Commit 78e355fd authored by gaoqiong's avatar gaoqiong
Browse files

onnxruntime

parent fae08684
Pipeline #494 failed with stages
in 0 seconds
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <iostream>
#include <iterator>
#include <numeric>
#include <type_traits>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using BF16 = ck::bhalf_t;
using FP16 = ck::half_t;
using FP32 = float;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
using I4 = ck::int4_t;
#endif
using I8 = std::int8_t;
using I32 = std::int32_t;
template <typename ALay, typename BLay, typename DELay, typename RLay>
struct LayoutSetting
{
using ALayout = ALay;
using BLayout = BLay;
using DELayout = DELay;
using RLayout = RLay;
};
template <ck::index_t NDimSpatial>
struct LayoutSettingSelector;
namespace ctl = ck::tensor_layout::convolution;
template <>
struct LayoutSettingSelector<1> final : LayoutSetting<ctl::GNWC, ctl::GKXC, ctl::GNWK, ctl::GNW>
{
};
template <>
struct LayoutSettingSelector<2> final : LayoutSetting<ctl::GNHWC, ctl::GKYXC, ctl::GNHWK, ctl::GNHW>
{
};
template <>
struct LayoutSettingSelector<3> final
: LayoutSetting<ctl::GNDHWC, ctl::GKZYXC, ctl::GNDHWK, ctl::GNDHW>
{
};
template <ck::index_t NDimSpatial>
using ALayout = typename LayoutSettingSelector<NDimSpatial>::ALayout;
template <ck::index_t NDimSpatial>
using BLayout = typename LayoutSettingSelector<NDimSpatial>::BLayout;
template <ck::index_t NDimSpatial>
using DELayout = typename LayoutSettingSelector<NDimSpatial>::DELayout;
template <ck::index_t NDimSpatial>
using RLayout = typename LayoutSettingSelector<NDimSpatial>::RLayout;
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
};
inline void print_help_msg()
{
std::cerr << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: time kernel (0=no, 1=yes)\n"
<< ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
}
inline bool parse_cmd_args(int argc,
char* argv[],
ck::utils::conv::ConvParam& problem_size,
ExecutionConfig& config)
{
constexpr int num_execution_config_args =
3; // arguments for do_verification, init_method, time_kernel
constexpr int num_conv_param_leading_args = 5; // arguments for num_dim_spatial_, G_, N_, K_, C_
constexpr int threshold_to_catch_partial_args = 1 + num_execution_config_args;
constexpr int threshold_to_catch_all_args =
threshold_to_catch_partial_args + num_conv_param_leading_args;
if(argc == 1)
{
// use default
}
// catch only ExecutionConfig arguments
else if(argc == threshold_to_catch_partial_args)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
}
// catch both ExecutionConfig & ConvParam arguments
else if(threshold_to_catch_all_args < argc && ((argc - threshold_to_catch_all_args) % 3 == 0))
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
const ck::index_t num_dim_spatial = std::stoi(argv[4]);
problem_size = ck::utils::conv::parse_conv_param(
num_dim_spatial, threshold_to_catch_partial_args, argv);
}
else
{
print_help_msg();
return false;
}
return true;
}
inline HostTensorDescriptor
make_r0_host_tensor_descriptor(const ck::utils::conv::ConvParam& problem_size)
{
std::vector<ck::index_t> dimensions{problem_size.G_, problem_size.N_};
ck::ranges::copy(problem_size.output_spatial_lengths_, std::back_inserter(dimensions));
return HostTensorDescriptor(dimensions);
}
template <typename Lengths, typename Strides>
void unpack_host_tensor_descriptor(const HostTensorDescriptor& descriptor,
Lengths& lengths,
Strides& strides)
{
assert(size(descriptor.GetLengths()) == size(lengths));
std::copy_n(begin(descriptor.GetLengths()), size(descriptor.GetLengths()), begin(lengths));
assert(size(descriptor.GetStrides()) == size(strides));
std::copy_n(begin(descriptor.GetStrides()), size(descriptor.GetStrides()), begin(strides));
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using ADataType = BF16;
using BDataType = BF16;
using AccDataType = FP32;
using CShuffleDataType = FP32;
using DsDataType = ck::Tuple<>;
using EDataType = BF16;
using ReduceAccDataType = FP32;
using R0DataType = FP32;
using RsDataType = ck::Tuple<R0DataType>;
#include "run_convnd_fwd_max_example.inc"
int main(int argc, char* argv[]) { return !run_convnd_fwd_max_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using ADataType = FP16;
using BDataType = FP16;
using AccDataType = FP32;
using CShuffleDataType = FP32;
using DsDataType = ck::Tuple<>;
using EDataType = FP16;
using ReduceAccDataType = FP32;
using R0DataType = FP32;
using RsDataType = ck::Tuple<R0DataType>;
#include "run_convnd_fwd_max_example.inc"
int main(int argc, char* argv[]) { return !run_convnd_fwd_max_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using ADataType = FP32;
using BDataType = FP32;
using AccDataType = FP32;
using CShuffleDataType = FP32;
using DsDataType = ck::Tuple<>;
using EDataType = FP32;
using ReduceAccDataType = FP32;
using R0DataType = FP32;
using RsDataType = ck::Tuple<R0DataType>;
#include "run_convnd_fwd_max_example.inc"
int main(int argc, char* argv[]) { return !run_convnd_fwd_max_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#error Should compile this file with ck::int4_t support
#endif
#define BUILD_INT4_EXAMPLE
#include "common.hpp"
using ADataType = I4;
using BDataType = I4;
using KernelADataType = I8;
using KernelBDataType = I8;
using AccDataType = I32;
using CShuffleDataType = I32;
using DsDataType = ck::Tuple<>;
using EDataType = I32;
using ReduceAccDataType = I32;
using R0DataType = I32;
using RsDataType = ck::Tuple<R0DataType>;
#include "run_convnd_fwd_max_example.inc"
int main(int argc, char* argv[]) { return !run_convnd_fwd_max_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using ADataType = I8;
using BDataType = I8;
using AccDataType = I32;
using CShuffleDataType = I32;
using DsDataType = ck::Tuple<>;
using EDataType = I32;
using ReduceAccDataType = I32;
using R0DataType = I32;
using RsDataType = ck::Tuple<R0DataType>;
#include "run_convnd_fwd_max_example.inc"
int main(int argc, char* argv[]) { return !run_convnd_fwd_max_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
using QsElementOp = ck::Tuple<PassThrough>;
using RsElementOp = ck::Tuple<PassThrough>;
// ReduceOp
using RsThreadReduceOp = ck::Tuple<ck::reduce::Max>;
using RsGlobalReduceOp =
ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicMax>;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
template <ck::index_t NDimSpatial>
using DeviceInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
//######| NDimSpatial| ALayout| BLayout| DELayout| RLayout| AData| BData| AccData| CShuffle| DsData| EData| ReduceAccData| RsData| A| B| CDE| Qs| Rs| Thread| Global| Conv| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CDRThreadTransfer| CDE| RThreadTransfer|
//######| | | | | | Type| Type| Type| DataType| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Fwd|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ReduceThreadTransfer| DstScalarPerVector|
//######| | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| Operation| Operation| Specialization| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _MPerBlock_NPerBlock| ScalarPerVector| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _NPerBlock| |
#ifdef BUILD_INT4_EXAMPLE
< NDimSpatial, ALayout<NDimSpatial>, BLayout<NDimSpatial>, DELayout<NDimSpatial>, RLayout<NDimSpatial>, KernelADataType, KernelBDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ReduceAccDataType, RsDataType, AElementOp, BElementOp, CDEElementOp, QsElementOp, RsElementOp, RsThreadReduceOp, RsGlobalReduceOp, ConvSpec, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<64, 4>, 4, 1>;
#else
< NDimSpatial, ALayout<NDimSpatial>, BLayout<NDimSpatial>, DELayout<NDimSpatial>, RLayout<NDimSpatial>, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, ReduceAccDataType, RsDataType, AElementOp, BElementOp, CDEElementOp, QsElementOp, RsElementOp, RsThreadReduceOp, RsGlobalReduceOp, ConvSpec, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<64, 4>, 4, 1>;
#endif
template <ck::index_t NDimSpatial>
using HostInstance = ck::tensor_operation::host::ReferenceConvFwd
<NDimSpatial, ADataType, BDataType, EDataType, AElementOp, BElementOp, PassThrough>;
// clang-format on
template <ck::index_t NDimSpatial>
bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
const ExecutionConfig& config)
{
static_assert(1 <= NDimSpatial && NDimSpatial <= 3, "Unsupported NDimSpatial");
#if defined(BUILD_INT4_EXAMPLE) && defined(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
static_assert(sizeof(ck::int4_t) == sizeof(int8_t));
#endif
const auto conv_input_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<ALayout<NDimSpatial>>(
problem_size);
const auto conv_weight_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<BLayout<NDimSpatial>>(
problem_size);
const auto conv_output_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<DELayout<NDimSpatial>>(
problem_size);
const auto r0_desc = make_r0_host_tensor_descriptor(problem_size);
Tensor<ADataType> conv_input(conv_input_g_n_c_wis_desc);
Tensor<BDataType> conv_weight(conv_weight_g_k_c_xs_desc);
Tensor<EDataType> conv_output_device(conv_output_g_n_k_wos_desc);
Tensor<R0DataType> r0_device(r0_desc);
switch(config.init_method)
{
case 0: break;
case 1:
ck::utils::FillUniformDistributionIntegerValue<ADataType>{-8, 7}(conv_input);
ck::utils::FillUniformDistributionIntegerValue<BDataType>{-8, 7}(conv_weight);
break;
default:
ck::utils::FillUniformDistribution<ADataType>{-5, 5}(conv_input);
ck::utils::FillUniformDistribution<BDataType>{-5, 5}(conv_weight);
}
DeviceMem conv_input_device_buf(sizeof(ADataType) * conv_input.mDesc.GetElementSpaceSize());
DeviceMem conv_weight_device_buf(sizeof(BDataType) * conv_weight.mDesc.GetElementSpaceSize());
DeviceMem conv_output_device_buf(sizeof(EDataType) *
conv_output_device.mDesc.GetElementSpaceSize());
DeviceMem r0_device_buf(sizeof(R0DataType) * r0_device.mDesc.GetElementSpaceSize());
#ifdef BUILD_INT4_EXAMPLE
const Tensor<KernelADataType> conv_input_converted(conv_input);
const Tensor<KernelBDataType> conv_weight_converted(conv_weight);
conv_input_device_buf.ToDevice(conv_input_converted.mData.data());
conv_weight_device_buf.ToDevice(conv_weight_converted.mData.data());
#else
conv_input_device_buf.ToDevice(conv_input.mData.data());
conv_weight_device_buf.ToDevice(conv_weight.mData.data());
#endif
std::array<ck::index_t, NDimSpatial + 3> conv_input_g_n_c_wis_lengths{},
conv_input_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> conv_weight_g_k_c_xs_lengths{},
conv_weight_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> conv_output_g_n_k_wos_lengths{},
conv_output_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial + 2> r0_lengths{}, r0_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{}, conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{}, input_right_pads{};
unpack_host_tensor_descriptor(
conv_input_g_n_c_wis_desc, conv_input_g_n_c_wis_lengths, conv_input_g_n_c_wis_strides);
unpack_host_tensor_descriptor(
conv_weight_g_k_c_xs_desc, conv_weight_g_k_c_xs_lengths, conv_weight_g_k_c_xs_strides);
unpack_host_tensor_descriptor(
conv_output_g_n_k_wos_desc, conv_output_g_n_k_wos_lengths, conv_output_g_n_k_wos_strides);
unpack_host_tensor_descriptor(r0_desc, r0_lengths, r0_strides);
ck::ranges::copy(problem_size.conv_filter_strides_, begin(conv_filter_strides));
ck::ranges::copy(problem_size.conv_filter_dilations_, begin(conv_filter_dilations));
ck::ranges::copy(problem_size.input_left_pads_, begin(input_left_pads));
ck::ranges::copy(problem_size.input_right_pads_, begin(input_right_pads));
// run Conv + Reduction on device
auto conv = DeviceInstance<NDimSpatial>{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(conv_input_device_buf.GetDeviceBuffer(),
conv_weight_device_buf.GetDeviceBuffer(),
std::array<const void*, 0>{},
conv_output_device_buf.GetDeviceBuffer(),
{r0_device_buf.GetDeviceBuffer()},
conv_input_g_n_c_wis_lengths,
conv_input_g_n_c_wis_strides,
conv_weight_g_k_c_xs_lengths,
conv_weight_g_k_c_xs_strides,
std::array<std::array<ck::index_t, NDimSpatial + 3>, 0>{{}},
std::array<std::array<ck::index_t, NDimSpatial + 3>, 0>{{}},
conv_output_g_n_k_wos_lengths,
conv_output_g_n_k_wos_strides,
r0_lengths,
r0_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
AElementOp{},
BElementOp{},
CDEElementOp{},
QsElementOp{},
RsElementOp{});
if(!conv.IsSupportedArgument(argument))
{
std::cerr << "wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<< std::endl;
return false;
}
const float avg_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
const std::size_t flop = problem_size.GetFlops();
const std::size_t num_btype = problem_size.GetByte<ADataType, BDataType, EDataType>();
const float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
const float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
if(config.do_verification)
{
Tensor<EDataType> conv_output_host(conv_output_g_n_k_wos_desc);
// run Conv + Reduction on host
auto ref_conv = HostInstance<NDimSpatial>{};
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(conv_input,
conv_weight,
conv_output_host,
problem_size.conv_filter_strides_,
problem_size.conv_filter_dilations_,
problem_size.input_left_pads_,
problem_size.input_right_pads_,
AElementOp{},
BElementOp{},
PassThrough{});
ref_invoker.Run(ref_argument);
Tensor<R0DataType> r0_host(r0_device.mDesc);
auto reduce0_op = RsThreadReduceOp{}[ck::Number<0>{}];
auto& output_dims = conv_output_g_n_k_wos_desc.GetLengths();
if constexpr(NDimSpatial == 1)
{
for(std::size_t g = 0; g < output_dims[0]; ++g)
{
for(std::size_t n = 0; n < output_dims[1]; ++n)
{
for(std::size_t w = 0; w < output_dims[3]; ++w)
{
auto reduce0_acc = reduce0_op.GetIdentityValue<ReduceAccDataType>();
for(std::size_t k = 0; k < output_dims[2]; ++k)
{
auto e_val =
ck::type_convert<ReduceAccDataType>(conv_output_host(g, n, k, w));
reduce0_op(reduce0_acc, e_val);
}
r0_host(g, n, w) = ck::type_convert<R0DataType>(reduce0_acc);
}
}
}
}
else if constexpr(NDimSpatial == 2)
{
for(std::size_t g = 0; g < output_dims[0]; ++g)
{
for(std::size_t n = 0; n < output_dims[1]; ++n)
{
for(std::size_t h = 0; h < output_dims[3]; ++h)
{
for(std::size_t w = 0; w < output_dims[4]; ++w)
{
auto reduce0_acc = reduce0_op.GetIdentityValue<ReduceAccDataType>();
for(std::size_t k = 0; k < output_dims[2]; ++k)
{
auto e_val = ck::type_convert<ReduceAccDataType>(
conv_output_host(g, n, k, h, w));
reduce0_op(reduce0_acc, e_val);
}
r0_host(g, n, h, w) = ck::type_convert<R0DataType>(reduce0_acc);
}
}
}
}
}
else if constexpr(NDimSpatial == 3)
{
for(std::size_t g = 0; g < output_dims[0]; ++g)
{
for(std::size_t n = 0; n < output_dims[1]; ++n)
{
for(std::size_t d = 0; d < output_dims[3]; ++d)
{
for(std::size_t h = 0; h < output_dims[4]; ++h)
{
for(std::size_t w = 0; w < output_dims[5]; ++w)
{
auto reduce0_acc = reduce0_op.GetIdentityValue<ReduceAccDataType>();
for(std::size_t k = 0; k < output_dims[2]; ++k)
{
auto e_val = ck::type_convert<ReduceAccDataType>(
conv_output_host(g, n, k, d, h, w));
reduce0_op(reduce0_acc, e_val);
}
r0_host(g, n, d, h, w) = ck::type_convert<R0DataType>(reduce0_acc);
}
}
}
}
}
}
conv_output_device_buf.FromDevice(conv_output_device.mData.data());
r0_device_buf.FromDevice(r0_device.mData.data());
return ck::utils::check_err(conv_output_device,
conv_output_host,
"Error: incorrect results! (Matrix E)",
1e-5f,
1e-4f) &&
ck::utils::check_err(
r0_device, r0_host, "Error: incorrect results! (Matrix R0)", 1e-5f, 1e-4f);
}
return true;
}
bool run_convnd_fwd_max_example(int argc, char* argv[])
{
ck::utils::conv::ConvParam problem_size{
2, 1, 128, 256, 192, {3, 3}, {71, 71}, {2, 2}, {1, 1}, {1, 1}, {1, 1}};
ExecutionConfig config;
if(!parse_cmd_args(argc, argv, problem_size, config))
{
return false;
}
switch(problem_size.num_dim_spatial_)
{
case 1: return run_convnd_fwd_max<1>(problem_size, config);
case 2: return run_convnd_fwd_max<2>(problem_size, config);
case 3: return run_convnd_fwd_max<3>(problem_size, config);
}
return false;
}
add_example_executable(example_reduce_blockwise reduce_blockwise.cpp)
add_example_executable(example_reduce_multiblock_atomic_add reduce_multiblock_atomic_add.cpp)
add_example_executable(example_reduce_blockwise_two_call reduce_blockwise_two_call.cpp)
# Instructions for ```example_reduce_blockwise```
## Run ```example_reduce_blockwise```
```bash
# -D <xxx> : input 3d/4d/5d tensor lengths
# -R <xxx> : reduce dimension ids
# -v <x> : verification (0=no, 1=yes)
#arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64, 7: int4)
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg3: time kernel (0=no, 1=yes)
./bin/example_reduce_blockwise -D 16,64,32,960 -v 1 0 2 1
```
Result
```
./bin/example_reduce_blockwise -D 16,64,32,960 -v 1 0 2 1
launch_and_time_kernel: grid_dim {240, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 0.238063 ms, 264.285 GB/s, DeviceReduceBlockWise<256,M_C4_S1,K_C64_S1,InSrcVectorDim_0_InSrcVectorSize_1_OutDstVectorSize_1>
```
## Run ```example_reduce_multiblock_atomic_add```
```bash
# -D <xxx> : input 3d/4d/5d tensor lengths
# -R <xxx> : reduce dimension ids
# -v <x> : verification (0=no, 1=yes)
#arg1: data type (0: fp32, 1: fp64)
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg3: time kernel (0=no, 1=yes)
./bin/example_reduce_multiblock_atomic_add -D 16,64,32,960 -v 1 0 2 0
```
Result
```
./bin/example_reduce_multiblock_atomic_add -D 16,64,32,960 -v 1 0 2 0
Perf: 0 ms, inf GB/s, DeviceReduceMultiBlock<256,M_C4_S1,K_C64_S1,InSrcVectorDim_0_InSrcVectorSize_1_OutDstVectorSize_1>
echo $?
0
```
# Instructions for ```example_reduce_blockwise_two_call```
## Run ```example_reduce_blockwise_two_call```
```bash
#arg1: verification (0=no, 1=yes(
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg3: time kernel (0=no, 1=yes)
./bin/example_reduce_blockwise_two_call 1 2 1
```
Result
```
./bin/example_reduce_blockwise_two_call 1 2 1
launch_and_time_kernel: grid_dim {204800, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
launch_and_time_kernel: grid_dim {6400, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 2.1791 ms, 771.42 GB/s, DeviceReduceBlockWise<256,M_C32_S1,K_C8_S1,InSrcVectorDim_1_InSrcVectorSize_1_OutDstVectorSize_1> => DeviceReduceBlockWise<256,M_C256_S1,K_C1_S1,InSrcVectorDim_1_InSrcVectorSize_1_OutDstVectorSize_1>
```
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/utility/reduction_enums.hpp"
#include "reduce_blockwise_impl.hpp"
#include "reduce_example_common.hpp"
using namespace ck;
using namespace ck::tensor_operation::device;
static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
{"verify", required_argument, nullptr, 'v'},
{"help", no_argument, nullptr, '?'},
{nullptr, 0, nullptr, 0}};
class SimpleAppArgs
{
private:
int option_index = 0;
public:
std::vector<size_t> inLengths = {16, 64, 32, 960};
std::vector<int> reduceDims = {0, 1, 2};
std::vector<float> scales = {1.0f, 0.0f};
bool do_verification = true;
int data_type = 1;
int init_method = 2;
bool time_kernel = true;
public:
void show_usage(const char* cmd)
{
std::cout << "Usage of " << cmd << std::endl;
std::cout << "--inLengths or -D, comma separated list of input tensor dimension lengths"
<< std::endl;
std::cout << "--reduceDims or -R, comma separated list of to-reduce dimensions"
<< std::endl;
std::cout << "--verify or -v, 1/0 to indicate whether to verify the reduction result by "
"comparing with the host-based reduction"
<< std::endl;
std::cout << "Arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64, 7: int4)"
<< std::endl;
std::cout << "Arg2 -- init method (0=no init, 1=single integer value, 2=scope integer "
"value, 3=decimal value)"
<< std::endl;
std::cout << "Arg3 -- time kernel (0=no, 1=yes)" << std::endl;
};
int processArgs(int argc, char* argv[])
{
using ck::host_common::getTypeValuesFromString;
int ch;
while(1)
{
ch = getopt_long(argc, argv, "D:R:v:l:", long_options, &option_index);
if(ch == -1)
break;
switch(ch)
{
case 'D':
if(!optarg)
throw std::runtime_error("Invalid option format!");
inLengths = getTypeValuesFromString<size_t>(optarg);
break;
case 'R':
if(!optarg)
throw std::runtime_error("Invalid option format!");
reduceDims = getTypeValuesFromString<int>(optarg);
break;
case 'v':
if(!optarg)
throw std::runtime_error("Invalid option format!");
do_verification = static_cast<bool>(std::atoi(optarg));
break;
case '?':
if(std::string(long_options[option_index].name) == "help")
{
show_usage(argv[0]);
return (-1);
};
break;
default: show_usage(argv[0]); return (-1);
};
};
if(optind + 3 > argc)
{
throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");
};
data_type = std::atoi(argv[optind++]);
init_method = std::atoi(argv[optind++]);
time_kernel = static_cast<bool>(std::atoi(argv[optind]));
if(scales.empty())
{
scales.push_back(1.0f);
scales.push_back(0.0f);
};
return (0);
};
};
template <typename InOutDataType,
typename AccDataType,
ReduceTensorOp ReduceOpId,
index_t PropagateNan,
index_t OutputIndex>
bool reduce_blockwise_test(bool do_verification,
int init_method,
bool time_kernel,
const std::vector<size_t>& inLengths,
const std::vector<int>& reduceDims,
float alpha,
float beta)
{
bool matched = false;
int result = 0;
const auto tuple_object = reduce_shape_instances{};
static_for<0, std::tuple_size<reduce_shape_instances>::value, 1>{}([&](auto i) {
if(matched)
return;
using ShapeType = remove_cvref_t<decltype(std::get<i>(tuple_object))>;
if(ShapeType::Rank_ != inLengths.size() || ShapeType::NumReduceDim_ != reduceDims.size())
return;
std::array<int, ShapeType::NumReduceDim_> arrReduceDims;
ck::ranges::copy(reduceDims, arrReduceDims.begin());
result = reduce_blockwise_impl<InOutDataType,
AccDataType,
ReduceOpId,
ShapeType::Rank_,
ShapeType::NumReduceDim_,
PropagateNan,
OutputIndex>(
do_verification, init_method, time_kernel, inLengths, arrReduceDims, alpha, beta);
matched = true;
});
return (result == 0) ? true : false;
};
constexpr ReduceTensorOp ReduceOpId = ReduceTensorOp::AVG;
constexpr bool PropagateNan = true;
constexpr bool OutputIndex = false;
int main(int argc, char* argv[])
{
bool pass = true;
if(argc > 1)
{
SimpleAppArgs arg;
if(arg.processArgs(argc, argv) < 0)
return (-1);
if(arg.data_type == 0)
{
pass = reduce_blockwise_test<ck::half_t, float, ReduceOpId, PropagateNan, OutputIndex>(
arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
}
else if(arg.data_type == 1)
{
pass = reduce_blockwise_test<float, float, ReduceOpId, PropagateNan, OutputIndex>(
arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
}
else if(arg.data_type == 3)
{
pass = reduce_blockwise_test<int8_t, float, ReduceOpId, PropagateNan, OutputIndex>(
arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
}
else if(arg.data_type == 5)
{
pass = reduce_blockwise_test<ck::bhalf_t, float, ReduceOpId, PropagateNan, OutputIndex>(
arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
}
else if(arg.data_type == 6)
{
pass = reduce_blockwise_test<double, double, ReduceOpId, PropagateNan, OutputIndex>(
arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
}
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
else if(arg.data_type == 7)
{
pass = reduce_blockwise_test<int4_t, int32_t, ReduceTensorOp::AVG, false, false>(
arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
pass = pass && reduce_blockwise_test<int4_t, int8_t, ReduceTensorOp::MAX, false, false>(
arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
}
#endif
}
else
{
// for testing half_t
pass =
pass && reduce_blockwise_test<ck::half_t, float, ReduceOpId, PropagateNan, OutputIndex>(
true, 2, true, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
// for testing float
pass = pass && reduce_blockwise_test<float, float, ReduceOpId, PropagateNan, OutputIndex>(
true, 2, true, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
// for testing double
pass = pass && reduce_blockwise_test<float, float, ReduceOpId, PropagateNan, OutputIndex>(
true, 2, true, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
// for testing bhalf_t
pass = pass &&
reduce_blockwise_test<ck::bhalf_t, float, ReduceOpId, PropagateNan, OutputIndex>(
true, 2, true, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
// for testing int8_t
pass =
pass && reduce_blockwise_test<int8_t, int32_t, ReduceOpId, PropagateNan, OutputIndex>(
true, 2, true, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
// for testing int4_t using AVG operation
pass = pass && reduce_blockwise_test<int4_t, int32_t, ReduceTensorOp::AVG, false, false>(
true, 2, true, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
// for testing int4_t using MAX operation
pass = pass && reduce_blockwise_test<int4_t, int8_t, ReduceTensorOp::MAX, false, false>(
true, 2, true, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
#endif
// for testing 3D input
pass = pass && reduce_blockwise_test<float, float, ReduceOpId, PropagateNan, OutputIndex>(
true, 2, true, {16, 64, 960}, {0, 1}, 1.0f, 0.0f);
// for testing 5D input
pass = pass && reduce_blockwise_test<float, float, ReduceOpId, PropagateNan, OutputIndex>(
true, 2, true, {16, 64, 32, 2, 960}, {0, 1, 2, 3}, 1.0f, 0.0f);
};
return (pass ? 0 : 1);
};
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_multiblock.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_reduction.hpp"
#include "reduce_example_common.hpp"
template <typename InOutDataType,
typename AccDataType,
ck::ReduceTensorOp ReduceOpId,
ck::index_t Rank,
ck::index_t NumReduceDim,
bool PropagateNan,
bool OutputIndex>
int reduce_blockwise_impl(bool do_verification,
int init_method,
bool time_kernel,
const std::vector<size_t>& inLengths,
const std::array<int, NumReduceDim>& reduceDims,
float alpha,
float beta)
{
using namespace ck;
using namespace ck::tensor_operation::device;
constexpr index_t NumOutDim = (Rank - NumReduceDim == 0) ? 1 : Rank - NumReduceDim;
constexpr bool op_support_indices =
(ReduceOpId == ReduceTensorOp::MIN || ReduceOpId == ReduceTensorOp::MAX ||
ReduceOpId == ReduceTensorOp::AMAX);
constexpr bool invalid_reduce_1 = OutputIndex && !op_support_indices;
// 1) If InOutDataType is half_t, must use half_t as AccDataType for indexable reduction
// operations 2) If InOutDataType is half_t, must use float as AccDataType for non-indexable
// reduction operations
constexpr bool invalid_reduce_2 =
std::is_same<InOutDataType, half_t>::value &&
((!op_support_indices && !std::is_same<AccDataType, float>::value) ||
(op_support_indices && !std::is_same<AccDataType, half_t>::value));
// 1) If InOutDataType is float, must use float as AccDataType for indexable reduction
// operations
constexpr bool invalid_reduce_3 =
std::is_same<InOutDataType, float>::value &&
(op_support_indices && !std::is_same<AccDataType, float>::value);
// 1) If InOutDataType is int8_t or int4_t, must use int8_t as AccDataType for indexable
// reduction operations 2) If InOutDataType is int8_t or int4_t, must use int32_t as AccDataType
// for non-indexable reduction operations
constexpr bool invalid_reduce_4 =
std::is_same<InOutDataType, int8_t>::value &&
((!op_support_indices && !std::is_same<AccDataType, int32_t>::value) ||
(op_support_indices && !std::is_same<AccDataType, int8_t>::value));
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
constexpr bool invalid_reduce_4_2 =
std::is_same<InOutDataType, int4_t>::value &&
((!op_support_indices && !std::is_same<AccDataType, int32_t>::value) ||
(op_support_indices && !std::is_same<AccDataType, int8_t>::value));
#endif
// 1) If InOutDataType is int8_t or int4_t, the supported operation must be either indexable
// operations or ADD/AVG
constexpr bool invalid_reduce_5 = std::is_same<InOutDataType, int8_t>::value &&
(!op_support_indices && ReduceOpId != ReduceTensorOp::ADD &&
ReduceOpId != ReduceTensorOp::AVG);
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
constexpr bool invalid_reduce_5_2 = std::is_same<InOutDataType, int4_t>::value &&
(!op_support_indices && ReduceOpId != ReduceTensorOp::ADD &&
ReduceOpId != ReduceTensorOp::AVG);
#endif
// 1) If InOutDataType is bhalf_t, must use float as AccDataType for all reduction operations
constexpr bool invalid_reduce_6 =
std::is_same<InOutDataType, bhalf_t>::value && !std::is_same<AccDataType, float>::value;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
constexpr bool invalid_reduce =
(invalid_reduce_1 || invalid_reduce_2 || invalid_reduce_3 || invalid_reduce_4 ||
invalid_reduce_5 || invalid_reduce_6 || invalid_reduce_4_2 || invalid_reduce_5_2);
#else
constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2 || invalid_reduce_3 ||
invalid_reduce_4 || invalid_reduce_5 || invalid_reduce_6);
#endif
if constexpr(invalid_reduce)
{
std::cerr << "The reduction setting is invalid, exiting!" << std::endl;
return (-1);
};
using ReduceOperation = typename reduce_binary_operator<ReduceOpId>::opType;
using InElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::InElementwiseOperation;
using AccElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::AccElementwiseOperation;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
using InOutDataTypeInDevice = typename std::
conditional<std::is_same<InOutDataType, int4_t>::value, int8_t, InOutDataType>::type;
#else
using InOutDataTypeInDevice = InOutDataType;
#endif
using DeviceReduceInstance =
ck::tensor_operation::device::DeviceReduceMultiBlock<InOutDataTypeInDevice,
AccDataType,
InOutDataTypeInDevice,
Rank,
NumReduceDim,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
InMemoryDataOperationEnum::Set,
PropagateNan,
OutputIndex,
false, // HaveIndexInputIfOutputIndex
256, // BlockSize
4, // MThreadClusterSize
64, // KThreadClusterSize
1, // MThreadSliceSize
1, // KThreadSliceSize
0, // InSrcVectorDim
1, // InSrceVectorSize
1>; // OutDstVectorSize
Tensor<InOutDataType> in(inLengths);
std::vector<size_t> outLengths;
auto invariantDims = get_invariant_dims<Rank, NumReduceDim>(reduceDims);
if(invariantDims.empty())
outLengths.push_back(1);
else
for(auto dim : invariantDims)
outLengths.push_back(inLengths[dim]);
Tensor<InOutDataType> out_ref(outLengths);
Tensor<InOutDataType> out(outLengths);
Tensor<int> out_indices_ref(outLengths);
Tensor<int> out_indices(outLengths);
auto inStrides = in.mDesc.GetStrides();
auto outStrides = out.mDesc.GetStrides();
size_t invariant_total_length = out.mDesc.GetElementSize();
size_t reduce_total_length = in.mDesc.GetElementSize() / invariant_total_length;
std::size_t num_thread = 1;
if(do_verification)
{
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
break;
case 2:
in.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0},
num_thread);
}
if(beta != 0.0f)
for(size_t i = 0; i < out_ref.mDesc.GetElementSpaceSize(); i++)
out.mData[i] = out_ref.mData[i];
};
// these buffers are usually provided by the user application
DeviceMem in_dev(sizeof(InOutDataTypeInDevice) * in.mDesc.GetElementSpaceSize());
DeviceMem out_dev(sizeof(InOutDataTypeInDevice) * out.mDesc.GetElementSpaceSize());
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if(std::is_same<InOutDataType, int4_t>::value)
{
std::vector<InOutDataTypeInDevice> tmp_buf(in.mData.size());
std::copy_n(in.mData.data(), in.mData.size(), tmp_buf.data());
in_dev.ToDevice(tmp_buf.data());
}
else
#endif
in_dev.ToDevice(in.mData.data());
if(beta != 0.0f)
{
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if(std::is_same<InOutDataType, int4_t>::value)
{
std::vector<InOutDataTypeInDevice> tmp_buf(in.mData.size());
std::copy_n(out.mData.data(), out.mData.size(), tmp_buf.data());
out_dev.ToDevice(tmp_buf.data());
}
else
#endif
out_dev.ToDevice(out.mData.data());
};
size_t indicesSizeInBytes = OutputIndex ? out.mDesc.GetElementSize() * sizeof(int32_t) : 0;
DeviceMem out_index_dev(indicesSizeInBytes);
InElementwiseOperation in_elementwise_op;
AccElementwiseOperation acc_elementwise_op;
std::tie(in_elementwise_op, acc_elementwise_op) =
reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator(
static_cast<int32_t>(reduce_total_length));
if(do_verification)
{
ReductionHost<InOutDataType,
AccDataType,
InOutDataType,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
Rank,
NumReduceDim,
PropagateNan,
OutputIndex>
hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);
hostReduce.Run(alpha,
in.mData.data(),
beta,
out_ref.mData.data(),
out_indices_ref.mData.data(),
in_elementwise_op,
acc_elementwise_op);
};
std::array<index_t, Rank> arrInLengths;
std::array<index_t, Rank> arrInStrides;
std::array<index_t, NumOutDim> arrOutLengths;
std::array<index_t, NumOutDim> arrOutStrides;
ck::ranges::copy(inLengths, arrInLengths.begin());
ck::ranges::copy(inStrides, arrInStrides.begin());
ck::ranges::copy(outLengths, arrOutLengths.begin());
ck::ranges::copy(outStrides, arrOutStrides.begin());
auto reduce = DeviceReduceInstance{};
auto argument_ptr = reduce.MakeArgumentPointer(arrInLengths,
arrInStrides,
arrOutLengths,
arrOutStrides,
reduceDims,
alpha,
beta,
in_dev.GetDeviceBuffer(),
nullptr,
out_dev.GetDeviceBuffer(),
out_index_dev.GetDeviceBuffer(),
in_elementwise_op,
acc_elementwise_op);
if(!reduce.IsSupportedArgument(argument_ptr.get()))
{
std::cerr
<< "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<< std::endl;
return (-2);
};
std::string reduce_name = reduce.GetTypeString();
auto invoker_ptr = reduce.MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t num_bytes = invariant_total_length * reduce_total_length * sizeof(InOutDataType) +
invariant_total_length * sizeof(InOutDataType);
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << reduce_name
<< std::endl;
bool pass = true;
if(do_verification)
{
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if(std::is_same<InOutDataType, int4_t>::value)
{
std::vector<InOutDataTypeInDevice> tmp_buf(out.mData.size());
out_dev.FromDevice(tmp_buf.data());
std::copy_n(tmp_buf.data(), out.mData.size(), out.mData.data());
}
else
#endif
out_dev.FromDevice(out.mData.data());
pass = pass && ck::utils::check_err(out, out_ref);
if(OutputIndex)
{
out_index_dev.FromDevice(out_indices.mData.data());
pass = pass && ck::utils::check_err(out_indices, out_indices_ref);
};
};
return (pass ? 0 : 1);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <sstream>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_multiblock.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_reduction.hpp"
using namespace ck;
using namespace ck::tensor_operation::device;
using InOutDataType = ck::half_t;
using InOutDataType = ck::half_t;
using AccDataType = float;
constexpr ReduceTensorOp ReduceOpId = ReduceTensorOp::NORM2;
constexpr bool PropagateNan = true;
constexpr bool OutputIndex = false;
using ReduceOperation = typename reduce_binary_operator<ReduceOpId>::opType;
using InElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::InElementwiseOperation;
using AccElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::AccElementwiseOperation;
using PassThroughOp = tensor_operation::element_wise::PassThrough;
using DeviceReduceInstance_1 = DeviceReduceMultiBlock<InOutDataType,
AccDataType,
InOutDataType,
5, // Rank
1, // NumReduceDim
ReduceOperation,
InElementwiseOperation,
PassThroughOp,
InMemoryDataOperationEnum::Set,
PropagateNan,
OutputIndex,
false, // HaveIndexInputIfOutputIndex
256,
32,
8,
1,
1,
1, // vector dim
1,
1>;
using DeviceReduceInstance_2 = DeviceReduceMultiBlock<InOutDataType,
AccDataType,
InOutDataType,
4, // Rank
1, // NumReduceDim
ReduceOperation,
PassThroughOp,
AccElementwiseOperation,
InMemoryDataOperationEnum::Set,
PropagateNan,
OutputIndex,
false, // HaveIndexInputIfOutputIndex
256,
128,
2,
1,
1,
1, // vector dim
1,
1>;
static bool do_verify;
static int init_method;
static float alpha;
static float beta;
static bool time_kernel;
int main(int argc, char* argv[])
{
// used by the device reduction
const std::array<int, 1> reduceDims_1 = {4};
// const std::array<int, 4> invariantDims_1 = {0, 1, 2, 3};
const std::array<int, 1> reduceDims_2 = {3};
// const std::array<int, 3> invariantDims_2 = {0, 1, 2};
// used by the host reduction
const std::array<int, 2> reduceDims = {3, 4};
const std::array<int, 3> invariantDims = {0, 1, 2};
const std::vector<size_t> inLengths_1 = {64, 320, 80, 4, 128};
// input lengths of the second reduction, which is also the output lengths of the first
// reduction
const std::vector<size_t> inLengths_2 = {64, 320, 80, 4};
const std::vector<size_t> outLengths = {64, 320, 80};
if(argc == 1)
{
do_verify = true;
init_method = 2;
time_kernel = true;
}
else if(argc == 4)
{
do_verify = static_cast<bool>(argv[1]);
init_method = atoi(argv[2]);
time_kernel = static_cast<bool>(atoi(argv[3]));
}
else
{
std::ostringstream ostr;
ostr << "Wrong parameter! " << std::endl
<< "Usage: " << argv[0] << "[verify 0/1] init_method time_kernel" << std::endl;
throw std::runtime_error(ostr.str());
};
alpha = 1.0f;
beta = 0.0f;
Tensor<InOutDataType> in_1(inLengths_1);
Tensor<InOutDataType> out_ref(outLengths);
Tensor<InOutDataType> in_2(inLengths_2); // also the output tensor of the first reduction
Tensor<InOutDataType> out(outLengths);
auto inStrides_1 = in_1.mDesc.GetStrides();
auto inStrides_2 = in_2.mDesc.GetStrides();
auto outStrides = out.mDesc.GetStrides();
size_t invariant_total_length = out.mDesc.GetElementSize();
size_t reduce_total_length = in_1.mDesc.GetElementSize() / invariant_total_length;
std::size_t num_thread = 1;
if(do_verify)
{
switch(init_method)
{
case 0: break;
case 1:
in_1.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
break;
case 2:
in_1.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
break;
default:
in_1.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0},
num_thread);
}
if(beta != 0.0f)
for(size_t i = 0; i < out_ref.mDesc.GetElementSpaceSize(); i++)
out.mData[i] = out_ref.mData[i];
};
DeviceMem in_1_dev(sizeof(InOutDataType) * in_1.mDesc.GetElementSpaceSize());
DeviceMem in_2_dev(sizeof(InOutDataType) * in_2.mDesc.GetElementSpaceSize());
DeviceMem out_dev(sizeof(InOutDataType) * out.mDesc.GetElementSpaceSize());
in_1_dev.ToDevice(in_1.mData.data());
if(beta != 0.0f)
out_dev.ToDevice(out.mData.data());
InElementwiseOperation in_elementwise_op;
AccElementwiseOperation acc_elementwise_op;
std::tie(in_elementwise_op, acc_elementwise_op) =
reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator(
static_cast<int32_t>(reduce_total_length));
if(do_verify)
{
ReductionHost<InOutDataType,
AccDataType,
InOutDataType,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
5, // Rank
2, // NumReduceDim
PropagateNan,
OutputIndex>
hostReduce(in_1.mDesc, out_ref.mDesc, invariantDims, reduceDims);
hostReduce.Run(alpha,
in_1.mData.data(),
beta,
out_ref.mData.data(),
nullptr,
in_elementwise_op,
acc_elementwise_op);
};
std::array<index_t, 5> arrInLengths_1;
std::array<index_t, 5> arrInStrides_1;
std::array<index_t, 4> arrInLengths_2;
std::array<index_t, 4> arrInStrides_2;
std::array<index_t, 3> arrOutLengths;
std::array<index_t, 3> arrOutStrides;
ck::ranges::copy(inLengths_1, arrInLengths_1.begin());
ck::ranges::copy(inStrides_1, arrInStrides_1.begin());
ck::ranges::copy(inLengths_2, arrInLengths_2.begin());
ck::ranges::copy(inStrides_2, arrInStrides_2.begin());
ck::ranges::copy(outLengths, arrOutLengths.begin());
ck::ranges::copy(outStrides, arrOutStrides.begin());
auto reduce_1 = DeviceReduceInstance_1{};
auto argument_ptr_1 = reduce_1.MakeArgumentPointer(arrInLengths_1,
arrInStrides_1,
arrInLengths_2,
arrInStrides_2,
reduceDims_1,
1.0f,
0.0f,
in_1_dev.GetDeviceBuffer(),
nullptr,
in_2_dev.GetDeviceBuffer(),
nullptr,
in_elementwise_op,
PassThroughOp{});
if(!reduce_1.IsSupportedArgument(argument_ptr_1.get()))
{
std::cout
<< "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<< std::endl;
};
auto invoker_ptr_1 = reduce_1.MakeInvokerPointer();
auto reduce_2 = DeviceReduceInstance_2{};
auto argument_ptr_2 = reduce_2.MakeArgumentPointer(arrInLengths_2,
arrInStrides_2,
arrOutLengths,
arrOutStrides,
reduceDims_2,
alpha,
beta,
in_2_dev.GetDeviceBuffer(),
nullptr,
out_dev.GetDeviceBuffer(),
nullptr,
PassThroughOp{},
acc_elementwise_op);
if(!reduce_2.IsSupportedArgument(argument_ptr_2.get()))
{
std::cout
<< "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<< std::endl;
};
auto invoker_ptr_2 = reduce_2.MakeInvokerPointer();
float avg_time_1 = invoker_ptr_1->Run(argument_ptr_1.get(), StreamConfig{nullptr, time_kernel});
float avg_time_2 = invoker_ptr_2->Run(argument_ptr_2.get(), StreamConfig{nullptr, time_kernel});
std::size_t num_bytes = invariant_total_length * reduce_total_length * sizeof(InOutDataType) +
invariant_total_length * sizeof(InOutDataType);
float gb_per_sec = num_bytes / 1.E6 / (avg_time_1 + avg_time_2);
std::cout << "Perf: " << avg_time_1 + avg_time_2 << " ms, " << gb_per_sec << " GB/s, "
<< reduce_1.GetTypeString() << " => " << reduce_2.GetTypeString() << std::endl;
bool pass = true;
if(do_verify)
{
out_dev.FromDevice(out.mData.data());
pass = pass && ck::utils::check_err(out, out_ref);
};
return (pass ? 0 : 1);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
template <int Rank, int NumReduceDim>
static inline std::array<int, Rank - NumReduceDim>
get_invariant_dims(const std::array<int, NumReduceDim>& reduceDims)
{
int reduceFlag = 0;
// flag the bits for the reduceDims
for(int i = 0; i < NumReduceDim; i++)
{
reduceFlag |= 1 << reduceDims[i];
};
std::array<int, Rank - NumReduceDim> invariantDims;
// collect invariant dimensions
int dim = 0;
for(int i = 0; i < Rank; i++)
if((reduceFlag & (1 << i)) == 0)
{
invariantDims[dim] = i;
dim++;
};
return invariantDims;
};
template <ck::index_t Rank, ck::index_t NumReduceDim>
struct ReduceShape
{
static constexpr ck::index_t Rank_ = Rank;
static constexpr ck::index_t NumReduceDim_ = NumReduceDim;
};
using reduce_shape_instances = std::tuple<ReduceShape<3, 1>,
ReduceShape<3, 2>,
ReduceShape<4, 1>,
ReduceShape<4, 2>,
ReduceShape<4, 3>,
ReduceShape<5, 1>,
ReduceShape<5, 2>,
ReduceShape<5, 3>,
ReduceShape<5, 4>>;
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/utility/reduction_enums.hpp"
#include "reduce_multiblock_atomic_add_impl.hpp"
#include "reduce_example_common.hpp"
using namespace ck;
using namespace ck::tensor_operation::device;
static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
{"verify", required_argument, nullptr, 'v'},
{"help", no_argument, nullptr, '?'},
{nullptr, 0, nullptr, 0}};
class SimpleAppArgs
{
private:
int option_index = 0;
public:
std::vector<size_t> inLengths = {16, 64, 32, 960};
std::vector<int> reduceDims = {0, 1, 2};
std::vector<float> scales = {1.0f, 0.0f};
bool do_verification = true;
int data_type = 1;
int init_method = 2;
bool time_kernel = true;
public:
void show_usage(const char* cmd)
{
std::cout << "Usage of " << cmd << std::endl;
std::cout << "--inLengths or -D, comma separated list of input tensor dimension lengths"
<< std::endl;
std::cout << "--reduceDims or -R, comma separated list of to-reduce dimensions"
<< std::endl;
std::cout << "--verify or -v, 1/0 to indicate whether to verify the reduction result by "
"comparing with the host-based reduction"
<< std::endl;
std::cout << "Arg1: data type (0: fp32, 1: fp64)" << std::endl;
std::cout << "Arg2 -- init method (0=no init, 1=single integer value, 2=scope integer "
"value, 3=decimal value)"
<< std::endl;
std::cout << "Arg3 -- time kernel (0=no, 1=yes)" << std::endl;
};
int processArgs(int argc, char* argv[])
{
using ck::host_common::getTypeValuesFromString;
int ch;
while(1)
{
ch = getopt_long(argc, argv, "D:R:v:l:", long_options, &option_index);
if(ch == -1)
break;
switch(ch)
{
case 'D':
if(!optarg)
throw std::runtime_error("Invalid option format!");
inLengths = getTypeValuesFromString<size_t>(optarg);
break;
case 'R':
if(!optarg)
throw std::runtime_error("Invalid option format!");
reduceDims = getTypeValuesFromString<int>(optarg);
break;
case 'v':
if(!optarg)
throw std::runtime_error("Invalid option format!");
do_verification = static_cast<bool>(std::atoi(optarg));
break;
case '?':
if(std::string(long_options[option_index].name) == "help")
{
show_usage(argv[0]);
return (-1);
};
break;
default: show_usage(argv[0]); return (-1);
};
};
if(optind + 3 > argc)
{
throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");
};
data_type = std::atoi(argv[optind++]);
init_method = std::atoi(argv[optind++]);
time_kernel = static_cast<bool>(std::atoi(argv[optind]));
if(scales.empty())
{
scales.push_back(1.0f);
scales.push_back(0.0f);
};
return (0);
};
};
template <typename InOutDataType,
typename AccDataType,
ReduceTensorOp ReduceOpId,
index_t PropagateNan>
bool reduce_multiblock_atomic_add_test(bool do_verification,
int init_method,
bool time_kernel,
const std::vector<size_t>& inLengths,
const std::vector<int>& reduceDims,
float alpha,
float beta)
{
bool matched = false;
int result = 0;
const auto tuple_object = reduce_shape_instances{};
static_for<0, std::tuple_size<reduce_shape_instances>::value, 1>{}([&](auto i) {
if(matched)
return;
using ShapeType = remove_cvref_t<decltype(std::get<i>(tuple_object))>;
if(ShapeType::Rank_ != inLengths.size() || ShapeType::NumReduceDim_ != reduceDims.size())
return;
std::array<int, ShapeType::NumReduceDim_> a_reduceDims;
ck::ranges::copy(reduceDims, a_reduceDims.begin());
result = reduce_multiblock_atomic_add_impl<InOutDataType,
AccDataType,
ReduceOpId,
ShapeType::Rank_,
ShapeType::NumReduceDim_,
PropagateNan>(
do_verification, init_method, time_kernel, inLengths, a_reduceDims, alpha, beta);
matched = true;
});
return (result == 0) ? true : false;
};
constexpr ReduceTensorOp ReduceOpId = ReduceTensorOp::AVG;
constexpr bool PropagateNan = true;
int main(int argc, char* argv[])
{
bool pass = true;
if(argc > 1)
{
SimpleAppArgs arg;
if(arg.processArgs(argc, argv) < 0)
return (-1);
if(arg.data_type == 0)
{
pass = reduce_multiblock_atomic_add_test<float, float, ReduceOpId, PropagateNan>(
arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
}
else if(arg.data_type == 1)
{
pass = reduce_multiblock_atomic_add_test<double, double, ReduceOpId, PropagateNan>(
arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
}
}
else
{
// for testing float
pass = pass && reduce_multiblock_atomic_add_test<float, float, ReduceOpId, PropagateNan>(
true, 2, false, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
// for testing double
pass = pass && reduce_multiblock_atomic_add_test<double, double, ReduceOpId, PropagateNan>(
true, 2, false, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
// for testing 3D input
pass = pass && reduce_multiblock_atomic_add_test<float, float, ReduceOpId, PropagateNan>(
true, 2, false, {16, 64, 960}, {0, 1}, 1.0f, 0.0f);
// for testing 5D input
pass = pass && reduce_multiblock_atomic_add_test<float, float, ReduceOpId, PropagateNan>(
true, 2, false, {16, 64, 32, 2, 960}, {0, 1, 2, 3}, 1.0f, 0.0f);
};
return (pass ? 0 : 1);
};
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_multiblock.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_reduction.hpp"
#include "reduce_example_common.hpp"
template <typename InOutDataType,
typename AccDataType,
ck::ReduceTensorOp ReduceOpId,
ck::index_t Rank,
ck::index_t NumReduceDim,
bool PropagateNan>
int reduce_multiblock_atomic_add_impl(bool do_verification,
int init_method,
bool time_kernel,
const std::vector<size_t>& inLengths,
const std::array<int, NumReduceDim>& reduceDims,
float alpha,
float beta)
{
using namespace ck;
using namespace ck::tensor_operation::device;
constexpr index_t NumOutDim = (Rank - NumReduceDim == 0) ? 1 : Rank - NumReduceDim;
constexpr bool op_support_atomic_add =
(ReduceOpId == ReduceTensorOp::ADD || ReduceOpId == ReduceTensorOp::AVG);
constexpr bool invalid_reduce_1 = !op_support_atomic_add;
constexpr bool invalid_reduce_2 =
!(std::is_same<InOutDataType, float>::value || std::is_same<InOutDataType, double>::value);
constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2);
if(invalid_reduce)
{
std::cerr << "The reduction setting is invalid, exiting!" << std::endl;
return (-1);
};
using ReduceOperation = typename reduce_binary_operator<ReduceOpId>::opType;
using InElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::InElementwiseOperation;
using AccElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::AccElementwiseOperation;
using DeviceReduceInstance =
ck::tensor_operation::device::DeviceReduceMultiBlock<InOutDataType,
AccDataType,
InOutDataType,
Rank,
NumReduceDim,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
InMemoryDataOperationEnum::AtomicAdd,
PropagateNan,
false,
false, // HaveIndexInputIfOutputIndex
256,
4,
64,
1,
1,
0,
1,
1>;
Tensor<InOutDataType> in(inLengths);
std::vector<size_t> outLengths;
auto invariantDims = get_invariant_dims<Rank, NumReduceDim>(reduceDims);
if(invariantDims.empty())
outLengths.push_back(1);
else
for(auto dim : invariantDims)
outLengths.push_back(inLengths[dim]);
Tensor<InOutDataType> out_ref(outLengths);
Tensor<InOutDataType> out(outLengths);
auto inStrides = in.mDesc.GetStrides();
auto outStrides = out.mDesc.GetStrides();
size_t invariant_total_length = out.mDesc.GetElementSize();
size_t reduce_total_length = in.mDesc.GetElementSize() / invariant_total_length;
std::size_t num_thread = 1;
if(do_verification)
{
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
break;
case 2:
in.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0},
num_thread);
}
if(beta != 0.0f)
for(size_t i = 0; i < out_ref.mDesc.GetElementSpaceSize(); i++)
out.mData[i] = out_ref.mData[i];
};
// these buffers are usually provided by the user application
DeviceMem in_dev(sizeof(InOutDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem out_dev(sizeof(InOutDataType) * out.mDesc.GetElementSpaceSize());
in_dev.ToDevice(in.mData.data());
if(beta != 0.0f)
out_dev.ToDevice(out.mData.data());
InElementwiseOperation in_elementwise_op;
AccElementwiseOperation acc_elementwise_op;
std::tie(in_elementwise_op, acc_elementwise_op) =
reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator(
static_cast<int32_t>(reduce_total_length));
if(do_verification)
{
ReductionHost<InOutDataType,
AccDataType,
InOutDataType,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
Rank,
NumReduceDim,
PropagateNan,
false>
hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);
hostReduce.Run(alpha,
in.mData.data(),
beta,
out_ref.mData.data(),
nullptr,
in_elementwise_op,
acc_elementwise_op);
};
std::array<index_t, Rank> arrInLengths;
std::array<index_t, Rank> arrInStrides;
std::array<index_t, NumOutDim> arrOutLengths;
std::array<index_t, NumOutDim> arrOutStrides;
ck::ranges::copy(inLengths, arrInLengths.begin());
ck::ranges::copy(inStrides, arrInStrides.begin());
ck::ranges::copy(outLengths, arrOutLengths.begin());
ck::ranges::copy(outStrides, arrOutStrides.begin());
auto reduce = DeviceReduceInstance{};
auto argument_ptr = reduce.MakeArgumentPointer(arrInLengths,
arrInStrides,
arrOutLengths,
arrOutStrides,
reduceDims,
alpha,
beta,
in_dev.GetDeviceBuffer(),
nullptr,
out_dev.GetDeviceBuffer(),
nullptr,
in_elementwise_op,
acc_elementwise_op);
if(!reduce.IsSupportedArgument(argument_ptr.get()))
{
std::cerr
<< "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<< std::endl;
return (-2);
};
std::string reduce_name = reduce.GetTypeString();
auto invoker_ptr = reduce.MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t num_bytes = invariant_total_length * reduce_total_length * sizeof(InOutDataType) +
invariant_total_length * sizeof(InOutDataType);
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << reduce_name
<< std::endl;
bool pass = true;
if(do_verification)
{
out_dev.FromDevice(out.mData.data());
pass = pass && ck::utils::check_err(out, out_ref);
};
return (pass ? 0 : 1);
}
add_example_executable(example_pool2d_fwd_fp16 pool2d_fwd_fp16.cpp)
add_example_executable(example_pool2d_fwd_fp32 pool2d_fwd_fp32.cpp)
# Instructions for ```example_pool2d_fwd``` Examples
## Run ```example_pool2d_fwd_fp16```
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg3: time kernel (0=no, 1=yes)
#arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, RightPx
./bin/example_pool2d_fwd_fp16 1 1 1
```
Result
```
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
out_n_c_ho_wo: dim 4, lengths {128, 192, 36, 36}, strides {248832, 1, 6912, 192}
launch_and_time_kernel: grid_dim {124416, 1, 1}, block_dim {64, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 0.397436 ms, 1.44252 TFlops, 783.713 GB/s
```
## Run ```example_pool2d_fwd_fp32```
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg3: time kernel (0=no, 1=yes)
#arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, RightPx
./bin/example_pool2d_fwd_fp32 1 1 1
```
Result
```
./bin/example_pool2d_fwd_fp32 1 1 1
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
out_n_c_ho_wo: dim 4, lengths {128, 192, 36, 36}, strides {248832, 1, 6912, 192}
launch_and_time_kernel: grid_dim {124416, 1, 1}, block_dim {64, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 1.01823 ms, 0.563045 TFlops, 611.8 GB/s
```
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/utility/reduction_functions_accumulate.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
template <typename InDataType,
typename OutDataType,
typename AccDataType,
typename IndexDataType,
ck::ReduceTensorOp ReduceOpId,
bool PropagateNan,
bool OutputIndex>
static void pool_host_verify(const Tensor<InDataType>& in,
Tensor<OutDataType>& out,
Tensor<IndexDataType>& out_indices,
const std::array<ck::index_t, 2>& window_spatial_lengths,
const std::array<ck::index_t, 2>& window_strides,
const std::array<ck::index_t, 2>& in_left_pads,
const std::array<ck::index_t, 2>& /*in_right_pads*/)
{
const int32_t reduceLength = window_spatial_lengths[0] * window_spatial_lengths[1];
using ReduceOperation = typename ck::reduce_binary_operator<ReduceOpId>::opType;
auto elementwise_ops =
ck::reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator(reduceLength);
auto in_elementwise_op = std::get<0>(elementwise_ops);
auto acc_elementwise_op = std::get<1>(elementwise_ops);
if constexpr(!OutputIndex)
{
using Accumulation =
ck::detail::AccumulateWithNanCheck<PropagateNan, ReduceOperation, AccDataType>;
auto f_nchw = [&](auto n, auto c, auto ho, auto wo) {
auto accuVal = ReduceOperation::template GetIdentityValue<AccDataType>();
for(ck::index_t y = 0; y < window_spatial_lengths[0]; ++y)
{
ck::index_t hi = ho * window_strides[0] + y - in_left_pads[0];
for(ck::index_t x = 0; x < window_spatial_lengths[1]; ++x)
{
ck::index_t wi = wo * window_strides[1] + x - in_left_pads[1];
if(hi >= 0 && hi < static_cast<ck::index_t>(in.mDesc.GetLengths()[2]) &&
wi >= 0 && wi < static_cast<ck::index_t>(in.mDesc.GetLengths()[3]))
{
AccDataType currVal = static_cast<AccDataType>(in(n, c, hi, wi));
in_elementwise_op(currVal, currVal);
Accumulation::Calculate(accuVal, currVal);
}
}
}
acc_elementwise_op(accuVal, accuVal);
out(n, c, ho, wo) = accuVal;
};
make_ParallelTensorFunctor(f_nchw,
out.mDesc.GetLengths()[0],
out.mDesc.GetLengths()[1],
out.mDesc.GetLengths()[2],
out.mDesc.GetLengths()[3])(std::thread::hardware_concurrency());
}
else
{
using Accumulation = ck::detail::AccumulateWithIndexAndNanCheck<PropagateNan,
ReduceOperation,
AccDataType,
IndexDataType>;
auto f_nchw = [&](auto n, auto c, auto ho, auto wo) {
auto accuVal = ReduceOperation::template GetIdentityValue<AccDataType>();
IndexDataType accuIndex = 0;
for(ck::index_t y = 0; y < window_spatial_lengths[0]; ++y)
{
ck::index_t hi = ho * window_strides[0] + y - in_left_pads[0];
for(ck::index_t x = 0; x < window_spatial_lengths[1]; ++x)
{
ck::index_t wi = wo * window_strides[1] + x - in_left_pads[1];
if(hi >= 0 && hi < in.mDesc.GetLengths()[2] && wi >= 0 &&
wi < in.mDesc.GetLengths()[3])
{
AccDataType currVal = static_cast<AccDataType>(in(n, c, hi, wi));
IndexDataType currIndex = y * window_spatial_lengths[1] + x;
in_elementwise_op(currVal, currVal);
Accumulation::Calculate(accuVal, currVal, accuIndex, currIndex);
}
}
}
acc_elementwise_op(accuVal, accuVal);
out(n, c, ho, wo) = accuVal;
out_indices(n, c, ho, wo) = accuIndex;
};
make_ParallelTensorFunctor(f_nchw,
out.mDesc.GetLengths()[0],
out.mDesc.GetLengths()[1],
out.mDesc.GetLengths()[2],
out.mDesc.GetLengths()[3])(std::thread::hardware_concurrency());
};
}
template <typename InDataType,
typename OutDataType,
typename AccDataType,
typename IndexDataType,
typename InLayout,
typename OutLayout,
ck::ReduceTensorOp ReduceOpId,
bool PropagateNan,
bool OutputIndex>
bool pool_test(bool do_verification,
int init_method,
bool time_kernel,
ck::index_t N,
ck::index_t C,
ck::index_t Y,
ck::index_t X,
ck::index_t Hi,
ck::index_t Wi,
ck::index_t window_stride_h,
ck::index_t window_stride_w,
ck::index_t in_left_pad_h,
ck::index_t in_left_pad_w,
ck::index_t in_right_pad_h,
ck::index_t in_right_pad_w)
{
using DevicePoolFwdInstance =
ck::tensor_operation::device::DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C<
InDataType, // InDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
ReduceOpId,
OutputIndex,
64, // BlockSize
64, // ReduceMThreadClusterSize
1, // ReduceKThreadClusterSize
4, // ReduceMThreadSliceSize
1, // ReduceKThreadSliceSize
4>; // InSrcOutDstVectorSize
const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Y) / window_stride_h + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - X) / window_stride_w + 1;
const std::array<ck::index_t, 2> window_spatial_lengths{{Y, X}};
const std::array<ck::index_t, 2> window_strides{{window_stride_h, window_stride_w}};
const std::array<ck::index_t, 2> input_left_pads{{in_left_pad_h, in_left_pad_w}};
const std::array<ck::index_t, 2> input_right_pads{{in_right_pad_h, in_right_pad_w}};
// tensor layout
auto f_host_tensor_descriptor =
[](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W, auto layout) {
using namespace ck::literals;
if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value)
{
return HostTensorDescriptor({N_, C_, H, W}, {C_ * H * W, H * W, W, 1_uz});
}
else if constexpr(ck::is_same<decltype(layout),
ck::tensor_layout::convolution::NHWC>::value)
{
return HostTensorDescriptor({N_, C_, H, W}, {C_ * H * W, 1_uz, W * C_, C_});
}
};
Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));
Tensor<OutDataType> out_n_c_ho_wo_host(f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));
Tensor<IndexDataType> out_indices_n_c_ho_wo_host(
f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));
Tensor<OutDataType> out_n_c_ho_wo_device(f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));
Tensor<IndexDataType> out_indices_n_c_ho_wo_device(
f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
std::cout << "out_n_c_ho_wo: " << out_n_c_ho_wo_host.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}); break;
case 2: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}); break;
default: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0});
}
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) *
out_n_c_ho_wo_device.mDesc.GetElementSpaceSize());
DeviceMem out_indices_device_buf(sizeof(IndexDataType) *
out_indices_n_c_ho_wo_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
auto pool = DevicePoolFwdInstance{};
auto invoker_ptr = pool.MakeInvokerPointer();
auto argument_ptr = pool.MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
static_cast<IndexDataType*>(out_indices_device_buf.GetDeviceBuffer()),
N,
C,
std::array<ck::index_t, 2>{{Hi, Wi}},
std::array<ck::index_t, 2>{{Y, X}},
std::array<ck::index_t, 2>{{Ho, Wo}},
window_strides,
input_left_pads,
input_right_pads);
if(!pool.IsSupportedArgument(argument_ptr.get()))
{
throw std::runtime_error("wrong! device_op with the specified compilation parameters does "
"not support this problem");
}
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * N * C * Ho * Wo * Y * X;
std::size_t num_btype =
sizeof(InDataType) * (N * C * Hi * Wi) + sizeof(OutDataType) * (N * C * Ho * Wo);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
bool pass = true;
if(do_verification)
{
pool_host_verify<InDataType,
OutDataType,
AccDataType,
IndexDataType,
ReduceOpId,
PropagateNan,
OutputIndex>(in_n_c_hi_wi,
out_n_c_ho_wo_host,
out_indices_n_c_ho_wo_host,
window_spatial_lengths,
window_strides,
input_left_pads,
input_right_pads);
out_device_buf.FromDevice(out_n_c_ho_wo_device.mData.data());
pass = pass && ck::utils::check_err(out_n_c_ho_wo_device, out_n_c_ho_wo_host);
if constexpr(OutputIndex)
{
out_indices_device_buf.FromDevice(out_indices_n_c_ho_wo_device.mData.data());
pass = pass &&
ck::utils::check_err(out_indices_n_c_ho_wo_device, out_indices_n_c_ho_wo_host);
};
}
return (pass);
};
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "pool2d_fwd_common.hpp"
using InDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
using IndexDataType = int32_t;
using InLayout = ck::tensor_layout::convolution::NHWC;
using OutLayout = ck::tensor_layout::convolution::NHWC;
#if 1
static constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
#else
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
#endif
static constexpr bool OutputIndex = false;
static constexpr bool PropagateNan = false;
int main(int argc, char* argv[])
{
bool do_verification;
int init_method;
bool time_kernel;
// Pool shape
ck::index_t N = 128;
ck::index_t C = 192;
ck::index_t Y = 3;
ck::index_t X = 3;
ck::index_t Hi = 71;
ck::index_t Wi = 71;
ck::index_t window_stride_h = 2;
ck::index_t window_stride_w = 2;
ck::index_t in_left_pad_h = 1;
ck::index_t in_left_pad_w = 1;
ck::index_t in_right_pad_h = 1;
ck::index_t in_right_pad_w = 1;
if(argc == 1)
{
do_verification = true;
init_method = 1;
time_kernel = true;
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = static_cast<bool>(std::stoi(argv[3]));
}
else if(argc == 16)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = static_cast<bool>(std::stoi(argv[3]));
N = std::stoi(argv[4]);
C = std::stoi(argv[5]);
Y = std::stoi(argv[6]);
X = std::stoi(argv[7]);
Hi = std::stoi(argv[8]);
Wi = std::stoi(argv[9]);
window_stride_h = std::stoi(argv[10]);
window_stride_w = std::stoi(argv[11]);
in_left_pad_h = std::stoi(argv[12]);
in_left_pad_w = std::stoi(argv[13]);
in_right_pad_h = std::stoi(argv[14]);
in_right_pad_w = std::stoi(argv[15]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
exit(0);
}
bool pass = pool_test<InDataType,
OutDataType,
AccDataType,
IndexDataType,
InLayout,
OutLayout,
ReduceOpId,
PropagateNan,
OutputIndex>(do_verification,
init_method,
time_kernel,
N,
C,
Y,
X,
Hi,
Wi,
window_stride_h,
window_stride_w,
in_left_pad_h,
in_left_pad_w,
in_right_pad_h,
in_right_pad_w);
return (pass ? 0 : 1);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "pool2d_fwd_common.hpp"
using InDataType = float;
using OutDataType = float;
using AccDataType = float;
using IndexDataType = int32_t;
using InLayout = ck::tensor_layout::convolution::NHWC;
using OutLayout = ck::tensor_layout::convolution::NHWC;
#if 1
static constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
#else
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
#endif
static constexpr bool OutputIndex = false;
static constexpr bool PropagateNan = false;
int main(int argc, char* argv[])
{
bool do_verification;
int init_method;
bool time_kernel;
// Pool shape
ck::index_t N = 128;
ck::index_t C = 192;
ck::index_t Y = 3;
ck::index_t X = 3;
ck::index_t Hi = 71;
ck::index_t Wi = 71;
ck::index_t window_stride_h = 2;
ck::index_t window_stride_w = 2;
ck::index_t in_left_pad_h = 1;
ck::index_t in_left_pad_w = 1;
ck::index_t in_right_pad_h = 1;
ck::index_t in_right_pad_w = 1;
if(argc == 1)
{
do_verification = true;
init_method = 1;
time_kernel = true;
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = static_cast<bool>(std::stoi(argv[3]));
}
else if(argc == 16)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = static_cast<bool>(std::stoi(argv[3]));
N = std::stoi(argv[4]);
C = std::stoi(argv[5]);
Y = std::stoi(argv[6]);
X = std::stoi(argv[7]);
Hi = std::stoi(argv[8]);
Wi = std::stoi(argv[9]);
window_stride_h = std::stoi(argv[10]);
window_stride_w = std::stoi(argv[11]);
in_left_pad_h = std::stoi(argv[12]);
in_left_pad_w = std::stoi(argv[13]);
in_right_pad_h = std::stoi(argv[14]);
in_right_pad_w = std::stoi(argv[15]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
exit(0);
}
bool pass = pool_test<InDataType,
OutDataType,
AccDataType,
IndexDataType,
InLayout,
OutLayout,
ReduceOpId,
PropagateNan,
OutputIndex>(do_verification,
init_method,
time_kernel,
N,
C,
Y,
X,
Hi,
Wi,
window_stride_h,
window_stride_w,
in_left_pad_h,
in_left_pad_w,
in_right_pad_h,
in_right_pad_w);
return (pass ? 0 : 1);
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment