
docs/sphinx/requirements.in
View file @
017fb2eb
rocm-docs-core
>
=0.
2
0.
0
rocm-docs-core
=
=0.
3
0.
1
sphinxcontrib-bibtex==2.6.1
sphinxcontrib-bibtex==2.6.1
docs/sphinx/requirements.txt
View file @
017fb2eb
...
@@ -16,7 +16,7 @@ beautifulsoup4==4.11.2
...
@@ -16,7 +16,7 @@ beautifulsoup4==4.11.2
# via pydata-sphinx-theme
# via pydata-sphinx-theme
breathe==4.34.0
breathe==4.34.0
# via rocm-docs-core
# via rocm-docs-core
certifi==202
2.12.7
certifi==202
3.7.22
# via requests
# via requests
cffi==1.15.1
cffi==1.15.1
# via
# via
...
@@ -26,7 +26,7 @@ charset-normalizer==3.1.0
...
@@ -26,7 +26,7 @@ charset-normalizer==3.1.0
# via requests
# via requests
click==8.1.3
click==8.1.3
# via sphinx-external-toc
# via sphinx-external-toc
cryptography==4
0
.0.
2
cryptography==4
1
.0.
6
# via pyjwt
# via pyjwt
deprecated==1.2.13
deprecated==1.2.13
# via pygithub
# via pygithub
...
@@ -42,7 +42,7 @@ fastjsonschema==2.18.0
...
@@ -42,7 +42,7 @@ fastjsonschema==2.18.0
# via rocm-docs-core
# via rocm-docs-core
gitdb==4.0.10
gitdb==4.0.10
# via gitpython
# via gitpython
gitpython==3.1.3
5
gitpython==3.1.3
7
# via rocm-docs-core
# via rocm-docs-core
idna==3.4
idna==3.4
# via requests
# via requests
...
@@ -88,9 +88,9 @@ pydata-sphinx-theme==0.13.3
...
@@ -88,9 +88,9 @@ pydata-sphinx-theme==0.13.3
# via
# via
# rocm-docs-core
# rocm-docs-core
# sphinx-book-theme
# sphinx-book-theme
pygithub==1.58.
2
pygithub==1.58.
1
# via rocm-docs-core
# via rocm-docs-core
pygments==2.1
4
.0
pygments==2.1
5
.0
# via
# via
# accessible-pygments
# accessible-pygments
# pydata-sphinx-theme
# pydata-sphinx-theme
...
@@ -109,11 +109,11 @@ pyyaml==6.0
...
@@ -109,11 +109,11 @@ pyyaml==6.0
# pybtex
# pybtex
# rocm-docs-core
# rocm-docs-core
# sphinx-external-toc
# sphinx-external-toc
requests==2.
28.2
requests==2.
31.0
# via
# via
# pygithub
# pygithub
# sphinx
# sphinx
rocm-docs-core==0.
27.0
rocm-docs-core==0.
30.1
# via -r requirements.in
# via -r requirements.in
six==1.16.0
six==1.16.0
# via
# via
...
@@ -141,7 +141,7 @@ sphinx-book-theme==1.0.1
...
@@ -141,7 +141,7 @@ sphinx-book-theme==1.0.1
# via rocm-docs-core
# via rocm-docs-core
sphinx-copybutton==0.5.1
sphinx-copybutton==0.5.1
# via rocm-docs-core
# via rocm-docs-core
sphinx-design==0.
3.0
sphinx-design==0.
4.1
# via rocm-docs-core
# via rocm-docs-core
sphinx-external-toc==0.3.1
sphinx-external-toc==0.3.1
# via rocm-docs-core
# via rocm-docs-core
...
@@ -163,7 +163,7 @@ sphinxcontrib-serializinghtml==1.1.5
...
@@ -163,7 +163,7 @@ sphinxcontrib-serializinghtml==1.1.5
# via sphinx
# via sphinx
typing-extensions==4.5.0
typing-extensions==4.5.0
# via pydata-sphinx-theme
# via pydata-sphinx-theme
urllib3==1.26.1
5
urllib3==1.26.1
8
# via requests
# via requests
wrapt==1.15.0
wrapt==1.15.0
# via deprecated
# via deprecated
...
...
docs/wrapper.rst
0 → 100644
View file @
017fb2eb
===============
Wrapper
===============
-------------------------------------
Description
-------------------------------------
.. note::
The wrapper is under development and its functionality is limited.
CK provides a lightweight wrapper for more complex operations implemented in
the library. It allows indexing of nested layouts using a simple interface
(avoiding complex descriptor transformations).
Example:
.. code-block:: c
const auto shape_4x2x4 = ck::make_tuple(4, ck::make_tuple(2, 4));
const auto strides_s2x1x8 = ck::make_tuple(2, ck::make_tuple(1, 8));
const auto layout = ck::wrapper::make_layout(shape_4x2x4, strides_s2x1x8);
std::cout << "dims:4,(2,4) strides:2,(1,8)" << std::endl;
for(ck::index_t h = 0; h < ck::wrapper::size<0>(layout); h++)
{
for(ck::index_t w = 0; w < ck::wrapper::size<1>(layout); w++)
{
std::cout << layout(ck::make_tuple(h, w)) << " ";
}
std::cout << std::endl;
}
Output::
dims:4,(2,4) strides:2,(1,8)
0 1 8 9 16 17 24 25
2 3 10 11 18 19 26 27
4 5 12 13 20 21 28 29
6 7 14 15 22 23 30 31
-------------------------------------
Layout
-------------------------------------
.. doxygenstruct:: ck::wrapper::Layout
-------------------------------------
Layout helpers
-------------------------------------
.. doxygenfile:: layout_utils.hpp
example/01_gemm/gemm_xdl_fp16.cpp
View file @
017fb2eb
...
@@ -30,7 +30,7 @@ using DeviceGemmInstance0 = ck::tensor_operation::device::DeviceGemmXdl
...
@@ -30,7 +30,7 @@ using DeviceGemmInstance0 = ck::tensor_operation::device::DeviceGemmXdl
// ######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
// ######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
// ######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
// ######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
7
,
1
>
;
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
true
,
7
,
1
>
;
// // clang-format on
// // clang-format on
// clang-format off
// clang-format off
...
...
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16.cpp
View file @
017fb2eb
...
@@ -299,8 +299,8 @@ int main(int argc, char* argv[])
...
@@ -299,8 +299,8 @@ int main(int argc, char* argv[])
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
{
problem_size
.
Ms
.
push_back
(
256
+
256
*
i
);
problem_size
.
Ms
.
push_back
(
256
+
256
*
i
);
problem_size
.
Ns
.
push_back
(
128
+
128
*
i
);
problem_size
.
Ns
.
push_back
(
256
);
problem_size
.
Ks
.
push_back
(
128
+
64
*
i
);
problem_size
.
Ks
.
push_back
(
128
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ks
[
i
]);
...
...
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp8.cpp
View file @
017fb2eb
...
@@ -300,8 +300,8 @@ int main(int argc, char* argv[])
...
@@ -300,8 +300,8 @@ int main(int argc, char* argv[])
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
{
problem_size
.
Ms
.
push_back
(
256
+
256
*
i
);
problem_size
.
Ms
.
push_back
(
256
+
256
*
i
);
problem_size
.
Ns
.
push_back
(
128
+
128
*
i
);
problem_size
.
Ns
.
push_back
(
256
);
problem_size
.
Ks
.
push_back
(
128
+
64
*
i
);
problem_size
.
Ks
.
push_back
(
128
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ks
[
i
]);
...
...
example/27_layernorm2d_fwd/run_layernorm_example.inc
View file @
017fb2eb
example/42_groupnorm_fwd/run_groupnorm_fwd_example.inc
View file @
017fb2eb
example/44_elementwise_permute/CMakeLists.txt
View file @
017fb2eb
...
@@ -5,4 +5,6 @@ add_example_executable(example_elementwise_permute_4D_fp16_row elementwise_permu
...
@@ -5,4 +5,6 @@ add_example_executable(example_elementwise_permute_4D_fp16_row elementwise_permu
add_example_executable
(
example_elementwise_permute_4D_fp32_col elementwise_permute_4D_fp32_col.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp32_col elementwise_permute_4D_fp32_col.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_col elementwise_permute_4D_fp16_col.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_col elementwise_permute_4D_fp16_col.cpp
)
add_example_executable
(
example_elementwise_permute elementwise_permute.cpp
)
add_example_executable
(
example_elementwise_permute elementwise_permute.cpp
)
add_example_executable
(
example_elementwise_permute_3d elementwise_permute_3d.cpp
)
if
((
NOT GPU_TARGETS MATCHES
"gfx940"
)
AND
(
NOT GPU_TARGETS MATCHES
"gfx941"
)
AND
(
NOT GPU_TARGETS MATCHES
"gfx942"
))
add_example_executable
(
example_elementwise_permute_3d elementwise_permute_3d.cpp
)
endif
()
example/62_conv_fwd_activ/CMakeLists.txt
View file @
017fb2eb
...
@@ -42,6 +42,8 @@ foreach(gpu IN LISTS GPU_TARGETS)
...
@@ -42,6 +42,8 @@ foreach(gpu IN LISTS GPU_TARGETS)
# ScaleAdd ScaleAdd Relu
# ScaleAdd ScaleAdd Relu
add_example_executable
(
example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16 convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16 convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16.cpp
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16
)
add_example_executable
(
example_convnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16 convnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16.cpp
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16
)
set
(
target 1
)
set
(
target 1
)
endif
()
endif
()
endforeach
()
endforeach
()
example/62_conv_fwd_activ/convnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16.cpp
0 → 100644
View file @
017fb2eb
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
constexpr
ck
::
index_t
NDimSpatial
=
3
;
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
BiasLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
ScaleAddScaleAddRelu
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
typename
OutElementOp
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
OutLayout
,
BiasLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
OutDataType
,
OutDataType
>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
using
DeviceGroupedConvNDFwdActivInstance
=
DeviceGroupedConvNDFwdInstance
<
OutElementOp
>
;
namespace
{
// Use custom implementation to pass two more tensors for post op
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
DeviceConvNDFwdInstance
>
bool
run_grouped_conv_fwd
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
{
constexpr
ck
::
index_t
NumDs
=
2
;
const
ck
::
index_t
G
=
out_g_n_k_wos_desc
.
GetLengths
()[
0
];
const
ck
::
index_t
K
=
out_g_n_k_wos_desc
.
GetLengths
()[
2
];
// Logical broadcast bias (we have to pass bias lengths in the same format as output - GNKDHW)
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
bias_g_k_lengths
;
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
bias_g_k_strides
;
// Fill other lenghts than G,K with 1 and strides with 0
bias_g_k_lengths
.
fill
(
1
);
bias_g_k_strides
.
fill
(
0
);
bias_g_k_lengths
[
0
]
=
G
;
bias_g_k_lengths
[
2
]
=
K
;
bias_g_k_strides
[
0
]
=
K
;
// stride to G
bias_g_k_strides
[
2
]
=
1
;
// stride to K
const
auto
broadcasted_bias_desc
=
HostTensorDescriptor
(
bias_g_k_lengths
,
bias_g_k_strides
);
// y = relu ( alpha1 * conv(x) + alpha2 * z + bias )
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
std
::
array
<
Tensor
<
OutDataType
>
,
NumDs
>
d_tensors
=
{
Tensor
<
OutDataType
>
(
out_g_n_k_wos_desc
),
Tensor
<
OutDataType
>
(
broadcasted_bias_desc
)};
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_host
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"z_tensor: "
<<
d_tensors
[
0
].
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias_tensor: "
<<
d_tensors
[
1
].
mDesc
<<
std
::
endl
;
// Make sure that we allocated only G * K values for bias
assert
(
static_cast
<
ck
::
index_t
>
(
d_tensors
[
1
].
mData
.
size
())
==
G
*
K
);
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
2
,
2
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
2
,
2
});
d_tensors
[
0
].
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
2
,
2
});
d_tensors
[
1
].
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
2
,
2
});
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
1.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.05
,
0.05
});
d_tensors
[
0
].
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
-
0.05
,
0.05
});
d_tensors
[
1
].
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
-
0.05
,
0.05
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
z_buf
(
sizeof
(
OutDataType
)
*
d_tensors
[
0
].
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_buf
(
sizeof
(
OutDataType
)
*
d_tensors
[
1
].
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
z_buf
.
ToDevice
(
d_tensors
[
0
].
mData
.
data
());
bias_buf
.
ToDevice
(
d_tensors
[
1
].
mData
.
data
());
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
const
std
::
array
<
const
void
*
,
NumDs
>
ds
=
{
z_buf
.
GetDeviceBuffer
(),
bias_buf
.
GetDeviceBuffer
()};
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
ds
,
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
NumDs
>
{
e_g_n_k_wos_lengths
,
bias_g_k_lengths
},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
NumDs
>
{
e_g_n_k_wos_strides
,
bias_g_k_strides
},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"The device op with the specified compilation parameters does "
"not support this convolution problem."
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
()
+
G
*
K
+
conv_param
.
GetOutputByte
<
OutDataType
>
()
/
sizeof
(
OutDataType
);
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
()
+
G
*
K
*
sizeof
(
OutDataType
)
+
conv_param
.
GetOutputByte
<
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
0
,
/*Num A Elementwise Tensors*/
0
,
/*Num B Elementwise Tensors*/
NumDs
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei
,
out_host
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
out_element_op
,
{},
{},
d_tensors
);
ref_invoker
.
Run
(
ref_argument
);
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
out_device
,
out_host
,
"Error: incorrect results!"
);
}
return
true
;
}
}
// namespace
#include "run_convnd_fwd_activ_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_example
(
argc
,
argv
);
}
example/62_conv_fwd_activ/run_convnd_fwd_activ_example.inc
View file @
017fb2eb
...
@@ -24,7 +24,7 @@ bool run_convnd_fwd_example(int argc, char* argv[])
...
@@ -24,7 +24,7 @@ bool run_convnd_fwd_example(int argc, char* argv[])
// Following shapes are selected to avoid overflow. Expect inf in case of
// Following shapes are selected to avoid overflow. Expect inf in case of
// size increase for some elementwise ops.
// size increase for some elementwise ops.
ck
::
utils
::
conv
::
ConvParam
conv_param
{
ck
::
utils
::
conv
::
ConvParam
conv_param
{
3
,
1
,
16
,
128
,
8
,
{
3
,
3
,
3
},
{
17
,
17
,
17
},
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}};
3
,
2
,
16
,
128
,
8
,
{
3
,
3
,
3
},
{
17
,
17
,
17
},
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}};
if
(
argc
==
1
)
if
(
argc
==
1
)
{
{
...
...
Prev
1
2
3
4
5
6
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment