Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_onnxruntime
Commits
78e355fd
Commit
78e355fd
authored
Dec 20, 2022
by
gaoqiong
Browse files
onnxruntime
parent
fae08684
Pipeline
#494
failed with stages
in 0 seconds
Changes
358
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2640 additions
and
0 deletions
+2640
-0
example/21_gemm_layernorm/CMakeLists.txt
example/21_gemm_layernorm/CMakeLists.txt
+3
-0
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_fp16.cpp
..._gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_fp16.cpp
+406
-0
example/21_gemm_layernorm/gemm_layernorm_xdl_fp16.cpp
example/21_gemm_layernorm/gemm_layernorm_xdl_fp16.cpp
+375
-0
example/21_gemm_layernorm/gemm_xdl_layernorm_single_kernel_fp16.cpp
..._gemm_layernorm/gemm_xdl_layernorm_single_kernel_fp16.cpp
+287
-0
example/22_cgemm/CMakeLists.txt
example/22_cgemm/CMakeLists.txt
+17
-0
example/22_cgemm/cgemm_xdl_bf16.cpp
example/22_cgemm/cgemm_xdl_bf16.cpp
+132
-0
example/22_cgemm/cgemm_xdl_common.hpp
example/22_cgemm/cgemm_xdl_common.hpp
+254
-0
example/22_cgemm/cgemm_xdl_fp16.cpp
example/22_cgemm/cgemm_xdl_fp16.cpp
+131
-0
example/22_cgemm/cgemm_xdl_fp32.cpp
example/22_cgemm/cgemm_xdl_fp32.cpp
+132
-0
example/22_cgemm/cgemm_xdl_int4.cpp
example/22_cgemm/cgemm_xdl_int4.cpp
+140
-0
example/22_cgemm/cgemm_xdl_int8.cpp
example/22_cgemm/cgemm_xdl_int8.cpp
+132
-0
example/23_softmax/CMakeLists.txt
example/23_softmax/CMakeLists.txt
+1
-0
example/23_softmax/README.md
example/23_softmax/README.md
+18
-0
example/23_softmax/softmax_blockwise.cpp
example/23_softmax/softmax_blockwise.cpp
+264
-0
example/24_batched_gemm/CMakeLists.txt
example/24_batched_gemm/CMakeLists.txt
+17
-0
example/24_batched_gemm/batched_gemm_xdl_bfp16.cpp
example/24_batched_gemm/batched_gemm_xdl_bfp16.cpp
+59
-0
example/24_batched_gemm/batched_gemm_xdl_fp16.cpp
example/24_batched_gemm/batched_gemm_xdl_fp16.cpp
+59
-0
example/24_batched_gemm/batched_gemm_xdl_fp32.cpp
example/24_batched_gemm/batched_gemm_xdl_fp32.cpp
+58
-0
example/24_batched_gemm/batched_gemm_xdl_int4.cpp
example/24_batched_gemm/batched_gemm_xdl_int4.cpp
+99
-0
example/24_batched_gemm/batched_gemm_xdl_int8.cpp
example/24_batched_gemm/batched_gemm_xdl_int8.cpp
+56
-0
No files found.
Too many changes to show.
To preserve performance only
358 of 358+
files are displayed.
Plain diff
Email patch
example/21_gemm_layernorm/CMakeLists.txt
0 → 100644
View file @
78e355fd
add_example_executable
(
example_gemm_bias_relu_add_layernorm_xdl_fp16 gemm_bias_relu_add_layernorm_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_layernorm_xdl_fp16 gemm_layernorm_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_xdl_layernorm_single_kernel_fp16 gemm_xdl_layernorm_single_kernel_fp16.cpp
)
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_fp16.cpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
// DataType
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
GemmAccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
F16
;
using
D1DataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
,
D1DataType
>
;
using
EDataType
=
F16
;
using
ReduceAccDataType
=
F32
;
using
R0DataType
=
F32
;
using
R1DataType
=
F32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
,
R1DataType
>
;
using
GammaDataType
=
F16
;
using
BetaDataType
=
F16
;
using
LayerNormOutDataType
=
F16
;
using
NormalizeComputeDataType
=
F32
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
D1Layout
=
Row
;
using
ELayout
=
D1Layout
;
// Elementwise op
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddReluAdd
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AddReluAdd
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
,
Square
>
;
using
RsElementOp
=
ck
::
Tuple
<
Div
,
Div
>
;
// ReduceOp
using
R0ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
R1ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
RsThreadReduceOp
=
ck
::
Tuple
<
R0ThreadReduceOp
,
R1ThreadReduceOp
>
;
static
constexpr
auto
R0GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
static
constexpr
auto
R1GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
R0GlobalReduceOp
,
R1GlobalReduceOp
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
//######| ALayout| BLayout| ELayout| AData| BData| GemmAccData| CShuffle| DsData| EData| ReduceAccData| RsData| A| B| CDE| Qs| Rs| Thread| Global| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CDRThreadTransfer| CDE| RThreadTransfer|
//######| | | | Type| Type| Type| DataType| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ReduceThreadTransfer| DstScalarPerVector|
//######| | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _MPerBlock_NPerBlock| ScalarPerVector| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _NPerBlock| |
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ReduceAccDataType
,
RsDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
RsGlobalReduceOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
EDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
using
NormalizeFunctor
=
ck
::
tensor_operation
::
element_wise
::
Normalize
;
// A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y
using
DeviceNormalizeInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
EDataType
,
R0DataType
,
R1DataType
,
GammaDataType
,
BetaDataType
>
,
// x(gemm_out), mean, meansquare, gamma, beta
ck
::
Tuple
<
LayerNormOutDataType
>
,
// y
NormalizeFunctor
,
2
,
8
,
// MPerthread
ck
::
Sequence
<
8
,
1
,
1
,
8
,
8
>
,
// scalarPerVector: x(gemm_out), mean, meansquare, gamma, beta
ck
::
Sequence
<
8
>>
;
// scalarPerVector: y(layerNorm_out)
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
({
len
},
{
stride
});
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
void
host_gemm_layernorm
(
Tensor
<
LayerNormOutDataType
>&
out_m_n
,
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
BDataType
>&
b_k_n
,
const
Tensor
<
D0DataType
>&
bias_n
,
const
Tensor
<
D1DataType
>&
d1_m_n
,
const
Tensor
<
GammaDataType
>&
gamma_n
,
const
Tensor
<
BetaDataType
>&
beta_n
,
AElementOp
a_element_op
,
BElementOp
b_element_op
,
CDEElementOp
cde_element_op
,
int
M
,
int
N
)
{
int
StrideE
=
N
;
Tensor
<
EDataType
>
e_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
R0DataType
>
mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R1DataType
>
meanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
auto
averageOpInst
=
Div
{
N
};
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
e_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
// c = activation(c + bias) + c1_functor(c1)
for
(
int
m
=
0
;
m
<
M
;
++
m
)
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
auto
acc
=
ck
::
type_convert
<
GemmAccDataType
>
(
e_m_n
(
m
,
n
));
cde_element_op
(
e_m_n
(
m
,
n
),
acc
,
bias_n
(
n
),
d1_m_n
(
m
,
n
));
}
// reduce_mean and reduce_square_mean
auto
r0Op
=
R0ThreadReduceOp
{};
auto
r1Op
=
R1ThreadReduceOp
{};
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
mean_acc
=
r0Op
.
GetIdentityValue
<
ReduceAccDataType
>
();
auto
mean_square_acc
=
r1Op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
auto
e_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
e_m_n
(
m
,
n
));
ReduceAccDataType
square_e_val
=
0
;
Square
{}(
square_e_val
,
e_val
);
r0Op
(
mean_acc
,
e_val
);
r1Op
(
mean_square_acc
,
square_e_val
);
}
averageOpInst
(
mean_acc
,
mean_acc
);
averageOpInst
(
mean_square_acc
,
mean_square_acc
);
mean_m
(
m
)
=
ck
::
type_convert
<
R0DataType
>
(
mean_acc
);
meanSquare_m
(
m
)
=
ck
::
type_convert
<
R1DataType
>
(
mean_square_acc
);
}
// LayerNorm
auto
layerNormInst
=
NormalizeFunctor
{};
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
LayerNormOutDataType
out_val
=
0
;
layerNormInst
(
out_val
,
e_m_n
(
m
,
n
),
mean_m
(
m
),
meanSquare_m
(
m
),
gamma_n
(
n
),
beta_n
(
n
));
out_m_n
(
m
,
n
)
=
out_val
;
}
}
}
template
<
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
D0DataType
,
typename
D1DataType
,
typename
R0DataType
,
typename
R1DataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
NormalizeDataType
>
void
DumpGemmLayerNormPerf
(
float
gemm_reduce_time
,
float
normalize_time
,
int
M
,
int
N
,
int
K
)
{
std
::
size_t
gemm_flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
+
std
::
size_t
(
2
)
*
M
*
N
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
+
sizeof
(
D0DataType
)
*
M
*
N
+
sizeof
(
D0DataType
)
*
M
*
N
+
sizeof
(
R0DataType
)
*
M
+
sizeof
(
R1DataType
)
*
M
;
std
::
size_t
normalize_num_byte
=
sizeof
(
EDataType
)
*
M
*
N
+
sizeof
(
R0DataType
)
*
M
+
sizeof
(
R1DataType
)
*
M
+
sizeof
(
GammaDataType
)
*
N
+
sizeof
(
BetaDataType
)
*
N
+
sizeof
(
NormalizeDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
gemm_flop
)
/
1.E9
/
gemm_reduce_time
;
float
gemm_gb_per_sec
=
gemm_num_byte
/
1.E6
/
gemm_reduce_time
;
float
normalize_gb_per_sec
=
normalize_num_byte
/
1.E6
/
normalize_time
;
std
::
cout
<<
"gemm + reduce_mean + reduce_square_mean Perf: "
<<
gemm_reduce_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gemm_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
std
::
cout
<<
"5-ary elementwise Perf: "
<<
normalize_time
<<
" ms, "
<<
normalize_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
}
int
main
()
{
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
StrideA
=
1024
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideD0
=
0
;
ck
::
index_t
StrideD1
=
1024
;
ck
::
index_t
StrideE
=
1024
;
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
D0DataType
>
bias_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
D1DataType
>
d1_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideD1
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
R0DataType
>
r0_Mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R1DataType
>
r1_MeanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
GammaDataType
>
gamma_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
BetaDataType
>
beta_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
LayerNormOutDataType
>
layerNorm_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
1
,
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
1
,
1
});
bias_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
-
1
,
1
});
d1_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
-
5
,
5
});
gamma_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
GammaDataType
>
{
-
1
,
1
});
beta_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BetaDataType
>
{
-
1
,
1
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_device_buf
(
sizeof
(
D0DataType
)
*
bias_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r0_Mean_device_buf
(
sizeof
(
R0DataType
)
*
r0_Mean_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r1_MeanSquare_device_buf
(
sizeof
(
R1DataType
)
*
r1_MeanSquare_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
gamma_device_buf
(
sizeof
(
GammaDataType
)
*
gamma_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
beta_device_buf
(
sizeof
(
BetaDataType
)
*
beta_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
layerNorm_device_buf
(
sizeof
(
LayerNormOutDataType
)
*
layerNorm_m_n
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_m_n
.
mData
.
data
());
gamma_device_buf
.
ToDevice
(
gamma_n
.
mData
.
data
());
beta_device_buf
.
ToDevice
(
beta_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
qs_element_op
=
QsElementOp
{};
auto
rs_element_op
=
RsElementOp
{
N
,
N
};
// Prepare GEMM, mean, mean_square
auto
gemmReduce
=
DeviceOpInstance
{};
auto
gemmReduce_invoker
=
gemmReduce
.
MakeInvoker
();
auto
gemmReduce_argument
=
gemmReduce
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{
bias_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
{
r0_Mean_device_buf
.
GetDeviceBuffer
(),
r1_MeanSquare_device_buf
.
GetDeviceBuffer
()},
M
,
N
,
K
,
StrideA
,
StrideB
,
{
StrideD0
,
StrideD1
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
);
if
(
!
gemmReduce
.
IsSupportedArgument
(
gemmReduce_argument
))
{
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
// init reducetion buffer to 0
r0_Mean_device_buf
.
SetZero
();
r1_MeanSquare_device_buf
.
SetZero
();
// Prepare LayerNorm
std
::
array
<
const
void
*
,
5
>
input
=
{
e_device_buf
.
GetDeviceBuffer
(),
r0_Mean_device_buf
.
GetDeviceBuffer
(),
r1_MeanSquare_device_buf
.
GetDeviceBuffer
(),
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
layerNorm_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
ck
::
index_t
,
2
>
xyLengths
=
{
M
,
N
};
std
::
array
<
ck
::
index_t
,
2
>
xyStrides
=
{
StrideE
,
1
};
auto
normalize
=
DeviceNormalizeInstance
{};
auto
normalize_invoker
=
normalize
.
MakeInvoker
();
auto
normalize_argument_ptr
=
normalize
.
MakeArgumentPointer
(
xyLengths
,
{
xyStrides
,
{
1
,
0
},
{
1
,
0
},
{
0
,
1
},
{
0
,
1
}},
{
xyStrides
},
input
,
output
,
NormalizeFunctor
{});
if
(
!
normalize
.
IsSupportedArgument
(
normalize_argument_ptr
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device, exiting!"
);
}
// run kernel
gemmReduce_invoker
.
Run
(
gemmReduce_argument
,
StreamConfig
{
nullptr
,
false
});
normalize_invoker
.
Run
(
normalize_argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
{
// verification
Tensor
<
LayerNormOutDataType
>
host_layerNorm_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
host_gemm_layernorm
(
host_layerNorm_m_n
,
a_m_k
,
b_k_n
,
bias_n
,
d1_m_n
,
gamma_n
,
beta_n
,
a_element_op
,
b_element_op
,
cde_element_op
,
M
,
N
);
layerNorm_device_buf
.
FromDevice
(
layerNorm_m_n
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
layerNorm_m_n
,
host_layerNorm_m_n
,
"Error: Incorrect results layerNorm_m_n"
,
1e-2
,
1e-2
);
}
{
// evaluate kernel perf
bool
time_kernel
=
true
;
float
gemm_reduce_mean_reduce_square_mean_ave_time
=
gemmReduce_invoker
.
Run
(
gemmReduce_argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
normalize_ave_time
=
normalize_invoker
.
Run
(
normalize_argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
if
(
time_kernel
)
DumpGemmLayerNormPerf
<
ADataType
,
BDataType
,
EDataType
,
D0DataType
,
D1DataType
,
R0DataType
,
R1DataType
,
GammaDataType
,
BetaDataType
,
LayerNormOutDataType
>
(
gemm_reduce_mean_reduce_square_mean_ave_time
,
normalize_ave_time
,
M
,
N
,
K
);
}
return
pass
?
0
:
1
;
}
example/21_gemm_layernorm/gemm_layernorm_xdl_fp16.cpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
// DataType
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
GemmAccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F16
;
using
ReduceAccDataType
=
F32
;
using
R0DataType
=
F32
;
using
R1DataType
=
F32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
,
R1DataType
>
;
using
GammaDataType
=
F16
;
using
BetaDataType
=
F16
;
using
LayerNormOutDataType
=
F16
;
using
NormalizeComputeDataType
=
F32
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
D1Layout
=
Row
;
using
ELayout
=
D1Layout
;
// Elementwise op
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
,
Square
>
;
using
RsElementOp
=
ck
::
Tuple
<
Div
,
Div
>
;
// ReduceOp
using
R0ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
R1ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
RsThreadReduceOp
=
ck
::
Tuple
<
R0ThreadReduceOp
,
R1ThreadReduceOp
>
;
static
constexpr
auto
R0GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
static
constexpr
auto
R1GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
R0GlobalReduceOp
,
R1GlobalReduceOp
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
//######| ALayout| BLayout| ELayout| AData| BData| GemmAccData| CShuffle| DsData| EData| ReduceAccData| RsData| A| B| CDE| Qs| Rs| Thread| Global| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CDRThreadTransfer| CDE| RThreadTransfer|
//######| | | | Type| Type| Type| DataType| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ReduceThreadTransfer| DstScalarPerVector|
//######| | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _MPerBlock_NPerBlock| ScalarPerVector| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _NPerBlock| |
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ReduceAccDataType
,
RsDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
RsGlobalReduceOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
EDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
using
NormalizeFunctor
=
ck
::
tensor_operation
::
element_wise
::
Normalize
;
// A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y
using
DeviceNormalizeInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
EDataType
,
R0DataType
,
R1DataType
,
GammaDataType
,
BetaDataType
>
,
// x(gemm_out), mean,
// meansquare,
// gamma, beta
ck
::
Tuple
<
LayerNormOutDataType
>
,
// y
NormalizeFunctor
,
2
,
8
,
// MPerthread
ck
::
Sequence
<
8
,
1
,
1
,
8
,
8
>
,
// scalarPerVector: x(gemm_out), mean, meansquare, gamma, beta
ck
::
Sequence
<
8
>>
;
// scalarPerVector: y(layerNorm_out)
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
({
len
},
{
stride
});
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
void
host_gemm_layernorm
(
Tensor
<
LayerNormOutDataType
>&
out_m_n
,
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
BDataType
>&
b_k_n
,
const
Tensor
<
GammaDataType
>&
gamma_n
,
const
Tensor
<
BetaDataType
>&
beta_n
,
AElementOp
a_element_op
,
BElementOp
b_element_op
,
CDEElementOp
c_element_op
,
int
M
,
int
N
)
{
int
StrideE
=
N
;
Tensor
<
EDataType
>
e_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
R0DataType
>
mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R1DataType
>
meanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
auto
averageOpInst
=
Div
{
N
};
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
e_m_n
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
// reduce_mean and reduce_square_mean
auto
r0Op
=
R0ThreadReduceOp
{};
auto
r1Op
=
R1ThreadReduceOp
{};
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
mean_acc
=
r0Op
.
GetIdentityValue
<
ReduceAccDataType
>
();
auto
mean_square_acc
=
r1Op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
auto
e_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
e_m_n
(
m
,
n
));
ReduceAccDataType
square_e_val
=
0
;
Square
{}(
square_e_val
,
e_val
);
r0Op
(
mean_acc
,
e_val
);
r1Op
(
mean_square_acc
,
square_e_val
);
}
averageOpInst
(
mean_acc
,
mean_acc
);
averageOpInst
(
mean_square_acc
,
mean_square_acc
);
mean_m
(
m
)
=
ck
::
type_convert
<
R0DataType
>
(
mean_acc
);
meanSquare_m
(
m
)
=
ck
::
type_convert
<
R1DataType
>
(
mean_square_acc
);
}
// LayerNorm
auto
layerNormInst
=
NormalizeFunctor
{};
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
LayerNormOutDataType
out_val
=
0
;
layerNormInst
(
out_val
,
e_m_n
(
m
,
n
),
mean_m
(
m
),
meanSquare_m
(
m
),
gamma_n
(
n
),
beta_n
(
n
));
out_m_n
(
m
,
n
)
=
out_val
;
}
}
}
template
<
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
R0DataType
,
typename
R1DataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
NormalizeDataType
>
void
DumpGemmLayerNormPerf
(
float
gemm_reduce_time
,
float
normalize_time
,
int
M
,
int
N
,
int
K
)
{
std
::
size_t
gemm_flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
+
sizeof
(
R0DataType
)
*
M
+
sizeof
(
R1DataType
)
*
M
;
std
::
size_t
normalize_num_btye
=
sizeof
(
EDataType
)
*
M
*
N
+
sizeof
(
R0DataType
)
*
M
+
sizeof
(
R1DataType
)
*
M
+
sizeof
(
GammaDataType
)
*
N
+
sizeof
(
BetaDataType
)
*
N
+
sizeof
(
NormalizeDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
gemm_flop
)
/
1.E9
/
gemm_reduce_time
;
float
gemm_gb_per_sec
=
gemm_num_byte
/
1.E6
/
gemm_reduce_time
;
float
normalize_gb_per_sec
=
normalize_num_btye
/
1.E6
/
normalize_time
;
std
::
cout
<<
"gemm + reduce_mean + reduce_square_mean Perf: "
<<
gemm_reduce_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gemm_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
std
::
cout
<<
"5-ary elementwise Perf: "
<<
normalize_time
<<
" ms, "
<<
normalize_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
}
int
main
()
{
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
StrideA
=
1024
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideE
=
1024
;
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
EDataType
>
e_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
R0DataType
>
r0_Mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R1DataType
>
r1_MeanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
GammaDataType
>
gamma_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
BetaDataType
>
beta_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
LayerNormOutDataType
>
layerNorm_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
1
,
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
1
,
1
});
gamma_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
GammaDataType
>
{
-
1
,
1
});
beta_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BetaDataType
>
{
-
1
,
1
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r0_Mean_device_buf
(
sizeof
(
R0DataType
)
*
r0_Mean_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r1_MeanSquare_device_buf
(
sizeof
(
R1DataType
)
*
r1_MeanSquare_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
gamma_device_buf
(
sizeof
(
GammaDataType
)
*
gamma_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
beta_device_buf
(
sizeof
(
BetaDataType
)
*
beta_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
layerNorm_device_buf
(
sizeof
(
LayerNormOutDataType
)
*
layerNorm_m_n
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
gamma_device_buf
.
ToDevice
(
gamma_n
.
mData
.
data
());
beta_device_buf
.
ToDevice
(
beta_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
qs_element_op
=
QsElementOp
{};
auto
rs_element_op
=
RsElementOp
{
N
,
N
};
// Prepare GEMM, mean, mean_square
auto
gemmReduce
=
DeviceOpInstance
{};
auto
gemmReduce_invoker
=
gemmReduce
.
MakeInvoker
();
auto
gemmReduce_argument
=
gemmReduce
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
e_device_buf
.
GetDeviceBuffer
(),
{
r0_Mean_device_buf
.
GetDeviceBuffer
(),
r1_MeanSquare_device_buf
.
GetDeviceBuffer
()},
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
);
if
(
!
gemmReduce
.
IsSupportedArgument
(
gemmReduce_argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
r0_Mean_device_buf
.
SetZero
();
r1_MeanSquare_device_buf
.
SetZero
();
// Prepare LayerNorm
std
::
array
<
const
void
*
,
5
>
input
=
{
e_device_buf
.
GetDeviceBuffer
(),
r0_Mean_device_buf
.
GetDeviceBuffer
(),
r1_MeanSquare_device_buf
.
GetDeviceBuffer
(),
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
layerNorm_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
ck
::
index_t
,
2
>
xyLengths
=
{
M
,
N
};
std
::
array
<
ck
::
index_t
,
2
>
xyStrides
=
{
StrideE
,
1
};
auto
normalize
=
DeviceNormalizeInstance
{};
auto
normalize_invoker
=
normalize
.
MakeInvoker
();
auto
normalize_argument_ptr
=
normalize
.
MakeArgumentPointer
(
xyLengths
,
{
xyStrides
,
{
1
,
0
},
{
1
,
0
},
{
0
,
1
},
{
0
,
1
}},
{
xyStrides
},
input
,
output
,
NormalizeFunctor
{});
if
(
!
normalize
.
IsSupportedArgument
(
normalize_argument_ptr
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device, exiting"
);
}
// run kernel
gemmReduce_invoker
.
Run
(
gemmReduce_argument
,
StreamConfig
{
nullptr
,
false
});
normalize_invoker
.
Run
(
normalize_argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
{
// verification
Tensor
<
LayerNormOutDataType
>
host_layerNorm_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
host_gemm_layernorm
(
host_layerNorm_m_n
,
a_m_k
,
b_k_n
,
gamma_n
,
beta_n
,
a_element_op
,
b_element_op
,
cde_element_op
,
M
,
N
);
layerNorm_device_buf
.
FromDevice
(
layerNorm_m_n
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
layerNorm_m_n
,
host_layerNorm_m_n
,
"Error: Incorrect results d1"
,
1e-3
,
1e-3
);
}
{
// evaluate kernel perf
bool
time_kernel
=
true
;
float
gemm_reduce_mean_reduce_square_mean_ave_time
=
gemmReduce_invoker
.
Run
(
gemmReduce_argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
normalize_ave_time
=
normalize_invoker
.
Run
(
normalize_argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
if
(
time_kernel
)
DumpGemmLayerNormPerf
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
R1DataType
,
GammaDataType
,
BetaDataType
,
LayerNormOutDataType
>
(
gemm_reduce_mean_reduce_square_mean_ave_time
,
normalize_ave_time
,
M
,
N
,
K
);
}
return
pass
?
0
:
1
;
}
example/21_gemm_layernorm/gemm_xdl_layernorm_single_kernel_fp16.cpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include "ck/ck.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_layernorm_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
// This example demonstrate a single kernel that runs GEMM layer and laynorm in one fused kernel
//
// The GEMM + Layernorm implementation is a specialized kernel which allows fusing both layers
// together given the condition GEMM extents N of MNK is spanned by a single workgroup. For example,
// a kernel configured with NPerBlock = 128 allows to operate on all GEMM sizes if N <= 128
//
// D = Layernorm(acc_element_op(A * B + broadcast(bias)) + add) * broadcast(gamma) + broadcast(beta)
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
C0DataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
struct
Relu
{
template
<
typename
OutT
,
typename
InT
>
__host__
__device__
void
operator
()(
OutT
&
y
,
const
InT
&
x
)
const
{
y
=
x
>
0
?
x
:
0
;
}
};
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
// Elementwise operation that operates on the output of matrix multiplication
// i.e., AccElementOp(A * B + bias)
using
AccElementOp
=
Relu
;
// Elementwise operation that operates on the output of layer normalization
using
CElementOp
=
Relu
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmLayerNorm_Xdl_CShuffle
//######| ALayout| BLayout| CLayout| AData| BData| CData| C0Data| GemmAcc| CShuffle| ReduceAcc| A| B| Acc| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadCopy|
//######| | | | Type| Type| Type| Type| DataType| DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
ADataType
,
BDataType
,
CDataType
,
C0DataType
,
AccDataType
,
CShuffleDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
AccElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
>
;
// clang-format on
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemmLayernorm
<
ADataType
,
BDataType
,
CDataType
,
C0DataType
,
AccDataType
,
AElementOp
,
BElementOp
,
AccElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
128
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
128
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
AccDataType
>
acc_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
C0DataType
>
c0_n_bias
({
N
});
Tensor
<
C0DataType
>
c0_m_n_add
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
C0DataType
>
c0_n_gamma
({
N
});
Tensor
<
C0DataType
>
c0_n_beta
({
N
});
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_n_bias: "
<<
c0_n_bias
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_m_n_add: "
<<
c0_m_n_add
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_n_gamma: "
<<
c0_n_gamma
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_n_beta: "
<<
c0_n_beta
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
c0_n_bias
.
GenerateTensorValue
(
GeneratorTensor_2
<
C0DataType
>
{
-
5
,
5
});
c0_m_n_add
.
GenerateTensorValue
(
GeneratorTensor_2
<
C0DataType
>
{
-
5
,
5
});
c0_n_gamma
.
GenerateTensorValue
(
GeneratorTensor_2
<
C0DataType
>
{
0
,
2
});
c0_n_beta
.
GenerateTensorValue
(
GeneratorTensor_2
<
C0DataType
>
{
0
,
5
});
c_m_n_host_result
.
GenerateTensorValue
(
GeneratorTensor_1
<
CDataType
>
{
0
});
acc_m_n_host_result
.
GenerateTensorValue
(
GeneratorTensor_1
<
AccDataType
>
{
0
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c0_bias_buf
(
sizeof
(
C0DataType
)
*
c0_n_bias
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c0_add_buf
(
sizeof
(
C0DataType
)
*
c0_m_n_add
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c0_gamma_buf
(
sizeof
(
C0DataType
)
*
c0_n_gamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c0_beta_buf
(
sizeof
(
C0DataType
)
*
c0_n_beta
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
c0_bias_buf
.
ToDevice
(
c0_n_bias
.
mData
.
data
());
c0_add_buf
.
ToDevice
(
c0_m_n_add
.
mData
.
data
());
c0_gamma_buf
.
ToDevice
(
c0_n_gamma
.
mData
.
data
());
c0_beta_buf
.
ToDevice
(
c0_n_beta
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
acc_element_op
=
AccElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
static_cast
<
C0DataType
*>
(
c0_add_buf
.
GetDeviceBuffer
()),
static_cast
<
C0DataType
*>
(
c0_bias_buf
.
GetDeviceBuffer
()),
static_cast
<
C0DataType
*>
(
c0_gamma_buf
.
GetDeviceBuffer
()),
static_cast
<
C0DataType
*>
(
c0_beta_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
acc_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
// extra 6MN flops due to: bias + add + gamma + beta + norm_sub + norm_div,
// excluding reduction steps
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
+
std
::
size_t
(
6
)
*
M
*
N
;
// extra MN and 3N due to c0_add (MxN), bias (1xN), gamma (1xN), beta (1xN)
std
::
size_t
bytes
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
2
*
M
*
N
+
sizeof
(
C0DataType
)
*
3
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
bytes
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
auto
ref_gemm
=
ReferenceInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
c0_n_bias
,
c0_m_n_add
,
c0_n_gamma
,
c0_n_beta
,
a_element_op
,
b_element_op
,
acc_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
if
constexpr
(
std
::
is_same
<
CShuffleDataType
,
F32
>::
value
)
{
pass
&=
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
,
"Error: Incorrect results c"
);
}
else
if
constexpr
(
std
::
is_same
<
CShuffleDataType
,
F16
>::
value
)
{
pass
&=
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
}
}
return
pass
?
0
:
1
;
}
example/22_cgemm/CMakeLists.txt
0 → 100644
View file @
78e355fd
add_custom_target
(
example_cgemm_xdl
)
add_example_executable
(
example_cgemm_xdl_bf16 cgemm_xdl_bf16.cpp
)
add_example_executable
(
example_cgemm_xdl_fp16 cgemm_xdl_fp16.cpp
)
add_example_executable
(
example_cgemm_xdl_fp32 cgemm_xdl_fp32.cpp
)
add_example_executable
(
example_cgemm_xdl_int8 cgemm_xdl_int8.cpp
)
add_dependencies
(
example_cgemm_xdl
example_cgemm_xdl_bf16
example_cgemm_xdl_fp16
example_cgemm_xdl_fp32
example_cgemm_xdl_int8
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_cgemm_xdl_int4 cgemm_xdl_int4.cpp
)
add_dependencies
(
example_cgemm_xdl example_cgemm_xdl_int4
)
endif
()
example/22_cgemm/cgemm_xdl_bf16.cpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "cgemm_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_cgemm_4gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
using
ADataType
=
BF16
;
using
BDataType
=
BF16
;
using
CDataType
=
BF16
;
using
AccDataType
=
F32
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
ReferenceCGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceCGemm
<
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
// clang-format off
using
DeviceCGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceCGemm_4Gemm_Xdl_CShuffle
<
ALayout
,
// typename ALayout
BLayout
,
// typename BLayout
CLayout
,
// typename CLayout
ADataType
,
// typename ADataType
BDataType
,
// typename BDataType
CDataType
,
// typename CDataType
AccDataType
,
// typename GemmAccDataType
CDataType
,
// typename CShuffleDataType
PassThrough
,
// typename AElementwiseOperation
PassThrough
,
// typename BElementwiseOperation
PassThrough
,
// typename CElementwiseOperation
GemmDefault
,
// GemmSpecialization GemmSpec
1
,
// index_t NumGemmKPrefetchStage
256
,
// index_t BlockSize
256
,
// index_t MPerBlock
128
,
// index_t NPerBlock
32
,
// index_t KPerBlock
8
,
// index_t AK1
8
,
// index_t BK1
32
,
// index_t MPerXDL
32
,
// index_t NPerXDL
4
,
// index_t MXdlPerWave
2
,
// index_t NXdlPerWave
S
<
4
,
64
,
1
>
,
// typename ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// typename ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// typename ABlockTransferSrcAccessOrder
2
,
// index_t ABlockTransferSrcVectorDim
8
,
// index_t ABlockTransferSrcScalarPerVector
8
,
// index_t ABlockTransferDstScalarPerVector_AK1
1
,
// index_t ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// typename BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// typename BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// typename BBlockTransferSrcAccessOrder
2
,
// index_t BBlockTransferSrcVectorDim
8
,
// index_t BBlockTransferSrcScalarPerVector
8
,
// index_t BBlockTransferDstScalarPerVector_BK1
1
,
// index_t BBlockLdsExtraN
1
,
// index_t CShuffleMXdlPerWavePerShuffle
1
,
// index_t CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
>
;
// index_t CShuffleBlockTransferScalarPerVector_NPerBlock
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// CGEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
416
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: run kernel # of times (>1)
\n
"
<<
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
<<
std
::
endl
;
exit
(
0
);
}
return
!
run_cgemm_xdl
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceCGemmInstance
,
ReferenceCGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
do_verification
,
init_method
,
time_kernel
);
}
example/22_cgemm/cgemm_xdl_common.hpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/stream_config.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
BF16
=
ck
::
bhalf_t
;
using
INT8
=
std
::
int8_t
;
using
INT32
=
std
::
int32_t
;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
using
INT4
=
ck
::
int4_t
;
#endif
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
typename
DeviceCGemmInstance
,
typename
ReferenceCGemmInstance
,
typename
KernelADataType
=
ADataType
,
typename
KernelBDataType
=
BDataType
,
typename
KernelCDataType
=
CDataType
>
bool
run_cgemm_xdl
(
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB
,
ck
::
index_t
StrideC
,
bool
do_verification
,
int
init_method
,
bool
time_kernel
)
{
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
static_assert
(
sizeof
(
ck
::
int4_t
)
==
sizeof
(
int8_t
),
"sizeof ck::int4_t and int8_t is different!"
);
static_assert
(
sizeof
(
ADataType
)
==
sizeof
(
KernelADataType
),
"sizeof ADataType and KernelADataType is different!"
);
static_assert
(
sizeof
(
BDataType
)
==
sizeof
(
KernelBDataType
),
"sizeof BDataType and KernelBDataType is different!"
);
static_assert
(
sizeof
(
CDataType
)
==
sizeof
(
KernelCDataType
),
"sizeof CDataType and KernelCDataType is different!"
);
#endif
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k_real
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
ADataType
>
a_m_k_imag
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n_real
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
BDataType
>
b_k_n_imag
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
KernelCDataType
>
c_m_n_real_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
KernelCDataType
>
c_m_n_imag_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k_real: "
<<
a_m_k_real
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a_m_k_imag: "
<<
a_m_k_imag
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n_real: "
<<
b_k_n_real
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n_imag: "
<<
b_k_n_imag
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n_real: "
<<
c_m_n_real_device_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n_imag: "
<<
c_m_n_imag_device_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k_real
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
a_m_k_imag
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b_k_n_real
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
b_k_n_imag
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
break
;
default:
a_m_k_real
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
0.5
,
0.5
});
a_m_k_imag
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
0.5
,
0.5
});
b_k_n_real
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
b_k_n_imag
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
}
auto
cgemm
=
DeviceCGemmInstance
{};
DeviceMem
a_m_k_real_device_buf
(
sizeof
(
KernelADataType
)
*
a_m_k_real
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a_m_k_imag_device_buf
(
sizeof
(
KernelADataType
)
*
a_m_k_imag
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_real_device_buf
(
sizeof
(
KernelBDataType
)
*
b_k_n_real
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_imag_device_buf
(
sizeof
(
KernelBDataType
)
*
b_k_n_imag
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_real_device_buf
(
sizeof
(
KernelCDataType
)
*
c_m_n_real_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_imag_device_buf
(
sizeof
(
KernelCDataType
)
*
c_m_n_imag_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
workspace_device_buf
(
cgemm
.
GetWorkspaceSize
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
));
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
constexpr
(
std
::
is_same_v
<
ADataType
,
ck
::
int4_t
>
)
{
Tensor
<
KernelADataType
>
a_m_k_real_converted
(
a_m_k_real
);
Tensor
<
KernelADataType
>
a_m_k_imag_converted
(
a_m_k_imag
);
Tensor
<
KernelBDataType
>
b_k_n_real_converted
(
b_k_n_real
);
Tensor
<
KernelBDataType
>
b_k_n_imag_converted
(
b_k_n_imag
);
a_m_k_real_device_buf
.
ToDevice
(
a_m_k_real_converted
.
mData
.
data
());
a_m_k_imag_device_buf
.
ToDevice
(
a_m_k_imag_converted
.
mData
.
data
());
b_k_n_real_device_buf
.
ToDevice
(
b_k_n_real_converted
.
mData
.
data
());
b_k_n_imag_device_buf
.
ToDevice
(
b_k_n_imag_converted
.
mData
.
data
());
}
else
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
{
a_m_k_real_device_buf
.
ToDevice
(
a_m_k_real
.
mData
.
data
());
a_m_k_imag_device_buf
.
ToDevice
(
a_m_k_imag
.
mData
.
data
());
b_k_n_real_device_buf
.
ToDevice
(
b_k_n_real
.
mData
.
data
());
b_k_n_imag_device_buf
.
ToDevice
(
b_k_n_imag
.
mData
.
data
());
}
auto
a_element_op
=
AElementwiseOperation
{};
auto
b_element_op
=
BElementwiseOperation
{};
auto
c_element_op
=
CElementwiseOperation
{};
// do GEMM
auto
invoker
=
cgemm
.
MakeInvoker
();
auto
argument
=
cgemm
.
MakeArgument
(
static_cast
<
KernelADataType
*>
(
a_m_k_real_device_buf
.
GetDeviceBuffer
()),
static_cast
<
KernelADataType
*>
(
a_m_k_imag_device_buf
.
GetDeviceBuffer
()),
static_cast
<
KernelBDataType
*>
(
b_k_n_real_device_buf
.
GetDeviceBuffer
()),
static_cast
<
KernelBDataType
*>
(
b_k_n_imag_device_buf
.
GetDeviceBuffer
()),
static_cast
<
KernelCDataType
*>
(
c_m_n_real_device_buf
.
GetDeviceBuffer
()),
static_cast
<
KernelCDataType
*>
(
c_m_n_imag_device_buf
.
GetDeviceBuffer
()),
static_cast
<
KernelCDataType
*>
(
workspace_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
cgemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_cgemm with the specified compilation parameters does "
"not support this CGEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
8
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
std
::
size_t
(
2
)
*
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
cgemm
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
Tensor
<
CDataType
>
c_m_n_real_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_imag_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
auto
ref_cgemm
=
ReferenceCGemmInstance
{};
auto
ref_invoker
=
ref_cgemm
.
MakeInvoker
();
auto
ref_argument
=
ref_cgemm
.
MakeArgument
(
a_m_k_real
,
a_m_k_imag
,
b_k_n_real
,
b_k_n_imag
,
c_m_n_real_host_result
,
c_m_n_imag_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
c_m_n_real_device_buf
.
FromDevice
(
c_m_n_real_device_result
.
mData
.
data
());
c_m_n_imag_device_buf
.
FromDevice
(
c_m_n_imag_device_result
.
mData
.
data
());
bool
result
=
true
;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
constexpr
(
std
::
is_same_v
<
ADataType
,
ck
::
int4_t
>
)
{
const
Tensor
<
CDataType
>
c_m_n_real_device_result_converted
(
c_m_n_real_device_result
);
const
Tensor
<
CDataType
>
c_m_n_imag_device_result_converted
(
c_m_n_imag_device_result
);
result
=
ck
::
utils
::
check_err
(
c_m_n_real_device_result_converted
,
c_m_n_real_host_result
,
"Verification error: incorrect results in real part!"
,
1e-2
f
,
1e-1
f
);
result
=
result
&&
ck
::
utils
::
check_err
(
c_m_n_imag_device_result_converted
,
c_m_n_imag_host_result
,
"Verification error: incorrect results in imaginary part!"
,
1e-2
f
,
1e-1
f
);
}
else
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
{
result
=
ck
::
utils
::
check_err
(
c_m_n_real_device_result
,
c_m_n_real_host_result
,
"Verification error: incorrect results in real part!"
,
1e-2
f
,
1e-1
f
);
result
=
result
&&
ck
::
utils
::
check_err
(
c_m_n_imag_device_result
,
c_m_n_imag_host_result
,
"Verification error: incorrect results in imaginary part!"
,
1e-2
f
,
1e-1
f
);
}
return
result
;
}
return
true
;
}
example/22_cgemm/cgemm_xdl_fp16.cpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "cgemm_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_cgemm_4gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
ReferenceCGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceCGemm
<
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
// clang-format off
using
DeviceCGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceCGemm_4Gemm_Xdl_CShuffle
<
ALayout
,
// typename ALayout
BLayout
,
// typename BLayout
CLayout
,
// typename CLayout
ADataType
,
// typename ADataType
BDataType
,
// typename BDataType
CDataType
,
// typename CDataType
AccDataType
,
// typename GemmAccDataType
CShuffleDataType
,
// typename CShuffleDataType
PassThrough
,
// typename AElementwiseOperation
PassThrough
,
// typename BElementwiseOperation
PassThrough
,
// typename CElementwiseOperation
GemmDefault
,
// GemmSpecialization GemmSpec
1
,
// index_t NumGemmKPrefetchStage
256
,
// index_t BlockSize
256
,
// index_t MPerBlock
128
,
// index_t NPerBlock
32
,
// index_t KPerBlock
8
,
// index_t AK1
8
,
// index_t BK1
32
,
// index_t MPerXDL
32
,
// index_t NPerXDL
4
,
// index_t MXdlPerWave
2
,
// index_t NXdlPerWave
S
<
4
,
64
,
1
>
,
// typename ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// typename ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// typename ABlockTransferSrcAccessOrder
2
,
// index_t ABlockTransferSrcVectorDim
8
,
// index_t ABlockTransferSrcScalarPerVector
8
,
// index_t ABlockTransferDstScalarPerVector_AK1
1
,
// index_t ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// typename BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// typename BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// typename BBlockTransferSrcAccessOrder
2
,
// index_t BBlockTransferSrcVectorDim
8
,
// index_t BBlockTransferSrcScalarPerVector
8
,
// index_t BBlockTransferDstScalarPerVector_BK1
1
,
// index_t BBlockLdsExtraN
1
,
// index_t CShuffleMXdlPerWavePerShuffle
1
,
// index_t CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
>
;
// index_t CShuffleBlockTransferScalarPerVector_NPerBlock
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// CGEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: run kernel # of times (>1)
\n
"
<<
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
<<
std
::
endl
;
exit
(
0
);
}
return
!
run_cgemm_xdl
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceCGemmInstance
,
ReferenceCGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
do_verification
,
init_method
,
time_kernel
);
}
example/22_cgemm/cgemm_xdl_fp32.cpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "cgemm_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_cgemm_4gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
CDataType
=
F32
;
using
AccDataType
=
F32
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
ReferenceCGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceCGemm
<
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
// clang-format off
using
DeviceCGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceCGemm_4Gemm_Xdl_CShuffle
<
ALayout
,
// typename ALayout
BLayout
,
// typename BLayout
CLayout
,
// typename CLayout
ADataType
,
// typename ADataType
BDataType
,
// typename BDataType
CDataType
,
// typename CDataType
AccDataType
,
// typename GemmAccDataType
CDataType
,
// typename CShuffleDataType
PassThrough
,
// typename AElementwiseOperation
PassThrough
,
// typename BElementwiseOperation
PassThrough
,
// typename CElementwiseOperation
GemmDefault
,
// GemmSpecialization GemmSpec
1
,
// index_t NumGemmKPrefetchStage
256
,
// index_t BlockSize
256
,
// index_t MPerBlock
128
,
// index_t NPerBlock
16
,
// index_t KPerBlock
4
,
// index_t AK1
4
,
// index_t BK1
32
,
// index_t MPerXDL
32
,
// index_t NPerXDL
4
,
// index_t MXdlPerWave
2
,
// index_t NXdlPerWave
S
<
4
,
64
,
1
>
,
// typename ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// typename ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// typename ABlockTransferSrcAccessOrder
2
,
// index_t ABlockTransferSrcVectorDim
4
,
// index_t ABlockTransferSrcScalarPerVector
4
,
// index_t ABlockTransferDstScalarPerVector_AK1
1
,
// index_t ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// typename BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// typename BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// typename BBlockTransferSrcAccessOrder
2
,
// index_t BBlockTransferSrcVectorDim
4
,
// index_t BBlockTransferSrcScalarPerVector
4
,
// index_t BBlockTransferDstScalarPerVector_BK1
1
,
// index_t BBlockLdsExtraN
1
,
// index_t CShuffleMXdlPerWavePerShuffle
1
,
// index_t CShuffleNXdlPerWavePerShuffle
S
<
1
,
16
,
1
,
16
>
,
// typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
4
>
;
// index_t CShuffleBlockTransferScalarPerVector_NPerBlock
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// CGEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: run kernel # of times (>1)
\n
"
<<
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
<<
std
::
endl
;
exit
(
0
);
}
return
!
run_cgemm_xdl
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceCGemmInstance
,
ReferenceCGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
do_verification
,
init_method
,
time_kernel
);
}
example/22_cgemm/cgemm_xdl_int4.cpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "cgemm_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_cgemm_4gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
using
ADataType
=
INT4
;
using
BDataType
=
INT4
;
using
CDataType
=
INT4
;
using
AccDataType
=
INT32
;
using
CShuffleDataType
=
INT32
;
using
KernelADataType
=
INT8
;
using
KernelBDataType
=
INT8
;
using
KernelCDataType
=
INT8
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
ReferenceCGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceCGemm
<
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
// clang-format off
using
DeviceCGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceCGemm_4Gemm_Xdl_CShuffle
<
ALayout
,
// typename ALayout
BLayout
,
// typename BLayout
CLayout
,
// typename CLayout
KernelADataType
,
// typename ADataType
KernelBDataType
,
// typename BDataType
KernelCDataType
,
// typename CDataType
AccDataType
,
// typename GemmAccDataType
CShuffleDataType
,
// typename CShuffleDataType
PassThrough
,
// typename AElementwiseOperation
PassThrough
,
// typename BElementwiseOperation
PassThrough
,
// typename CElementwiseOperation
GemmDefault
,
// GemmSpecialization GemmSpec
1
,
// index_t NumGemmKPrefetchStage
256
,
// index_t BlockSize
256
,
// index_t MPerBlock
128
,
// index_t NPerBlock
64
,
// index_t KPerBlock
16
,
// index_t AK1
16
,
// index_t BK1
32
,
// index_t MPerXDL
32
,
// index_t NPerXDL
4
,
// index_t MXdlPerWave
2
,
// index_t NXdlPerWave
S
<
4
,
64
,
1
>
,
// typename ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// typename ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// typename ABlockTransferSrcAccessOrder
2
,
// index_t ABlockTransferSrcVectorDim
16
,
// index_t ABlockTransferSrcScalarPerVector
16
,
// index_t ABlockTransferDstScalarPerVector_AK1
1
,
// index_t ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// typename BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// typename BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// typename BBlockTransferSrcAccessOrder
2
,
// index_t BBlockTransferSrcVectorDim
8
,
// index_t BBlockTransferSrcScalarPerVector
8
,
// index_t BBlockTransferDstScalarPerVector_BK1
1
,
// index_t BBlockLdsExtraN
1
,
// index_t CShuffleMXdlPerWavePerShuffle
1
,
// index_t CShuffleNXdlPerWavePerShuffle
S
<
1
,
64
,
1
,
4
>
,
// typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
16
>
;
// index_t CShuffleBlockTransferScalarPerVector_NPerBlock
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// CGEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1152
;
ck
::
index_t
K
=
512
;
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
K
;
ck
::
index_t
StrideC
=
N
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
<<
std
::
endl
;
exit
(
EXIT_SUCCESS
);
}
return
!
run_cgemm_xdl
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceCGemmInstance
,
ReferenceCGemmInstance
,
KernelADataType
,
KernelBDataType
,
KernelCDataType
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
do_verification
,
init_method
,
time_kernel
);
}
example/22_cgemm/cgemm_xdl_int8.cpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "cgemm_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_cgemm_4gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
using
ADataType
=
INT8
;
using
BDataType
=
INT8
;
using
CDataType
=
INT8
;
using
AccDataType
=
INT32
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
ReferenceCGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceCGemm
<
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
// clang-format off
using
DeviceCGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceCGemm_4Gemm_Xdl_CShuffle
<
ALayout
,
// typename ALayout
BLayout
,
// typename BLayout
CLayout
,
// typename CLayout
ADataType
,
// typename ADataType
BDataType
,
// typename BDataType
CDataType
,
// typename CDataType
AccDataType
,
// typename GemmAccDataType
CDataType
,
// typename CShuffleDataType
PassThrough
,
// typename AElementwiseOperation
PassThrough
,
// typename BElementwiseOperation
PassThrough
,
// typename CElementwiseOperation
GemmDefault
,
// GemmSpecialization GemmSpec
1
,
// index_t NumGemmKPrefetchStage
256
,
// index_t BlockSize
256
,
// index_t MPerBlock
128
,
// index_t NPerBlock
64
,
// index_t KPerBlock
16
,
// index_t AK1
16
,
// index_t BK1
32
,
// index_t MPerXDL
32
,
// index_t NPerXDL
4
,
// index_t MXdlPerWave
2
,
// index_t NXdlPerWave
S
<
4
,
64
,
1
>
,
// typename ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// typename ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// typename ABlockTransferSrcAccessOrder
2
,
// index_t ABlockTransferSrcVectorDim
16
,
// index_t ABlockTransferSrcScalarPerVector
16
,
// index_t ABlockTransferDstScalarPerVector_AK1
1
,
// index_t ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// typename BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// typename BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// typename BBlockTransferSrcAccessOrder
2
,
// index_t BBlockTransferSrcVectorDim
8
,
// index_t BBlockTransferSrcScalarPerVector
8
,
// index_t BBlockTransferDstScalarPerVector_BK1
1
,
// index_t BBlockLdsExtraN
1
,
// index_t CShuffleMXdlPerWavePerShuffle
1
,
// index_t CShuffleNXdlPerWavePerShuffle
S
<
1
,
64
,
1
,
4
>
,
// typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
16
>
;
// index_t CShuffleBlockTransferScalarPerVector_NPerBlock
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// CGEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: run kernel # of times (>1)
\n
"
<<
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
<<
std
::
endl
;
exit
(
0
);
}
return
!
run_cgemm_xdl
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceCGemmInstance
,
ReferenceCGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
do_verification
,
init_method
,
time_kernel
);
}
example/23_softmax/CMakeLists.txt
0 → 100644
View file @
78e355fd
add_example_executable
(
example_softmax_blockwise softmax_blockwise.cpp
)
\ No newline at end of file
example/23_softmax/README.md
0 → 100644
View file @
78e355fd
# Instructions for ```example_softmax_blockwise```
## Run ```example_softmax_blockwise```
```
bash
# -D <xxx> : input 3-d tensor lengths
# -v <x> : verification (0=no, 1=yes)
#arg1: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg2: time kernel (0=no, 1=yes)
example_softmax_blockwise
-D
4,128,2048
-v
1 1 1
```
Result
```
launch_and_time_kernel: grid_dim {64, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 0.0242877 ms, 259.039 GB/s, DeviceReduceSoftmax<256,M_C8_S1,K_C32_S8,InSrcVectorDim_1_InSrcVectorSize_8_OutDstVectorSize_8>
```
example/23_softmax/softmax_blockwise.cpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_softmax_impl.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
using
namespace
ck
::
tensor_operation
::
device
;
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
constexpr
int
Rank
=
3
;
constexpr
int
NumReduceDim
=
1
;
using
DeviceInstance
=
DeviceSoftmaxImpl
<
InDataType
,
AccDataType
,
OutDataType
,
PassThrough
,
// InElementwiseOperation
PassThrough
,
// AccElementwiseOperation
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// ClusterM
32
,
// ClusterK
1
,
// SliceM
8
,
// SliceK
1
,
// SrcVecDim (0=M, 1=K)
8
,
// SrcScalarPerVector
8
>
;
// OutScalarPerVector
static
struct
option
long_options
[]
=
{{
"inLengths"
,
required_argument
,
nullptr
,
'D'
},
{
"verify"
,
required_argument
,
nullptr
,
'v'
},
{
"help"
,
no_argument
,
nullptr
,
'?'
},
{
nullptr
,
0
,
nullptr
,
0
}};
class
SimpleAppArgs
{
private:
int
option_index
=
0
;
public:
std
::
vector
<
size_t
>
inLengths
=
{
8
,
128
,
2048
};
std
::
vector
<
AccDataType
>
scales
=
{
2.0
f
,
2.0
f
};
bool
do_verification
=
true
;
int
init_method
=
2
;
bool
time_kernel
=
true
;
public:
void
show_usage
(
const
char
*
cmd
)
{
std
::
cout
<<
"Usage of "
<<
cmd
<<
std
::
endl
;
std
::
cout
<<
"--inLengths or -D, comma separated list of input tensor dimension lengths"
<<
std
::
endl
;
std
::
cout
<<
"--verify or -v, 1/0 to indicate whether to verify the reduction result by "
"comparing with the host-based reduction"
<<
std
::
endl
;
std
::
cout
<<
"Arg1 -- init method (0=no init, 1=single integer value, 2=scope integer "
"value, 3=decimal value)"
<<
std
::
endl
;
std
::
cout
<<
"Arg2 -- time kernel (0=no, 1=yes)"
<<
std
::
endl
;
};
int
processArgs
(
int
argc
,
char
*
argv
[])
{
using
ck
::
host_common
::
getTypeValuesFromString
;
int
ch
;
while
(
1
)
{
ch
=
getopt_long
(
argc
,
argv
,
"D:v:l:"
,
long_options
,
&
option_index
);
if
(
ch
==
-
1
)
break
;
switch
(
ch
)
{
case
'D'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
inLengths
=
getTypeValuesFromString
<
size_t
>
(
optarg
);
break
;
case
'v'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
do_verification
=
static_cast
<
bool
>
(
std
::
atoi
(
optarg
));
break
;
case
'?'
:
if
(
std
::
string
(
long_options
[
option_index
].
name
)
==
"help"
)
{
show_usage
(
argv
[
0
]);
return
(
-
1
);
};
break
;
default:
show_usage
(
argv
[
0
]);
return
(
-
1
);
};
};
if
(
optind
+
2
>
argc
)
throw
std
::
runtime_error
(
"Invalid cmd-line arguments, more argumetns are needed!"
);
init_method
=
std
::
atoi
(
argv
[
optind
++
]);
time_kernel
=
static_cast
<
bool
>
(
std
::
atoi
(
argv
[
optind
]));
if
(
scales
.
empty
())
{
scales
.
push_back
(
1.0
f
);
scales
.
push_back
(
0.0
f
);
};
return
(
0
);
};
};
int
main
(
int
argc
,
char
*
argv
[])
{
// Example: batched gemm C[G, M, N] applies max/sum reduction along N internally
const
std
::
vector
<
int
>
invariantDims
{
0
,
1
};
const
std
::
vector
<
int
>
reduceDims
{
2
};
SimpleAppArgs
args
;
if
(
argc
>
1
)
{
if
(
args
.
processArgs
(
argc
,
argv
)
<
0
)
return
(
-
1
);
};
Tensor
<
InDataType
>
in
(
args
.
inLengths
);
Tensor
<
OutDataType
>
out_ref
(
args
.
inLengths
);
Tensor
<
OutDataType
>
out
(
args
.
inLengths
);
auto
inStrides
=
in
.
mDesc
.
GetStrides
();
auto
outStrides
=
out
.
mDesc
.
GetStrides
();
AccDataType
alpha
=
args
.
scales
[
0
];
AccDataType
beta
=
args
.
scales
[
1
];
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out
.
mDesc
<<
std
::
endl
;
std
::
size_t
num_thread
=
1
;
if
(
args
.
do_verification
)
{
switch
(
args
.
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_1
<
OutDataType
>
{
1
},
num_thread
);
break
;
case
2
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
5.0
,
5.0
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
-
5.0
,
5.0
},
num_thread
);
}
if
(
beta
!=
0.0
f
)
for
(
size_t
i
=
0
;
i
<
out_ref
.
mDesc
.
GetElementSpaceSize
();
i
++
)
out
.
mData
[
i
]
=
out_ref
.
mData
[
i
];
};
// std::cout << "beta = " << beta << std::endl;
// LogRangeAsType<float>(std::cout << "tensor in: " , in.mData, ",") << std::endl;
// LogRangeAsType<float>(std::cout << "tensor prior out: " , out.mData, ",") << std::endl;
// these buffers are usually provided by the user application
DeviceMem
in_dev
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_dev
(
sizeof
(
OutDataType
)
*
out
.
mDesc
.
GetElementSpaceSize
());
in_dev
.
ToDevice
(
in
.
mData
.
data
());
if
(
beta
!=
0.0
f
)
out_dev
.
ToDevice
(
out
.
mData
.
data
());
if
(
args
.
do_verification
)
{
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceSoftmax
<
InDataType
,
OutDataType
,
AccDataType
>
;
ReferenceInstance
ref
;
auto
ref_arg
=
ref
.
MakeArgument
(
in
,
out_ref
,
alpha
,
beta
,
reduceDims
);
auto
invoker
=
ref
.
MakeInvoker
();
invoker
.
Run
(
ref_arg
);
// LogRangeAsType<float>(std::cout << "tensor out_ref: ", out_ref.mData, ",") << std::endl;
};
std
::
vector
<
ck
::
index_t
>
i_inLengths
;
std
::
vector
<
ck
::
index_t
>
i_inStrides
;
i_inLengths
.
assign
(
args
.
inLengths
.
begin
(),
args
.
inLengths
.
end
());
i_inStrides
.
assign
(
inStrides
.
begin
(),
inStrides
.
end
());
auto
device_instance
=
DeviceInstance
{};
std
::
cout
<<
i_inLengths
.
size
()
<<
", "
<<
i_inStrides
.
size
()
<<
std
::
endl
;
auto
argument_ptr
=
device_instance
.
MakeArgumentPointer
(
i_inLengths
,
i_inStrides
,
reduceDims
,
&
alpha
,
&
beta
,
in_dev
.
GetDeviceBuffer
(),
out_dev
.
GetDeviceBuffer
(),
PassThrough
{},
PassThrough
{});
if
(
!
device_instance
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
cout
<<
"The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<<
std
::
endl
;
return
1
;
};
std
::
string
instance_name
=
device_instance
.
GetTypeString
();
auto
invoker_ptr
=
device_instance
.
MakeInvokerPointer
();
bool
pass
=
true
;
if
(
args
.
do_verification
)
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
out_dev
.
FromDevice
(
out
.
mData
.
data
());
// LogRangeAsType<float>(std::cout << "tensor out: " , out.mData, ",") << std::endl;
pass
=
pass
&&
ck
::
utils
::
check_err
(
out
,
out_ref
);
};
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
args
.
time_kernel
});
std
::
size_t
num_bytes
=
in
.
mDesc
.
GetElementSize
()
*
sizeof
(
InDataType
)
+
(
beta
==
0.0
f
?
1
:
2
)
*
out
.
mDesc
.
GetElementSize
()
*
sizeof
(
OutDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
instance_name
<<
std
::
endl
;
return
(
pass
?
0
:
1
);
}
example/24_batched_gemm/CMakeLists.txt
0 → 100644
View file @
78e355fd
add_custom_target
(
example_batched_gemm_xdl
)
add_example_executable
(
example_batched_gemm_xdl_fp32 batched_gemm_xdl_fp32.cpp
)
add_example_executable
(
example_batched_gemm_xdl_fp16 batched_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_xdl_bfp16 batched_gemm_xdl_bfp16.cpp
)
add_example_executable
(
example_batched_gemm_xdl_int8 batched_gemm_xdl_int8.cpp
)
add_dependencies
(
example_batched_gemm_xdl
example_batched_gemm_xdl_fp32
example_batched_gemm_xdl_fp16
example_batched_gemm_xdl_bfp16
example_batched_gemm_xdl_int8
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_batched_gemm_xdl_int4 batched_gemm_xdl_int4.cpp
)
add_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_int4
)
endif
()
example/24_batched_gemm/batched_gemm_xdl_bfp16.cpp
0 → 100644
View file @
78e355fd
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_multi_d_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
BF16
;
using
BDataType
=
BF16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
BF16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmMultiD_Xdl
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
#include "run_batched_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_batched_gemm_example
(
argc
,
argv
);
}
example/24_batched_gemm/batched_gemm_xdl_fp16.cpp
0 → 100644
View file @
78e355fd
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_multi_d_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmMultiD_Xdl
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
#include "run_batched_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_batched_gemm_example
(
argc
,
argv
);
}
example/24_batched_gemm/batched_gemm_xdl_fp32.cpp
0 → 100644
View file @
78e355fd
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_multi_d_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F32
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmMultiD_Xdl
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
;
// clang-format on
#include "run_batched_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_batched_gemm_example
(
argc
,
argv
);
}
example/24_batched_gemm/batched_gemm_xdl_int4.cpp
0 → 100644
View file @
78e355fd
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_multi_d_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
ck
::
int4_t
;
using
BDataType
=
ck
::
int4_t
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
int32_t
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
ck
::
int4_t
;
using
KernelADataType
=
int8_t
;
using
KernelBDataType
=
int8_t
;
using
KernelEDataType
=
int8_t
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmMultiD_Xdl
// clang-format off
<
ALayout
,
//ALayout
BLayout
,
//BLayout
DsLayout
,
//DsLayout
ELayout
,
//ELayout
KernelADataType
,
//ADataType
KernelBDataType
,
//BDataType
AccDataType
,
//AccDataType
CShuffleDataType
,
//CShuffleDataType
DsDataType
,
//DsDataType
KernelEDataType
,
//EDataType
AElementOp
,
//AElementwiseOperation
BElementOp
,
//BElementwiseOperation
CDEElementOp
,
//CDEElementwiseOperation
GemmDefault
,
//GEMMSpecialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
64
,
// KPerBlock
16
,
// AK1
16
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
16
,
// ABlockTransfer SrcScalarPerVector
16
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
16
,
// BBlockTransfer SrcScalarPerVector
16
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
64
,
1
,
4
>
,
// CBlockTransferClusterLengths_MBlock_MWaveMPerXdl_NBlock_NWaveNPerXdl
16
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
#define BUILD_INT4_EXAMPLE
#include "run_batched_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_batched_gemm_example
(
argc
,
argv
);
}
example/24_batched_gemm/batched_gemm_xdl_int8.cpp
0 → 100644
View file @
78e355fd
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_multi_d_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
int8_t
;
using
BDataType
=
int8_t
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
int8_t
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
int8_t
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmMultiD_Xdl
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
>
;
// clang-format on
#include "run_batched_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_batched_gemm_example
(
argc
,
argv
);
}
Prev
1
…
5
6
7
8
9
10
11
12
13
…
18
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment